Sample records for observed suspended sediment

  1. Observation of suspended sediments in Mobile Bay, Alabama from satellite

    USGS Publications Warehouse

    Stumpf, Richard P.

    1991-01-01

    As part of a comprehensive geologic study of coastal Alabama and Mississippi, the U.S. Geological Survey is investigating coastal sediment transport in Mobile Bay and the adjacent shelf. Satellite imagery from the NOAA AVHRR is being used to provide data on the variability of spatial patterns in the near-surface suspended sediment concentration. This imagery is processed using atmospheric corrections to remove haze and Rayleigh radiance in order to obtain water reflectances; the reflectances are than converted to approximate sediment concentrations using standard relationships between water reflectance and in situ sediment concentrations. A series of images from early 1990 shows rapid changes in sediment concentrations in response to high river flow of the Alabama-Tombigbee river system. During these times, suspended sediment tends to flow out Mobile Bay without mixing into the eastern lobe of the Bay (Bon Secour Bay). The sediment concentration field also appears to be disturbed by the main ship channel. The sediment plume extends more than 60 km offshore after the peak flow event. One wind event in December 1989 was identified as increasing sediment concentration in the Bay. It is not believed that such an event has been previously observed from satellite.

  2. Bedform Dimensions and Suspended Sediment Observations in a Mixed Sand-Mud Intertidal Environment

    NASA Astrophysics Data System (ADS)

    Lichtman, I. D.; Amoudry, L.; Peter, T.; Jaco, B.

    2016-02-01

    Small-scale bedforms, such as ripples, can profoundly modify near-bed hydrodynamics, near-bed sediment transport and resuspension, and benthic-pelagic fluxes. Knowledge of their dimensions is important for a number of applications. Fundamentally different processes can occur depending on the dimensions of ripples: for low and long ripples, the bed remains dynamically flat and diffusive processes dominate sediment entrainment; for steep ripples, flow separation occurs above the ripples creating vortices, which are far more efficient at entraining sediment into the water column. Recent laboratory experiments for mixtures of sand and mud have shown that bedform dimensions decrease with increasing sediment mud content. However, these same experiments also showed that mud is selectively taken into suspension when bedforms are created and migrate on the bed, leaving sandy bedforms. This entrainment process, selectively suspending fine sediment, is referred to as winnowing. To improve our understanding of bedform and entrainment dynamics of mixed sediments, in situ observations were made on intertidal flats in the Dee Estuary, United Kingdom. A suite of instruments were deployed collecting co-located measurements of the near-bed hydrodynamics, waves, small-scale bed morphology and suspended sediment. Three sites were occupied consecutively, over a Spring-Neap cycle, collecting data for different bed compositions, tide levels and wind conditions. Bed samples were taken when the flats became exposed at low water and a sediment trap collected suspended load when inundated. This study will combine these measurements to investigate the interactions between small-scale bed morphology, near-bed hydrodynamics and sediment entrainment. We will examine bedform development in the complex hydrodynamic and wave climate of tidal flats, in relation to standard ripple predictors. We will also relate the variability in small-scale bedforms to variation in hydrodynamic and wave conditions

  3. A New Measure for Transported Suspended Sediment

    NASA Astrophysics Data System (ADS)

    Yang, Q.

    2017-12-01

    Non-uniform suspended sediment plays an important role in many geographical and biological processes. Despite extensive study, understanding to it seems to stagnate when times to consider non-uniformity and non-equilibrium scenarios comes. Due to unsatisfactory reproducibility, large-scaled flume seems to be incompetent to conduct more fundamental research in this area. To push the realm a step further, experiment to find how suspended sediment exchanges is conducted in a new validated equipment, in which turbulence is motivated by oscillating grids. Analysis shows that 1) suspended sediment exchange is constrained by ωS invariance, 2) ωS of the suspended sediment that certain flow regime could support is unique regardless of the sediment gradation and 3) the more turbulent the flow, the higher ωS of the suspension the flow could achieve. A new measure for suspended sediment ωS, the work required to sustain sediment in suspension transport mode if multiplied by gravitational acceleration, is thus proposed to better describe the dynamics of transported suspended sediment. Except for the further understanding towards suspended sediment transportation mechanics, with this energy measure, a strategy to distribute total transport capacity to different fractions could be derived and rational calculation of non-uniform sediment transport capacity under non-equilibrium conditions be possible.

  4. Improvement of suspended sediment concentration estimation for the Yarlung Zangbo river

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.

    2017-12-01

    Suspended sediment load of a river represents integrated results of soil erosion, ecosystem variation and landform change occurring within basin over a specified period. Accurate estimation of suspended sediment concentration is important for calculating suspended sediment load, therefore is helpful for evaluating the impact of natural and anthropogenic factors on earth system processes under the background of global climate change. However, long-term observation of suspended sediment concentration usually very difficult in harsh condition areas e.g. rivers on the Tibet Plateau. This study proposed two sediment rating curve subdivision methods, the flood rank method and suspended sediment concentration stages method, to improve the estimations of daily suspended sediment concentration of the Yarlung Zangbo river during 2007 to 2009. The flood rank method, hypothesized that the higher water flow with larger erosive power can mobilize sediment sources not available during lower flows, suitable for application where sediments were mainly transported by first few flood events. The suspended sediment concentration stages method, assumed that precipitation is the dominating driving force of sediment erosion and transport processes during the flooding periods, suitable for application where soil erosion was closely related to precipitation events. Compared to traditional sediment rating curve and subdivision methods, results showed that the proposed methods can improve suspended sediment concentration and subsequent suspended sediment load estimations in the middle reach of the Yarlung Zangbo river with higher coefficients of determination (R2) and Nash-Sutcliffe efficiency coefficients (NSE), and yielded smaller bias (BIAS) and root-mean-square errors (RMSE). This study can provide guidelines for regional ecological and environmental management.

  5. Suspended sediment transport under estuarine tidal channel conditions

    USGS Publications Warehouse

    Sternberg, R.W.; Kranck, K.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    A modified version of the GEOPROBE tripod has been used to monitor flow conditions and suspended sediment distribution in the bottom boundary layer of a tidal channel within San Francisco Bay, California. Measurements were made every 15 minutes over three successive tidal cycles. They included mean velocity profiles from four electromagnetic current meters within 1 m of the seabed; mean suspended sediment concentration profiles from seven miniature nephelometers operated within 1 m of the seabed; near-bottom pressure fluctuations; vertical temperature gradient; and bottom photographs. Additionally, suspended sediment was sampled from four levels within 1 m of the seabed three times during each successive flood and ebb cycle. While the instrument was deployed, STD-nephelometer measurements were made throughout the water column, water samples were collected each 1-2 hours, and bottom sediment was sampled at the deployment site. From these measurements, estimates were made of particle settling velocity (ws) from size distributions of the suspended sediment, friction velocity (U*) from the velocity profiles, and reference concentration (Ca) was measured at z = 20 cm. These parameters were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle size in the 4-11 ?? (62.5-0.5 ??m) range with the reference concentration Ca at z = 20 cm (C??), (2) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf), and (3) individual particle size in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. In addition, computations of particle flux were made in order to show vertical variations

  6. Sources of suspended sediment in the Lower Roanoke River, NC

    NASA Astrophysics Data System (ADS)

    Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.

    2015-12-01

    The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and

  7. Two-dimensional Lagrangian simulation of suspended sediment

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  8. Suspended Sediment Character in the Tidal Mekong River: Observations from LISST Profiling

    NASA Astrophysics Data System (ADS)

    Di Leonardo, D. R.; Allison, M. A.

    2016-02-01

    In two recent cooperative field campaigns, teams of researchers from the US and Vietnam collected hydrological and sedimentological data during a low flow season and a high flow season on the lower 100 km of the Song Hau distributary of the Mekong River. The objective of this study is to describe the forcing controls (e.g., tidal and riverine flow, water column stratification, resuspension) on suspended sediment grain size (e.g. mass, volume, granulometry, degree of flocculation) as measured by a Sequoia Scientific LISST 100X mounted on a profiling CTD. LISST (Type C, 2.5-500 µm size range) casts were collected at five transects in the Song Hau distributary. Four transects were located in the Dinh An and the Tran De channels immediately above the ocean interface with one additional transect located above the channel bifurcation, 40 km from the river mouth. Casts were collected at multiple stations across each channel transect for 12 hour and 24 hour continuous periods. Stationary ADCP data was collected during each 5-15 minute cast period and used to characterize shear stress. Preliminary results from the LISST suggest that the majority of suspended sediment is in the silt and very fine sand range. Increasing concentrations of all size fractions towards the bed suggests a local sediment source. Bimodal grain size distributions, with the coarser peak in the 150 µm to 250 µm range, are observed frequently, especially in the low discharge study. Grain size frequencies from the high discharge study tend to be more often unimodal. While there was effectively no salinity observed during the October 2014 high flow season, a maximum of 25.8 PSU was observed in the March 2015 low flow season. These results suggest that flocculation is an important process in the Mekong River, particularly during periods of higher salinity.

  9. Estimating total suspended sediment yield with probability sampling

    Treesearch

    Robert B. Thomas

    1985-01-01

    The ""Selection At List Time"" (SALT) scheme controls sampling of concentration for estimating total suspended sediment yield. The probability of taking a sample is proportional to its estimated contribution to total suspended sediment discharge. This procedure gives unbiased estimates of total suspended sediment yield and the variance of the...

  10. Temperature signal in suspended sediment export from an Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  11. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    USGS Publications Warehouse

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Once developed, sediment acoustic index ratings must be validated with additional suspended-sediment samples, beyond the period of record used in the rating development, to verify that the regression model continues to adequately represent sediment conditions within the stream. Changes in ADVM configuration or installation, or replacement with another ADVM, may require development of a new rating. The best practices described in this report can be used to develop continuous estimates of suspended-sediment concentration and load using sediment acoustic surrogates to enable more informed and accurate responses to diverse sedimentation issues.

  12. Monitoring baseline suspended sediment in forested basins: the effects of sampling on suspended sediment rating curves

    Treesearch

    Robert B. Thomas

    1988-01-01

    Abstract - Rating curves are widely used for directly assessing changes in the suspended sediment delivery process and indirectly for estimating total yields. Four sampling methods were simulated-over a 31-day record of suspended sediment from the North Fork of the Mad River near Korbel, California. The position and size of the four groups of plotted slope/intercept...

  13. Remote Sensing of Suspended Sediment Dynamics in the Mississippi Sound

    NASA Astrophysics Data System (ADS)

    Merritt, D. N.; Skarke, A. D.; Silwal, S.; Dash, P.

    2016-02-01

    The Mississippi Sound is a semi-enclosed estuary between the coast of Mississippi and a chain of offshore barrier islands with relatively shallow water depths and high marine biodiversity that is wildly utilized for commercial fishing and public recreation. The discharge of sediment-laden rivers into the Mississippi Sound and the adjacent Northern Gulf of Mexico creates turbid plumes that can extend hundreds of square kilometers along the coast and persist for multiple days. The concentration of suspended sediment in these coastal waters is an important parameter in the calculation of regional sediment budgets as well as analysis of water-quality factors such as primary productivity, nutrient dynamics, and the transport of pollutants as well as pathogens. The spectral resolution, sampling frequency, and regional scale spatial domain associated with satellite based sensors makes remote sensing an ideal tool to monitor suspended sediment dynamics in the Northern Gulf of Mexico. Accordingly, the presented research evaluates the validity of published models that relate remote sensing reflectance with suspended sediment concentrations (SSC), for similar environmental settings, with 51 in situ observations of SSC from the Mississippi Sound. Additionally, regression analysis is used to correlate additional in situ observations of SSC in Mississippi Sound with coincident observations of visible and near-infrared band reflectance collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Aqua satellite, in order to develop a site-specific empirical predictive model for SSC. Finally, specific parameters of the sampled suspended sediment such as grain size and mineralogy are analyzed in order to quantify their respective contributions to total remotely sensed reflectance.

  14. A Buoy for Continuous Monitoring of Suspended Sediment Dynamics

    PubMed Central

    Mueller, Philip; Thoss, Heiko; Kaempf, Lucas; Güntner, Andreas

    2013-01-01

    Knowledge of Suspended Sediments Dynamics (SSD) across spatial scales is relevant for several fields of hydrology, such as eco-hydrological processes, the operation of hydrotechnical facilities and research on varved lake sediments as geoarchives. Understanding the connectivity of sediment flux between source areas in a catchment and sink areas in lakes or reservoirs is of primary importance to these fields. Lacustrine sediments may serve as a valuable expansion of instrumental hydrological records for flood frequencies and magnitudes, but depositional processes and detrital layer formation in lakes are not yet fully understood. This study presents a novel buoy system designed to continuously measure suspended sediment concentration and relevant boundary conditions at a high spatial and temporal resolution in surface water bodies. The buoy sensors continuously record turbidity as an indirect measure of suspended sediment concentrations, water temperature and electrical conductivity at up to nine different water depths. Acoustic Doppler current meters and profilers measure current velocities along a vertical profile from the water surface to the lake bottom. Meteorological sensors capture the atmospheric boundary conditions as main drivers of lake dynamics. It is the high spatial resolution of multi-point turbidity measurements, the dual-sensor velocity measurements and the temporally synchronous recording of all sensors along the water column that sets the system apart from existing buoy systems. Buoy data collected during a 4-month field campaign in Lake Mondsee demonstrate the potential and effectiveness of the system in monitoring suspended sediment dynamics. Observations were related to stratification and mixing processes in the lake and increased turbidity close to a catchment outlet during flood events. The rugged buoy design assures continuous operation in terms of stability, energy management and sensor logging throughout the study period. We conclude that

  15. Suspended sediments limit coral sperm availability

    PubMed Central

    Ricardo, Gerard F.; Jones, Ross J.; Clode, Peta L.; Humanes, Adriana; Negri, Andrew P.

    2015-01-01

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L−1), with 2–37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water’s surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water’s surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment. PMID:26659008

  16. Suspended sediments limit coral sperm availability.

    PubMed

    Ricardo, Gerard F; Jones, Ross J; Clode, Peta L; Humanes, Adriana; Negri, Andrew P

    2015-12-14

    Suspended sediment from dredging activities and natural resuspension events represent a risk to the reproductive processes of coral, and therefore the ongoing maintenance of reefal populations. To investigate the underlying mechanisms that could reduce the fertilisation success in turbid water, we conducted several experiments exposing gametes of the corals Acropora tenuis and A. millepora to two sediment types. Sperm limitation was identified in the presence of siliciclastic sediment (230 and ~700 mg L(-1)), with 2-37 fold more sperm required to achieve maximum fertilisation rates, when compared with sediment-free treatments. This effect was more pronounced at sub-optimum sperm concentrations. Considerable (>45%) decreases in sperm concentration at the water's surface was recorded in the presence of siliciclastic sediment and a >20% decrease for carbonate sediment. Electron microscopy then confirmed sediment entangled sperm and we propose entrapment and sinking is the primary mechanism reducing sperm available to the egg. Longer exposure to suspended sediments and gamete aging further decreased fertilisation success when compared with a shorter exposure. Collectively, these findings demonstrate that high concentrations of suspended sediments effectively remove sperm from the water's surface during coral spawning events, reducing the window for fertilisation with potential subsequent flow-on effects for recruitment.

  17. Suspending sediment transport, sedimentation, and resuspension in Lake Houston, Texas: Implications for water quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matty, J.M.; Anderson, J.B.; Dunbar, R.B.

    1987-01-01

    Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality withinmore » the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (< 1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.« less

  18. Minimum and Maximum Times Required to Obtain Representative Suspended Sediment Samples

    NASA Astrophysics Data System (ADS)

    Gitto, A.; Venditti, J. G.; Kostaschuk, R.; Church, M. A.

    2014-12-01

    Bottle sampling is a convenient method of obtaining suspended sediment measurements for the development of sediment budgets. While these methods are generally considered to be reliable, recent analysis of depth-integrated sampling has identified considerable uncertainty in measurements of grain-size concentration between grain-size classes of multiple samples. Point-integrated bottle sampling is assumed to represent the mean concentration of suspended sediment but the uncertainty surrounding this method is not well understood. Here we examine at-a-point variability in velocity, suspended sediment concentration, grain-size distribution, and grain-size moments to determine if traditional point-integrated methods provide a representative sample of suspended sediment. We present continuous hour-long observations of suspended sediment from the sand-bedded portion of the Fraser River at Mission, British Columbia, Canada, using a LISST laser-diffraction instrument. Spectral analysis suggests that there are no statistically significant peak in energy density, suggesting the absence of periodic fluctuations in flow and suspended sediment. However, a slope break in the spectra at 0.003 Hz corresponds to a period of 5.5 minutes. This coincides with the threshold between large-scale turbulent eddies that scale with channel width/mean velocity and hydraulic phenomena related to channel dynamics. This suggests that suspended sediment samples taken over a period longer than 5.5 minutes incorporate variability that is larger scale than turbulent phenomena in this channel. Examination of 5.5-minute periods of our time series indicate that ~20% of the time a stable mean value of volumetric concentration is reached within 30 seconds, a typical bottle sample duration. In ~12% of measurements a stable mean was not reached over the 5.5 minute sample duration. The remaining measurements achieve a stable mean in an even distribution over the intervening interval.

  19. Measuring suspended sediment: Chapter 10

    USGS Publications Warehouse

    Gray, J.R.; Landers, M.N.

    2013-01-01

    Suspended sediment in streams and rivers can be measured using traditional instruments and techniques and (or) surrogate technologies. The former, as described herein, consists primarily of both manually deployed isokinetic samplers and their deployment protocols developed by the Federal Interagency Sedimentation Project. They are used on all continents other than Antarctica. The reliability of the typically spatially rich but temporally sparse data produced by traditional means is supported by a broad base of scientific literature since 1940. However, the suspended sediment surrogate technologies described herein – based on hydroacoustic, nephelometric, laser, and pressure difference principles – tend to produce temporally rich but in some cases spatially sparse datasets. The value of temporally rich data in the accuracy of continuous sediment-discharge records is hard to overstate, in part because such data can often overcome the shortcomings of poor spatial coverage. Coupled with calibration data produced by traditional means, surrogate technologies show considerable promise toward providing the fluvial sediment data needed to increase and bring more consistency to sediment-discharge measurements worldwide.

  20. Optimal estimation of suspended-sediment concentrations in streams

    USGS Publications Warehouse

    Holtschlag, D.J.

    2001-01-01

    Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.

  1. Vertical suspended sediment fluxes observed from a formation of underwater gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Riethmueller, Rolf

    2014-05-01

    In order to understand and predict the pathways and deposition of fine sediments in coastal regions valid parameterisations of the fluxes across interfaces (sea bed - water column or a pycnocline) are paramount. Traditionally, these parameterisations are based on the concept of a critical shear stress, but more recently a probabilistic approach has been proposed, in which the resuspension of sediment is assumed to have a certain likelihood, depending on the external forcing. Both approaches find their justification, to some extent, from the results of laboratory experiments, however, in-situ data, essential for model validation, are scarce. In this study we develop a field method to estimate the (fine) sediment fluxes between the seabed and the water column, and across the pycnocline. The method is applied to a stratified shallow sea (the North Sea in Summer). In order to assess the results, these fluxes are interpreted in terms of bottom shear stress and current shear between upper and lower layer, respectively. The method was tested in an experiment with two underwater gliders in Summer 2013 in the German Bight. Both gliders were equipped with optical backscatter sensors, the measurements of which serve as a proxy for suspended sediment concentration. The profiling character of the gliders allows to calculate the rate of change of the layer-averaged sediment concentration, as observed by the platform. The local, Lagrangian rate of change of sediment concentration is the balance between the fluxes across the layer's interfaces. Due to a horizontal speed of the glider of about 0.5 m/s, horizontal gradients in sediment concentration cause the observed and the local rate of change of sediment concentration to be significantly different. The novelty of this experiment was that the two gliders were flown in a rigid formation, where one glider trailed the other at a more or less constant distance of 5 km, controlled by an algorithm. This allowed the local rate of change

  2. Estimation of suspended-sediment rating curves and mean suspended-sediment loads

    USGS Publications Warehouse

    Crawford, Charles G.

    1991-01-01

    A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.

  3. Measuring suspended sediment in small mountain streams

    Treesearch

    Robert B. Thomas

    1985-01-01

    Measuring suspended sediment concentration in streams provides a way of monitoring the effects of forest management activities on water quality. Collecting data on suspended sediment is an act of sampling. The nature of the delivery process and the circumstances under which data are collected combine to produce highly variable results that are difficult to analyze and...

  4. Continuous-flow centrifugation to collect suspended sediment for chemical analysis

    USGS Publications Warehouse

    Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.

    2016-12-22

    Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and

  5. Suspended sediment transport in an estuarine tidal channel within San Francisco Bay, California

    USGS Publications Warehouse

    Sternberg, R.W.; Cacchione, D.A.; Drake, D.E.; Kranck, K.

    1986-01-01

    Size distributions of the suspended sediment samples, estimates of particle settling velocity (??s), friction velocity (U*), and reference concentration (Ca) at z = 20 cm were used in the suspended sediment distribution equations to evaluate their ability to predict the observed suspended sediment profiles. Three suspended sediment particle conditions were evaluated: (1) individual particle sizes in the 4-11 ?? (62.5-0.5 ??m) size range with the reference concentration Ca at z = 20 cm (C??); (2) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration Ca at z = 20 cm (Cf); and (3) individual particle sizes in the 4-6 ?? size range, flocs representing the 7-11 ?? size range with the reference concentration predicted as a function of the bed sediment size distribution and the square of the excess shear stress. An analysis was also carried out on the sensitivity of the suspended sediment distribution equation to deviations in the primary variables ??s, U*, and Ca. In addition, computations of mass flux were made in order to show vertical variations in mass flux for varying flow conditions. ?? 1986.

  6. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  7. Sediment data sources and estimated annual suspended-sediment loads of rivers and streams in Colorado

    USGS Publications Warehouse

    Elliott, J.G.; DeFeyter, K.L.

    1986-01-01

    Sources of sediment data collected by several government agencies through water year 1984 are summarized for Colorado. The U.S. Geological Survey has collected suspended-sediment data at 243 sites; these data are stored in the U.S. Geological Survey 's water data storage and retrieval system. The U.S. Forest Service has collected suspended-sediment and bedload data at an additional 225 sites, and most of these data are stored in the U.S. Environmental Protection Agency 's water-quality-control information system. Additional unpublished sediment data are in the possession of the collecting entities. Annual suspended-sediment loads were computed for 133 U.S. Geological Survey sediment-data-collection sites using the daily mean water-discharge/sediment-transport-curve method. Sediment-transport curves were derived for each site by one of three techniques: (1) Least-squares linear regression of all pairs of suspended-sediment and corresponding water-discharge data, (2) least-squares linear regression of data sets subdivided on the basis of hydrograph season; and (3) graphical fit to a logarithm-logarithm plot of data. The curve-fitting technique used for each site depended on site-specific characteristics. Sediment-data sources and estimates of annual loads of suspended, bed, and total sediment from several other reports also are summarized. (USGS)

  8. Studying Suspended Sediment Mechanism with Two-Phase PIV

    NASA Astrophysics Data System (ADS)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  9. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Hudson, B. D.; Syvitski, J. P. M.; Mikkelsen, A. B.; Hasholt, B.; van den Broeke, M. R.; Noël, B. P. Y.; Morlighem, M.

    2017-11-01

    Limited measurements along Greenland's remote coastline hamper quantification of the sediment and associated nutrients draining the Greenland ice sheet, despite the potential influence of river-transported suspended sediment on phytoplankton blooms and carbon sequestration. Here we calibrate satellite imagery to estimate suspended sediment concentration for 160 proglacial rivers across Greenland. Combining these suspended sediment reconstructions with numerical calculations of meltwater runoff, we quantify the amount and spatial pattern of sediment export from the ice sheet. We find that, although runoff from Greenland represents only 1.1% of the Earth's freshwater flux, the Greenland ice sheet produces approximately 8% of the modern fluvial export of suspended sediment to the global ocean. Sediment loads are highly variable between rivers, consistent with observed differences in ice dynamics and thus with control by glacial erosion. Rivers that originate from deeply incised, fast-moving glacial tongues form distinct sediment-export hotspots: just 15% of Greenland's rivers transport 80% of the total sediment load of the ice sheet. We conclude that future acceleration of melt and ice sheet flow may increase sediment delivery from Greenland to its fjords and the nearby ocean.

  10. Comparability of suspended-sediment concentration and total suspended-solids data for two sites on the L'Anguille River, Arkansas, 2001 to 2003

    USGS Publications Warehouse

    Galloway, Joel M.; Evans, Dennis A.; Green, W. Reed

    2005-01-01

    Suspended-sediment concentration and total suspended solids data collected with automatic pumping samplers at the L'Anguille River near Colt and the L'Anguille River at Palestine, Arkansas, August 2001 to October 2003 were compared using ordinary least squares regression analyses to determine the relation between the two datasets for each of the two sites. The purpose of this report is to describe the suspended-sediment concentration and total suspended-solids data and examine the comparability of the two datasets for each site. Suspended-sediment concentration and total suspended solids data for the L'Anguille River varied spatially and temporally from August 2001 to October 2003. The site at the L'Anguille River at Palestine represents a larger portion of the L'Anguille River Basin than the site near Colt, and generally had higher median suspended-sediment concentration and total suspended solids and greater ranges in values. The differences between suspended-sediment concentration and total suspended solids data for the L'Anguille River near Colt appeared inversely related to streamflow and not related to time. The relation between suspended-sediment concentration and total suspended solids at the L'Anguille River at Palestine was more variable than at Colt and did not appear to have a relation with flow or time. The relation between suspended-sediment concentration and total suspended solids for the L'Anguille River near Colt shows that total suspended solids increased proportionally as suspended-sediment concentration increased. However, the relation between suspended-sediment concentration and total suspended solids for the L'Anguille River at Palestine showed total suspended solids increased less proportionally as suspended-sediment concentration increased compared to the L'Anguille River near Colt. Differences between the two analytical methods may partially explain differences between the suspended-sediment concentration and total suspended solids data at

  11. Suspended-sediment data in the Salt River basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.

    1983-01-01

    Suspended-sediment data collected at six stations in the Salt River basin during 1980-82 are presented. The estimated average annual suspended-sediment load is 1,390,000 tons per year from a geomorphic examination, and 1,330,000 tons per year from periodic sampling at Salt River near Monroe City, Mo. The suspended-sediment load from the major tributaries of the Salt River during 1981 was 1,610,000 tons, which is larger than the estimated values due to above-normal rainfall and runoff. (USGS)

  12. Analysis of suspended-sediment concentrations and radioisotope levels in the Wild Rice River basin, northwestern Minnesota, 1973-98

    USGS Publications Warehouse

    Brigham, Mark E.; McCullough, Carolyn J.; Wilkinson, Philip M.

    2001-01-01

    We examined historical suspended-sediment data and activities of fallout radioisotopes (lead-210 [210Pb], cesium-137 [137Cs], and beryllium-7 [7Be]) associated with suspended sediments and source-area sediments (cultivated soils, bank material, and reference soils) in the Wild Rice River Basin, a tributary to the Red River of the North, to better understand sources of suspended sediment to streams in the region. Multiple linear regression analysis of suspended-sediment concentrations from the Wild Rice River at Twin Valley, Minnesota indicated significant relations between suspended-sediment concentrations and streamflow. Flow-adjusted sediment concentrations tended to be slightly higher in spring than summer-autumn. No temporal trends in concentration were observed during 1973-98. The fallout radioisotopes were nearly always detectable in suspended sediments during spring-summer 1998. Mean 210Pb and 7Be activities in suspended sediment and surficial, cultivated soils were similar, perhaps indicating little dilution of suspended sediment from low-isotopic-activity bank sediments. In contrast, mean 137Cs activities in suspended sediment indicated a mixture of sediment originating from eroded soils and from eroded bank material, with bank material being a somewhat more important source upstream of Twin Valley, Minnesota; and approximately equal fractions of bank material and surficial soils contributing to the suspended load downstream at Hendrum, Minnesota. This study indicates that, to be effective, efforts to reduce sediment loading to the Wild Rice River should include measures to control soil erosion from cultivated fields.

  13. Suspended sediment in the St. Francis River at St. Francis, Arkansas, 1986-95

    USGS Publications Warehouse

    Green, W. Reed; Barks, C. Shane; Hall, Alan P.

    2000-01-01

    Daily suspended-sediment concentrations were analyzed from the St. Francis River at St. Francis, Arkansas during 1986 through 1995. Suspended-sediment particle size distribution was measured in selected samples from 1978 through 1998. These data are used to assess changes in suspended-sediment concentrations and loads through time. Suspended-sediment concentrations were positively related to discharge. At higher flows, percent silt-clay was negatively related to discharge. Nonparametric trend analysis (Mann-Kendall test) of suspended-sediment concentration over the period of record indicated a slight decrease in concentration. Flow-adjusted residuals of suspended-sediment concentration also decreased slightly through the same period. No change was identified in annual suspended-sediment load or annual flow-weighted concentration. Continued monitorig of daily-suspended-sediment concentrations at this site and others, and similar data analysis at other sites where data are available will provide a better understanding of sediment transport withint the St. Francis River.

  14. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  15. Piecewise SALT sampling for estimating suspended sediment yields

    Treesearch

    Robert B. Thomas

    1989-01-01

    A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...

  16. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  17. User's manual for SEDCALC, a computer program for computation of suspended-sediment discharge

    USGS Publications Warehouse

    Koltun, G.F.; Gray, John R.; McElhone, T.J.

    1994-01-01

    Sediment-Record Calculations (SEDCALC), a menu-driven set of interactive computer programs, was developed to facilitate computation of suspended-sediment records. The programs comprising SEDCALC were developed independently in several District offices of the U.S. Geological Survey (USGS) to minimize the intensive labor associated with various aspects of sediment-record computations. SEDCALC operates on suspended-sediment-concentration data stored in American Standard Code for Information Interchange (ASCII) files in a predefined card-image format. Program options within SEDCALC can be used to assist in creating and editing the card-image files, as well as to reformat card-image files to and from formats used by the USGS Water-Quality System. SEDCALC provides options for creating card-image files containing time series of equal-interval suspended-sediment concentrations from 1. digitized suspended-sediment-concentration traces, 2. linear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals, and 3. nonlinear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals. Suspended-sediment discharge can be computed from the streamflow and suspended-sediment-concentration data or by application of transport relations derived by regressing log-transformed instantaneous streamflows on log-transformed instantaneous suspended-sediment concentrations or discharges. The computed suspended-sediment discharge data are stored in card-image files that can be either directly imported to the USGS Automated Data Processing System or used to generate plots by means of other SEDCALC options.

  18. Suspended-sediment concentrations, loads, total suspended solids, turbidity, and particle-size fractions for selected rivers in Minnesota, 2007 through 2011

    USGS Publications Warehouse

    Ellison, Christopher A.; Savage, Brett E.; Johnson, Gregory D.

    2014-01-01

    Sediment-laden rivers and streams pose substantial environmental and economic challenges. Excessive sediment transport in rivers causes problems for flood control, soil conservation, irrigation, aquatic health, and navigation, and transports harmful contaminants like organic chemicals and eutrophication-causing nutrients. In Minnesota, more than 5,800 miles of streams are identified as impaired by the Minnesota Pollution Control Agency (MPCA) due to elevated levels of suspended sediment. The U.S. Geological Survey, in cooperation with the MPCA, established a sediment monitoring network in 2007 and began systematic sampling of suspended-sediment concentrations (SSC), total suspended solids (TSS), and turbidity in rivers across Minnesota to improve the understanding of fluvial sediment transport relations. Suspended-sediment samples collected from 14 sites from 2007 through 2011 indicated that the Zumbro River at Kellogg in the driftless region of southeast Minnesota had the highest mean SSC of 226 milligrams per liter (mg/L) followed by the Minnesota River at Mankato with a mean SSC of 193 mg/L. During the 2011 spring runoff, the single highest SSC of 1,250 mg/L was measured at the Zumbro River. The lowest mean SSC of 21 mg/L was measured at Rice Creek in the northern Minneapolis- St. Paul metropolitan area. Total suspended solids (TSS) have been used as a measure of fluvial sediment by the MPCA since the early 1970s; however, TSS concentrations have been determined to underrepresent the amount of suspended sediment. Because of this, the MPCA was interested in quantifying the differences between SSC and TSS in different parts of the State. Comparisons between concurrently sampled SSC and TSS indicated significant differences at every site, with SSC on average two times larger than TSS concentrations. The largest percent difference between SSC and TSS was measured at the South Branch Buffalo River at Sabin, and the smallest difference was observed at the Des Moines

  19. Accounting for Long Term Sediment Storage in a Watershed Scale Numerical Model for Suspended Sediment Routing

    NASA Astrophysics Data System (ADS)

    Keeler, J. J.; Pizzuto, J. E.; Skalak, K.; Karwan, D. L.; Benthem, A.; Ackerman, T. R.

    2015-12-01

    Quantifying the delivery of suspended sediment from upland sources to downstream receiving waters is important for watershed management, but current routing models fail to accurately represent lag times in delivery resulting from sediment storage. In this study, we route suspended sediment tagged by a characteristic tracer using a 1-dimensional model that implicitly includes storage and remobilization processes and timescales. From an input location where tagged sediment is added, the model advects suspended sediment downstream at the velocity of the stream (adjusted for the intermittency of transport events). Deposition rates are specified by the fraction of the suspended load stored per kilometer of downstream transport (presumably available from a sediment budget). Tagged sediment leaving storage is evaluated from a convolution equation based on the probability distribution function (pdf) of sediment storage waiting times; this approach avoids the difficulty of accurately representing complex processes of sediment remobilization from floodplain and other deposits. To illustrate the role of storage on sediment delivery, we compare exponential and bounded power-law waiting time pdfs with identical means of 94 years. In both cases, the median travel time for sediment to reach the depocenter in fluvial systems less than 40km long is governed by in-channel transport and is unaffected by sediment storage. As the channel length increases, however, the median sediment travel time reflects storage rather than in-channel transport; travel times do not vary significantly between the two different waiting time functions. At distances of 50, 100, and 200 km, the median travel time for suspended sediment is 36, 136, and 325 years, orders of magnitude slower than travel times associated with in-channel transport. These computations demonstrate that storage can be neglected for short rivers, but for longer systems, storage controls the delivery of suspended sediment.

  20. Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York

    USGS Publications Warehouse

    Wall, G.R.; Nystrom, E.A.; Litten, S.

    2008-01-01

    Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery

  1. Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes.

    PubMed

    Hess, Sybille; Prescott, Leteisha J; Hoey, Andrew S; McMahon, Shannon A; Wenger, Amelia S; Rummer, Jodie L

    2017-11-15

    Reduced water quality, in particular increases in suspended sediments, has been linked to declines in fish abundance on coral reefs. Changes in gill structure induced by suspended sediments have been hypothesized to impair gill function and may provide a mechanistic basis for the observed declines; yet, evidence for this is lacking. We exposed juveniles of three reef fish species ( Amphiprion melanopus , Amphiprion percula and Acanthochromis polyacanthus ) to suspended sediments (0-180 mg l -1 ) for 7 days and examined changes in gill structure and metabolic performance (i.e. oxygen consumption). Exposure to suspended sediments led to shorter gill lamellae in A. melanopus and A. polyacanthus and reduced oxygen diffusion distances in all three species. While A. melanopus exhibited impaired oxygen uptake after suspended sediment exposure, i.e. decreased maximum and increased resting oxygen consumption rates resulting in decreased aerobic scope, the oxygen consumption rates of the other two species remained unaffected. These findings imply that species sensitive to changes in gill structure such as A. melanopus may decline in abundance as reefs become more turbid, whereas species that are able to maintain metabolic performance despite suspended sediment exposure, such as A. polyacanthus or A. percula , may be able to persist or gain a competitive advantage. © 2017 The Author(s).

  2. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    NASA Astrophysics Data System (ADS)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  3. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh

    NASA Astrophysics Data System (ADS)

    Poirier, Emma; van Proosdij, Danika; Milligan, Timothy G.

    2017-09-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g m-2 at the creek thalweg to 15.3 g m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g m-2 to 97.7 g m-2 and from 12.2 g m-2 to 19.6 g m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  4. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  5. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  6. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  7. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary

    USGS Publications Warehouse

    Downing-Kunz, Maureen A.; Schoellhamer, David H.

    2013-01-01

    Quantifying sediment supply from estuarine tributaries is an important component of developing a sediment budget, and common techniques for estimating supply are based on gages located above tidal influence. However, tidal interactions near tributary mouths can affect the magnitude and direction of sediment supply to the open waters of the estuary. We investigated suspended-sediment dynamics in the tidal reach of Corte Madera Creek, an estuarine tributary of San Francisco Bay, using moored acoustic and optical instruments. Flux of both water and suspended-sediment were calculated from observed water velocity and turbidity for two periods in each of wet and dry seasons during 2010. During wet periods, net suspended-sediment flux was seaward; tidally filtered flux was dominated by the advective component. In contrast, during dry periods, net flux was landward; tidally filtered flux was dominated by the dispersive component. The mechanisms generating this landward flux varied; during summer we attributed wind–wave resuspension in the estuary and subsequent transport on flood tides, whereas during autumn we attributed increased spring tide flood velocity magnitude leading to local resuspension. A quadrant analysis similar to that employed in turbulence studies was developed to summarize flux time series by quantifying the relative importance of sediment transport events. These events are categorized by the direction of velocity (flood vs. ebb) and the magnitude of concentration relative to tidally averaged conditions (relatively turbid vs. relatively clear). During wet periods, suspended-sediment flux was greatest in magnitude during relatively turbid ebbs, whereas during dry periods it was greatest in magnitude during relatively turbid floods. A conceptual model was developed to generalize seasonal differences in suspended-sediment dynamics; model application to this study demonstrated the importance of few, relatively large events on net suspended-sediment flux

  8. Trends in suspended-sediment concentration at selected stream sites in Kansas, 1970-2002

    USGS Publications Warehouse

    Putnam, James E.; Pope, Larry M.

    2003-01-01

    Knowledge of erosion, transport, and deposition of sediment relative to streams and impoundments is important to those involved directly or indirectly in the development and management of water resources. Monitoring the quantity of sediment in streams and impoundments is important because: (1) sediment may degrade the water quality of streams for such uses as municipal water supply, (2) sediment is detrimental to the health of some species of aquatic animals and plants, and (3) accumulation of sediment in water-supply impoundments decreases the amount of storage and, therefore, water available for users. One of the objectives of the Kansas Water Plan is to reduce the amount of sediment in Kansas streams by 2010. During the last 30 years, millions of dollars have been spent in Kansas watersheds to reduce sediment transport to streams. Because the last evaluation of trends in suspended-sediment concentrations in Kansas was completed in 1985, 14 sediment sampling sites that represent 10 of the 12 major river basins in Kansas were reestablished in 2000. The purpose of this report is to present the results of time-trend analyses at the reestablished sediment data-collection sites for the period of about 1970?2002 and to evaluate changes in the watersheds that may explain the trends. Time-trend tests for 13 of 14 sediment sampling sites in Kansas for the period from about 1970 to 2002 indicated that 3 of the 13 sites tested had statistically significant decreasing suspended-sediment concentrations; however, only 2 sites, Walnut River at Winfield and Elk River at Elk Falls, had trends that were statistically significant at the 0.05 probability level. Increasing suspended-sediment concentrations were indicated at three sites although none were statistically significant at the 0.05 probability level. Samples from five of the six sampling sites located upstream from reservoirs indicated decreasing suspended-sediment concentrations. Watershed impoundments located in the

  9. Measurement and prediction of the size of suspended sediment over dunes

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the size of sediment in suspension is important information needed for the collection of concentration data using surrogate technologies and to further understand the processes acting in the transport of suspended sediment over dunes. Samples of suspended sediment were collected at fou...

  10. Suspended sediment and sediment-associated contaminants in San Francisco Bay.

    PubMed

    Schoellhamer, David H; Mumley, Thomas E; Leatherbarrow, Jon E

    2007-09-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls.

  11. Ratios of total suspended solids to suspended sediment concentrations by particle size

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  12. Technological advances in suspended-sediment surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Gray, John R.; Gartner, Jeffrey W.

    2009-04-01

    Surrogate technologies to continuously monitor suspended sediment show promise toward supplanting traditional data collection methods requiring routine collection and analysis of water samples. Commercially available instruments operating on bulk optic (turbidity), laser optic, pressure difference, and acoustic backscatter principles are evaluated based on cost, reliability, robustness, accuracy, sample volume, susceptibility to biological fouling, and suitable range of mass concentration and particle size distribution. In situ turbidimeters are widely used. They provide reliable data where the point measurements can be reliably correlated to the river's mean cross section concentration value, effects of biological fouling can be minimized, and concentrations remain below the sensor's upper measurement limit. In situ laser diffraction instruments have similar limitations and can cost 6 times the approximate $5000 purchase price of a turbidimeter. However, laser diffraction instruments provide volumetric-concentration data in 32 size classes. Pressure differential instruments measure mass density in a water column, thus integrating substantially more streamflow than a point measurement. They are designed for monitoring medium-to-large concentrations, are generally unaffected by biological fouling, and cost about the same as a turbidimeter. However, their performance has been marginal in field applications. Acoustic Doppler profilers use acoustic backscatter to measure suspended sediment concentrations in orders of magnitude more streamflow than do instruments that rely on point measurements. The technology is relatively robust and generally immune to effects of biological fouling. Cost of a single-frequency device is about double that of a turbidimeter. Multifrequency arrays also provide the potential to resolve concentrations by clay silt versus sand size fractions. Multifrequency hydroacoustics shows the most promise for revolutionizing collection of continuous

  13. Summary of suspended-sediment concentration data, San Francisco Bay, California, water year 2010

    USGS Publications Warehouse

    Buchanan, Paul A.; Morgan, Tara L.

    2014-01-01

    Suspended-sediment concentration data were collected by the U.S. Geological Survey in San Francisco Bay during water year 2010 (October 1, 2009–September 30, 2010). Turbidity sensors and water samples were used to monitor suspended-sediment concentration at two sites in Suisun Bay, one site in San Pablo Bay, three sites in Central San Francisco Bay, and one site in South San Francisco Bay. Sensors were positioned at two depths at most sites to help define the vertical variability of suspended sediments. Water samples were collected periodically and analyzed for concentrations of suspended sediment. The results of the analyses were used to calibrate the output of the turbidity sensors so that a record of suspended-sediment concentrations could be computed. This report presents the data-collection methods used and summarizes, in graphs, the suspended-sediment concentration data collected from October 2009 through September 2010. Calibration curves and plots of the processed data for each sensor also are presented.

  14. The impacts of land reclamation on suspended-sediment dynamics in Jiaozhou Bay, Qingdao, China

    NASA Astrophysics Data System (ADS)

    Gao, Guan Dong; Wang, Xiao Hua; Bao, Xian Wen; Song, Dehai; Lin, Xiao Pei; Qiao, Lu Lu

    2018-06-01

    A three-dimensional, high-resolution tidal model coupled with the UNSW sediment model (UNSW-Sed) based on Finite Volume Coastal Ocean Model (FVCOM) was set up to study the suspended-sediment dynamics and its change in Jiaozhou Bay (JZB) due to land reclamation over the period 1935 to 2008. During the past decades, a large amount of tidal flats were lost due to land reclamation. Other than modulating the tides, the tidal flats are a primary source for sediment resuspensions, leading to turbidity maxima nearshore. The tidal dynamics are dominant in controlling the suspended-sediment dynamics in JZB and have experienced significant changes with the loss of tidal flats due to the land reclamation. The sediment model coupled with the tide model was used to investigate the changes in suspended-sediment dynamics due to the land reclamation from 1935 to 2008, including suspended-sediment concentrations (SSC) and the horizontal suspended-sediment fluxes. This model can predict the general patterns of the spatial and temporal variation of SSC. The model was applied to investigate how the net transport of suspended sediments between JZB and its adjacent sea areas changed with land reclamation: in 1935 the net movement of suspended sediments was from JZB to the adjacent sea (erosion for JZB), primarily caused by horizontal advection associated with a horizontal gradient in the SSC; This seaward transport (erosion for JZB) had gradually declined from 1935 to 2008. If land reclamation on a large scale is continued in future, the net transport between JZB and the adjacent sea would turn landward and JZB would switch from erosion to siltation due to the impact of land reclamation on the horizontal advection of suspended sediments. We also evaluate the primary physical mechanisms including advection of suspended sediments, settling lag and tidal asymmetry, which control the suspended-sediment dynamics with the process of land reclamation.

  15. Assessment of hydrology, suspended sediment and particulate organic carbon transport in a large agricultural catchment using SWAT model

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was

  16. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    USGS Publications Warehouse

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  17. Central San Francisco Bay suspended-sediment transport processes and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1996-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles (Kuwabara and others, 1989; Domagalski and Kuivila, 1993). Sediments on the bottom of the bay provide the habitat for benthic communities that can ingest these substances and introduce them into the food web (Luoma and others, 1985). Nutrients, metals, and other substances are stored in bottom sediments and pore water in which chemical reactions occur and which provide an important source and/or sink to the water column (Hammond and others, 1985; Flegal and others, 1991). The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Seasonal changes in sediment erosion and deposition patterns contribute to seasonal changes in the abundance of benthic macroinvertebrates (Nichols and Thompson, 1985). Tidal marshes are an ecologically important habitat that were created and are maintained by sedimentation processes (Atwater and others, 1979). In Suisun Bay, the maximum suspended-sediment concentration marks the position of the turbidity maximum, which is a crucial ecological region in which suspended sediment, nutrients, phytoplankton, zooplankton, larvae, and juvenile fish accumulate (Peterson and others, 1975; Arthur and Ball, 1979; Kimmerer, 1992; Jassby and Powell, 1994). Suspended sediments confine the photic zone to the upper part of the water column, and this limitation on light availability is a major control on phytoplankton production in San Francisco Bay (Cloern, 1987; Cole and Cloern, 1987). Suspended sediments also deposit in ports and shipping channels, which must be dredged to maintain navigation (U.S. Environmental Protection Agency, 1992).

  18. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Zhou, Yunxuan; Shen, Fang

    2018-01-01

    The complexity of suspended sediment concentration (SSC) distribution and diffusion has been widely recognized because it is influenced by sediment supply and various hydrodynamic forcing conditions that vary over space and over time. Sediment suspended by waves and transported by currents are the dominant sediment transport mechanisms in estuarine and coastal areas. However, it is unclear to what extent the SSC distribution is impacted by each hydrodynamic factor. Research on the quantitative influence of wind fields on the SSC diffusion range will contribute to a better understanding of the characteristics of sediment transport change and sedimentary geomorphic evolution. This study determined SSC from three Envisat Medium-Resolution Imaging Spectrometer acquisitions, covering the Yangtze Estuary and adjacent water area under the same season and tidal conditions but with varying wind conditions. SSC was examined based on the Semi-Empirical Radiative Transfer model, which has been well validated with the observation data. Integrating the corresponding wind field information from European Centre for Medium-Range Weather Forecasts further facilitated the discussion of wind fields affecting SSC, and in turn the influence of water and suspended sediment transportation and diffusion in the Yangtze estuarine and coastal area. The results demonstrated that the SSC present much more distinctive fluvial features in the inner estuary and wind fields are one of the major factors controlling the range of turbid water diffusion.

  19. Overview of selected surrogate technologies for continuous suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, J.R.; Gartner, J.W.

    2006-01-01

    Surrogate technologies for inferring selected characteristics of suspended sediments in surface waters are being tested by the U.S. Geological Survey and several partners with the ultimate goal of augmenting or replacing traditional monitoring methods. Optical properties of water such as turbidity and optical backscatter are the most commonly used surrogates for suspended-sediment concentration, but use of other techniques such as those based on acoustic backscatter, laser diffraction, digital photo-optic, and pressure-difference principles is increasing for concentration and, in some cases, particle-size distribution and flux determinations. The potential benefits of these technologies include acquisition of automated, continuous, quantifiably accurate data obtained with increased safety and at less expense. When suspended-sediment surrogate data meet consensus accuracy criteria and appropriate sediment-record computation techniques are applied, these technologies have the potential to revolutionize the way fluvial-sediment data are collected, analyzed, and disseminated.

  20. The impact of bottom brightness on spectral reflectance of suspended sediments

    USGS Publications Warehouse

    Tolk, Brian L.; Han, L.; Rundquist, D. C.

    2000-01-01

    Two experiments were conducted outdoors to investigate how bottom brightness impacts the spectral response of a water column under varied suspended sediment concentrations. A white aluminum panel placed at the bottom of the tank was used as the bright bottom, and a flat-black tank liner served as the dark bottom. Sixteen levels of suspended sediment from 25 to 400 mg litre -1 were used in each experiment. Spectral data were collected using a Spectron SE-590 spectroradiometer. The major findings include the following: the bright bottom had the greatest impact at visible wavelengths; when suspended sediment concentrations exceeded 100 mg litre -1, the bright bottom response was found to be negligible; and, substrate brightness has minimal impact between 740 and 900 nm, suggesting that these wavelengths are best for measuring suspended sediment concentrations by means of remote sensing.

  1. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    NASA Astrophysics Data System (ADS)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  2. A spatially explicit suspended-sediment load model for western Oregon

    USGS Publications Warehouse

    Wise, Daniel R.; O'Connor, Jim

    2016-06-27

    Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.

  3. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments

    NASA Astrophysics Data System (ADS)

    Phillips, J. M.; Russell, M. A.; Walling, D. E.

    2000-10-01

    Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.

  4. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    USGS Publications Warehouse

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  5. Development of an Integrated Suspended Sediment Sampling System - Prototype Results

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.

    2015-04-01

    The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue

  6. Suspended sediment transport in an ephemeral stream following wildfire

    USGS Publications Warehouse

    Malmon, D.V.; Reneau, Steven L.; Katzman, D.; Lavine, A.; Lyman, J.

    2007-01-01

    We examine the impacts of a stand-clearing wildfire on the characteristics and magnitude of suspended sediment transport in ephemeral streams draining the burn area. We report the results of a monitoring program that includes 2 years of data prior to the Cerro Grande fire in New Mexico, and 3 years of postfire data. Suspended sediment concentration (SSC) increased by about 2 orders of magnitude following the fire, and the proportion of silt and clay increased from 50% to 80%. For a given flow event, SSC is highest at the flood bore and decreases monotonically with time, a pattern evident in every flood sampled both before and after the fire. We propose that the accumulation of flow and wash load at the flow front is an inherent characteristic of ephemeral stream flows, due to amplified momentum losses at the flood bore. We present a new model for computing suspended sediment transport in ephemeral streams (in the presence or absence of wildfire) by relating SSC to the time following the arrival of the flood bore, rather than to instantaneous discharge. Using this model and a rainfall history, we estimate that in the 3 years following the fire, floods transported in suspension a mass equivalent to about 3 mm of landscape lowering across the burn area, 20% of this following a single rainstorm. We test the model by computing fine sediment delivery to a small reservoir in an adjacent watershed, where we have a detailed record of postfire sedimentation based on repeat surveys. Systematic discrepancies between modeled and measured sedimentation rates in the reservoir suggest rapid reductions in suspended sediment delivery in the first several years after the fire.

  7. Recent Trends in Suspended Sediment Load & Water Quality in the Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Freeman, L. A.; Ackleson, S. G.

    2016-02-01

    The Chesapeake Bay spans several major cities on the US east coast and drains a large watershed (164,200 km2) to the Atlantic Ocean. Upstream deforestation and agriculture have led to a major decline in water quality (increased sediment and nutrient load) of the Bay over the past century. Sediment flux into the Chesapeake Bay is a natural process, but has become an environmental concern as land use changes have exacerbated natural suspended sediment loads and saturated the capacity of the estuary to filter and remove sediments. In situ measurements of suspended sediments and surface reflectance from the Potomac, Patapsco, and Severn River were used to develop algorithms that convert surface reflectance from Landsat (1-3, 4-5, 7, 8) imagery to suspended sediment concentration for the entire Chesapeake Bay. A unique time series of suspended sediment load in the Chesapeake Bay was compiled from Landsat imagery dating from 1977-2015. Particular focus is given to the upper Chesapeake Bay near Washington, DC and Baltimore, MD to understand urban effects. In particular, the Potomac, Patapsco, and Severn River are examined from both remote sensing and in situ measurements. Landsat imagery combined with in situ monitoring provides environmental scientists and resource managers with detailed trends in sediment distribution and concentration, a key measure of water quality. Trends of suspended sediment load in several rivers and the upper Chesapeake Bay will be presented, along with a discussion of suspended sediment algorithms for Landsat imagery. Advantages of Landsat 8 (improved signal-to-noise performance and more bands) versus previous sensors will be examined for suspended sediment applications.

  8. Suspended Sediment Load and Sediment Yield During Floods and Snowmelt Runoff In The Rio Cordon (northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Lenzi, M. A.

    Suspended sediment transport in high mountain streams display a grater time-space variability and a shorter duration (normally concentrated during the snowmelt period and the duration time of single floods) than in larger lowland rivers. Suspended sedi- ment load and sediment yield were analysed in a small, high-gradient stream of East- ern Italian Alps which was instrumented to measure in continuous water discharge and sediment transport. The research was conducted in the Rio Cordon, a 5 Km2 small catchment of the Dolomites. The ratio of suspended to total sediment yield and the re- lations between sediment concentration and water discharge were analysed for eleven floods which occurred from 1991 to 2001. Different patterns of hysteresis in the re- lation between suspended sediment and discharge were related to types and locations of active sediment sources. The within-storm variation of particle size of suspended sediment during a mayor flood (September 1994, 30 yearssuspended load. The relation between water discharge and S.S.C. for both floods and snowmelt runoff shows larger scatter for both series of data, with snowmelt data less scattered than rain- fall induced floods. This is accounted for by the variable effectiveness of erosion pro- cesses and sediment supply mechanisms during snowmelt and rainfall-induced floods. During snowmelt, erosion processes essentially consist in the removal of loose, fine- grained sediment from slopes by surface runoff; as a consequence, suspended sedi- ment transport takes place also with rather low discharges. Abundant suspended sedi- ment transport was recorded during the snowmelt period of May 2001, that followed a winter characterized by a huge snow cover and late snowfalls. Different sources of sed- iment contribute to suspended load during the

  9. Tracing suspended sediment sources in the Upper Sangamon River Basin using conservative and non-conservative tracers

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2015-12-01

    As the awareness of water pollution, eutrophication and other water related environmental concerns grows, the significance of sediment in the transport of nutrients and contaminants from agricultural areas to streams has received increasing attention. Both the physical and geochemical properties of suspended sediment are strongly controlled by sediment sources. Thus, tracing sources of suspended sediment in watersheds is important for the design of management practices to reduce sediment loads and contributions of sediment-adsorbed nutrients from agricultural areas to streams. However, the contributions of different sediment sources to suspended sediment loads within intensively managed watersheds in the Midwest still remain insufficiently explored. This study aims to assess the provenance of suspended sediment and the relation between channel morphology and production of suspended sediment in the Upper Sangamon River Basin, Illinois, USA. The 3,690-km2 Upper Sangamon River Basin is characterized by low-relief, agricultural lands dominated by row-crop agriculture. Sediment source samples were collected in the Saybrook from five potential sources: farmland, forests, floodplains, river banks, and grasslands. Event-based and accumulated suspended sediment samples were collected by ISCO automatic pump samplers and in situ suspended sediment samplers and from the stream at watershed outlet. A quantitative geochemical fingerprinting technique, combining statistically verified multicomponent signatures and an un-mixing model, was employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and radionuclides from soil samples were used as potential tracers. Our preliminary results indicate that the majority of suspended sediment is derived from floodplains in the downstream portions of the watersheds, while only minor amounts of suspended sediment are derived from upland

  10. The effects of Hurricane Hugo on suspended-sediment loads, Lago Loiza Basin, Puerto Rico

    USGS Publications Warehouse

    Gellis, A.

    1993-01-01

    In the two main tributaries that enter Lago Loiza, Rio Grande de Loiza and Rio Gurabo, 99 600 tonnes of suspended sediment was transported by 58.2??106 m3 of runoff in a 48 h period. The storm-average suspended-sediment concentration in the Rio Grande de Loiza for Hurricane Hugo was 2290 mgl-1, the second lowest for the 12 storms that have been monitored at this site. In Rio Gurabo the storm-average suspended-sediment concentration was 1420 mg l -1, the sixth lowest recorded out of 15 monitored storms. In Quebrada Salvatierra, a small tributary to Rio Grande de Loiza, suspended-sediment concentrations were as low as 33 mg l-1 during peak runoff of 20m3s-1. Normally the suspended-sediment concentrations at this discharge are 300 mg l-1. Hurricane force winds seem to be the most important factor contributing to the lower than expected suspended-sediment loads. High winds caused vegetation and debris to be dislodged and displaced. Debris accumulated on hillslopes and in small channels, blocked bridges and formed debris dams. These dams caused local backwater effects that reduced stream velocities and decreased suspended-sediment loads. -from Author

  11. Optimal control of suspended sediment distribution model of Talaga lake

    NASA Astrophysics Data System (ADS)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  12. Suspended sediments from upstream tributaries as the source of downstream river sites

    NASA Astrophysics Data System (ADS)

    Haddadchi, Arman; Olley, Jon

    2014-05-01

    Understanding the efficiency with which sediment eroded from different sources is transported to the catchment outlet is a key knowledge gap that is critical to our ability to accurately target and prioritise management actions to reduce sediment delivery. Sediment fingerprinting has proven to be an efficient approach to determine the sources of sediment. This study examines the suspended sediment sources from Emu Creek catchment, south eastern Queensland, Australia. In addition to collect suspended sediments from different sites of the streams after the confluence of tributaries and outlet of the catchment, time integrated suspended samples from upper tributaries were used as the source of sediment, instead of using hillslope and channel bank samples. Totally, 35 time-integrated samplers were used to compute the contribution of suspended sediments from different upstream waterways to the downstream sediment sites. Three size fractions of materials including fine sand (63-210 μm), silt (10-63 μm) and fine silt and clay (<10 μm) were used to find the effect of particle size on the contribution of upper sediments as the sources of sediment after river confluences. And then samples were analysed by ICP-MS and -OES to find 41 sediment fingerprints. According to the results of Student's T-distribution mixing model, small creeks in the middle and lower part of the catchment were major source in different size fractions, especially in silt (10-63 μm) samples. Gowrie Creek as covers southern-upstream part of the catchment was a major contributor at the outlet of the catchment in finest size fraction (<10 μm) Large differences between the contributions of suspended sediments from upper tributaries in different size fractions necessitate the selection of appropriate size fraction on sediment tracing in the catchment and also major effect of particle size on the movement and deposition of sediments.

  13. Sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi

    USGS Publications Warehouse

    Izuka, Scot K.

    2012-01-01

    Data from streamflow/sediment gages and measurements of changes in channel-bed sediment storage were gathered between October 1, 2007, and September 30, 2010, to assess the sources of suspended sediment in the Waikele watershed, Oʻahu, Hawaiʻi. Streamflow from the watershed averaged 33 cubic feet per second during the study period, with interannual variations corresponding with variations in the frequency and magnitude of storm-flow peaks. Average streamflow during the study period was lower than the long-term average, but the study period included a storm on December 11, 2008, that caused record-high streamflows in parts of the watershed. Suspended-sediment yield from the Waikele watershed during the study period averaged 82,500 tons per year, which is 2.7 times higher than the long-term average. More than 90 percent of the yield during the study period was discharged during the December 11, 2008, storm. The study-period results are consistent with long-term records that show that the vast majority of suspended-sediment transport occurs during a few large storms. Results of this study also show that all but a small percentage of the suspended-sediment yield came from hillslopes. Only a small fraction of bed sediments is fine enough to be transported as suspended load; most bed sediments in the watershed are coarse. Silt and clay constitute less than 3 percent of the bed-sediment volume on average. Some larger clasts, however, can disintegrate during transport and contribute to the suspended load downstream. During the study period, suspended-sediment yield from the urbanized Mililani subbasin averaged 25 tons per year per square mile (tons/yr/mi2), which was much smaller than the yield from any other subbasin; these results indicate that urban land use yields much less sediment than other land uses. The wet, forested Kipapa subbasin had an average normalized hillslope suspended-sediment yield of 386 tons/yr/mi2; the average yield for forested areas in the

  14. Responses of water environment to tidal flat reduction in Xiangshan Bay: Part II locally re-suspended sediment dynamics

    NASA Astrophysics Data System (ADS)

    Li, Li; Guan, Weibing; He, Zhiguo; Yao, Yanming; Xia, Yuezhang

    2017-11-01

    Xiangshan Bay is a semi-enclosed bay in China, in which tidal flats have been substantially reclaimed to support the development of local economies and society over previous decades. The loss of tidal flats has led to changes of tides and locally suspended sediment in the bay. The effects of tidal flat reduction on locally suspended sediment dynamics was investigated using a numerical model forced by tidal data and calibrated by observed tidal elevation and currents. The model satisfactorily reproduces observed water levels, currents, and suspended sediment concentration in the estuary, and therefore is subsequently applied to analyze the impact of tidal flat reclamation on locally suspended sediment transport. After the loss of the tidal flats from 1963 to 2010, the suspended sediment concentrations (SSC) at the bottom boundary layer were reduced/increased in the outer bay/tidal flat areas due to weakened tidal currents. In the inner bay, the SSC values near the bottom level increased from 1963 to 2003 due to the narrowed bathymetry, and then decreased from 2003 to 2010 because of the reduced tidal prism. The model scenarios suggest that: (1) a reduction of tidal flat areas appears to be the main factor for enhancing the transport of sediments up-estuary, due to the increased Eulerian velocity and tidal pumping; (2) A reduction of tidal flat areas impacts on spatial and temporal SSC distribution: reducing the SSC values in the water areas due to the reduced current; and (3) a tidal flat reduction influences the net sediment fluxes: lessening the erosion and inducing higher/lower landward/seaward sediment transportation.

  15. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    EPA Science Inventory

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  16. Turbidity-controlled sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  17. Quantifying suspended sediment loads delivered to Cheney Reservoir, Kansas: Temporal patterns and management implications

    USGS Publications Warehouse

    Stone, Mandy L.; Juracek, Kyle E.; Graham, Jennifer L.; Foster, Guy

    2015-01-01

    Cheney Reservoir, constructed during 1962 to 1965, is the primary water supply for the city of Wichita, the largest city in Kansas. Sediment is an important concern for the reservoir as it degrades water quality and progressively decreases water storage capacity. Long-term data collection provided a unique opportunity to estimate the annual suspended sediment loads for the entire history of the reservoir. To quantify and characterize sediment loading to Cheney Reservoir, discrete suspended sediment samples and continuously measured streamflow data were collected from the North Fork Ninnescah River, the primary inflow to Cheney Reservoir, over a 48-year period. Continuous turbidity data also were collected over a 15-year period. These data were used together to develop simple linear regression models to compute continuous suspended sediment concentrations and loads from 1966 to 2013. The inclusion of turbidity as an additional explanatory variable with streamflow improved regression model diagnostics and increased the amount of variability in suspended sediment concentration explained by 14%. Using suspended sediment concentration from the streamflow-only model, the average annual suspended sediment load was 102,517 t (113,006 tn) and ranged from 4,826 t (5,320 tn) in 1966 to 967,569 t (1,066,562 tn) in 1979. The sediment load in 1979 accounted for about 20% of the total load over the 48-year history of the reservoir and 92% of the 1979 sediment load occurred in one 24-hour period during a 1% annual exceedance probability flow event (104-year flood). Nearly 60% of the reservoir sediment load during the 48-year study period occurred in 5 years with extreme flow events (9% to 1% annual exceedance probability, or 11- to 104-year flood events). A substantial portion (41%) of sediment was transported to the reservoir during five storm events spanning only eight 24-hour periods during 1966 to 2013. Annual suspended sediment load estimates based on streamflow were, on

  18. Suspended-sediment trapping in the tidal reach of an estuarine tributary channel

    USGS Publications Warehouse

    Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    Evidence of decreasing sediment supply to estuaries and coastal oceans worldwide illustrates the need for accurate and updated estimates. In the San Francisco Estuary (Estuary), recent research suggests a decrease in supply from its largest tributaries, implying the increasing role of smaller, local tributaries in sediment supply to this estuary. Common techniques for estimating supply from tributaries are based on gages located above head of tide, which do not account for trapping processes within the tidal reach. We investigated the effect of a tidal reach on suspended-sediment discharge for Corte Madera Creek, a small tributary of the Estuary. Discharge of water (Q) and suspended-sediment (SSD) were observed for 3 years at two locations along the creek: upstream of tidal influence and at the mouth. Comparison of upstream and mouth gages showed nearly 50 % trapping of upstream SSD input within the tidal reach over this period. At the storm time scale, suspended-sediment trapping efficiency varied greatly (range −31 to 93 %); storms were classified as low- or high-yield based on upstream SSD. As upstream peak Q increased, high-yield storms exhibited significantly decreased trapping. Tidal conditions at the mouth—ebb duration and peak ebb velocity—during storms had a minor effect on sediment trapping, suggesting fluvial processes dominate. Comparison of characteristic fluvial and tidal discharges at the storm time scale demonstrated longitudinal differences in the regulating process for SSD. These results suggest that SSD from gages situated above head of tide overestimate sediment supply to the open waters beyond tributary mouths and thus trapping processes within the tidal reach should be considered.

  19. Suspended sediment load, climate and relief in the central Pamirs

    NASA Astrophysics Data System (ADS)

    Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Schön, Ariane

    2013-04-01

    Relief and climate affect the generation of sediment transport. While relief and climate also affect each other, their influence on sediment transport can be investigated separately to determine their direct impact on this matter. Taking into account the complex topography of the central Pamirs and the fact that this region marks the transition zone of the Westerlies and the northward Indian Summer Monsoon, this region provides an excellent basis to investigate the interrelationship between sediment transport, climate and relief. The Panj River and its tributaries are representative for the hydrological setting of the central Pamirs as they drain most of the region. We first present suspended sediment characteristics from historical archive data for the whole river catchment and for the sub-catchments. We show the dynamics of the relationship between suspended sediment concentration and discharge on an annual basis for the different catchment sizes. The uppermost catchments are characterized by a transport-limited situation, showing a simple power-law relationship between discharge and sediment concentration for the entire year. The lowermost catchments show a strong hysteresis effect, especially in spring, which is related to the onset of snowmelt. The result is a differentiated power-law relationship within a year. As snow and glacier melt control the discharge in the central Pamirs, we investigate the climatological conditions derived from remote sensing data. We do this with respect to the different sub-catchments and with a special focus on the temporal variability. Results from the previous steps are finally interrelated with calculated geomorphological features at different catchment scales to characterize the suspended sediment load in the context of both relief and climatic conditions. Our results suggest climate to play the first-order determinant for the generation of suspended sediment load. This is in particular due to the Westerlies that provide the

  20. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    USGS Publications Warehouse

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment

  1. Temporal dynamics of suspended sediment transport in a glacierized Andean basin

    NASA Astrophysics Data System (ADS)

    Mao, Luca; Carrillo, Ricardo

    2017-06-01

    Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.

  2. DEVELOPING WATER QUALITY CRITERIA FOR SUSPENDED AND BEDDED SEDIMENTS

    EPA Science Inventory

    The U.S. EPA’s Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) is a nationally-consistent process for developing ambient sediment quality criteria for surface waters. The SABS Framework accommodates natural variation among wa...

  3. Numerical model of frazil ice and suspended sediment concentrations and formation of sediment laden ice in the Kara Sea

    USGS Publications Warehouse

    Sherwood, C.R.

    2000-01-01

    A one-dimensional (vertical) numerical model of currents, mixing, frazil ice concentration, and suspended sediment concentration has been developed and applied in the shallow southeastern Kara Sea. The objective of the calculations is to determine whether conditions suitable for turbid ice formation can occur during times of rapid cooling and wind- and wave-induced sediment resuspension. Although the model uses a simplistic approach to ice particles and neglects ice-sediment interactions, the results for low-stratification, shallow (∼20-m) freeze-up conditions indicate that the coconcentrations of frazil ice and suspended sediment in the water column are similar to observed concentrations of sediment in turbid ice. This suggests that wave-induced sediment resuspension is a viable mechanism for turbid ice formation, and enrichment mechanisms proposed to explain the high concentrations of sediment in turbid ice relative to sediment concentrations in underlying water may not be necessary in energetic conditions. However, salinity stratification found near the Ob' and Yenisey Rivers damps mixing between ice-laden surface water and sediment-laden bottom water and probably limits incorporation of resuspended sediment into turbid ice until prolonged or repeated wind events mix away the stratification. Sensitivity analyses indicate that shallow (≤20 m), unstratified waters with fine bottom sediment (settling speeds of ∼1 mm s−1 or less) and long open water fetches (>25 km) are ideal conditions for resuspension.

  4. Suspended-Sediment Loads and Yields in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Bragg, Heather M.; Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.

    2007-01-01

    The North Santiam River provides drinking water to the residents and businesses of the city of Salem, Oregon, and many surrounding communities. Since 1998, water-quality data, including turbidity, were collected continuously at monitoring stations throughout the basin as part of the North Santiam River Basin Turbidity and Suspended Sediment Study. In addition, sediment samples have been collected over a range of turbidity and streamflow values. Regression models were developed between the instream turbidity and suspended-sediment concentration from the samples collected from each monitoring station. The models were then used to estimate the daily and annual suspended-sediment loads and yields. For water years 1999-2004, suspended-sediment loads and yields were estimated for each station. Annual suspended-sediment loads and yields were highest during water years 1999 and 2000. A drought during water year 2001 resulted in the lowest suspended-sediment loads and yields for all monitoring stations. High-turbidity events that were unrelated or disproportional to increased streamflow occurred at several of the monitoring stations during the period of study. These events highlight the advantage of estimating suspended-sediment loads and yields from instream turbidity rather than from streamflow alone.

  5. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    EPA Science Inventory

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  6. Central San Francisco Bay suspended-sediment transport processes study and comparison of continuous and discrete measurements of suspended-solids concentrations

    USGS Publications Warehouse

    Schoellhamer, David H.

    1994-01-01

    Sediments are an important component of the San Francisco Bay estuarine system. Potentially toxic substances, such as metals and pesticides, adsorb to sediment particles. The sediments on the bottom of the Bay provide the habitat for benthic communities which can ingest these substances and introduce them into the food web. The bottom sediments are also a reservoir of nutrients. The transport and fate of suspended sediment is an important factor in determining the transport and fate of the constituents adsorbed on the sediment. Suspended sediments also limit light availability in the bay, which limits photosynthesis and primary production, and deposit in ports and shipping channels, which require dredging. Dredged materials are disposed in Central San Francisco Bay.

  7. On The Ubiquity of Nonstationary Fluvial Suspended Sediment Dynamics: A Call for Long Term Monitoring and Dynamical Sediment Management Strategies

    NASA Astrophysics Data System (ADS)

    Gray, A. B.

    2017-12-01

    Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area < 2x104 km2) watersheds in this region, only 23 have discharge associated suspended sediment concentration time series with base periods of 10 years or more. Event to interdecadal scale nonstationary suspended sediment dynamics were identified throughout these systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.

  8. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  9. The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments

    NASA Technical Reports Server (NTRS)

    Acker, James G.

    2006-01-01

    Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.

  10. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  11. Assessing the occurrence and distribution of pyrethroids in water and suspended sediments

    USGS Publications Warehouse

    Hladik, M.L.; Kuivila, K.M.

    2009-01-01

    The distribution of pyrethroid insecticides in the environment was assessed by separately measuring concentrations in the dissolved and suspended sediment phases of surface water samples. Filtered water was extracted by HLB solid-phase extraction cartridges, while the sediment on the filter was sonicated and cleaned up using carbon and aluminum cartridges. Detection limits for the 13 pyrethroids analyzed by gas chromatography-tandem mass spectrometry were 0.5 to 1 ng L-1 for water and 2 to 6 ng g for the suspended sediments. Seven pyrethroids were detected in six water samples collected from either urban or agricultural creeks, with bifenthrin detected the most frequently and at the highest concentrations. In spiked water samples and field samples, the majority of the pyrethroids were associated with the suspended sediments.

  12. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  13. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    USGS Publications Warehouse

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  14. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  15. Prediction and forecast of Suspended Sediment Concentration (SSC) on the Upper Yangtze basin

    NASA Astrophysics Data System (ADS)

    Matos, José Pedro; Hassan, Marwan; Lu, Xixi; Franca, Mário J.

    2017-04-01

    Sediment transport in suspension may represent 90% or more of the global annual flux of sediment. For instance, more than 99% of the sediment supplied to the sea by the Yangtze River is suspended load. Suspended load is an important component for understanding channel dynamics and landscape evolution. Sediments transported in suspension are a major source of nutrients for aquatic organisms in riparian and floodplain habitats, and play a beneficial role acting as a sink in the carbon cycle. Excess of fine sediments may also have adverse effects. It can impair fish spawning by riverbed clogging, disturb foraging efficiency of hunting of river fauna, cause algae and benthos scouring, reduce or inhibit exchanges through the hyporheic region. Accumulation of fine sediments in reservoirs reduces storage capacity. Although fine sediment dynamics has been the focus of many studies, the current knowledge of sediment sources, transfer, and storage is inadequate to address fine sediment dynamics in the landscape. The theoretical derivation of a complete model for suspended sediment transport at the basin scale, incorporating small scale processes of production and transport, is hindered because the underlying mechanisms are produced at different non-similar scales. Availability of long-term reliable data on suspended sediment dynamics is essential to improve our knowledge on transport processes and to develop reliable sediment prediction models. Over the last 60 years, the Yangtze River Commission has been measuring the daily Suspended Sediment Concentration (SSC) at the Pingshan station. This dataset provides a unique opportunity to examine temporal variability and controls of fine sediment dynamics in the Upper Yangtze basin. The objective of this study is to describe temporal variation of fine sediment dynamics at the Pingshan station making use of the extensive sediment monitoring program undertaken at that location. We test several strategies of prediction and forecast

  16. Modeling long-term suspended-sediment export from an undisturbed forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Francke, Till; Elsenbeer, Helmut

    2013-04-01

    Most estimates of suspended sediment yields from humid, undisturbed, and geologically stable forest environments fall within a range of 5 - 30 t km-2 a-1. These low natural erosion rates in small headwater catchments (≤ 1 km2) support the common impression that a well-developed forest cover prevents surface erosion. Interestingly, those estimates originate exclusively from areas with prevailing vertical hydrological flow paths. Forest environments dominated by (near-) surface flow paths (overland flow, pipe flow, and return flow) and a fast response to rainfall, however, are not an exceptional phenomenon, yet only very few sediment yields have been estimated for these areas. Not surprisingly, even fewer long-term (≥ 10 years) records exist. In this contribution we present our latest research which aims at quantifying long-term suspended-sediment export from an undisturbed rainforest catchment prone to frequent overland flow. A key aspect of our approach is the application of machine-learning techniques (Random Forest, Quantile Regression Forest) which allows not only the handling of non-Gaussian data, non-linear relations between predictors and response, and correlations between predictors, but also the assessment of prediction uncertainty. For the current study we provided the machine-learning algorithms exclusively with information from a high-resolution rainfall time series to reconstruct discharge and suspended sediment dynamics for a 21-year period. The significance of our results is threefold. First, our estimates clearly show that forest cover does not necessarily prevent erosion if wet antecedent conditions and large rainfalls coincide. During these situations, overland flow is widespread and sediment fluxes increase in a non-linear fashion due to the mobilization of new sediment sources. Second, our estimates indicate that annual suspended sediment yields of the undisturbed forest catchment show large fluctuations. Depending on the frequency of large

  17. Suspended Sediment in the Indiana Harbor Canal and the Grand Calumet River, Northwestern Indiana, May 1996-June 1998

    USGS Publications Warehouse

    Renn, Danny E.

    2000-01-01

    Suspended-sediment samples and streamflow data were collected from May 1996 through June 1998 at three sites in the Grand Calumet River Basin - Indiana Harbor Canal at East Chicago, the east branch of the Grand Calumet River at Gary, and the west branch of the Grand Calumet River at Hammond. Sample analysis allowed for retention of sediments of 0.0015 millimeters or larger. At Indiana Harbor Canal at East Chicago, an automated sampler collected 2,005 suspended-sediment samples from the canal and, of these, 1,856 had associated streamflow values. To evaluate any bias between instream concentrations of suspended sediment and samples collected by the automated sampler, 27 sets of suspended-sediment samples were collected manually in the canal at the same time samples were collected by the automated sampler. There was no consistent bias between the samples collected manually instream and the samples collected by the automated sampler; therefore, no correction factor was applied to the concentrations of suspended sedment for the samples collected by the automated sampler. For the 2,005 and 1,856 samples, the mean suspended-sediment concentrations were the same, 15 milligrams per liter (mg/L), and the range in suspended-sediment concentrations were the same, from less than 1 mg/L to 97 mg/L. No apparent relation between the concentration of suspended sediment measured in samples from the Indiana Harbor Canal and streamflow was indicated, probably because of complex hydraulic conditions in the study area; most of the streamflow is from industrial and municipal discharges, and streamflow is affected by changes in water levels in Lake Michigan. There did appear to be a seasonal trend in the concentrations of suspended sediment, however, in that the largest concentrations generally were measured during the spring. During the study, four substantial rainfall events were recorded. Only for a rainfall event of 4.20 inches was there a substantial increase in the concentrations

  18. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment

  19. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling.

    PubMed

    Kellner, Elliott; Hubbart, Jason A

    2017-11-15

    Given the importance of suspended sediment to biogeochemical functioning of aquatic ecosystems, and the increasing concern of mixed-land-use effects on pollutant loading, there is an urgent need for research that quantitatively characterizes spatiotemporal variation of suspended sediment dynamics in contemporary watersheds. A study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed design, including five gauging sites (n=5) partitioning the catchment into five sub-watersheds. Hydroclimate stations at gauging sites were used to monitor air temperature, precipitation, and stream stage at 30-min intervals during the study (Oct. 2009-Feb. 2014). Streamwater grab samples were collected four times per week, at each site, for the duration of the study (Oct. 2009-Feb. 2014). Water samples were analyzed for suspended sediment using laser particle diffraction. Results showed significant differences (p<0.05) between monitoring sites for total suspended sediment concentration, mean particle size, and silt volume. Total concentration and silt volume showed a decreasing trend from the primarily agricultural upper watershed to the urban mid-watershed, and a subsequent increasing trend to the more suburban lower watershed. Conversely, mean particle size showed an opposite spatial trend. Results are explained by a combination of land use (e.g. urban stormwater dilution) and surficial geology (e.g. supply-controlled spatial variation of particle size). Correlation analyses indicated weak relationships with both hydroclimate and land use, indicating non-linear sediment dynamics. Suspended sediment parameters displayed consistent seasonality during the study, with total concentration decreasing through the growing season and mean particle size inversely tracking air temperature. Likely explanations include vegetation influences and climate-driven weathering cycles. Results reflect unique observations of

  20. [Study on quantitative model for suspended sediment concentration in Taihu Lake].

    PubMed

    Chen, Jun; Zhou, Guan-hua; Wen, Zhen-he; Ma, Jin-Feng; Zhang, Xu; Peng, Dan-qing; Yang, Song-lin

    2010-01-01

    The complicated compositions of Case II waters result in the complex properties of spectral curves. The present paper analyzed the in situ measurements data of spectral curves, and further realized the relationships between the properties of spectral curves and suspended sediment concentration. The study found that the max peak of spectral curves was moving to the direction of shortwavelength as increasing suspended sediment concentration, namely the blue shift of wavelength; the area enclosed by spectral curve and coordinate axis in the range of sensitive bands had preferably linear relationship with the suspended sediment concentration (curve area model); the trapezoidal area model which was an approximation of curve area model could also excellently reflect those relationships, and be greatly suitable for multi-spectral satellite imagery retrieval such as LandSat/TM, MODIS and so on. The inversion results of trapezoidal area model for LandSat/TM imagery on October 27, 2003 in Taihu Lake showed that the suspended sediment concentration ranged from 30 to 80 mg x L(-1), the distribution pattern was higher in the west, south and central lake and lower in the east lake; compared with the in situ measurements in the regions, and the relative error of retrieval model was 6.035%.

  1. Pyrethroid sorption to Sacramento River suspended solids and bed sediments

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2011-01-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877

  2. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Statistical modelling of suspended sediment load in small basin located at Colombian Andes

    NASA Astrophysics Data System (ADS)

    Javier, Montoya Luis

    2016-04-01

    In this study a statistical modelling for the estimate the sediment yield based on available observations of water discharge and suspended sediment concentration were done. A multivariate model was applicate to analyze the 33 years of daily suspended sediments load available at a La Garrucha gauging station. A regional analysis were conducted to find a non-dimensional sediment load duration curve. These curves were used to estimate flow and sediments regimen at other inner point at the basin where there are located the Calderas reservoir. The record of sedimentation in the reservoir were used to validate the estimate mean sediments load. A periodical flushing in the reservoir is necessary to maintain the reservoir at the best operating capacity. The non-dimensional sediment load duration curve obtaining was used to find a sediment concentration during high flow regimen (10% of time these values were met or exceeded).These sediment concentration of high flow regimen has been assumed as a concentration that allow an 'environmental flushing', because it try to reproduce the natural regimen of sediments at the river and it sends a sediment concentration that environment can withstand. The sediment transport capacity for these sediment load were verified with a 1D model in order to respect the environmental constraints downstream of the dam. Field data were collected to understand the physical phenomena involved in flushing dynamics in the reservoir and downstream of the dam. These model allow to define an operations rules for the flushing to minimize the environmental effects.

  4. U.S. Geological Survey research on surrogate measurements for suspended sediment

    USGS Publications Warehouse

    Gray, John R.; Melis, Theodore S.; Patiño, Eduardo; Larsen, Matthew C.; Topping, David J.; Rasmussen, Patrick P.; Figueroa-Alamo, Carlos

    2003-01-01

    The U.S. Geological Survey is evaluating potentially useful surrogate instruments and methods for inferring the physical characteristics of suspended sediments. Instruments operating on bulk acoustic, bulk and digital optic, laser, and pressure-differential technologies are being tested in riverine and laboratory settings for their usefulness to Federal agencies toward providing quantifiably reliable information on bed-material and bed-topography characteristics, and on concentrations, size distributions and transport rates of sediments in suspension and as bedload. The efficacy of four suspended-sediment surrogate technologies has been demonstrated to varying degrees of success in Kansas, Florida, Arizona, and Puerto Rico.

  5. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube.

    PubMed

    Klaver, Gerard; van Os, Bertil; Negrel, Philippe; Petelet-Giraud, Emmanuelle

    2007-08-01

    Large hydropower dams have major impacts on flow regime, sediment transport and the characteristics of water and sediment in downstream rivers. The Gabcikovo and Iron Gate dams divide the studied Danube transect (rkm 1895-795) into three parts. In the Gabcikovo Reservoir (length of 40km) only a part of the incoming suspended sediments were deposited. Contrary to this, in the much larger Iron Gate backwater zone and reservoir (length of 310km) all riverine suspended sediments were deposited within the reservoir. Subsequently, suspended sediments were transported by tributaries into the Iron Gate backwater zone. Here they were modified by fractional sedimentation before they transgressed downstream via the dams. Compared with undammed Danube sections, Iron Gate reservoir sediment and suspended matter showed higher clay contents and different K/Ga and Metal/Ga ratios. These findings emphasize the importance of reservoir-river sediment-fractionation.

  6. Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland

    USGS Publications Warehouse

    Devereux, Olivia H.; Prestegaard, Karen L.; Needelman, Brian A.; Gellis, Allen C.

    2010-01-01

    Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land-based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank-erosion measurements, sediment budget and other methods.

  7. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  8. Distribution and movement of suspended sediment in the Gulf of Mexico off the Texas coast

    NASA Technical Reports Server (NTRS)

    Hunter, R. E.

    1973-01-01

    ERTS-1 imagery has proven very useful in studies of the distribution of suspended sediment in the Gulf of Mexico off the Texas coast. Moreover, by using suspended matter concentrations as tags on water masses, much information on water movement can be obtained. The utility of suspended sediment as a tracer is dependent on the sediment remaining in suspension long enough to travel an appreciable distance or to be visible on successive images. Although the evidence is not conclusive, it seems likely that much of the suspended sediment in Gulf of Mexico nearshore waters during normal seastate conditions has remained in suspension since the time of its entry into the Gulf of Mexico through rivers and tidal inlets.

  9. The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya

    PubMed Central

    2018-01-01

    The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics. PMID:29420624

  10. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  11. Quantifying ratios of suspended sediment sources in forested headwater streams following timber-harvesting operations

    NASA Astrophysics Data System (ADS)

    Rachels, A. A.; Bladon, K. D.; Bywater-Reyes, S.

    2017-12-01

    Historically, timber-harvesting has increased fine sediment inputs to streams due to increased hillslope and streambank erosion and mass wasting along roads. However, under modern best management practices, the relative importance and variability of these sources is poorly understood. We present preliminary results from an ongoing study investigating the primary sources of suspended sediment in Oregon Coast Range streams influenced by timber harvesting. We instrumented two catchments, Enos Creek (harvested 2016) and Scheele Creek (reference) in fall 2016. Phillips samplers (5-6 per catchment) have been deployed longitudinally down the streams to enable robust characterization of suspended sediments—the collected samples integrate the chemical signatures of upstream sediment exports. We will collect samples monthly over 2 wet seasons and return to the laboratory to analyze the sediment using source fingerprinting approaches. The fingerprinting technique compares the chemical properties of stream sediment samples with the chemical properties of potential source areas, including 1) roads, 2) stream banks, and 3) hillslopes. To design a robust model for sediment-source identification, different types of chemical data are required—we will analyze sediment samples using a combination of: a) stable isotopes and C/N ratios (i.e., δ15N, δ13C, and C/N), b) geochemistry (Fe, K, and Ca), and c) radiogenic isotopes (137Cs and 210Pb). At the harvested site, the C/N ratios of the streambanks (17.9 ± 3.8) and the hillslopes (26.4 ± 4.8) are significantly different from one another (p = .016). C/N ratios of the suspended sediment (20.5 ± 2.0) are intermediate values between potential endmembers and behave conservatively with transport. The C/N ratios of the suspended sediment appear unaffected by roads (18.9 ± 8.7) along specific sections of the stream, suggesting that roads are not a primary sediment contributor. Under this assumption, the suspended sediment is, on

  12. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  13. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  14. The Influence of Turbulent Coherent Structure on Suspended Sediment Transport

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Tsai, C.

    2017-12-01

    The anomalous diffusion of turbulent sedimentation has received more and more attention in recent years. With the advent of new instruments and technologies, researchers have found that sediment behavior may deviate from Fickian assumptions when particles are heavier. In particle-laden flow, bursting phenomena affects instantaneous local concentrations, and seems to carry suspended particles for a longer distance. Instead of the pure diffusion process in an analogy to Brownian motion, Levy flight which allows particles to move in response to bursting phenomena is suspected to be more suitable for describing particle movement in turbulence. And the fractional differential equation is a potential candidate to improve the concentration profile. However, stochastic modeling (the Differential Chapmen-Kolmogorov Equation) also provides an alternative mathematical framework to describe system transits between different states through diffusion/the jump processes. Within this framework, the stochastic particle tracking model linked with advection diffusion equation is a powerful tool to simulate particle locations in the flow field. By including the jump process to this model, a more comprehensive description for suspended sediment transport can be provided with a better physical insight. This study also shows the adaptability and expandability of the stochastic particle tracking model for suspended sediment transport modeling.

  15. Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Ros, Faizah Che; Chalov, Sergey

    2014-05-01

    snowmelt in volcanic tributaries of the lahar valley, suggesting a significant hydrological contribution of volcanic catchments to instream suspended sediment transport. Daily fluctuations in discharge caused by snowmelt with debris flow were observed in this measurement period, in which suspended sediment concentration is ~ 10 mg/l during nonflooding periods and ~ 1400 mg/l when flooding occurs. The oxygen and hydrogen isotope measurements, when compared with Japan, indicated that the Kamchatka region water is relatively lightweight, incorporating the effects of topography; and the water from the beginning of the snowmelt is relatively lightweight when compared with water from the end of the snowmelt. The trend line of isotopes from the beginning of the snowmelt was defined by a slope of 6.88 (n = 12; r2 = 0.97), significantly less than that of isotopes from the snowmelt (8.72). The sediment particles collected during the snowmelt were round in shape caused by the extreme flows and high discharge. The shape of the sediment particles collected at the beginning of the snowmelt, assumed to be fresh samples from the hillslope, was sharper caused by the relatively small discharge by moderate snowmelt. Finally, the relationship between river discharge and suspended sediment concentration was indicated. The results are compared with mountainous rivers of Japan and Malaysia. A new diagram is proposed to describe the relationship between suspended sediment concentration and river discharge.

  16. Suspended-sediment loads, reservoir sediment trap efficiency, and upstream and downstream channel stability for Kanopolis and Tuttle Creek Lakes, Kansas, 2008-10

    USGS Publications Warehouse

    Juracek, Kyle E.

    2011-01-01

    Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean

  17. Pyrethroid sorption to Sacramento River suspended solids and bed sediments.

    PubMed

    Fojut, Tessa L; Young, Thomas M

    2011-04-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, California, USA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r(2)  > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments, and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature, by approximately an order of magnitude, and ranged from 10(6.16) to 10(6.68) at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. Copyright © 2011 SETAC.

  18. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  19. Storage and residence time of suspended sediment in gravel bars of Difficult Run, VA

    NASA Astrophysics Data System (ADS)

    George, J.; Benthem, A.; Pizzuto, J. E.; Skalak, K.

    2016-12-01

    Reducing the export of suspended sediment is an important consideration for restoring water quality to the Chesapeake Bay, but sediment budgets for in-channel landforms are poorly constrained. We quantified fine (< 2 mm) sediment storage and residence times for gravel bars at two reaches along Difficult Run, a 5th order tributary to the Potomac River. Eight gravel bars were mapped in a 150m headwater reach at Miller Heights (bankfull width 11m; total bar volume 114 m3) and 6 gravel bars were mapped in a 160m reach downstream near Leesburg Pike (bankfull width 19m; total bar volume 210 m3). Grain size analyses of surface and subsurface samples from 2 bars at each reach indicate an average suspended sediment content of 55%, suggesting a total volume of suspended sediment stored in the mapped bars to be 178 m3, or 283000 kg, comprising 5% of the average annual suspended sediment load of the two study reaches. Estimates of the annual bedload flux at Miller Heights based on stream gaging records and the Wilcock-Crowe bedload transport equation imply that the bars are entirely reworked at least annually. Scour chains installed in 2 bars at each site (a total of 50 chains) recorded scour and fill events during the winter and spring of 2016. These data indicate that 38% of the total volume of the bars is exchanged per year, for a residence time of 2.6 ± 1.2 years, a value we interpret as the residence time of suspended sediment stored in the bars. These results are supported by mapping of topographic changes derived from structure-from-motion analyses of digital aerial imagery. Storage in alluvial bars therefore represents a significant component of the suspended sediment budget of mid-Atlantic streams.

  20. The significance of suspended organic sediments to turbidity, sediment flux, and fish-feeding behavior

    Treesearch

    Mary Ann Madej; Margaret Wilzbach; Kenneth Cummins; Colleen Ellis; Samantha Hadden

    2007-01-01

    For over three decades, geologists, hydrologists and stream ecologists have shown significant interest in suspended load in running waters. Physical scientists have focused on turbidity, the development of sediment-rating curves and estimation of sediment yields, often as an indicator of changing land uses (Beschta 1981). Stream ecologists, on the other hand, have...

  1. Suspended sediment and bedload in the First Broad River Basin in Cleveland County, North Carolina, 2008-2009

    USGS Publications Warehouse

    Hazell, William F.; Huffman, Brad A.

    2011-01-01

    A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two

  2. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    the maximum concentration observed during breakup was more than an order of magnitude larger than the typical values observed under stable ice cover (>300 mg/L, versus 5 - 15 mg/L). This result is consistent with the few historic studies of river ice breakup in which water samples were collected. This study shows that acoustic profilers can be used to monitor suspended sediment fluxes under ice, ultimately reducing the uncertainty in sediment budget computations for ice-affected rivers.

  3. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    EPA Science Inventory

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  4. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    USGS Publications Warehouse

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  5. Residual circulation and suspended sediment transport in the Dutch Wadden Sea

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Sassi, Maximiliano; de Boer, Gerben; Grawë, Ulf; Gerkema, Theo; van Kessel, Thijs; Cronin, Katherine

    2014-05-01

    The Dutch Wadden Sea (DWS), situated between continental Europe and the Dutch Wadden Islands, is a semi enclosed basin connected to the North Sea by a series of tidal inlets and composed mainly of tidal flats and sea gullies. The DWS is of high ecological importance due to its biodiversity and has been declared a World Heritage site by UNESCO. It is a dynamic area subject to regional relative sea level rise due to global sea level rise, postglacial rebound and gas exploitation. For intertidal areas to continue to serve as feeding ground for migratory birds, a net import of sediment is required. Observations are crucial but provide only scarce information in space and time. Hence, to estimate the net influx of suspended sediment into the DWS, realistic high resolution three-dimensional numerical simulations have been carried out using the General Estuarine Transport Model (GETM). The hydrodynamics are mainly governed by the tides, the fresh water discharge from several sluices into the DWS and wind variability. It is expected that the transport of suspended particulate matter (SPM) is governed by the same factors, too, in combination with sediment sink and source terms. For validation, the results are compared against different observational data sets, such as tidal gauges, temperature and salinity at a fixed station, and the volumetric flux rate through one of the inlets obtained from an acoustic Doppler current profiler (ADCP) attached to a ferry. SPM transport is modeled for four different sediment classes each of which is defined by the critical shear stress and the settling velocity. Results show a clear net import of SPM through one of the inlets, which is in agreement with the observations. First estimates of the total sediment fluxes through the different inlets are presented together with an analysis on their variability and sensibility to the external forcing. Of particular importance is the net export of SPM during storms as well as the role of storms on

  6. Temporal variability in the suspended sediment load and streamflow of the Doce River

    NASA Astrophysics Data System (ADS)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  7. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.

    PubMed

    Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark

    2008-09-01

    The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.

  8. Observations of sediment transport on the Amazon subaqueous delta

    USGS Publications Warehouse

    Sternberg, R.W.; Cacchione, D.A.; Paulson, B.; Kineke, G.C.; Drake, D.E.

    1996-01-01

    A 19-day time series of fluid, flow, and suspended-sediment characteristics in the benthic boundary layer is analyzed to identify major sedimentary processes active over the prodelta region of the Amazon subaqueous delta. Measurements were made by the benthic tripod GEOPROBE placed on the seabed in 65 m depth near the base of the deltaic foreset beds from 11 February to 3 March 1990, during the time of rising water and maximum sediment discharge of the Amazon River; and the observations included: hourly measurements of velocity and suspended-sediment concentration at four levels above the seabed; waves and tides; and seabed elevation. Results of the first 14-day period of the time series record indicate that sediment resuspension occurred as a result of tidal currents (91% of the time) and surface gravity waves (46% of the time). Observations of suspended sediment indicated that particle flux in this region is 0.4-2% of the flux measured on the adjacent topset deposits and is directed to the north and landward relative to the Brazilian coast (268??T). Fortnightly variability is strong, with particle fluxes during spring tides five times greater than during neap tides. On the 15th day of the data record, a rapid sedimentation event was documented in which 44 cm of sediment was deposited at the study site over a 14-h period. Evaluation of various mechanisms of mass sediment movement suggests that this event represents downslope migration of fluid muds from the upper foreset beds that were set in motion by boundary shear stresses generated by waves and currents. This transport mechanism appears to occur episodically and may represent a major source of sediment to the lower foreset-bottomset region of the subaqueous delta.

  9. An inventory of suspended sediment stations and type of data analysis for Pennsylvania streams, 1947-1970

    USGS Publications Warehouse

    Ott, Arthur N.; Commings, Allen B.

    1972-01-01

    Data concerning suspended sediment concentrations and loads, frequency of occurrence of suspended sediment concentrations, and long-term trends of annual suspended sediment loads are important tools for today's environmental manager. These data are required background for those concerned with establishing and enforcing erosion and sedimentation control regulations and sediment concentration or turbidity standards for water-quality criteria, or those concerned with designing for adequate long-term water storage in reservoirs (sediment load), for efficient municipal and industrial plant operation (sediment concentration frequency), etc.This is a compilation of the location, period of record, sampling frequency and type of data synthesis for suspended sediment carried by Pennsylvania streams. Figures 1 and 2 show the approximate locations of sediment sampling stations in Pennsylvania. All of the sediment data listed were collected by the U. S. Geological Survey mainly in cooperation with the following Federal, State, and local agencies.Pennsylvania Department of Environmental Resources     Bureau of Engineering and Construction     Soil and Water Conservation CommissionPennsylvania Department of TransportationCity of PhiladelphiaBrandywine Valley AssociationDelaware Geological SurveyConestoga Valley AssociationLehigh County Soil and Water Conservation DistrictCorps of Engineers, U. S. Army

  10. Summary of Optical-Backscatter and Suspended-Sediment Data, Tomales Bay Watershed, California, Water Years 2004, 2005, and 2006

    USGS Publications Warehouse

    Curtis, Jennifer A.

    2007-01-01

    The U.S. Geological Survey, in cooperation with Point Reyes National Seashore, is studying suspended-sediment transport dynamics in the two primary tributaries to Tomales Bay, Lagunitas Creek and Walker Creek. Suspended-sediment samples and continuous optical backscatter (turbidity) data were collected at three locations during water years 2004?06 (October 1, 2003?September 30, 2006): at two sites in the Lagunitas Creek watershed and at one site in the Walker Creek watershed. Sediment samples were analyzed for suspended-sediment concentration, grain size, and turbidity. Data were used to estimate mean daily and annual seasonal suspended-sediment discharge, which were published in U.S. Geological Survey Annual Water-Data Reports. Data were utilized further in this report to develop field-based optical-backscatter calibration equations, which then were used to derive a continuous time series (15-minute interval) of suspended-sediment concentrations. Sensor fouling and aggradation of the channel bed occurred periodically throughout the project period, resulting in data loss. Although periods of data loss occurred, collection of optical sensor data improved our understanding of suspended-sediment dynamics in the Lagunitas Creek and Walker Creek watersheds by providing continuous time-series storm event data that were analyzed to determine durations of elevated sediment concentrations (periods of time when suspended-sediment concentration was greater than 100 mg/L). Data derived from this project contributed baseline suspended-sediment transport information that will be used to develop and implement sediment total maximum daily loads for Tomales Bay and its tributary watersheds, and provides supporting information for additional total maximum daily loads (pathogens, nutrients, and mercury) and restoration efforts for four federally listed aquatic species that are affected directly by sediment loading in the Tomales Bay watershed. In addition, this project provided an

  11. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from

  12. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12 year−1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900 km2 to nearly 2 million km2 and annual suspended sediment fluxes ranging from about 4 Kt year−1 to about 200 Mt year−1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross

  13. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  14. Streamflow and suspended-sediment transport in Garvin Brook, Winona County, southeastern Minnesota: Hydrologic data for 1982

    USGS Publications Warehouse

    Payne, G.A.

    1983-01-01

    Streamflow and suspended-sediment-transport data were collected in Garvin Brook watershed in Winona County, southeastern Minnesota, during 1982. The data collection was part of a study to determine the effectiveness of agricultural best-management practices designed to improve rural water quality. The study is part of a Rural Clean Water Program demonstration project undertaken by the U.S. Department of Agriculture. Continuous streamflow data were collected at three gaging stations during March through September 1982. Suspended-sediment samples were collected at two of the gaging stations. Samples were collected manually at weekly intervals. During periods of rapidly changing stage, samples were collected at 30-minute to 12-hour intervals by stage-activated automatic samplers. The samples were analyzed for suspendedsediment concentration and particle-size distribution. Particlesize distributions were also determined for one set of bedmaterial samples collected at each sediment-sampling site. The streamflow and suspended-sediment-concentration data were used to compute records of mean-daily flow, mean-daily suspended-sediment concentration, and daily suspended-sediment discharge. The daily records are documented and results of analyses for particle-size distribution and of vertical sampling in the stream cross sections are given.

  15. Continuous measurement of suspended-sediment discharge in rivers by use of optical backscatterance sensors

    USGS Publications Warehouse

    Schoellhamer, D.H.; Wright, S.A.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    Optical sensors have been used to measure turbidity and suspended-sediment concentration by many marine and estuarine studies, and optical sensors can provide automated, continuous time series of suspended-sediment concentration and discharge in rivers. Three potential problems with using optical sensors are biological fouling, particle-size variability, and particle-reflectivity variability. Despite varying particle size, output from an optical backscatterance sensor in the Sacramento River at Freeport, California, USA, was calibrated successfully to discharge-weighted, cross-sectionally averaged suspended-sediment concentration, which was measured with the equal discharge-, or width-increment, methods and an isokinetic sampler. A correction for sensor drift was applied to the 3-year time series. However, the calibration of an optical backscatterance sensor used in the Colorado River at Cisco, Utah, USA, was affected by particle-size variability. The adjusted time series at Freeport was used to calculate hourly suspended-sediment discharge that compared well with daily values from a sediment station at Freeport. The appropriateness of using optical sensors in rivers should be evaluated on a site-specific basis and measurement objectives, potential particle size effects, and potential fouling should be considered.

  16. Compilation, quality control, analysis, and summary of discrete suspended-sediment and ancillary data in the United States, 1901-2010

    USGS Publications Warehouse

    Lee, Casey J.; Glysson, G. Douglas

    2013-01-01

    Human-induced and natural changes to the transport of sediment and sediment-associated constituents can degrade aquatic ecosystems and limit human uses of streams and rivers. The lack of a dedicated, easily accessible, quality-controlled database of sediment and ancillary data has made it difficult to identify sediment-related water-quality impairments and has limited understanding of how human actions affect suspended-sediment concentrations and transport. The purpose of this report is to describe the creation of a quality-controlled U.S. Geological Survey suspended-sediment database, provide guidance for its use, and summarize characteristics of suspended-sediment data through 2010. The database is provided as an online application at http://cida.usgs.gov/sediment to allow users to view, filter, and retrieve available suspended-sediment and ancillary data. A data recovery, filtration, and quality-control process was performed to expand the availability, representativeness, and utility of existing suspended-sediment data collected by the U.S. Geological Survey in the United States before January 1, 2011. Information on streamflow condition, sediment grain size, and upstream landscape condition were matched to sediment data and sediment-sampling sites to place data in context with factors that may influence sediment transport. Suspended-sediment and selected ancillary data are presented from across the United States with respect to time, streamflow, and landscape condition. Examples of potential uses of this database for identifying sediment-related impairments, assessing trends, and designing new data collection activities are provided. This report and database can support local and national-level decision making, project planning, and data mining activities related to the transport of suspended-sediment and sediment-associated constituents.

  17. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Treesearch

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  18. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    PubMed

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  19. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    NASA Astrophysics Data System (ADS)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  20. Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive Clostridium perfringens▿

    PubMed Central

    Mueller-Spitz, Sabrina R.; Stewart, Lisa B.; Klump, J. Val; McLellan, Sandra L.

    2010-01-01

    The release of fecal pollution into surface waters may create environmental reservoirs of feces-derived microorganisms, including pathogens. Clostridium perfringens is a commonly used fecal indicator that represents a human pathogen. The pathogenicity of this bacterium is associated with its expression of multiple toxins; however, the prevalence of C. perfringens with various toxin genes in aquatic environments is not well characterized. In this study, C. perfringens spores were used to measure the distribution of fecal pollution associated with suspended sediments in the nearshore waters of Lake Michigan. Particle-associated C. perfringens levels were greatest adjacent to the Milwaukee harbor and diminished in the nearshore waters. Species-specific PCR and toxin gene profiles identified 174 isolates collected from the suspended sediments, surface water, and sewage influent as C. perfringens type A. Regardless of the isolation source, the beta2 and enterotoxin genes were common among isolates. The suspended sediments yielded the highest frequency of cpe-carrying C. perfringens (61%) compared to sewage (38%). Gene arrangement of enterotoxin was investigated using PCR to target known insertion sequences associated with this gene. Amplification products were detected in only 9 of 90 strains, which suggests there is greater variability in cpe gene arrangement than previously described. This work presents evidence that freshwater suspended sediments and sewage influent are reservoirs for potentially pathogenic cpe-carrying C. perfringens spores. PMID:20581181

  1. Determining suspended sediment particle size information from acoustical and optical backscatter measurements

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.

    1994-08-01

    During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross

  2. Estimates of long-term suspended-sediment loads in Bay Creek at Nebo, Pike County, Illinois, 1940-80

    USGS Publications Warehouse

    Lazaro, Timothy R.; Fitzgerald, Kathleen K.; Frost, Leonard R.

    1984-01-01

    Five years of daily suspended-sediment discharges (1968, 1969, 1975, 1976, and 1980) for Bay Creek at Nebo, Illinois, computed from once- or twice-weekly samples (more often during storm events), were used to develop transport equations that can be used to estimate long-term suspended-sediment discharges from long-term water-discharge records. Discharge was divided into three groups based on changes in slope on a graph of logarithms of water discharge versus suspended-sediment discharge. Two subgroups were formed within each of the three groups by determining whether the flow was steady or increasing, or was decreasing. Seasonality was accounted for by introducing day of the year in sine and cosine functions. The suspended-sediment load estimated from the equations for the 5 years was 77.3 percent of that computed from daily sediment- and water-discharge records for those years. The mean annual suspended-sediment load for 41 years of estimated loads was 359 ,500 tons, which represents a yield of about 3.5 tons per acre from the Bay Creek drainage basin. (USGS)

  3. Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Weber, Martin; Baewert, Henning; Morche, David

    2015-04-01

    Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to

  4. Estimation of local extreme suspended sediment concentrations in California Rivers.

    PubMed

    Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry

    2010-09-01

    The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.

  5. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  6. Suspended sediment load in northwestern South America (Colombia): A new view on variability and fluxes into the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina

    2017-12-01

    Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.

  7. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island

    NASA Astrophysics Data System (ADS)

    Szymczak, Ewa

    2017-12-01

    In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18-0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06-167.22 mg/dm3) and the content of particulate organic matter (9.8-84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff, surface

  8. Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation

    NASA Astrophysics Data System (ADS)

    Leisenring, Marc; Moradkhani, Hamid

    2012-10-01

    SummaryA first step in understanding the impacts of sediment and controlling the sources of sediment is to quantify the mass loading. Since mass loading is the product of flow and concentration, the quantification of loads first requires the quantification of runoff volume. Using the National Weather Service's SNOW-17 and the Sacramento Soil Moisture Accounting (SAC-SMA) models, this study employed particle filter based Bayesian data assimilation methods to predict seasonal snow water equivalent (SWE) and runoff within a small watershed in the Lake Tahoe Basin located in California, USA. A procedure was developed to scale the variance multipliers (a.k.a hyperparameters) for model parameters and predictions based on the accuracy of the mean predictions relative to the ensemble spread. In addition, an online bias correction algorithm based on the lagged average bias was implemented to detect and correct for systematic bias in model forecasts prior to updating with the particle filter. Both of these methods significantly improved the performance of the particle filter without requiring excessively wide prediction bounds. The flow ensemble was linked to a non-linear regression model that was used to predict suspended sediment concentrations (SSCs) based on runoff rate and time of year. Runoff volumes and SSC were then combined to produce an ensemble of suspended sediment load estimates. Annual suspended sediment loads for the 5 years of simulation were finally computed along with 95% prediction intervals that account for uncertainty in both the SSC regression model and flow rate estimates. Understanding the uncertainty associated with annual suspended sediment load predictions is critical for making sound watershed management decisions aimed at maintaining the exceptional clarity of Lake Tahoe. The computational methods developed and applied in this research could assist with similar studies where it is important to quantify the predictive uncertainty of pollutant load

  9. The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone

    USGS Publications Warehouse

    Jaffe, Bruce E.

    2015-01-01

    Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.

  10. Large-scale suspended sediment transport and sediment deposition in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.

    2014-08-01

    Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for

  11. Suspended sediment projections in Apalachicola Bay in response to altered river flow and sediment loads under climate change and sea level rise

    NASA Astrophysics Data System (ADS)

    Huang, Wenrui; Hagen, Scott C.; Wang, Dingbao; Hovenga, Paige A.; Teng, Fei; Weishampel, John F.

    2016-10-01

    Suspended sediments, or total suspended solids (TSS), are an important factor for oyster habitat. While high concentrations of suspended sediments can cause a reduction of oyster density, some level of suspended sediment is required to supply oysters with necessary nutrients. In this study, characteristics of TSS variations in response to sea level rise (SLR) at two oyster reefs in Apalachicola Bay are investigated by coupled estuarine hydrodynamic and sediment transport modeling. A storm event in 1993 and a year-long period in 2010 under recent sea level conditions are selected as the baseline conditions. Scenarios of river flow and sediment loads under SLR and climate change are obtained by downscaled global climate modeling. Compared to the baseline conditions, simulations of TSS indicate that predicted SLR yields a substantial decrease in TSS near the two oyster reefs. However, TSS levels differed at the two study locations. TSS changes by SLR revealed minimal impact on oyster habitat at the Dry Bar site (to the west of the mouth of the Apalachicola River) but are projected to have a significant impact at the Cat Point site (to the east of the Apalachicola River). At Cat Point, because SLR causes the increase of salt water intrusion from the Gulf through a large tidal inlet (East Pass), maximum sediment concentration is near zero for 0.2-m SLR and equal to zero for 0.5- and 1.2-m SLR. Therefore, SLR may result in a substantial loss of nutrients from suspended sediment in the oyster reef at Cat Point.

  12. Floodplains as a source of fine sediment in grazed landscapes: tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, M.; Rhoads, B. L.; Stumpf, A.

    2017-12-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five potential sources: streambanks, forested floodplain, grassland, and grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from five potential sources to the suspended sediment loads. Organic matter content, trace elements, and fallout radionuclides were used as potential tracers. Principal Component analysis was employed to complement the results and Monte Carlo random sampling routine was used to test the uncertainty in estimated contributions of sources to in-stream sediment loads. Results indicate that the majority of suspended sediment is derived from streambanks and grazed floodplains. Erosion of the floodplain both by surface runoff and by streambank erosion from lateral channel migration contributes to the production of fine sediment within the stream system. These results suggest that human activities, in this case grazing, have converted portions of floodplains, normally net depositional environments, into sources of fine sediments. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should focus on degraded floodplain surfaces and eroding channel banks within heavily grazed reaches of the stream.

  13. Examining the Relationship Between Suspended Sand Load and Bedload on the Colorado River Using Concurrent Measurements of Suspended Sand and Observations of Sand Dune Migration.

    NASA Astrophysics Data System (ADS)

    Ashley, T.; McElroy, B. J.; Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2015-12-01

    Spatial variability in sediment flux is directly related to geomorphic change. Along the Colorado River, measurements of sediment flux are used to track changes in sediment storage and time the release of controlled floods aimed at building eroded sandbars. The very high uncertainty typical of measurements of sediment flux has been reduced by a program of continuous measurement of suspended-sediment concentration by acoustic surrogates. However, there is still significant uncertainty in calculations of total flux. A large fraction of that uncertainty may be caused by overly simplified treatment of bedload flux, which is currently estimated as a constant 5% of the suspended sand flux. That constant is based on estimates of bedform migration rate made with side-scan sonar. Here, we apply theory which relates bedform migration and streamwise sediment flux, to bathymetric data collected at unprecedented temporal and spatial resolution adjacent to the USGS sediment monitoring station above Diamond Creek (362 km downstream from Lees Ferry, AZ). Quantitative time series measurements of reach averaged bedform transport are calculated and compared to fluxes estimated by expressing bedload as a constant fraction of suspended load. Over the range of discharges expected during normal dam operations, bedload transport estimated from the migration of bedforms in the study reach is at least 20% of instantaneous suspended sand load measured at the gage. While bedload appears to be controlled primarily by discharge (and therefore transport capacity of the flow), suspended sand load varies inversely with the grain size of suspended material, suggesting dependence on sediment supply. Sediment transport capacity can vary significantly at a given discharge depending on local hydraulic geometry, so it is likely that there is more spatial variability in bedload transport than suspended sand transport.

  14. Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.

    2017-12-01

    The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong

  15. PROCEEDINGS OF A WORKSHOP ON SUSPENDED SEDIMENTS AND SOLIDS

    EPA Science Inventory

    The Workshop on Suspended Sediments and Solids was held on July 11-12, 2002 in Cincinnati, Ohio. The workshop was conducted by the U.S. Environmental Protection Agency's (USEPA) National Risk Management Research Laboratory (NRMRL). Representatives from NRMRL Divisions; other USEP...

  16. An at-grade stabilization structure impact on runoff and suspended sediment

    USGS Publications Warehouse

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended

  17. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed.

    PubMed

    Nerantzaki, S D; Giannakis, G V; Efstathiou, D; Nikolaidis, N P; Sibetheros, I Α; Karatzas, G P; Zacharias, I

    2015-12-15

    Mediterranean semi-arid watersheds are characterized by a climate type with long periods of drought and infrequent but high-intensity rainfalls. These factors lead to the formation of temporary flow tributaries which present flashy hydrographs with response times ranging from minutes to hours and high erosion rates with significant sediment transport. Modeling of suspended sediment concentration in such watersheds is of utmost importance due to flash flood phenomena, during which, large quantities of sediments and pollutants are carried downstream. The aim of this study is to develop a modeling framework for suspended sediment transport in a karstic watershed and assess the impact of climate change on flow, soil erosion and sediment transport in a hydrologically complex and intensively managed Mediterranean watershed. The Soil and Water Assessment Tool (SWAT) model was coupled with a karstic flow and suspended sediment model in order to simulate the hydrology and sediment yield of the karstic springs and the whole watershed. Both daily flow data (2005-2014) and monthly sediment concentration data (2011-2014) were used for model calibration. The results showed good agreement between observed and modeled values for both flow and sediment concentration. Flash flood events account for 63-70% of the annual sediment export depending on a wet or dry year. Simulation results for a set of IPCC "A1B" climate change scenarios suggested that major decreases in surface flow (69.6%) and in the flow of the springs (76.5%) take place between the 2010-2049 and 2050-2090 time periods. An assessment of the future ecological flows revealed that the frequency of minimum flow events increases over the years. The trend of surface sediment export during these periods is also decreasing (54.5%) but the difference is not statistically significant due to the variability of the sediment. On the other hand, sediment originating from the springs is not affected significantly by climate change

  18. Turbidity threshold sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  19. Adjustment of total suspended solids data for use in sediment studies

    USGS Publications Warehouse

    Glysson, G. Douglas; Gray, John R.; Conge, L.M.; Hotchkiss, Rollin H.; Glade, Michael

    2000-01-01

    The U.S. Environmental Protection Agency identifies fluvial sediment as the single most widespread pollutant in the Nation's rivers and streams, affecting aquatic habitat, drinking water treatment processes, and recreational uses of rivers, lakes, and estuaries. A significant amount of suspended-sediment data has been produced using the total suspended solids (TSS) laboratory analysis method. An evaluation of data collected and analyzed by the U.S. Geological Survey and others has shown that the variation in TSS analytical results is considerably larger than that for traditional suspended-sediment concentration analyses (SSC) and that the TSS data show a negative bias when compared to SSC data. This paper presents the initial results of a continuing investigation into the differences between TSS and SSC results. It explores possible relations between these differences and other hydrologic data collected at the same stations. A general equation was developed to relate TSS data to SSC data. However, this general equation is not applicable for data from individual stations. Based on these analyses, there appears to be no simple, straightforward way to relate TSS and SSC data unless pairs of TSS and SSC results are available for a station.

  20. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    USGS Publications Warehouse

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-01-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001–2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a−1 and 387 Gg a−1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer‐autumn, with very little export in winter. On average, a minimum of 11 Mt a−1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  1. Suspended sediment and carbonate transport in the Yukon River Basin, Alaska: Fluxes and potential future responses to climate change

    NASA Astrophysics Data System (ADS)

    Dornblaser, Mark M.; Striegl, Robert G.

    2009-06-01

    Loads and yields of suspended sediment and carbonate were measured and modeled at three locations on the Yukon, Tanana, and Porcupine Rivers in Alaska during water years 2001-2005 (1 October 2000 to 30 September 2005). Annual export of suspended sediment and carbonate upstream from the Yukon Delta averaged 68 Mt a-1 and 387 Gg a-1, respectively, with 50% of the suspended sediment load originating in the Tanana River Basin and 88% of the carbonate load originating in the White River Basin. About half the annual suspended sediment export occurred during spring, and half occurred during summer-autumn, with very little export in winter. On average, a minimum of 11 Mt a-1 of suspended sediment is deposited in floodplains between Eagle, Alaska, and Pilot Station, Alaska, on an annual basis, mostly in the Yukon Flats. There is about a 27% loss in the carbonate load between Eagle and Yukon River near Stevens Village, with an additional loss of about 29% between Stevens Village and Pilot Station, owing to a combination of deposition and dissolution. Comparison of current and historical suspended sediment loads for Tanana River suggests a possible link between suspended sediment yield and the Pacific decadal oscillation.

  2. Changes in particle size distribution of suspended sediment affected by gravity erosion on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Zhao; Xu, Xiang-Zhou; Liu, Ya-Kun; Zhang, Hong-Wu; Zhu, Ming-Dong

    2017-04-01

    Gravity erosion generates an enormous volume of sediment on the steep hillslopes throughout the world, yet the response from particle size distribution (PSD) of suspended sediment to mass failure remains poorly understood. Here rainfall simulation experiments were conducted on the natural loess slopes to induce a series of mass failures under rainfall intensity of 48 mm h-1, and then an index of enrichment/dilution ratio was used to quantitatively explore the change trend of suspended sediment PSD affected by gravity erosion. To determine suspended sediment, water samples were collected in a polyethylene bottle directly from the gully runoff and channel flow in the pre and during- slope failures events. Then, the particle fractions of samples were done by combining sieving method and photoelectric sedimentometer technique. The results are shown as follows: (1) Gravity erosion has a significant influence on the particle size distribution of suspended sediment. As the mass erosion occurred, the proportion of sand-sized particles was decreased from 71.2 to 50.8%, whereas the proportions of clay and silt were increased remarkably from 1.3 to 7.3% and 27.5 to 41.9%, respectively. Hence the sediment can be more easily transported into channel flow while the suspended sediment load becomes finer as gravitational erosion occurs. (2) The median particle size (d50), sediment heterogeneity (H) and fractal dimensions (D) were significantly correlated with gravity erosion. As a result, d50 was decreased from 0.084 to 0.051 mm, H was increase from 5.6 to 26.8, and D was magnified from 2.60 to 2.78. This implies that mass failure makes the particle size distribution of suspended sediment more nonuniform and irregular. (3) Suspended sediment tended to enrich in the silt and clay fractions, while it diluted in the sand fractions during landslide erosion. Meanwhile, the enrichment/dilution ratios were 13.9 for the clay fractions, 1.4 for clay, and 0.7 for sand. This reflects the

  3. Estimating suspended sediment and trace element fluxes in large river basins: Methodological considerations as applied to the NASQAN programme

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    In 1994, the NASQAN (National Stream Quality Accounting Network) programme was redesigned as a flux-based water-quality monitoring network for the Mississippi, Columbia, Colorado, and Rio Grande Basins. As the new programme represented a departure from the original, new sampling, processing, analytical, and data handling procedures had to be selected/developed to provide data on discharge, suspended sediment concentration, and the concentrations of suspended sediment and dissolved trace elements. Annual suspended sediment fluxes were estimated by summing daily instantaneous fluxes based on predicted suspended sediment concentrations derived from discharge-based log-log regression (rating-curve) models. The models were developed using both historical and current site-specific discharge and suspended sediment concentrations. Errors using this approach typically are less than ?? 10% for the 3-year reporting period; however, the magnitude of the errors increases substantially for temporal spans shorter than 1 year. Total, rather than total-recoverable, suspended sediment-associated trace element concentrations were determined by direct analysis of material dewatered from large-volume whole-water samples. Site-specific intra- and inter-annual suspended sediment-associated chemical variations were less (typically by no more than a factor of two) than those for either discharge or suspended sediment concentrations (usually more than 10-fold). The concentrations, hence the annual fluxes, for suspended sediment-associated phosphorus and organic carbon, determined by direct analyses, were higher than those determined using a more traditional paired, whole-water/filtered-water approach (by factors ranging from 1.5- to 10-fold). This may be important for such issues as eutrophication and coastal productivity. Filtered water-associated (dissolved) trace element concentrations were markedly lower than those determined during the historical NASQAN programme; many were below their

  4. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    NASA Astrophysics Data System (ADS)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  5. Measurements of Two-Phase Suspended Sediment Transport in Breaking Waves Using Volumetric Three-Component Velocimetry

    NASA Astrophysics Data System (ADS)

    Ting, F. C. K.; LeClaire, P.

    2016-02-01

    Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was

  6. Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.

    2015-12-01

    Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The

  7. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    USGS Publications Warehouse

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  8. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  9. Suspended sediment measurements and calculation of the particle load at HPP Fieschertal

    NASA Astrophysics Data System (ADS)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    In the scope of a research project on hydro-abrasive erosion of Pelton turbines, a field study was conducted at the high-head HPP Fieschertal in Valais, Switzerland. The suspended sediment mass concentration (SSC) and particle size distribution (PSD) in the penstock have been continuously measured since 2012 using a combination of six measuring techniques. The SSC was on average 0.52 g/l and rose to 50 g/l in a major flood event in July 2012. The median particle size d 50 was usually 15 pm, rising up to 100 μm when particles previously having settled in the headwater storage tunnel were re-suspended at low water levels. The annual suspended sediment loads (SSL) varied considerably depending on flood events. Moreover, so-called particle loads (PLs) according to the relevant guideline of the International Electrotechnical Commission (IEC 62364) were calculated using four relations between particle size and the relative abrasion potential. For the investigated HPP, the time series of the SSL and the PLs had generally similar shapes over the three years. The largest differences among the PLs were observed during re-suspension events when the particles were considerably coarser than usual. Further investigations on the effects of particle sizes on hydroabrasive erosion of splitters and cut-outs of coated Pelton turbines are recommended.

  10. Assessing temporal variations in connectivity through suspended sediment hysteresis analysis

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.

    2016-04-01

    Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric

  11. Suspended-sediment loads from major tributaries to the Missouri River between Garrison Dam and Lake Oahe, North Dakota, 1954-98

    USGS Publications Warehouse

    Macek-Rowland, Kathleen M.

    2000-01-01

    Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak.  The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek.  Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin.  Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998.  Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98.  Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River.  Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River.  Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River.  The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries.  The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile.  The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area. 

  12. Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed.

    PubMed

    Kellner, Elliott; Hubbart, Jason A

    2018-02-15

    Given existing knowledge gaps, there is a need for research that quantitatively characterizes spatiotemporal variation of suspended sediment particle size distribution (PSD) in contemporary watersheds. A five-year study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed study design, comprising five gauging sites partitioning the catchment into five sub-watersheds. Streamwater grab samples were collected four times per week, at each gauging site, for the duration of the study period (Oct. 2009-Feb. 2014). Samples were analyzed using laser particle diffraction. Significantly different (p<0.05) suspended sediment PSDs were observed at monitoring sites throughout the course of the study. For example, results indicated greater proportions of silt at site #5 (65%), relative to other sites (41, 32, 29, and 43%, for sites #1-#4, respectively). Likewise, results showed greater proportions of sand at sites #2 and #3 (66 and 68%, respectively), relative to other sites (57, 55, and 34%, for sites #1, #4, and #5, respectively). PSD spatial variability was not fully explained by hydroclimate or sub-watershed land use/land cover characteristics. Rather, results were strengthened by consideration of surficial geology (e.g. supply-controlled spatial variation of particle size). PSD displayed consistent seasonality during the study, characterized by peaks in the proportion of sand (and aggregates) during the winter (i.e. 70-90%), and minimums during the summer (i.e. 12-38%); and peaks in the proportion of silt particles in the summer (i.e. 61-88%) and minimums in the winter (i.e. 10-23%). Likely explanations of results include seasonal streamflow differences. Results comprise distinct observations of spatiotemporal variation of PSD, thereby improving understanding of lotic suspended sediment regimes and advancing future management practices in mixed-land-use watersheds. Copyright © 2017 Elsevier B.V. All rights

  13. Suspended sediment load below open-cast mines for ungauged river basin

    NASA Astrophysics Data System (ADS)

    Kuksina, L.

    2011-12-01

    Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil

  14. Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region

    USGS Publications Warehouse

    Koltun, G.F.

    1985-01-01

    Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.

  15. Monitoring suspended sediment and associated trace element and nutrient fluxes in large river basins in the USA

    USGS Publications Warehouse

    Horowitz, A.J.

    2004-01-01

    In 1996, the US Geological Survey converted its occurrence and distribution-based National Stream Quality Accounting Network (NASQAN) to a national, flux-based water-quality monitoring programme. The main objective of the revised programme is to characterize large USA river basins by measuring the fluxes of selected constituents at critical nodes in various basins. Each NASQAN site was instrumented to determine daily discharge, but water and suspended sediment samples are collected no more than 12-15 times per year. Due to the limited sampling programme, annual suspended sediment fluxes were determined from site-specific sediment rating (transport) curves. As no significant relationship could be found between either discharge or suspended sediment concentration (SSC) and suspended sediment chemistry, trace element and nutrient fluxes are estimated using site-specific mean or median chemical levels determined from a number of samples collected over a period of years, and under a variety of flow conditions.

  16. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  17. Development and testing of a sampling device for the analyses of suspended sediment concentrations

    NASA Astrophysics Data System (ADS)

    Schletterer, Martin; Reindl, Robert; Unterlercher, Franz; Hauer, Christoph

    2017-04-01

    Suspended sediment concentrations are not equal in time as well as within a cross section. For calibration, sampling is needed within a cross profile (using e.g. sampler US P-61-A1) or nearby of a SSC sensor. However, due to insufficient hydraulic efficiency, uncontrolled handling under water as well as lack in accuracy in starting and closing the suspended sediment sampling, the well-established extracting of water samples by hand (dip or grab sample) lacks reproducibility. Due to these shortcomings a novel measuring device has been developed for suspended sediment sampling in rivers. For the design of the presented sampler the experiences of previous technical concepts of direct suspended sediment sampling in rivers have been considered. The sampling device consists of 2 tubes: a filling pipe (8x1 mm = 6 mm inner diameter) and an exhaust pipe (6x1 mm = 4 mm inner diameter). The filling pipe is equipped thread (M8x1 mm) to attach the "measuring nozzle" made of brass. We compared three different nozzles (D4, D5, D6) in order to investigate possible effects of different filling times. Both tubes are connected (TIG -Tungsten Inert-Gaswelding) by a flat steel. All parts (despite the nozzles) are made from stainless steel. On the tubes a plastic screw cap is mounted which allows to attach (and quickly change) standard sampling bottles. A mount enables that the device can be attached to a commercially available "GARDENA aluminium handle", thus using this rod samples can be taken at certain localities. The measurement device has been designed to improve the accuracy of suspended sediment sampling in rivers. The target was to achieve an optimum in hydraulic efficiency without disturbing the natural transport dynamics. Thus, the water sample gained from this sampling device supports the calibration and validation of indirect suspended sediment sampling devices (e.g. SSC sensor). We present the design of the sampler as well as field data in comparison with conventional dip

  18. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    USGS Publications Warehouse

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  19. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis.

    PubMed

    Humanes, Adriana; Ricardo, Gerard F; Willis, Bette L; Fabricius, Katharina E; Negri, Andrew P

    2017-03-10

    Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.

  20. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis

    NASA Astrophysics Data System (ADS)

    Humanes, Adriana; Ricardo, Gerard F.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2017-03-01

    Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.

  1. Trends in the suspended-sediment yields of coastal rivers of northern California, 1955–2010

    USGS Publications Warehouse

    Warrick, J.A.; Madej, Mary Ann; Goñi, M. A.; Wheatcroft, R.A.

    2013-01-01

    Time-dependencies of suspended-sediment discharge from six coastal watersheds of northern California – Smith River, Klamath River, Trinity River, Redwood Creek, Mad River, and Eel River – were evaluated using monitoring data from 1955 to 2010. Suspended-sediment concentrations revealed time-dependent hysteresis and multi-year trends. The multi-year trends had two primary patterns relative to river discharge: (i) increases in concentration resulting from both land clearing from logging and the flood of record during December 1964 (water year 1965), and (ii) continual decreases in concentration during the decades following this flood. Data from the Eel River revealed that changes in suspended-sediment concentrations occurred for all grain-size fractions, but were most pronounced for the sand fraction. Because of these changes, the use of bulk discharge-concentration relationships (i.e., “sediment rating curves”) without time-dependencies in these relationships resulted in substantial errors in sediment load estimates, including 2.5-fold over-prediction of Eel River sediment loads since 1979. We conclude that sediment discharge and sediment discharge relationships (such as sediment rating curves) from these coastal rivers have varied substantially with time in response to land use and climate. Thus, the use of historical river sediment data and sediment rating curves without considerations for time-dependent trends may result in significant errors in sediment yield estimates from the globally-important steep, small watersheds.

  2. Evaluation of intake efficiencies and associated sediment-concentration errors in US D-77 bag-type and US D-96-type depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Sabol, Thomas A.; Topping, David J.

    2013-01-01

    of flume and tow tests alone. This study has three interrelated goals. First, the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96-type1 depth-integrating suspended‑sediment samplers are evaluated at multiple cross‑sections under a range of actual-river conditions. The intake efficiencies measured in these actual-river tests are then compared to those previously measured in flume and tow tests. Second, other physical effects, mainly water temperature and the duration of sampling at a vertical, are examined to determine whether these effects can help explain observed differences in intake efficiency both between the two types of samplers and between the laboratory and field tests. Third, the signs and magnitudes of the likely errors in suspendedsand concentration in measurements made with both types of samplers are predicted based the intake efficiencies of these two types of depth-integrating samplers. Using the relative difference in isokinetic sampling observed between the US D-77 bag-type and D-96-type samplers during river tests, measured differences in suspended-sediment concentration in a variety of size classes were evaluated between paired equal-discharge-increment (EDI) and equal-width-increment (EWI) measurements made with these two types of samplers to determine whether these differences in concentration are consistent with the differences in concentrations expected on the basis of the 1940s FISP laboratory experiments. In addition, sequential single-vertical depth-integrated samples were collected (concurrent with velocity measurements) with the US D-96-type bag sampler and two different rigidcontainer samplers to evaluate whether the predicted errors in suspended-sand concentrations measured with the US D-96- type sampler are consistent with those expected on the basis of the 1940s FISP laboratory experiments. Results from our study indicate that the intake efficiency of the US D-96-type sampler is superior to that

  3. Regional regression models of watershed suspended-sediment discharge for the eastern United States

    NASA Astrophysics Data System (ADS)

    Roman, David C.; Vogel, Richard M.; Schwarz, Gregory E.

    2012-11-01

    SummaryEstimates of mean annual watershed sediment discharge, derived from long-term measurements of suspended-sediment concentration and streamflow, often are not available at locations of interest. The goal of this study was to develop multivariate regression models to enable prediction of mean annual suspended-sediment discharge from available basin characteristics useful for most ungaged river locations in the eastern United States. The models are based on long-term mean sediment discharge estimates and explanatory variables obtained from a combined dataset of 1201 US Geological Survey (USGS) stations derived from a SPAtially Referenced Regression on Watershed attributes (SPARROW) study and the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES) database. The resulting regional regression models summarized for major US water resources regions 1-8, exhibited prediction R2 values ranging from 76.9% to 92.7% and corresponding average model prediction errors ranging from 56.5% to 124.3%. Results from cross-validation experiments suggest that a majority of the models will perform similarly to calibration runs. The 36-parameter regional regression models also outperformed a 16-parameter national SPARROW model of suspended-sediment discharge and indicate that mean annual sediment loads in the eastern United States generally correlates with a combination of basin area, land use patterns, seasonal precipitation, soil composition, hydrologic modification, and to a lesser extent, topography.

  4. Regional regression models of watershed suspended-sediment discharge for the eastern United States

    USGS Publications Warehouse

    Roman, David C.; Vogel, Richard M.; Schwarz, Gregory E.

    2012-01-01

    Estimates of mean annual watershed sediment discharge, derived from long-term measurements of suspended-sediment concentration and streamflow, often are not available at locations of interest. The goal of this study was to develop multivariate regression models to enable prediction of mean annual suspended-sediment discharge from available basin characteristics useful for most ungaged river locations in the eastern United States. The models are based on long-term mean sediment discharge estimates and explanatory variables obtained from a combined dataset of 1201 US Geological Survey (USGS) stations derived from a SPAtially Referenced Regression on Watershed attributes (SPARROW) study and the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES) database. The resulting regional regression models summarized for major US water resources regions 1–8, exhibited prediction R2 values ranging from 76.9% to 92.7% and corresponding average model prediction errors ranging from 56.5% to 124.3%. Results from cross-validation experiments suggest that a majority of the models will perform similarly to calibration runs. The 36-parameter regional regression models also outperformed a 16-parameter national SPARROW model of suspended-sediment discharge and indicate that mean annual sediment loads in the eastern United States generally correlates with a combination of basin area, land use patterns, seasonal precipitation, soil composition, hydrologic modification, and to a lesser extent, topography.

  5. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    USGS Publications Warehouse

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  6. Use of acoustic backscatter to estimate continuous suspended sediment and phosphorus concentrations in the Barton River, northern Vermont, 2010-2013

    USGS Publications Warehouse

    Medalie, Laura; Chalmers, Ann T.; Kiah, Richard G.; Copans, Benjamin

    2014-01-01

    fluctuations. The best regression model for estimating phosphorus concentrations included terms for discharge and discharge hysteresis. The finding that discharge hysteresis was a significant predictor of phosphorus concentrations might be related to preferential sorption of phosphorus to fine-grained sediments, which have been found to be particularly sensitive to hysteresis. Regression models designed to estimate phosphorus concentrations had less predictive power than the models for SSCs. Data from the Barton River did not fully support one of the study’s hypotheses—that backscatter is mostly caused by sands, and attenuation is mostly caused by fines. Sands, fines, and total SSCs in the Barton River all related better to backscatter than to sediment-driven acoustic attenuation. The weak relation between SSC and sediment-driven acoustic attenuation may be related to the low values and narrow range of SSCs and sediment attenuations observed at Barton River. A weak relation between SSC and sediment-driven acoustic attenuation also suggests that the diameters of the fine-sized suspended sediments in the Barton River may be predominantly greater than 20 micrometers (μm). Long-term changes in the particle-size distribution (PSD) were not observed in Barton River; however, some degree of within-storm changes in sediment source and possibly PSD were inferred from the hysteresis between SSC and SCB.

  7. Contemporary suspended sediment dynamics within two partly glacierized mountain drainage basins in western Norway (Erdalen and Bødalen, inner Nordfjord)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.

    2017-06-01

    This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of

  8. Near bed suspended sediment flux by single turbulent events

    NASA Astrophysics Data System (ADS)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  9. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond

    NASA Astrophysics Data System (ADS)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel

    2018-01-01

    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  10. Comparison of methods for the concentration of suspended sediment in river water for subsequent chemical analysis

    USGS Publications Warehouse

    Horowltz, A.J.

    1986-01-01

    Centrifugation, settling/centrifugation, and backflush-filtration procedures have been tested for the concentration of suspended sediment from water for subsequent trace-metal analysis. Either of the first two procedures is comparable with in-line filtration and can be carried out precisely, accurately, and with a facility that makes the procedures amenable to large-scale sampling and analysis programs. There is less potential for post-sampling alteration of suspended sediment-associated metal concentrations with the centrifugation procedure because sample stabilization is accomplished more rapidly than with settling/centrifugation. Sample preservation can be achieved by chilling. Suspended sediment associated metal levels can best be determined by direct analysis but can also be estimated from the difference between a set of unfiltered-digested and filtered subsamples. However, when suspended sediment concentrations (<150 mg/L) or trace-metal levels are low, the direct analysis approach makes quantitation more accurate and precise and can be accomplished with simpler analytical procedures.

  11. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  12. Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

    USGS Publications Warehouse

    Bragg, Heather M.; Uhrich, Mark A.

    2010-01-01

    Significant Findings An analysis of sediment transport in the North Santiam River basin during water years 2005-08 indicated that: Two-thirds of sediment input to Detroit Lake originated in the upper North Santiam River subbasin. Two-thirds of the sediment transported past Geren Island originated in the Little North Santiam River subbasin. The highest annual suspended-sediment load at any of the monitoring stations was the result of a debris flow on November 6, 2006, on Mount Jefferson. About 86 percent of the total sediment input to Detroit Lake was trapped in the lake, whereas 14 percent was transported farther downstream. More than 80 percent of the sediment transport in the basin was in November, December, and January. The variance in the annual suspended-sediment loads was better explained by the magnitude of the annual peak streamflow than by the annual mean streamflow.

  13. Groundwater and Human Controls on the Suspended Sediment Load of Na Borges River, Mallorca (Spain)

    NASA Astrophysics Data System (ADS)

    Estrany, J.; Garcia, C.

    2009-04-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean temporary rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its ‘flashy' regime. In this context, we monitored suspended sediment fluxes by means of three nested sub-catchments during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km2) on the island of Mallorca (Balearic Islands) managed and therefore modified since Roman Age by agricultural soil and water conservation practices and recently by urbanisation. The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Considering the high variability of the Mediterranean climate, a significant scatter of daily average SSC between sites and seasonally was observed, ranging between 22 to 54 mg l-1 for the total study period. The maximum instantaneous peak surpassed 6,000 mg l-1, recorded at downstream site based on the sediment supplied when there was no baseflow and the rainfall intensity was remarkable. At the other sites, peak concentrations did not exceed 2,000 mg l-1 because groundwater plays a more significant role. Furthermore, strong seasonal contrasts explain the high SSC coefficient of variation, which is

  14. Characterizing suspended sediments from the Piracicaba River Basin by means of k0-INAA

    NASA Astrophysics Data System (ADS)

    França, E. J.; Fernandes, E. A. N.; Cavalca, I. P. O.; Fonseca, F. Y.; Camilli, L.; Rodrigues, V. S.; Bardini Junior, C.; Ferreira, J. R.; Bacchi, M. A.

    2010-10-01

    The inorganic chemical characterization of suspended sediments is of utmost relevance for the knowledge of the dynamics and movement of chemical elements in the aquatic and wet ecosystems. Despite the complexity of the effective design for studying this ecological compartment, this work has tested a procedure for analyzing suspended sediments by instrumental neutron activation analysis, k0 method ( k0-INAA). The chemical elements As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Yb and Zn were quantified in the suspended sediment compartment by means of k0-INAA. When compared with World Average for rivers, high mass fractions of Fe (222,900 mg/kg), Ba (4990 mg/kg), Zn (1350 mg/kg), Cr (646 mg/kg), Co (74.5 mg/kg), Br (113 mg/kg) and Mo (31.9 mg/kg) were quantified in suspended sediments from the Piracicaba River, the Piracicamirim Stream and the Marins Stream. Results of the principal component analysis for standardized chemical element mass fractions indicated an intricate correlation among chemical elements evaluated, as a response of the contribution of natural and anthropogenic sources of chemical elements for ecosystems.

  15. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    NASA Astrophysics Data System (ADS)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  16. Recent Monitoring of Suspended Sediment Patterns along Louisiana's Coastal Zone using ER-2 based MAS Data and Terra Based MODIS Data

    NASA Technical Reports Server (NTRS)

    Moeller, Christopher C.; Gunshor, M. M.; Menzel, W. P.; Huh, O. K.; Walker, N. D.; Rouse, L. J.

    2001-01-01

    The University nf Wisconsin and Louisiana State University have teamed to study the forcing of winter season cold frontal wind systems on sediment distribution patterns and geomorphology in the Louisiana coastal zone. Wind systems associated with cold fronts have been shown to model coastal circulation and resuspend sediments along the micro tidal Louisiana coast (Roberts et at. 1987, Moeller et al. 1993). Remote sensing data is being used to map and track sediment distribution patterns for various wind conditions. Suspended sediment is a building material for coastal progradation and wetlands renewal, but also restricts access to marine nursery environments and impacts oyster bed health. Transferring a suspended sediment concentration (SSC) algorithm to EOS MODerate resolution Imaging Spectroradiometer (MODIS; Barnes et al. 1998) observations may enable estimates of SSC globally.

  17. Suspended-sediment concentrations, bedload, particle sizes, surrogate measurements, and annual sediment loads for selected sites in the lower Minnesota River Basin, water years 2011 through 2016

    USGS Publications Warehouse

    Groten, Joel T.; Ellison, Christopher A.; Hendrickson, Jon S.

    2016-12-20

    Accurate measurements of fluvial sediment are important for assessing stream ecological health, calculating flood levels, computing sediment budgets, and managing and protecting water resources. Sediment-enriched rivers in Minnesota are a concern among Federal, State, and local governments because turbidity and sediment-laden waters are the leading impairments and affect more than 6,000 miles of rivers in Minnesota. The suspended sediment in the lower Minnesota River is deleterious, contributing about 75 to 90 percent of the suspended sediment being deposited into Lake Pepin. The Saint Paul District of the U.S. Army Corps of Engineers and the Lower Minnesota River Watershed District collaborate to maintain a navigation channel on the lower 14.7 miles of the Minnesota River through scheduled dredging operations. The Minnesota Pollution Control Agency has adopted a sediment-reduction strategy to reduce sediment in the Minnesota River by 90 percent by 2040.The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, the Minnesota Pollution Control Agency, and the Lower Minnesota River Watershed District, collected suspended-sediment, bedload, and particle-size samples at five sites in the lower Minnesota River Basin during water years 2011 through 2014 and surrogate measurements of acoustic backscatter at one of these sites on the lower Minnesota River during water years 2012 through 2016 to quantify sediment loads and improve understanding of sediment-transport relations. Annual sediment loads were computed for calendar years 2011 through 2014.Data collected from water years 2011 through 2014 indicated that two tributaries, Le Sueur River and High Island Creek, had the highest sediment yield and concentrations of suspended sediment. These tributaries also had greater stream gradients than the sites on the Minnesota River. Suspended fines were greater than suspended sand at all sites in the study area. The range of median particle sizes matched

  18. Microstructure of agglomerated suspended sediments in northern chesapeake bay estuary.

    PubMed

    Zabawa, C F

    1978-10-06

    Suspended sediments in the turbidity maximum of Chesapeake Bay include composite particles which contain platy mineral grains, arranged both in pellets (attributable to fecal pelletization) and in networks of angular configuration (attributable to electrochemical flocculation and coagulation).

  19. Floodplains as a source of fine sediment in grazed landscapes: Tracing the source of suspended sediment in the headwaters of an intensively managed agricultural landscape

    NASA Astrophysics Data System (ADS)

    Yu, Mingjing; Rhoads, Bruce L.

    2018-05-01

    The flux of fine sediment within agricultural watersheds is an important factor determining the environmental quality of streams and rivers. Despite this importance, the contributions of sediment sources to suspended sediment loads within intensively managed agricultural watersheds remain poorly understood. This study assesses the provenance of fine suspended sediment in the headwater portion of a river flowing through an agricultural landscape in Illinois. Sediment source samples were collected from five sources: croplands, forested floodplains, grasslands, upper grazed floodplains, and lower grazed floodplains. Event-based and aggregated suspended sediment samples were collected from the stream at the watershed outlet. Quantitative geochemical fingerprinting techniques and a mixing model were employed to estimate the relative contributions of sediment from the five sources to the suspended sediment loads. To account for possible effects of small sample sizes, the analysis was repeated with only two sources: grazed floodplains and croplands/grasslands/forested floodplains. Results based on mean values of tracers indicate that the vast majority of suspended sediment within the stream (>95%) is derived from erosion of channel banks and the soil surface within areas of grazed floodplains. Uncertainty analysis based on Monte Carlo simulations indicates that mean values of tracer properties, which do not account for sampling variability in these properties, probably overestimate contributions from the two major sources. Nevertheless, this analysis still supports the conclusion that floodplain erosion accounts for the largest percentage of instream sediment (≈55-75%). Although grazing occurs over only a small portion of the total watershed area, grazed floodplains, which lie in close proximity to the stream channel, are an important source of sediment in this headwater steam system. Efforts to reduce fluxes of fine sediment in this intensively managed landscape should

  20. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  1. Flow and Suspended Sediment Events in the Near-Coastal Zone off Corpus Christi, Texas

    DTIC Science & Technology

    2003-09-30

    redistribution of preexisting shelf sediments during storms and (2) transportation of suspended sediment from the adjacent bay- lagoon system. Snedden et al...and K.E. Schmedes. (1983). Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates and associated

  2. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily

  3. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  4. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    PubMed

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input

  5. May through July 2015 storm event effects on suspended-sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir

    USGS Publications Warehouse

    Foster, Guy M.; King, Lindsey R.

    2016-06-20

    The Neosho River and its primary tributary, the Cottonwood River, are the main sources of inflow to John Redmond Reservoir in east-central Kansas. Storm events during May through July 2015 caused large inflows of water and sediment into the reservoir. The U.S. Geological Survey, in cooperation with the Kansas Water Office, and funded in part through the Kansas State Water Plan Fund, computed the suspended-sediment inflows to, and trapping efficiency of, John Redmond Reservoir during May through July 2015. This fact sheet summarizes the quantification of suspended-sediment loads to and from the reservoir during May through July 2015 storm events and describes reservoir sediment trapping efficiency and effects on water-storage capacity.

  6. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Suspended sediment delivery to Puget Sound from the lower Nisqually River, western Washington, July 2010–November 2011

    USGS Publications Warehouse

    Curran, Christopher A.; Grossman, Eric E.; Magirl, Christopher S.; Foreman, James R.

    2016-05-26

    On average, the Nisqually River delivers about 100,000 metric tons per year (t/yr) of suspended sediment to Puget Sound, western Washington, a small proportion of the estimated 1,200,000 metric tons (t) of sediment reported to flow in the upper Nisqually River that drains the glaciated, recurrently active Mount Rainier stratovolcano. Most of the upper Nisqually River sediment load is trapped in Alder Lake, a reservoir completed in 1945. For water year 2011 (October 1, 2010‒September 30, 2011), daily sediment and continuous turbidity data were used to determine that 106,000 t of suspended sediment were delivered to Puget Sound, and 36 percent of this load occurred in 2 days during a typical winter storm. Of the total suspended-sediment load delivered to Puget Sound in the water year 2011, 47 percent was sand (particle size >0.063 millimeters), and the remainder (53 percent) was silt and clay. A sediment-transport curve developed from suspended-sediment samples collected from July 2010 to November 2011 agreed closely with a curve derived in 1973 using similar data-collection methods, indicating that similar sediment-transport conditions exist. The median annual suspended-sediment load of 73,000 t (water years 1980–2014) is substantially less than the average load, and the correlation (Pearson’s r = 0.80, p = 8.1E-9, n=35) between annual maximum 2-day sediment loads and normalized peak discharges for the period indicates the importance of wet years and associated peak discharges of the lower Nisqually River for sediment delivery to Puget Sound. The magnitude of peak discharges in the lower Nisqually River generally is suppressed by flow regulation, and relative to other free-flowing, glacier-influenced rivers entering Puget Sound, the Nisqually River delivers proportionally less sediment because of upstream sediment trapping from dams.

  8. Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing.

    PubMed

    Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E

    2006-06-01

    Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  9. Geochemistry of bed and suspended sediment in the Mississippi river system: Provenance versus weathering and winnowing

    USGS Publications Warehouse

    Piper, D.Z.; Ludington, S.; Duval, J.S.; Taylor, Howard E.

    2006-01-01

    Stream-bed sediment for the size fraction less than 150 ??m, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  10. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density

  11. Muted responses of streamflow and suspended sediment flux in a wildfire-affected watershed

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Giles, T. R.; Petticrew, E. L.; Leggat, M. S.; Moore, R. D.; Eaton, B. C.

    2013-11-01

    In August 2003 a severe wildfire burnt 62% of Fishtrap Creek, a 158 km2 watershed in central British Columbia, Canada. Streamflows were obtained for the period 1980-2010 and suspended sediment fluxes were determined for the period 2004-2010 for Fishtrap Creek and these were compared to data for nearby Jamieson Creek, which was not affected by the wildfire. Peak streamflows in Fishtrap Creek after the wildfire were not significantly higher than before the wildfire, although total annual runoff had increased. Perhaps the most important change in streamflows following the wildfire was that peak flows associated with the annual freshet occurred earlier in the year (by ca. 2 weeks). Following the wildfire, monthly total suspended sediment fluxes peaked in April in Fishtrap Creek and May in Jamieson Creek, which reflects the change in timing of peak streamflows in Fishtrap. Specific suspended sediment yields were low in the first year following the wildfire (2004), and peak values for the 2004-2010 monitoring period occurred in 2006. Average specific suspended sediment yields over the monitoring period were similar for both watersheds at 2.8 and 2.9 t km- 2 year- 1 for Fishtrap and Jamieson watersheds, respectively. The muted responses of streamflows and suspended sediment fluxes following this severe wildfire are due to the lack of winter precipitation and the low intensities of summer rainfall events in the first year following the wildfire. Greater winter precipitation and associated snowmelt in subsequent years coincided with vegetation recovery. The major changes in the wildfire-affected watershed were increased bank erosion and channel migration due to a loss of root strength and cohesion, which occurred 3-5 years after the fire. This work demonstrates that the hydrological and geomorphological responses of watersheds to wildfires are a function of the severity of the wildfire and the timing and nature of driving forces (i.e. rainfall intensity, winter

  12. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg

  13. EFFECTS OF SUSPENDED SEDIMENTS ON PHOTOLYSIS RATES OF DISSOLVED POLLUTANTS

    EPA Science Inventory

    Data are presented concerning the effects of suspended sediments upon photolysis rates of dissolved ultraviolet (u.v.) absorbing pollutants. The malachite green leucocyanide actinometer was found to be a convenient and sensitive device for measurement of solar u.v. radiation (abo...

  14. A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    Time-stratified sampling of sediment for estimating suspended load is introduced and compared to selection at list time (SALT) sampling. Both methods provide unbiased estimates of load and variance. The magnitude of the variance of the two methods is compared using five storm populations of suspended sediment flux derived from turbidity data. Under like conditions,...

  15. Response of a tidal freshwater marsh to changes in sea level and suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.

    2016-02-01

    Tidal marshes are among the world's most valuable ecosystems from a variety of perspectives, but they are also perhaps the most threatened by environmental changes, such as increased rates of sea-level rise and decreased concentrations of fluvial suspended sediments. In this study, time-series measurements of sedimentation over 5 years (2010-2014) at Dyke Marsh Preserve (Potomac River, VA, USA) are used to evaluate the influence of environmental drivers on sediment accretion within the marsh. To do so, bimonthly (deposition on ceramic tiles) and seasonal-scale (from 7Be (half-life 53.3 d) measurements) sedimentation rates are placed in the context of factors that can influence inorganic sediment availability and delivery to the marsh platform, specifically winds, river discharge, suspended-sediment concentrations (SSC; calculated from rating curves), and local sea level. Because of marsh geography and dominant storm patterns in this area, the influence of events is complex - wind speed and direction are negatively correlated with local sea level but positively correlated with SSC. This is, stronger winds from a more westerly direction drive water seaward of the marsh platform; increased precipitation results in higher river discharge and SSC from runoff and/or sediment resuspension. At the bimonthly scale, changes in sea level are correlated with both the rate and character (organic content) of sediments collected on tiles, but there was no relationship between sedimentation rates and SSC. Instead, bimonthly sedimentation rates are correlated with the fluvial sediment load (product of river discharge and SSC), which is not often included in models of marsh accretion. These trends are similar for seasonal-scale observations, though statistical tests are not as robust. These results suggest that, while events drive sedimentation within the marsh, their influence can be obscured over longer time scales that incorporate quiescent times of non-deposition.

  16. Lateral and vertical heterogeneity of flow and suspended sediment characteristics during a dam flushing event, in high velocity conditions

    NASA Astrophysics Data System (ADS)

    Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu

    2015-04-01

    to measure the grain size distribution with a LISST Portable XR, as well as the settling velocities of the suspended sediments with the SCAF device (Wendling et al., 2013). Even if the measurements were difficult due to the flow conditions, some observations are relevant. For example, we observed a spatial heterogeneity of the settling velocity and the grain size of the suspended sediments into the cross section, whereas the SSC was almost homogeneous at the same time. In particular, these measurements show that the sediment flux can be calculated from the single turbidimeter located on the left bank. Moreover, the hydrodynamic measurements highlight the heterogeneity of the settling velocity due to the flow conditions. The first conclusions of these field measurements could be of great importance to assess numerical models, when they are used to estimate sediment deposits in river. V. WENDLING, N. GRATIOT, C. LEGOUT, I.G. DROPPO, A.J. MANNING, G. ANTOINE, H. MICHALLET, M. JODEAU : A rapid method for settling velocity and flocculation measurement within high suspended sediment concentration rivers. INTERCOH 2013, Gainesville, Florida.

  17. Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield

    Treesearch

    Robert B. Thomas

    1986-01-01

    Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...

  18. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required

  19. Pertinent spatio-temporal scale of observation to understand suspended sediment yield control factors in the Andean region: the case of the Santa River (Peru)

    NASA Astrophysics Data System (ADS)

    Morera, S. B.; Condom, T.; Vauchel, P.; Guyot, J.-L.; Galvez, C.; Crave, A.

    2013-11-01

    Hydro-sedimentology development is a great challenge in Peru due to limited data as well as sparse and confidential information. This study aimed to quantify and to understand the suspended sediment yield from the west-central Andes Mountains and to identify the main erosion-control factors and their relevance. The Tablachaca River (3132 km2) and the Santa River (6815 km2), located in two adjacent Andes catchments, showed similar statistical daily rainfall and discharge variability but large differences in specific suspended-sediment yield (SSY). In order to investigate the main erosion factors, daily water discharge and suspended sediment concentration (SSC) datasets of the Santa and Tablachaca rivers were analysed. Mining activity in specific lithologies was identified as the major factor that controls the high SSY of the Tablachaca (2204 t km2 yr-1), which is four times greater than the Santa's SSY. These results show that the analysis of control factors of regional SSY at the Andes scale should be done carefully. Indeed, spatial data at kilometric scale and also daily water discharge and SSC time series are needed to define the main erosion factors along the entire Andean range.

  20. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland

    NASA Astrophysics Data System (ADS)

    Harrington, Seán T.; Harrington, Joseph R.

    2013-03-01

    This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on

  1. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge

  2. Long-term continuous acoustical suspended-sediment measurements in rivers – Theory, evaluation, and results from 14 stations on five rivers

    USGS Publications Warehouse

    Topping, David; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2016-01-01

    We have developed a physically based method for using two acoustic frequencies to measure suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size in river cross sections at 15-minute intervals over decadal timescales. The method is strongly grounded in the extensive scientific literature on the scattering of sound by suspensions of small particles. In particular, the method takes advantage of the specific theoretical relations among acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We briefly describe the theory and methods, demonstrate the application of the method, and compute biases and errors in the method at 14 stations in the Colorado River and Rio Grande basins, where large numbers of suspended-sediment samples have been collected concurrently with acoustical measurements over many years. Quantification of errors in sediment-transport measurements made using this method is essential if the measurements are to be used effectively, e.g., to evaluate uncertainty in long-term sediment loads and budgets

  3. Evaluation of Intake Efficiencies and Associated Sediment-Concentration Errors in US D-77 Bag-Type and US D-96-Type Depth-Integrating Suspended-Sediment Samplers

    NASA Astrophysics Data System (ADS)

    Sabol, T. A.; Topping, D. J.; Griffiths, R. E.

    2011-12-01

    Accurate measurements of suspended-sediment concentration require suspended-sediment samplers to operate isokinetically with an intake-efficiency of 1.0 ± 0.10. Results from 1940s Federal Interagency Sedimentation Project (FISP) laboratory experiments show that when the intake efficiency does not equal 1.0, suspended-sediment samplers either under- or oversample sediment relative to water, leading to biases in suspended-sediment concentration. The majority of recent FISP sampler development and testing has been conducted under uniform flow conditions using flume and slack-water tow tests, with little testing in actual turbulent rivers. Recent work has focused on the hydraulic characteristics and intake efficiencies of these samplers, without field investigations of the accuracy of the suspended-sediment data collected with these samplers. When depth-integrating suspended-sediment samplers are deployed under the non-uniform and turbulent conditions that exist in rivers, multiple factors may contribute to departures from isokinetic sampling. This introduces errors into the suspended-sediment data that may not be predictable on the basis of flume and tow tests alone. This study (1) evaluates the intake efficiencies of the older US D-77 bag-type and newer, FISP-approved US D-96 samplers at multiple river cross sections under a range of flow conditions; (2) examines if water temperature and sampling duration explain measured differences in intake efficiency between samplers and between laboratory and field tests; (3) models and predicts the directions and magnitudes of errors in measured suspended-sand concentration; and (4) determines if the relative differences in suspended-sediment concentration in a variety of size classes are consistent with the differences expected on the basis of the 1940s FISP-laboratory experiments. Results indicate that under river conditions, the intake efficiency of the US D-96 sampler is superior to that of the US D-77 bag-type sampler and

  4. Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment

    NASA Astrophysics Data System (ADS)

    Chen, X.; HO, H.; Fu, X.

    2017-12-01

    Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.

  5. Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1999-01-01

    The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff

  6. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total

  7. Combined use of remote sensing and continuous monitoring to analyse the variability of suspended-sediment concentrations in San Francisco Bay, California

    USGS Publications Warehouse

    Ruhl, C.A.; Schoellhamer, D.H.; Stumpf, R.P.; Lindsay, C.L.

    2001-01-01

    Analysis of suspended-sediment concentration data in San Francisco Bay is complicated by spatial and temporal variability. In situ optical backscatterance sensors provide continuous suspended-sediment concentration data, but inaccessibility, vandalism, and cost limit the number of potential monitoring stations. Satellite imagery reveals the spatial distribution of surficial-suspended sediment concentrations in the Bay; however, temporal resolution is poor. Analysis of the in situ sensor data in conjunction with the satellite reflectance data shows the effects of physical processes on both the spatial and temporal distribution of suspended sediment in San Francisco Bay. Plumes can be created by large freshwater flows. Zones of high suspended-sediment concentrations in shallow subembayments are associated with wind-wave resuspension and the spring-neap cycle. Filaments of clear and turbid water are caused by different transport processes in deep channels, as opposed to adjacent shallow water.

  8. Suspended sediment chemistry from large Himalayan Rivers

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Bickle, M.; Bohlin, M.; Andermann, C.

    2016-12-01

    Recent work has demonstrated that weathering in areas with the highest physical erosion rates are the most sensitive to climatic feedback parameters (both rainfall and temperature) because they are not limited by a supply of material. The Himalayan region is central to this work because of 1) the high erosion rates, 2) high monsoonal rainfall, and 3) high temperatures in the Ganges plain in front of the main range, where much of the weathering takes place. The material that is weathered in the Ganges plain is delivered as sediment from the mountain front. Therefore, detailed understanding of the chemistry of the sediment leaving the high mountains is essential. Interest has been renewed not least because of the magnitude 7.8 (25/4/15) and 7.3 (12/5/2015) earthquakes in Nepal in 2015 which triggered thousands of landslides, likely causing major perturbations to sediment and chemical loads carried by the local Himalayan rivers. We collected both sediment and water samples in 2015 and 2016 in a transect across Nepal, including depth profiles of suspended sediment in the Narayani, Kosi and Karnali Rivers. The Narayani and Kosi rivers which drain the earthquake-hit area carry > 40% of the total bicarbonate flux input to the Ganges from the Himalayan mountains. Here we present our initial findings on the chemistry of the sediment from the 2015 and 2016 field seasons and compare it to published data sets.

  9. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  10. LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.

    USGS Publications Warehouse

    Schoellhamer, David H.

    1987-01-01

    The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.

  11. Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.

    2014-01-01

    Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the

  12. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  13. Hydroclimatic influence on particle size distribution of suspended sediments evacuated from debris-covered Chorabari Glacier, upper Mandakini catchment, central Himalaya

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad

    2016-07-01

    Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of

  14. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome

    PubMed Central

    Hess, Sybille; Wenger, Amelia S.; Ainsworth, Tracy D.; Rummer, Jodie L.

    2015-01-01

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624

  15. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome.

    PubMed

    Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L

    2015-06-22

    Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.

  16. A Time Series Separation and Reconstruction (TSSR) Technique to Estimate Daily Suspended Sediment Concentrations

    EPA Science Inventory

    High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...

  17. Water-quality assessment of the Trinity River Basin, Texas - Analysis of available information on nutrients and suspended sediment, 1974-91

    USGS Publications Warehouse

    Van Metre, Peter C.; Reutter, David C.

    1995-01-01

    Only limited suspended-sediment data were available. Four sites had daily sediment-discharge records for three or more water years (October 1 to September 30) between 1974 and 1985. An additional three sites had periodic measurements of suspended-sediment concentrations. There are differences in concentrations and yields among sites; however, the limited amount of data precludes developing statistical or cause-and-effect relations with environmental factors such as land use, soil, and geology. Data are sufficient, and the relation is pronounced enough, to indicate trapping of suspended sediment by Livingston Reservoir.

  18. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    USGS Publications Warehouse

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  19. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    PubMed

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  20. Spatio-temporal Analysis of suspended sediment Concentration in the Yongjiang Estuary Based on GOCI

    NASA Astrophysics Data System (ADS)

    Kang, Yanyan; Dong, Chuan

    2018-01-01

    The concentration and spatio-temporal variation of suspended sediment concentration in the estuary area are of great significance to the nearshore engineering, port construction and coastal evolution. Based on multi-period GOCI images and corresponding measured suspended sediment concentration (SSC) data, three inversion models (the linear regression model, the power exponent model and the neural network model) were established after rapid atmospheric correction. The results show that the absolute error of the three models is 0.20, 0.16 and 0.10kg/m3 respectively, and the relative errors are 38%, 23% and 18% respectively. The accuracy of the neural network (8-17-17-1) is the best. The SSC distribution diagrams in an ebb and flow cycle are obtained using this ANN model. The results show that with Yongjiang estuary for segmentation, the high concentration area is located in the north and the lower is in the south around Jintang Island deeper water area. When the tide rises, the water flow disturbs a large amount of sediment, and then the sediment concentration increases and high area high concentrations water body moves along the SE-NW. When the tide falls, flow rate decreases and the sediment concentration decreases. However, with the falling tide, the concentration of suspended sediment in the northern sea areas gradually increases, and is higher than 1kg/m3, and gradually moves along the NW-SE until to the estuary.

  1. Characterization of Suspended-Sediment Loading to and from John Redmond Reservoir, East-Central Kansas, 2007-2008

    USGS Publications Warehouse

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.

    2008-01-01

    Storage capacity in John Redmond Reservoir is being lost to sedimentation more rapidly than in other federal impoundments in Kansas. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, initiated a study to characterize suspended-sediment loading to and from John Redmond Reservoir from February 21, 2007, through February 21, 2008. Turbidity sensors were installed at two U.S. Geological Survey stream gages upstream (Neosho River near Americus and the Cottonwood River near Plymouth) and one stream gage downstream (Neosho River at Burlington) from the reservoir to compute continuous, real-time (15-minute) measurements of suspended-sediment concentration and loading. About 1,120,000 tons of suspended-sediment were transported to, and 100,700 tons were transported from John Redmond Reservoir during the study period. Dependent on the bulk density of sediment stored in the reservoir, 5.0 to 1.4 percent of the storage in the John Redmond conservation pool was lost during the study period, with an average deposition of 3.4 to 1.0 inches. Nearly all (98-99 percent) of the incoming sediment load was transported during 9 storms which occurred 25 to 27 percent of the time. The largest storm during the study period (peak-flow recurrence interval of about 4.6-4.9 years) transported about 37 percent of the sediment load to the reservoir. Suspended-sediment yield from the unregulated drainage area upstream from the Neosho River near Americus was 530 tons per square mile, compared to 400 tons per square mile upstream from the Cottonwood River near Plymouth. Comparison of historical (1964-78) to current (2007) sediment loading estimates indicate statistically insignificant (99 percent) decrease in sediment loading at the Neosho River at Burlington. Ninety-percent confidence intervals of streamflow-derived estimates of total sediment load were 7 to 21 times larger than turbidity-derived estimates. Results from this study can be used by natural resource

  2. Determining Relative Contributions of Eroded Landscape Sediment and Bank Sediment to the Suspended Load of Streams and Wetlands Using 7Be and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Matisoff, G.; Whiting, P.; Kuhnle, R.

    2005-12-01

    The naturally occurring radionuclides, 7Be and 210Pbxs, have been used individually as tracers of sediment particles throughout watersheds. However, use of the two radionuclides together enables eliciting information regarding the major contributors of fine sediment to the suspended load of a stream or wetland. We report on a study that uses these radionuclides to quantify the relative proportion of eroded surface soils, bank material and resuspended bed sediment in the fine suspended sediment load of the Goodwin Creek, MS, and Old Woman Creek, OH watersheds. The eroded surface soil has a unique radionuclide signature relative to the bed sediments in Old Woman Creek and the bank material along Goodwin Creek that allows for the quantification of the relative proportions of the different sediments in the sediment load. In Old Woman Creek, the different signatures are controlled by the differential decay of the two radionuclides. In Goodwin Creek, the different signatures are due to different erosion processes controlling the sediment delivery to streams, namely sheet erosion and bank collapse. The eroded surface soils will have higher activities of the 7Be and 210Pbxs than bed/bank sediments. The fine suspended sediment, which is a mixture of eroded surface soils and resuspended bed sediment or collapsed bank sediment, will have an intermediate radionuclide signature quantified in terms of the relative proportion from both sediments. A simple two-end member mixing model is used to determine the relative proportions of both sediments to the total fine sediment load.

  3. Suspended sediment and organic contaminants in the San Lorenzo River, California, water years 2009-2010

    USGS Publications Warehouse

    Draut, Amy E.; Conaway, Christopher H.; Echols, Kathy R.; Storlazzi, Curt D.; Ritchie, Andrew

    2011-01-01

    This report presents analyses of suspended sediment and organic contaminants measured during a two-year study of the San Lorenzo River, central California, which discharges into the Pacific Ocean within the Monterey Bay National Marine Sanctuary. Most suspended-sediment transport occurred during flooding caused by winter storms; 55 percent of the sediment load was transported by the river during a three-day flood in January 2010. Concentrations of polyaromatic hydrocarbons can exceed regulatory criteria during high-flow events in the San Lorenzo River. These results highlight the importance of episodic sediment and contaminant transport in steep, mountainous, coastal watersheds and emphasize the importance of understanding physical processes and quantifying chemical constituents in discharge from coastal watersheds on event-scale terms.

  4. Field Observations of Hydrodynamics, Sediment Transport, and Water and Sediment Quality in the Hudson-Raritan Estuary

    NASA Astrophysics Data System (ADS)

    Bruno, M. S.; Glenn, S.; Chant, R.; Rankin, K.; Korfiatis, G.; Dimou, N.; Creed, E.; Fullerton, B.; Pence, A.; Burke, P.; Haldeman, C.; Hires, R.; Hunter, E.

    2002-12-01

    The New York-New Jersey Harbor estuary system is of enormous ecological and economic importance to the region. The presence of toxic chemicals in the water and sediments results in reduced water quality, fisheries restrictions/advisories, and general adverse impacts to the estuarine ecosystem. The Port of New York and New Jersey is central to the economy of the region. However, in recent years, problems associated with the management of contaminated dredged material, including high costs and the lack of suitable disposal/use alternatives, have threatened to impact the volume of shipping in the Harbor. Sources of contaminants include atmospheric deposition, municipal and industrial wastewater treatment facilities, combined sewer and stormwater outfalls, and rainfall-induced runoff (non-point sources). In addition, Harbor sediments can act as a continuing source as they are re-suspended and moved throughout the system by both natural and man-made means. As part of the New Jersey Toxics Reduction Workplan, Stevens Institute of Technology and Rutgers University are conducting hydrodynamic, sediment transport, and water and suspended sediment quality measurements in Newark Bay, the Arthur Kill and the Kill van Kull. The goals of the project include: (1) collection of high resolution (event-driven and long-term) hydrodynamic, sediment transport and water and suspended sediment quality measurements for use in the assessment of the dominant physics of the system and in the development of a combined hydrodynamic-sediment transport-water/sediment quality model for the region. (2) identification of those tributaries to NY-NJ Harbor that are significant sources of the chemicals of concern, and evaluation of the importance of non-point sources and existing contaminated bottom sediments as sources of the chemicals of concern. (3) identification of point discharges that represent significant sources of the chemicals of concern. Observations were obtained over a two-year period

  5. Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater

    NASA Astrophysics Data System (ADS)

    Brown, Giles H.; Tranter, M.; Sharp, M. J.

    1996-04-01

    The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.

  6. Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Bergamaschi, B.A.

    2005-01-01

    Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed with an unaccounted input of 0.20 m 3 s-1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidalty averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebb-dominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main

  7. Comparison of flume and towing methods for verifying the calibration of a suspended-sediment sampler

    USGS Publications Warehouse

    Beverage, J.P.; Futrell, J.C.

    1986-01-01

    Suspended-sediment samplers must sample isokinetically (at stream velocity) in order to collect representative water samples of rivers. Each sampler solo by the Federal Interagency Sedimentation Project or by the U.S. Geological Survey Hydrologic Instrumentation Facility has been adjusted to sample isokinetically and tested in a flume to verify the calibration. The test program for a modified U.S. P-61 sampler provided an opportunity to compare flume and towing tank tests. Although the two tests yielded statistically distinct results, the difference between them was quite small. The conclusion is that verifying the calibration of any suspended-sediment sampler by either the flume or towing method should give acceptable results.

  8. Quantifying suspended sediment dynamics in mega deltas using remote sensing data: A case study of the Mekong floodplains

    NASA Astrophysics Data System (ADS)

    Dang, Thanh Duc; Cochrane, Thomas A.; Arias, Mauricio E.

    2018-06-01

    Temporal and spatial concentrations of suspended sediment in floodplains are difficult to quantify because in situ measurements can be logistically complex, time consuming and costly. In this research, satellite imagery with long temporal and large spatial coverage (Landsat TM/ETM+) was used to complement in situ suspended sediment measurements to reflect sediment dynamics in a large (70,000 km2) floodplain. Instead of using a single spectral band from Landsat, a Principal Component Analysis was applied to obtain uncorrelated reflectance values for five bands of Landsat TM/ETM+. Significant correlations between the scores of the 1st principal component and the values of continuously gauged suspended sediment concentration, shown via high coefficients of determination of sediment rating curves (R2 ranging from 0.66 to 0.92), permit the application of satellite images to quantify spatial and temporal sediment variation in the Mekong floodplains. Estimated suspended sediment maps show that hydraulic regimes at Chaktomuk (Cambodia), where the Mekong, Bassac, and Tonle Sap rivers diverge, determine the amount of seasonal sediment supplies to the Mekong Delta. The development of flood prevention systems to allow for three rice crops a year in the Vietnam Mekong Delta significantly reduces localized flooding, but also prevents sediment (source of nutrients) from entering fields. A direct consequence of this is the need to apply more artificial fertilizers to boost agricultural productivity, which may trigger environmental problems. Overall, remote sensing is shown to be an effective tool to understand temporal and spatial sediment dynamics in large floodplains.

  9. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  10. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  11. Prediction of Suspended Sediment in Rivers Using Artificial Neural Networks: Implications for Development of Sediment Budgets

    NASA Astrophysics Data System (ADS)

    Hamshaw, S. D.; Underwood, K.; Rizzo, D.; Wemple, B. C.; Dewoolkar, M.

    2013-12-01

    Over 1,000 river miles in Vermont are either impaired or stressed by excessive sedimentation. The higher streamflows and incised river channels have resulted in increased bed and bank erosion. As the climate in Vermont is expected to feature greater and more frequent precipitation events and winter rainfall, the potential for increased sediment loading from erosion processes in the watershed and along the channel are high and a major concern for water resource managers. Typical sediment monitoring comprises periodic sampling during storm events and is often limited to gauged streams with flow data. Continuous turbidity monitoring enhances our understanding of river dynamics by offering high-resolution, temporal measurements to better quantify the total sediment loading occurring during and between storm events. Artificial neural networks, that mimic learning patterns of the human brain, have been effective at predicting flow in small, ungauged rivers using local climate data. This study advances this technology by using an ANN algorithm known as a counter-propagation neural network (CPNN) to predict discharge and suspended sediment in small streams. The first distributed network of continuous turbidity sensors (DTS-12) was deployed in Vermont in the Mad River Watershed, located in Central Vermont. The Mad River and five tributaries were selected as a test bed because seven years of periodic turbidity sampling data are available, it represents a range of watershed characteristics, and because the watershed is also being used for hydrologic model development using the Distributed-Hydrology-Soils-Vegetation Model (DHSVM). Comparison with the DHSVM simulations will allow estimation of the most-likely sources of sediment from the entire watershed and individual subwatersheds. In addition, recent field studies have commenced the quantification of erosion occurring from unpaved roads and streambanks in the same watershed. Periodic water quality sampling during storm

  12. Status and trends in suspended-sediment discharges, soil erosion, and conservation tillage in the Maumee River basin--Ohio, Michigan, and Indiana

    USGS Publications Warehouse

    Myers, Donna N.; Metzker, Kevin D.; Davis, Steven

    2000-01-01

    The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop

  13. Nutrient, suspended-sediment, and total suspended-solids data for surface water in the Great Salt Lake basins study unit, Utah, Idaho, and Wyoming, 1980-95

    USGS Publications Warehouse

    Hadley, Heidi K.

    2000-01-01

    Selected nitrogen and phosphorus (nutrient), suspended-sediment and total suspended-solids surface-water data were compiled from January 1980 through December 1995 within the Great Salt Lake Basins National Water-Quality Assessment study unit, which extends from southeastern Idaho to west-central Utah and from Great Salt Lake to the Wasatch and western Uinta Mountains. The data were retrieved from the U.S. Geological Survey National Water Information System and the State of Utah, Department of Environmental Quality, Division of Water Quality database. The Division of Water Quality database includes data that are submitted to the U.S. Environmental Protection Agency STOrage and RETrieval system. Water-quality data included in this report were selected for surface-water sites (rivers, streams, and canals) that had three or more nutrient, suspended-sediment, or total suspended-solids analyses. Also, 33 percent or more of the measurements at a site had to include discharge, and, for non-U.S. Geological Survey sites, there had to be 2 or more years of data. Ancillary data for parameters such as water temperature, pH, specific conductance, streamflow (discharge), dissolved oxygen, biochemical oxygen demand, alkalinity, and turbidity also were compiled, as available. The compiled nutrient database contains 13,511 samples from 191 selected sites. The compiled suspended-sediment and total suspended-solids database contains 11,642 samples from 142 selected sites. For the nutrient database, the median (50th percentile) sample period for individual sites is 6 years, and the 75th percentile is 14 years. The median number of samples per site is 52 and the 75th percentile is 110 samples. For the suspended-sediment and total suspended-solids database, the median sample period for individual sites is 9 years, and the 75th percentile is 14 years. The median number of samples per site is 76 and the 75th percentile is 120 samples. The compiled historical data are being used in the

  14. Controlling suspended sediment samplers by programmable calculator and interface circuitry

    Treesearch

    Rand E. Eads; Mark R. Boolootian

    1985-01-01

    A programmable calculator connected to an interface circuit can control automatic samplers and record streamflow data. The circuit converts a voltage representing water stage to a digital signal. The sampling program logs streamflow data when there is a predefined deviation from a linear trend in the water elevation. The calculator estimates suspended sediment...

  15. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Treesearch

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  16. State-shifting at the edge of resilience: River suspended sediment responses to land use change and extreme storms

    NASA Astrophysics Data System (ADS)

    Abbott, Samantha; Julian, Jason P.; Kamarinas, Ioannis; Meitzen, Kimberly M.; Fuller, Ian C.; McColl, Samuel T.; Dymond, John R.

    2018-03-01

    The interaction of climate, geomorphology, and land use dictates catchment sediment production and associated river sediment loads. Accordingly, the resilience of catchments to disturbances can be assessed with suspended sediment regimes. This case study in the hill country of the lower North Island of New Zealand was a decade-long examination of the short- and long-term effects of an extreme storm event on sediment supply and exhaustion in the Oroua and Pohangina catchments, two catchments that have experienced intense land use changes and frequent broad-scale landslides. Indicators of Hydrologic Alteration, a program developed to characterize hydrologic regimes, was used to analyze daily suspended sediment records over a period of a decade in order to characterize sediment regimes of the Oroua and Pohangina. An aggregated data set of sediment-bearing events for the period of record was analyzed to examine the suspended sediment response of individual storms relative to runoff magnitudes. The findings of this study demonstrate that large storms that generate extreme landsliding and flooding have the ability to produce enough sediment to temporarily convert catchments from a supply-limited state to a transport-limited state. Landsliding and thus sediment supply was disproportionately high in locations where livestock grazing occurred on steep hillslopes. The timing and intensity of previous storms, or the antecedent catchment condition, was also shown to influence the response of the catchments. In both catchments, suspended sediment loads were elevated for a period of 4 years following the landslide-generating February 2004 storm. The methods and findings we present are useful for assessing the resilience of catchments exposed to frequent disturbances such as land use changes and landslides.

  17. Laboratory and field measurements of upwelled radiance and reflectance spectra of suspended James River sediments near Hopewell, Virginia

    NASA Technical Reports Server (NTRS)

    Whilock, C. H.; Witte, W. G.; Gurganus, E. A.; Usry, J. W.

    1978-01-01

    Spectral reflectance characteristics of suspended Bermuda Hundred and Bailey Bay bottom sediments taken from the Hopewell, Va., area were measured in the laboratory for water mixture total suspended solids concentrations between 4 and 173 parts per million. Field spectral reflectance measurements were made of the James River waters near Bermuda Hundred on two occasions. The results of these tests indicate that both Bermuda Hundred and Bailey Bay suspended sediments produce their strongest reflectance in the green and red regions of the spectrum.

  18. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  19. Organic contaminants associated with suspended sediment collected during five cruises of the Mississippi River and its principal tributaries, May 1988 to June 1990

    USGS Publications Warehouse

    Rostad, Colleen E.; Bishop, LaDonna M.; Ellis, Geoffrey S.; Leiker, Thomas J.; Monsterleet, Stephanie G.; Pereira, Wilfred E.

    2004-01-01

    Suspended-sediment samples were obtained from sites along the Mississippi River and its principal tributaries to determine the presence of halogenated hydrophobic organic compounds on the suspended sediment smaller than 63 micrometers. Sample collection involved pumping discharge-weighted volumes of river water along a cross section of the river into a continuous-flow centrifuge to isolate the suspended sediment. The suspended sediment was analyzed by gas chromatography/mass spectrometry for pentachlorobenzene, hexachlorobenzene, pentachloroanisole, chlorothalonil, pentachlorophenol, dachthal, chlordane, nonachlor, and penta-, hexa-, hepta-, and octachlorobiphenyls. Samples collected during June 1989 and February-March 1990 also were analyzed for U.S. Environmental Protection Agency priority pollutants, including polycyclic aromatic hydrocarbons, phthalate esters, and triazines. Samples were collected at sites on the Mississippi River from above St. Louis, Missouri to below New Orleans, Louisiana, and on the Illinois, Missouri, Ohio, Wabash, Cumberland, Tennessee, White, Arkansas, and Yazoo Rivers. Masses of selected halogenated hydrophobic organic compounds associated with the suspended sediment at each site are presented in this report in tabular format, along with suspended-sediment concentration, water discharge, and organic-carbon content.

  20. SAFL Baffle retrofit for suspended sediment removal in storm sewer sumps.

    PubMed

    Howard, Adam; Mohseni, Omid; Gulliver, John; Stefan, Heinz

    2011-11-15

    Standard sumps (manholes) provide a location for pipe junctions and maintenance access in stormwater drainage systems. Standard sumps can also remove sand and silt particles from stormwater, but have a high propensity for washout of the collected sediment. With appropriate maintenance these sumps may qualify as a stormwater best management practice (BMP) device for the removal of suspended sediment from stormwater runoff. To decrease the maintenance frequency and prevent standard sumps from becoming a source of suspended sediment under high flow conditions, a porous baffle, named the SAFL Baffle, has been designed and tested as a retrofit to the sump. Multiple configurations with varying percent open area and different angles of attack were evaluated in scale models. An optimum configuration was then constructed at the prototype scale and evaluated for both removal efficiency and washout. Results obtained with the retrofit indicate that with the right baffle dimensions and porosity, sediment washout from the sump at high flow rates can be almost eliminated, and removal efficiency can be significantly increased at low flow rates. Removal efficiency and washout functions have been developed for standard sumps retrofitted with the SAFL Baffle. The results of this research provide a new, versatile stormwater treatment device and implemented new washout and removal efficiency testing procedures that will improve research and development of stormwater treatment devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles

    PubMed Central

    Ricardo, Gerard F.; Jones, Ross J.; Negri, Andrew P.; Stocker, Roman

    2016-01-01

    Spawning synchrony represents a common reproductive strategy in sessile marine organisms and for broadcast spawning corals, buoyancy of egg-sperm bundles is critical to maximise fertilisation at the ocean surface. Here we demonstrate a novel threat to coral reproduction whereby buoyant egg-sperm bundles intercept and are “ballasted” by sediment grains on their journey to the ocean surface, preventing them from reaching the ocean surface and greatly reducing egg-sperm encounter rates. Empirical observations of this mechanism are successfully captured by a mathematical model that predicts the reduction in ascent probability and egg-sperm encounters as a function of sediment load. When applied to 15 m deep reefs, the model predicts that 10% and 50% reductions in egg-sperm encounters occur at 35 mg L−1 and 87 mg L−1 suspended sediment concentrations, respectively, and for a 5 m deep reef a 10% reduction occurs at 106 mg L−1. These concentrations are commonly associated with sediment plumes from dredging or natural resuspension events. The potential for sediments to sink coral gametes highlights the need to carefully manage the timing of turbidity-generating human activities near reefs during spawning periods. PMID:26898352

  2. That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles.

    PubMed

    Ricardo, Gerard F; Jones, Ross J; Negri, Andrew P; Stocker, Roman

    2016-02-22

    Spawning synchrony represents a common reproductive strategy in sessile marine organisms and for broadcast spawning corals, buoyancy of egg-sperm bundles is critical to maximise fertilisation at the ocean surface. Here we demonstrate a novel threat to coral reproduction whereby buoyant egg-sperm bundles intercept and are "ballasted" by sediment grains on their journey to the ocean surface, preventing them from reaching the ocean surface and greatly reducing egg-sperm encounter rates. Empirical observations of this mechanism are successfully captured by a mathematical model that predicts the reduction in ascent probability and egg-sperm encounters as a function of sediment load. When applied to 15 m deep reefs, the model predicts that 10% and 50% reductions in egg-sperm encounters occur at 35 mg L(-1) and 87 mg L(-1) suspended sediment concentrations, respectively, and for a 5 m deep reef a 10% reduction occurs at 106 mg L(-1). These concentrations are commonly associated with sediment plumes from dredging or natural resuspension events. The potential for sediments to sink coral gametes highlights the need to carefully manage the timing of turbidity-generating human activities near reefs during spawning periods.

  3. Extraction of Suspended Sediments from Landsat Imagery in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Drewry, M.; He, M. Y.; Ebersole, S.

    2011-12-01

    The Sediment Analysis Network for Decision Support (SANDS) project is utilizing enhancement methods to highlight suspended sediment in remotely sensed data and imagery of the Northern Gulf of Mexico. The analysis thus far has shown that areas of suspended sediments can be extracted from Landsat imagery. In addition, although not an original goal of SANDS, the analysis techniques have revealed oil floating on the water's surface. Detection of oil floating on the surface through remotely sensed imagery can be helpful in identifying and understanding the geographic distribution and movement of oil for environmental concerns. Data from Landsat, and MODIS were obtained from NASA Earth Science Data Centers by the Information Technology and Systems Center at the University of Alabama in Huntsville and prepared for analysis by subsetting to the region of interest and converting from HDF-EOS format (in the case of MODIS) to GeoTiff. Analysts at the Geological Survey of Alabama (GSA) working with Landsat data initially, employed enhancement methods, including false color composites, spectral ratios, and other spectral enhancements based on the mineral composition of sediments, to combinations of visible and infrared bands of data. Initial results of this approach revealed suspended sediments. The analysis technique also revealed areas of oil floating on the surface of the Gulf near Chandeleur Island immediately after Hurricane Katrina in 2005. True color Landsat imagery compares the original Landsat scene to the same region after enhancement. The areas of floating oil are clearly visible. The oil washed out from oil spills on land. This paper will present the intermediate result of the SANDS project thus far.

  4. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA

    NASA Astrophysics Data System (ADS)

    Mukundan, Rajith; Pradhanang, Soni M.; Schneiderman, Elliot M.; Pierson, Donald C.; Anandhi, Aavudai; Zion, Mark S.; Matonse, Adão H.; Lounsbury, David G.; Steenhuis, Tammo S.

    2013-02-01

    High suspended sediment loads and the resulting turbidity can impact the use of surface waters for water supply and other designated uses. Changes in fluvial sediment loads influence material fluxes, aquatic geochemistry, water quality, channel morphology, and aquatic habitats. Therefore, quantifying spatial and temporal patterns in sediment loads is important both for understanding and predicting soil erosion and sediment transport processes as well as watershed-scale management of sediment and associated pollutants. A case study from the 891 km2 Cannonsville watershed, one of the major watersheds in the New York City water supply system is presented. The objective of this study was to apply Soil and Water Assessment Tool-Water Balance (SWAT-WB), a physically based semi-distributed model to identify suspended sediment generating source areas under current conditions and to simulate potential climate change impacts on soil erosion and suspended sediment yield in the study watershed for a set of future climate scenarios representative of the period 2081-2100. Future scenarios developed using nine global climate model (GCM) simulations indicate a sharp increase in the annual rates of soil erosion although a similar result in sediment yield at the watershed outlet was not evident. Future climate related changes in soil erosion and sediment yield appeared more significant in the winter due to a shift in the timing of snowmelt and also due to a decrease in the proportion of precipitation received as snow. Although an increase in future summer precipitation was predicted, soil erosion and sediment yield appeared to decrease owing to an increase in soil moisture deficit and a decrease in water yield due to increased evapotranspiration.

  5. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    USGS Publications Warehouse

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  6. Contemporary suspended sediment fluxes and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, Western Norway

    NASA Astrophysics Data System (ADS)

    Liermann, S.; Beylich, A. A.

    2012-04-01

    A combination of different process monitoring, lake sediment coring and sediment analysis methods and techniques were applied in order (i) to ascertain the hydro-meteorological controls of runoff generation, suspended sediment transport and sediment accumulation on the delta and in Lake Sætrevatnet and (ii) to define the role of the small proglacial lake Sætrevatnet within the basin-wide catchment routing system of the Bødalen valley-fjord system (Nordfjord area, western Norway). Within the Bødalen valley investigations of sediment transfer and sediment accumulation processes were focused on the small proglacial Sætrevatnet area in upper Bødalen. The proglacial Sætrevatnet valley segment shows the characteristic seasonal weather-depended runoff variation for glacierized drainage basins. Suspended sediment concentration varied closely related to water discharge. Hence, significant suspended sediment transport is associated to high runoff conditions during thermally induced summer glacier melt (when 61.9% of the annual suspended sediment yield was recorded in 2010) as well as to single extreme rainfall events (19.8% of the annual suspended sediment yield was recorded during a single extreme rainfall event in 2010). Solar radiation and the magnitude and frequency of extreme rainfall events were found to be crucial for the rate of sediment transport within the Sætrevatnet sub-catchment. Altogether, the annual suspended sediment yield is with 24.2 t km-2 notable lower as compared to other glacierized basins worldwide. Delta accumulation rates at the inlet of Lake Sætrevatnet of 4 cm yr-1 in 2009 and 3.5 cm yr-1 in 2010 as well as a mean annual delta advance of about 3 - 4 m as calculated from comparisons of aerial photographs point to an ongoing and rapid sediment infill of the Sætrevatnet valley basin. Lacustrine sediment sequence analysis and 210-Pb and 137-Cs dating of samples taken from the Lake Sætrevatnet confirm high annual accumulation rates. Based on

  7. Occurrence of Polychlorinated Biphenyls (PCBs) on Suspended Sediment in the Donna Canal, Hidalgo County, Texas, 1999-2001

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Miranda, R.M.

    2002-01-01

    Some fish in the Donna Canal contain PCBs at levels that might pose a risk to human health if the fish are eaten. Early attempts to locate the source of PCBs in the canal were unsuccessful. An innovative method of sampling and analyzing suspended sediment helped scientists detect PCBs in suspended sediment and narrowed the probable PCB source area(s) from the entire 11-kilometer canal to a 600-meter reach.

  8. Geomorphic versus land use controls on suspended sediment rating curves

    NASA Astrophysics Data System (ADS)

    Belmont, P.; Vaughan, A. A.; Fisher, A. C. N.

    2017-12-01

    The relation between river discharge (Q) and suspended sediment (SS) concentration reflects the degree to which sediment sources are accessed or depleted across the range of flow conditions. Increased availability of high resolution topography and land use data greatly enhance our ability to evaluate linkages between characteristics of these sediment rating curves (SRCs) and the geomorphic features that influence them. We evaluated Q-SS relations at 45 gages throughout Minnesota, USA representing a wide variety of landscape settings in terms of topography, land use, and geologic history. We characterized the SRCs according to the overall shape, steepness (exponent), vertical offset (coefficient) and SS concentration under low flow (90% exceedance) conditions. Rivers exhibited three distinct SRC shapes, simple power functions, threshold power functions and peaked power functions. We used random forest models to analyze relations between SRC parameters and attributes of the watershed as well as the near-channel environment. The model correctly classified 78% of SRC shapes and explained 60% of variance in the SRC exponent, 43% of the SRC coefficient for rising limb samples, and 45% of variance under low flow conditions. Notably, the random forest models predict that near-channel morphology predominately controls both the shape and steepness of the sediment rating curves. Land use predominately controls the vertical offset (coefficient) and SS concentration under low flow conditions. These findings suggest that land use and watershed restoration practices may have little capacity to alter the shape and steepness of these curves as these characteristics may be dictated by the geologic and geomorphic setting. Rather, human influences in the watershed may exhibit the greatest influence on suspended sediment concentrations at moderate to low flows. Criteria to evaluate improvements in water quality as a result of changes in land management might be most meaningful if they

  9. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    NASA Astrophysics Data System (ADS)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of

  10. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    USGS Publications Warehouse

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  11. Heavy metals in Lake Balaton: water column, suspended matter, sediment and biota.

    PubMed

    Nguyen, H L; Leermakers, M; Osán, J; Török, S; Baeyens, W

    2005-03-20

    During the period 1999-2002, five sampling cruises have been carried out on Lake Balaton to assess trace metal distribution in the lake and to identify major sources. Eighteen elements, including Cr, Co, Ni, Cu, Zn, Cd, Pb (trace metals) and Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr (major metals), were determined in one or more of the lake's compartments. Lower trace metal concentrations in rainwater were observed in June and February 2000, while much higher levels were present in September 2001 (during a storm event) and in snow (February 2000). In the Northern and Western parts of the lake, especially at the inflow of river Zala and the locations of the yacht harbours, metal concentrations were higher in almost all compartments. Because the lake is very shallow, storm conditions also change significantly the metal distributions in the dissolved and particulate phases. The Kis-Balaton protection system located on Zala river functions very efficiently for retaining suspended particulate matter (SPM; 72% retention) and associated metals. Metal concentrations in surface sediments of the lake showed a high variability. After normalisation for the fine sediment fraction, only a few stations including Zala mouth appeared to be enriched in trace metals. In zooplankton, Zn seemed to be much more elevated compared to the other trace metals. Based on the molar ratios of the trace metals in the various compartments and input flows of the lake, several trends could be deduced. For example, molar ratios of the trace metals in the dissolved and solid (suspended particulate matter and sediments) phases in the lake are fairly similar to those in Zala River.

  12. The LISST-SL streamlined isokinetic suspended-sediment profiler

    USGS Publications Warehouse

    Gray, John R.; Agrawal, Yogesh C.; Pottsmith, H. Charles

    2004-01-01

    The new manually deployed Laser In Situ Scattering Transmissometer-StreamLined profiler (LISST-SL) represents a major technological advance for suspended-sediment measurements in rivers. The LISST-SL is being designed to provide real-time data on sediment concentrations and particle-size distributions. A pressure sensor and current meter provide real-time depth and ambient velocity data, respectively. The velocity data are also used to control pumpage across an internal laser so that the intake velocity is constantly adjusted to match the ambient stream velocity. Such isokinetic withdrawal is necessary for obtaining representative sedimentary measurements in streamflow, and ensures compliance with established practices. The velocity and sediment-concentration data are used to compute fluxes for up to 32 particle-size classes at points, verticals, or in the entire stream cross section. All data are stored internally, as well as transmitted via a 2-wire conductor to the operator using a specially developed communication protocol. The LISST-SL's performance will be measured and compared to published sedimentological accuracy criteria, and a performance summary will be placed on-line.

  13. An overview on the use of backscattered sound for measuring suspended particle size and concentration profiles in non-cohesive inorganic sediment transport studies

    NASA Astrophysics Data System (ADS)

    Thorne, Peter D.; Hurther, David

    2014-02-01

    For over two decades, coastal marine scientists studying boundary layer sediment transport processes have been using, and developing, the application of sound for high temporal-spatial resolution measurements of suspended particle size and concentration profiles. To extract the suspended sediment parameters from the acoustic data requires an understanding of the interaction of sound with a suspension of sediments and an inversion methodology. This understanding is distributed around journals in a number of scientific fields and there is no single article that succinctly draws together the different components. In the present work the aim is to provide an overview on the acoustic approach to measuring suspended sediment parameters and assess its application in the study of non-cohesive inorganic suspended sediment transport processes.

  14. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  15. EVALUATION OF SAMPLING FREQUENCIES REQUIRED TO ESTIMATE NUTRIENT AND SUSPENDED SEDIMENT LOADS IN LARGE RIVERS

    EPA Science Inventory

    Nutrients and suspended sediments in streams and large rivers are two major issues facing state and federal agencies. Accurate estimates of nutrient and sediment loads are needed to assess a variety of important water-quality issues including total maximum daily loads, aquatic ec...

  16. Developing Water Quality Critera for Suspended and Bedded Sediments-Illustrative Example Application.

    EPA Science Inventory

    The U. S. EPA's Framework for Developing Suspended and Bedded Sediments (SABS) Water Quality Criteria (SABS Framework) provides a consistent process, technical methods, and supporting materials to enable resource managers to develop ambient water quality criteria for one of the m...

  17. Linking hysteresis patterns and variations in suspended sediment sources in a highly urbanized river: a case of the River Aire, UK

    NASA Astrophysics Data System (ADS)

    Vercruysse, Kim; Grabowski, Robert

    2017-04-01

    The natural sediment balance of rivers is often disturbed as a result of increased fine sediment influx from soil erosion and/or modifications to the river channel and floodplains, causing numerous problems related to ecology, water quality, flood risk and infrastructure. It is of great importance to understand fine sediment dynamics in rivers in order to manage the problems appropriately. However, despite decades of research, our understanding of fine sediment transport is not yet sufficient to fully explain the spatial and temporal variability in sediment concentrations in rivers. To this end, the study aims to investigate the importance of sediment source variations to explain hysteresis patterns in suspended sediment transport. A sediment fingerprinting technique based on infrared spectrometry was applied in the highly urbanized River Aire catchment in northern England to identify the dominant sources of suspended sediment. Three types of potential sediment source samples were collected: soil samples from pasture in three lithological areas (limestone, millstone grit and coal measures), eroding riverbanks and urban street dust. All source samples were analyzed with Diffuse Reflectance Infrared Fourier Transform spectrometry (DRIFTS). Discriminant analysis demonstrated that the source materials could be discriminated based on their respective infrared spectra. Infrared spectra of experimental mixtures were then used to develop statistical models to estimate relative source contributions from suspended sediment samples. Suspended sediment samples were collected during a set of high flow events between 2015 and 2016, showing different hysteresis patterns between suspended sediment concentration and discharge. The fingerprinting results suggest that pasture from the limestone area is the dominant source of fine sediment. However, significant variations in source contributions during and between events are present. Small events, in terms of discharge, are marked by

  18. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Park, H. B.

    2014-12-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter intensity, but its application to estuarine environments has not been vigorously tested. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidal Han river estuary (HRE), microtidal Nakdong river estuary (NRE), and anthropogenically altered macrotidal Yeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (aw) and sediment (as) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 kg/m3, the acoustic inversion performed poorly only with as (R2 = 0.05 and 0.39 for NRE and YRE, respectively), but well with aw (R2 = 0.70 and 0.64 for NRE and YRE, respectively). Thus, it is important to accurately constrain aw in low-concentration estuarine environments. However, we did not find that the varying aw performed considerably better than the constant aw. On the other hand, the acoustic inversion was poorest at HRE regardless of aw and as (R2 = 0.58 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  19. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Park, Hyo-Bong

    2015-04-01

    Acoustic Doppler Current Profiler (ADCP), designed for measuring velocity profile, is now widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments has still room for improvement. In this study, we examinedthe inversion capability of two ADCPs with 600 and 1200 kHz at three Korean estuaries: macrotidalHan river estuary (HRE), microtidalNakdong river estuary (NRE), and anthropogenically altered macrotidalYeongsan river estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were smaller than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20and 0.38for NRE and YRE, respectively), but well with αw (r = 0.66and 0.42 for NREand YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error =45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport at macrotidal HRE.

  20. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS

    USGS Publications Warehouse

    Warrick, J.A.; Mertes, L.A.K.; Siegel, D.A.; Mackenzie, C.

    2004-01-01

    A technique is presented for estimating suspended sediment concentrations of turbid coastal waters with remotely sensed multi-spectral data. The method improves upon many standard techniques, since it incorporates analyses of multiple wavelength bands (four for Sea-viewing Wide Field of view Sensor (SeaWiFS)) and a nonlinear calibration, which produce highly accurate results (expected errors are approximately ±10%). Further, potential errors produced by erroneous atmospheric calibration in excessively turbid waters and influences of dissolved organic materials, chlorophyll pigments and atmospheric aerosols are limited by a dark pixel subtraction and removal of the violet to blue wavelength bands. Results are presented for the Santa Barbara Channel, California where suspended sediment concentrations ranged from 0–200+ mg l−1 (±20 mg l−1) immediately after large river runoff events. The largest plumes were observed 10–30 km off the coast and occurred immediately following large El Niño winter floods.

  1. The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments.

    PubMed

    Wyness, Adam J; Paterson, David M; Defew, Emma C; Stutter, Marc I; Avery, Lisa M

    2018-05-29

    The extent of pathogen transport to and within aquatic systems depends heavily on whether the bacterial cells are freely suspended or in association with suspended particles. The surface charge of both bacterial cells and suspended particles affects cell-particle adhesion and subsequent transport and exposure pathways through settling and resuspension cycles. This study investigated the adhesion of Faecal Indicator Organisms (FIOs) to natural suspended intertidal sediments over the salinity gradient encountered at the transition zone from freshwater to marine environments. Phenotypic characteristics of three E. coli strains, and the zeta potential (surface charge) of the E. coli strains and 3 physically different types of intertidal sediments was measured over a salinity gradient from 0 to 5 Practical Salinity Units (PSU). A batch adhesion microcosm experiment was constructed with each combination of E. coli strain, intertidal sediment and 0, 2, 3.5 and 5 PSU. The zeta potential profile of one E. coli strain had a low negative charge and did not change in response to an increase in salinity, and the remaining E. coli strains and the sediments exhibited a more negative charge that decreased with an increase in salinity. Strain type was the most important factor in explaining cell-particle adhesion, however adhesion was also dependant on sediment type and salinity (2, 3.5 PSU > 0, 5 PSU). Contrary to traditional colloidal (Derjaguin, Landau, Vervey, and Overbeek (DLVO)) theory, zeta potential of strain or sediment did not correlate with cell-particle adhesion. E. coli strain characteristics were the defining factor in cell-particle adhesion, implying that diverse strain-specific transport and exposure pathways may exist. Further research applying these findings on a catchment scale is necessary to elucidate these pathways in order to improve accuracy of FIO fate and transport models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spatial and Temporal Patterns of Suspended Sediment Yields in Nested Urban Catchments

    NASA Astrophysics Data System (ADS)

    Kemper, J. T.; Miller, A. J.; Welty, C.

    2017-12-01

    In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. Near real-time turbidity and discharge data have been collected continuously for more than four years at five stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Using turbidity-concentration relationships based on sample analyses at the gage site, sediment yields for each station can be quantified for a variety of temporal scales. Sediment yields have been calculated for 60+ different storms across four years. Yields show significant spatial variation, both at equivalent sub-watershed scales and from headwaters to mouth. Yields are higher at the headwater station with older development and virtually no stormwater management (DR5) than at the station with more recent development and more extensive stormwater management (DR2). However, this pattern is reversed for the stations at the next larger scale: yields are lower at DR4, downstream of DR5, than at DR3, downstream of DR2. This suggests spatial variation in the dominant sediment sources within each subwatershed. Additionally, C-Q hysteresis curves display consistent counterclockwise behavior at the DR4 station, in contrast to the consistent clockwise behavior displayed at the DR3 station. This further suggests variation in dominant sediment sources (perhaps distal vs local, respectively). We observe consistent seasonal trends in the relative magnitudes of sediment yield for different subwatersheds (e.g. DR3>DR4 in summer, DR5>DR2 in spring). We also observe significant year-to-year variation in sediment yield at the headwater and intermediate scales, whereas yields at the 14 sq km scale are largely similar across the monitored years. This observation would be consistent with the possibility that internal storage and remobilization tend to modulate downstream yields even with spatial

  3. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  4. Use of vegetated drainage ditches and low-grade weirs for aquaculture effluent mitigation: II. Suspended sediment

    USDA-ARS?s Scientific Manuscript database

    Total suspended solids are a priority pollutant under the Clean Water Act and a point of concern for aquaculture facilities. The use of ubiquitous vegetated ditches on the aquaculture landscape may serve as an environmentally and economically sustainable practice for reducing suspended sediment cont...

  5. Introduction to suspended-sediment sampling

    USGS Publications Warehouse

    Nolan, K. Michael; Gray, John R.; Glysson, G. Douglas

    2005-01-01

    Knowledge of the amount and timing of sediment transport in streams is important to those directly or indirectly responsible for developing and managing water and land resources. Such data are often used to judge the health of watershed and the success or failure of activities designed to mitigate adverse impacts of sediment on streams and stream habitats. This training class presents an introduction to methods currently used by the U.S. Geological Survey (USGS) to sample suspended-sediment concentrations in streams. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos interspersed in the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class, which is registered as class SW4416 with the National Training Center of the USGS, should take two or three hours to complete. In order to use the presentation provided via this Web page, you will need to download a large disc images (linked below) and 'burn' it to a blank CD-ROM using a CD-ROM recorder on your computer. The presentation will only run on a Windows-based personal computer (PC). The presentation was developed using Macromedia Director MX 20041 and is contained in the file 'SIR05-5077.exe' which should autolaunch. If it does not, the presentation can be started by double-clicking on the file name. A sound card and speakers are necessary to take advantage of narrations that accompany the presentation. Text of narrations is provided, if you are unable to listen to narrations. Instructions for installing and running the presentation are included in the file 'Tutorial.htm', which is on the CD. 1 Registered Trademark: Macromedia Incorporated

  6. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.

  7. Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA

    USGS Publications Warehouse

    Yellen, Brian; Woodruff, Jon D.; Kratz, Laura N.; Mabee, Steven B.; Morrison, Jonathan; Martini, Anna M.

    2014-01-01

    Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10–40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.

  8. Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA

    NASA Astrophysics Data System (ADS)

    Yellen, B.; Woodruff, J. D.; Kratz, L. N.; Mabee, S. B.; Morrison, J.; Martini, A. M.

    2014-12-01

    Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10-40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.

  9. Contributions of human activities to suspended sediment yield during storm events from a small, steep, tropical watershed

    NASA Astrophysics Data System (ADS)

    Messina, A. M.; Biggs, T. W.

    2016-07-01

    Suspended sediment concentrations (SSC) and yields (SSY) were measured during storm and non-storm periods from undisturbed and human-disturbed portions of a small (1.8 km2), mountainous watershed that drains to a sediment-stressed coral reef. Event-wise SSY (SSYEV) was calculated for 142 storms from measurements of water discharge (Q), turbidity (T), and SSC measured downstream of three key sediment sources: undisturbed forest, an aggregate quarry, and a village. SSC and SSYEV were significantly higher downstream of the quarry during both storm- and non-storm periods. The human-disturbed subwatershed (10.1% disturbed) accounted for an average of 87% of SSYEV from the watershed. Observed sediment yield (mass) to the coast, including human disturbed subwatersheds, was 3.9× the natural background. Specific SSY (mass/area) from the disturbed quarry area was 49× higher than from natural forest compared with 8× higher from the village area. Similar to mountainous watersheds in semi-arid and temperate climates, SSYEV from both the undisturbed and disturbed watersheds correlated closely with maximum event discharge (Qmax), event total precipitation and event total Q, but not with the Erosivity Index. Best estimates of annual SSY varied by method, from 45 to 143 tons/km2/yr from the undisturbed subwatershed, 441-598 tons/km2/yr from the human-disturbed subwatershed, and 241-368 tons/km2/yr from the total watershed. Sediment yield was very sensitive to disturbance; the quarry covers 1.1% of the total watershed area, but contributed 36% of SSYEV. Given the limited access to gravel for infrastructure development, sediment disturbance from local aggregate mining may be a critical sediment source on remote islands in the Pacific and elsewhere. Identification of erosion hotspots like the quarry using rapid, event-wise measures of suspended sediment yield will help efforts to mitigate sediment stress and restore coral reefs.

  10. Estimating concentrations of fine-grained and total suspended sediment from close-range remote sensing imagery

    USGS Publications Warehouse

    Mosbrucker, Adam; Spicer, Kurt R.; Christianson, Tami; Uhrich, Mark A.

    2015-01-01

    Fluvial sediment, a vital surface water resource, is hazardous in excess. Suspended sediment, the most prevalent source of impairment of river systems, can adversely affect flood control, navigation, fisheries and aquatic ecosystems, recreation, and water supply (e.g., Rasmussen et al., 2009; Qu, 2014). Monitoring programs typically focus on suspended-sediment concentration (SSC) and discharge (SSQ). These time-series data are used to study changes to basin hydrology, geomorphology, and ecology caused by disturbances. The U.S. Geological Survey (USGS) has traditionally used physical sediment sample-based methods (Edwards and Glysson, 1999; Nolan et al., 2005; Gray et al., 2008) to compute SSC and SSQ from continuous streamflow data using a sediment transport-curve (e.g., Walling, 1977) or hydrologic interpretation (Porterfield, 1972). Accuracy of these data is typically constrained by the resources required to collect and analyze intermittent physical samples. Quantifying SSC using continuous instream turbidity is rapidly becoming common practice among sediment monitoring programs. Estimations of SSC and SSQ are modeled from linear regression analysis of concurrent turbidity and physical samples. Sediment-surrogate technologies such as turbidity promise near real-time information, increased accuracy, and reduced cost compared to traditional physical sample-based methods (Walling, 1977; Uhrich and Bragg, 2003; Gray and Gartner, 2009; Rasmussen et al., 2009; Landers et al., 2012; Landers and Sturm, 2013; Uhrich et al., 2014). Statistical comparisons among SSQ computation methods show that turbidity-SSC regression models can have much less uncertainty than streamflow-based sediment transport-curves or hydrologic interpretation (Walling, 1977; Lewis, 1996; Glysson et al., 2001; Lee et al., 2008). However, computation of SSC and SSQ records from continuous instream turbidity data is not without challenges; some of these include environmental fouling, calibration, and

  11. Comparison of Erosion Rates Estimated by Sediment Budget Techniques and Suspended Sediment Monitoring and Regulatory Implications

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; Eads, R.

    2007-12-01

    Watersheds in the northern California Coast Range have been designated as "impaired" with respect to water quality because of excessive sediment loads and/or high water temperature. Sediment budget techniques have typically been used by regulatory authorities to estimate current erosion rates and to develop targets for future desired erosion rates. This study examines erosion rates estimated by various methods for portions of the Gualala River watershed, designated as having water quality impaired by sediment under provisions of the Clean Water Act Section 303(d), located in northwest Sonoma County (~90 miles north of San Francisco). The watershed is underlain by Jurassic age sedimentary and meta-sedimentary rocks of the Franciscan formation. The San Andreas Fault passes through the western edge of watershed, and other active faults are present. A substantial portion of the watershed is mantled by rock slides and earth flows, many of which are considered dormant. The Coast Range is geologically young, and rapid rates of uplift are believed to have contributed to high erosion rates. This study compares quantitative erosion rate estimates developed at different spatial and temporal scales. It is motivated by a proposed vineyard development project in the watershed, and the need to document conditions in the project area, assess project environmental impacts and meet regulatory requirements pertaining to water quality. Erosion rate estimates were previously developed using sediment budget techniques for relatively large drainage areas (~100 to 1,000 km2) by the North Coast Regional Water Quality Control Board and US EPA and by the California Geological Survey. In this study, similar sediment budget techniques were used for smaller watersheds (~3 to 8 km2), and were supplemented by a suspended sediment monitoring program utilizing Turbidity Threshold Sampling techniques (as described in a companion study in this session). The duration of the monitoring program to date

  12. Research Note:Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century

    NASA Astrophysics Data System (ADS)

    Yang, S. L.; Shi, Z.; Zhao, H. Y.; Li, P.; Dai, S. B.; Gao, A.

    The surface erosion area in the Yangtze River basin increased from 364×103 km2 in the 1950s to 707×103 km2 in 2001 due to a great increase in population. Based on the regression relationship between surface erosion area and population, the surface erosion area was predicted to be about 280×103 km2 at the beginning of the 20th century. The sediment yield, which increased by about 30% during the first six decades of the 20th century, was closely related to the surface erosion area in this river basin. The Yangtze annual suspended sediment flux into the estuary was about 395×106 t a-1 at the beginning of the century, and this gradually increased to an average of 509×106 t a-1 in the 1960s. The increase in the suspended sediment flux into the estuary was accelerated in the 1950s and the 1960s due to the rapid increase in population and land use immediately after the Second World War and the Liberation War. After the riverine suspended sediment flux reached its maximum in the 1960s, it decreased to <206×106 t a-1 in 2003. Construction of dams was found to be the principal cause for this decreasing trend because, during the same period, (a) the riverine water discharge did not show a decreasing trend, (b) water diversion was not influential and (c) sedimentation in lakes and canals of the middle and lower reaches did not increase. The total storage capacity of reservoirs has increased dramatically over the past half century. The amount of sediment trapped in reservoirs has increased to more than half a billion t a-1. As a result, the suspended sediment flux into the estuary dramatically decreased, even though the sediment yield from many areas of the basin increased in recent decades. Human activities gradually increased the suspended sediment flux into the estuary before the 1960s and then rapidly decreased it. The last century was a period when the Yangtze suspended sediment flux into the estuary was dramatically affected by human activities.

  13. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments.

    PubMed

    Bessell-Browne, Pia; Negri, Andrew P; Fisher, Rebecca; Clode, Peta L; Duckworth, Alan; Jones, Ross

    2017-04-15

    As part of an investigation of the effects of water quality from dredging/natural resuspension on reefs, the effects of suspended sediment concentrations (SSCs) (0, 30, 100mgL -1 ) and light (~0, 1.1, 8.6molphotonsm -2 d -1 ) were examined alone and in combination, on the corals Acropora millepora, Montipora capricornis and Porites spp. over an extended (28d) period. No effects were observed at any sediment concentrations when applied alone. All corals in the lowest light treatments lost chlorophyll a and discoloured (bleached) after a week. Coral mortality only occurred in the two lowest light treatments and was higher when simultaneously exposed to elevated SSCs. Compared to water quality data collected during large dredging programs and natural resuspension events (and in the absence of sediment deposition as a cause-effect pathway) these data suggest the light reduction associated with turbidity poses a proportionally greater risk than effects of elevated SSCs alone. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantification of Surface Suspended Sediments along a River Dominated Coast with NOAA AVHRR and SeaWiFS Measurements: Louisiana, USA

    NASA Technical Reports Server (NTRS)

    Myint, S. W.; Walker, N. D.

    2002-01-01

    The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.

  15. Particle size distribution of river-suspended sediments determined by in situ measured remote-sensing reflectance.

    PubMed

    Zhang, Yuanzhi; Huang, Zhaojun; Chen, Chuqun; He, Yijun; Jiang, Tingchen

    2015-07-10

    Suspended sediments in water bodies are classified into organic and inorganic matter and have been investigated by remote-sensing technology for years. Focusing on inorganic matter, however, detailed information such as the grain size of this matter has not been provided yet. In this study, we present a new solution for estimating inorganic suspended sediments' size distribution in highly complex Case 2 waters by using a simple spectrometer sensor rather than a backscattering sensor. An experiment was carried out in the Pearl River Estuary (PRE) in the dry season to collect the remote-sensing reflectance (Rrs) and particle size distribution (PSD) of inorganic suspended sediments. Based on Mie theory, PSDs in the PRE waters were retrieved by Rrs, colored dissolved organic matter, and phytoplankton. The retrieved median diameters in 12 stations show good agreement with those of laboratory analysis at root mean square error of 2.604 μm (27.63%), bias of 1.924 μm (20.42%), and mean absolute error of 2.298 μm (24.37%). The retrieved PSDs and previous PSDs were compared, and the features of PSDs in the PRE waters were concluded.

  16. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    USGS Publications Warehouse

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  17. Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Bong; Lee, Guan-hong

    2016-03-01

    Acoustic Doppler Current Profilers (ADCP), designed for measuring velocity profiles, are widely used for the estimation of suspended sediment concentration from acoustic backscatter strength, but its application to estuarine environments requires further refinement. In this study, we examined the inversion capability of two ADCPs with 600 and 1200 kHz in three Korean estuaries: the supra-macrotidal Han River Estuary (HRE), microtidal Nakdong River Estuary (NRE), and anthropogenically altered macrotidal Yeongsan River Estuary (YRE). In particular, we examined the relative importance of the sound attenuations due to water (αw) and sediment (αs) in response to sediment characteristics (size and concentration) as well as changing salinity and temperature. The inverted concentration was compared with reference concentrations obtained either from water samples or Optical Backscatter Sensors. In NRE and YRE, where suspended sediment concentrations were less than 0.2 g/l, the acoustic inversion performed poorly only with αs (r = 0.20 and 0.38 for NRE and YRE, respectively), but well with αw (r = 0.66 and 0.42 for NRE and YRE, respectively). Thus, it is important to accurately constrain αw in low-concentration estuarine environments. However, we did not find that the varying αw performed considerably better than the constant αw. On the other hand, the acoustic inversion was poorest at HRE regardless of αw and αs (r = 0.71 and mean relative error = 45%). The large discrepancy appears to result from the poorly constrained, spatially and temporally varying sediment characteristics (grain size, density and concentration) due to non-local sediment transport in the macrotidal HRE.

  18. Effects of urban best management practices on streamflow and phosphorus and suspended-sediment transport on Englesby Brook in Burlington, Vermont, 2000-2010

    USGS Publications Warehouse

    Medalie, Laura

    2012-01-01

    example, monthly loads assessed using analysis of covariance, which compensated for the effects of streamflow on loads, suggested no difference in phosphorus or suspended-sediment loads between the two periods, whereas the comparison of monthly loads without factoring in streamflow showed an increase. This result could be viewed as evidence that the ponds may have mitigated the effect of greater discharges in the period after construction by preventing a corresponding increase in loads. In another analysis used to adjust for the difference in discharge between the two comparison periods, annual and monthly load results were grouped into dry and wet years. Large (50 percent) reductions in annual loads were observed when data from dry (or wet) years before construction were compared with data from dry (or wet) years after construction. When paired monthly loads of each constituent were grouped into dry and wet years, approximately the same number of months had increases as did decreases with the magnitudes of the decreases generally larger than the magnitudes of the increases. These differences in magnitude explain the decrease in annual loads for dry and wet years. The close association of phosphorus with suspended-sediment data suggested that most of the phosphorus was in the particulate form and was controlled by suspended-sediment dynamics.

  19. Suspended Sediment Loads and Tributary Inputs in the Mississippi River below St. Louis, MO, 1990-2013 Compared With Earlier Results

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; Biedenharn, D. S.; Dahl, T. A.; Kleiss, B.; Little, C. D.

    2017-12-01

    Annual suspended sediment loads and water discharges were calculated in the Mississippi River mainstem channel, and at the most downstream gaging station for major tributaries, from below the Missouri confluence near St. Louis, MO to Belle Chasse, LA, as well as down the Atchafalaya distributary for water years 1990 to 2013. The purpose of the present study was to assess changes in the Mississippi River sediment budget over the past half century, and to examine the continuing role that anthropogenic (e.g., dams, river control works, soil conservation practices) and natural (e.g., rainfall and denudation rates) factors have in controlling these changes. Sixteen of the 17 measured Mississippi River tributaries decreased in total suspended sediment load) from 1970-1978 to 1990-2013. The largest decreases occurred in the 2nd (Ohio River, 41% of 1970-1978) and 4th (Arkansas River, 45% of 1970-1978) largest water sources to the Mississippi. The Missouri River remains the largest Mississippi River tributary in terms of average annual suspended sediment flux; its relative contribution increased from 38% to 51% of the total flux from the 17 measured tributaries, even as its total suspended flux declined by 13%. Averaged over the period of study (WY 1990-2013), water flux increased by 468% and sediment flux increased by 37,418% downstream from the Gavin's Point Dam to the confluence with the Mississippi. Possible reasons for this disproportional increase in suspended sediment load downstream include sediment-rich contributions from 2nd order rivers below the dams and channel incision. Suggested station improvements to the system include improved monitoring of the Upper Mississippi and Arkansas River tributaries, establishing additional mainstem stations in the reach between Thebes, IL and Arkansas City, AR, and standardization of laboratory and field methodologies to eliminate a major source of station-to-station and time-series variability in the sediment budgeting.

  20. Concentrations and Loads of Nutrients and Suspended Sediments in Englesby Brook and Little Otter Creek, Lake Champlain Basin, Vermont, 2000-2005

    USGS Publications Warehouse

    Medalie, Laura

    2007-01-01

    The effectiveness of best-management practices (BMPs) in improving water quality in Lake Champlain tributaries was evaluated from 2000 through 2005 on the basis of analysis of data collected on concentrations of total phosphorus and suspended sediment in Englesby Brook, an urban stream in Burlington, and Little Otter Creek, an agricultural stream in Ferrisburg. Data also were collected on concentrations of total nitrogen in the Englesby Brook watershed. In the winter of 2001-2002, one of three planned structural BMPs was installed in the urban watershed. At approximately the same time, a set of barnyard BMPs was installed in the agricultural watershed; however, the other planned BMPs, which included streambank fencing and nutrient management, were not implemented within the study period. At Englesby Brook, concentrations of phosphorus ranged from 0.024 to 0.3 milligrams per liter (mg/L) during base-flow and from 0.032 to 11.8 mg/L during high-flow conditions. Concentrations of suspended sediment ranged from 3 to 189 mg/L during base-flow and from 5 to 6,880 mg/L during high-flow conditions. An assessment of the effectiveness of an urban BMP was made by comparing concentrations and loads of phosphorus and suspended sediment before and after a golf-course irrigation pond in the Englesby Brook watershed was retrofitted with the objective of reducing sediment transport. Results from a modified paired watershed study design showed that the BMP reduced concentrations of phosphorus and suspended sediment during high-flow events - when average streamflow was greater than 3 cubic feet per second. While construction of the BMP did not reduce storm loads of phosphorus or suspended sediment, an evaluation of changes in slope of double-mass curves showing cumulative monthly streamflow plotted against cumulative monthly loads indicated a possible reduction in cumulative loads of phosphorus and suspended sediment after BMP construction. Results from the Little Otter Creek

  1. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Suspended sediment in tidal currents: an often-neglected pollutant that aggravates mangrove degradation.

    PubMed

    Fu, Weiguo; Liu, Daomin; Yin, Qilin; Wu, Yanyou; Li, Pingping

    2014-07-15

    In this study, the influence of sediments deposited on the leaves of different mangrove species due to tidal movements on photosynthetic characteristics and chlorophyll fluorescence of the species was explored. The degree of accelerated degradation among different mangrove species was also obtained. Results show that the leaves of mangrove species have varying degrees of sediment deposition. Sediment deposition leads to photosynthetic reduction and physiological stress among Kandelia candel, Aegiceras corniculatum, and Avicennia marina in the Quanzhou Bay. Thus, the deposition of suspended sediments from tidal currents is an important environmental factor that accelerates the degradation of some mangrove species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. An evaluation of flow-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1995-01-01

    Abstract - Flow-stratified sampling is a new method for sampling water quality constituents such as suspended sediment to estimate loads. As with selection-at-list-time (SALT) and time-stratified sampling, flow-stratified sampling is a statistical method requiring random sampling, and yielding unbiased estimates of load and variance. It can be used to estimate event...

  4. Seasonal variability of suspended sediment transport in the Seine river catchment area (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Baati, Selma; Ayrault, Sophie; Bonte, Philippe; Evrard, Olivier; Kissel, Catherine

    2010-05-01

    This study consists in an innovative application of environmental physico-chemical techniques on fluvial sediments with the aim to trace the seasonal changes in suspended sediment transport of the complex Seine river catchment area in northern France. The aim of this project is to develop a detailed understanding for the discrimination of naturally triggered and anthropogenic induced processes and their temporal changes with weather conditions. With a focus on the heavy metal fraction, we determine the regional distribution of the suspended material and search for environmental fingerprints demonstrating the influence of fluvial transport mechanisms, changes in concentration related to discharge variations or different sediment sources, and in-situ alteration caused by variations in the geochemical conditions (oxy-redox, pH, Eh, etc.). To achieve these goals, we apply a combination of straightforward rock magnetic hysteresis measurements (performed using an AGM2900 at the LSCE) and advanced scanning electron microscopy analyses (SEM). This interdisciplinary approach allows refining the detailed analysis of sediment trap samples, originating from Tessier et al. (2003), as recently shown by Franke et al. (2009). In our preliminary results, we observe a general increase in magnetic concentrations from summer to winter conditions, coupled with a magneto-mineralogic change to rather reduced metallic mineral phases. However, each riversection of the Seine system shows its specific trend line depending on the regional initial input, weathering conditions, drainage area and potential pollution sources. A systematic analysis of the detailed results will allow highlighting the climatic/seasonal influence on the metallic particle assembly. Keywords: Seine river system, environmental magnetism, suspended particulate matter, anthropogenic and natural input, magnetic hysteresis, scanning electron microscopy (SEM),, heavy metal pollution, seasonal variability References: Franke

  5. Evaluation of suspended sediment concentrations in a hydropower reservoir by using a Laser In-Situ Scattering and Transmissometry instrument

    NASA Astrophysics Data System (ADS)

    Lizano, Laura; Haun, Stefan

    2014-05-01

    Sediment transported by rivers start to settle when they enter a reservoir due to reduced flow velocities and turbulences. Reservoir sedimentation is a common problem today and eliminates about 1% of the worldwide existing storage capacity annually. However, depending on the climate conditions and the geology in the catchment area this value can increase up to 5% and higher. Among the results of reservoir deposition is the loss of the storage capacity, a loss of flood control benefits or even blockage of intakes due to sediment accumulation in front of the structure. As a consequence, management tasks have to be planned and conducted to guarantee a safe and economical reservoir operation. A major part of the sediment particles entering the reservoir is transported as suspended sediment load. Hence, accurate knowledge of the transport processes of these particles in the reservoir is advantageous for planning and predicting a sustainable reservoir operation. Of special interest is the spatial distribution of the grain sizes in the reservoir, for example, which grain sizes can be expected to enter the waterway and have a major contribution in turbine abrasion. The suspended sediment concentrations and the grain size distribution along the Sandillal reservoir in Costa Rica were measured in this study by using a Laser In-Situ Scattering and Transmissometry instrument (LISST-SL). The instrument measures sediment concentrations as well as the grain size distributions instantaneously (32 grain sizes in the range between 2.1 and 350 μm) with a frequency of 0.5 Hertz. The measurements were applied at different pre-specified transects along the reservoir, in order to assess the spatial distribution of the suspended sediment concentrations. The measurements were performed in vertical lines, at different depths and for a period of 60 seconds. Additionally, the mean grain size distribution was calculated from the data for each measured point. The measurements showed that the

  6. Water quality assessment of the San Joaquin--Tulare basins, California; analysis of available data on nutrients and suspended sediment in surface water, 1972-1990

    USGS Publications Warehouse

    Kratzer, Charles R.; Shelton, Jennifer L.

    1998-01-01

    Nutrients and suspended sediment in surface water of the San Joaquin-Tulare basins in California were assessed using 1972-1990 data from the U.S. Geological Survey's National Water Information System and the U.S. Environmental Protection Agency's STOrage and RETrieval database. Loads of nutrients and suspended sediment were calculated at several sites and the contributions from point and nonpoint sources were estimated. Trends in nutrient and suspended-sediment concentrations were evaluated at several sites, especially at the basin outlet on the San Joaquin River. Comparisons of nutrient and suspended sediment concentrations were made among three environmental settings: the San Joaquin Valley--west side, the San Joaquin Valley--east side, and the Sierra Nevada.

  7. Trends in streamflow and suspended sediment after logging, North Fork Caspar Creek

    Treesearch

    Jack Lewis; Elizabeth T. Keppeler

    2007-01-01

    Streamflow and suspended sediment were intensively monitored at fourteen gaging stations before and after logging a second-growth redwood (Sequoia sempervirens) forest. About 50 percent of the watershed was harvested, primarily by clear-cutting with skyline-cable systems. New road construction and tractor skidding were restricted to gently-sloping...

  8. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2008-01-01

    The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the

  9. Simulated effects of existing and proposed surface-water impoundments and gas-well pads on streamflow and suspended sediment in the Cypress Creek watershed, Arkansas

    USGS Publications Warehouse

    Hart, Rheannon M.

    2014-01-01

    The Arkansas Natural Resources Commission and the Arkansas Department of Environmental Quality list suspended sediment from “poor pastures” as a primary source of nonpoint-source pollution in north-central Arkansas, but unpaved (gravel) roads are another important source of suspended sediment. Because of the high sediment-loading rates associated with gravel roads and the large amount of pasture within the watershed, the factors most responsible for suspended sediment within the Cypress Creek watershed are likely associated more with the pastureland and gravel roads, than factors associated with gas-well pads/pipelines.

  10. Sources of suspended-sediment loads in the lower Nueces River watershed, downstream from Lake Corpus Christi to the Nueces Estuary, south Texas, 1958–2010

    USGS Publications Warehouse

    Ockerman, Darwin J.; Heitmuller, Franklin T.; Wehmeyer, Loren L.

    2013-01-01

    During 2010, additional suspended-sediment data were collected during selected runoff events to provide new data for model testing and to help better understand the sources of suspended-sediment loads. The model was updated and used to estimate and compare sediment yields from each of 64 subwatersheds comprising the lower Nueces River watershed study area for three selected runoff events: November 20-21, 2009, September 7-8, 2010, and September 20-21, 2010. These three runoff events were characterized by heavy rainfall centered near the study area and during which minimal streamflow and suspended-sediment load entered the lower Nueces River upstream from Wesley E. Seale Dam. During all three runoff events, model simulations showed that the greatest sediment yields originated from the subwatersheds, which were largely cropland. In particular, the Bayou Creek subwatersheds were major contributors of suspended-sediment load to the lower Nueces River during the selected runoff events. During the November 2009 runoff event, high suspended-sediment concentrations in the Nueces River water withdrawn for the City of Corpus Christi public-water supply caused problems during the water-treatment process, resulting in failure to meet State water-treatment standards for turbidity in drinking water. Model simulations of the November 2009 runoff event showed that the Bayou Creek subwatersheds were the primary source of suspended-sediment loads during that runoff event.

  11. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.

  12. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow

    USGS Publications Warehouse

    Houser, J.N.; Mulholland, P.J.; Maloney, K.O.

    2006-01-01

    Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R2 = 0.71, p = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R2 = 0.75, p = 0.008, range = 1.9-6.2 ??g L-1) decreased with increasing disturbance intensity; and ammonia (NH 4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca 2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions. ?? ASA, CSSA, SSSA.

  13. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, Jeffrey N

    2006-01-01

    Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R 2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R 2 = 0.71, pmore » = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R 2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R 2 = 0.75, p = 0.008, range = 1.9-6.2 {micro}g L-1) decreased with increasing disturbance intensity; and ammonia (NH4 +), nitrate (NO3 -), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R 2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3 - during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.« less

  14. Modelling Suspended Sediment Transport in Monsoon Season: A Case Study of Pahang River Estuary, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan

    2013-04-01

    Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest

  15. Overview of selected surrogate technologies for high-temporal resolution suspended-sediment monitoring

    USGS Publications Warehouse

    Gray, John R.; Gartner, Jeffrey W.

    2010-01-01

    Traditional methods for characterizing selected properties of suspended sediments in rivers are being augmented and in some cases replaced by cost-effective surrogate instruments and methods that produce a temporally dense time series of quantifiably accurate data for use primarily in sediment-flux computations. Turbidity is the most common such surrogate technology, and the first to be sanctioned by the U.S. Geological Survey for use in producing data used in concert with water-discharge data to compute sediment concentrations and fluxes for storage in the National Water Information System. Other technologies, including laser-diffraction, digital photo-optic, acoustic-attenuation and backscatter, and pressure-difference techniques are being evaluated for producing reliable sediment concentration and, in some cases, particle-size distribution data. Each technology addresses a niche for sediment monitoring. Their performances range from compelling to disappointing. Some of these technologies have the potential to revolutionize fluvial-sediment data collection, analysis, and availability.

  16. Organic matter dynamics and stable isotopes for tracing sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-01-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by impact on health and fitness of free swimming fish and siltation of the riverbed. The later results in a decrease of hydraulic conductivity and therefore smaller oxygen supply to the salmonid embryos. Additionally, oxygen demand within riverbeds will increase as the pool of organic matter increases. We assessed the temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season and used C isotopes as well as the C/N atomic ratio to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the sources of SS in respect of time and space. Organic matter fractions in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and precipitation probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to pasture and arable land. The fraction of SS originating from upper watershed riverbed sediment increased at all sites during high flow. Its mean fraction decreased from up- to downstream. During base flow conditions, the major sources of SS are pasture and arable land. The later increased during rainy and warmer periods probably due to snow melting and erosion processes. These modeling results support the measured increased DOC and NO3 concentrations during high flow.

  17. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona

    USGS Publications Warehouse

    Melis, T.S.; Topping, D.J.; Rubin, D.M.; Bogen, J.; Fergus, T.; Walling, D.

    2003-01-01

    High-resolution monitoring of sand mass balance in the Colorado River below Glen Canyon Dam, Arizona, USA, is needed for environmental management. In the Grand Canyon, frequent collection of suspended-sediment samples from cableways is logistically complicated, costly and provides limited spatial and temporal resolution. In situ laser sensors were tested in the Colorado River as an alternative method for monitoring the river's suspended transport. LISST data were collected at a fixed-depth, near-shore site while isokinetic measurements were simultaneously made from a nearby cableway. Diurnal variations in LISST grain size and concentration data compared well with depth-integrated, cross-section data. Tbe LISST was also successfully used to electronically trigger an ISCO 6712 pump sampler to provide continuous monitoring during periods when suspended concentrations exceeded the LISST's measurement range. Initial results indicate that the LISST can provide useful high-resolution suspended-sediment data within the Colorado River, when optics are maintained on a weekly basis.

  18. Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: A reappraisal

    NASA Astrophysics Data System (ADS)

    Orpin, Alan R.; Ridd, Peter V.

    2012-09-01

    Suspended sediment in the coastal zone is an important limiting factor for the growth and health of inshore coral reefs. The Great Barrier Reef (GBR) lagoon receives sediment from a number of tropical rivers and the physical and biological effects of riverine discharge and turbidity within the lagoon are of considerable scientific and public interest. Published data from two inshore regions of the GBR are reviewed herein to evaluate the relative influence of river plumes and wave resuspension on suspended sediment concentration (SSC) around coral communities over a range of timescales. Data from Cleveland Bay and from other sites near the mouth of the Tully River show that wave resuspension is the most dominant mechanism controlling SSC at inshore reefs. At many nearshore areas today fine-grained bed sediment is abundant, consistent with millennial-scale geological evidence of sediment dispersal prior to European settlement and catchment impacts. Flocculation, particle settling and dilution occurs within the river plume, and riverine sediment concentrations at reefs directly attributable to individual flood inputs is significantly reduced, suggesting that the plume component is a relatively small contribution to the total suspended sediment mass balance over inter-annual timescales. Resuspension events can generate higher ambient SSC than that measured in flood waters (e.g. Tully River). In addition, while visually spectacular, satellite and aerial images offer limited quantitative information of total sediment load carried by hypopycnal plumes, as many of these plumes may contain algal blooms but relatively low concentrations of suspended sediment (ca. <5 mg/l). Nonetheless, the cumulative effect of sediment-laden plumes may be a vector for other adsorbed contaminants of potential ecological concern, but coral smothering by hypopycnal plumes alone appears an unlikely impact particularly at inner- and middle-shelf reefs exposed to high wave energy and resuspension

  19. Estimation of suspended sediment flux in streams using continuous turbidity and flow data coupled with laboratory concentrations

    Treesearch

    Jack Lewis

    2002-01-01

    The widening use of sediment surrogate measurements such as turbidity necessitates consideration of new methods for estimating sediment flux. Generally, existing methods can be simply be used in new ways. The effectiveness of a method varies according to the quality of the surrogate data and its relation to suspended sediment concentration (SSC). For this discussion,...

  20. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  1. Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed Hamidreza; Singh, Vijay P.

    2017-11-01

    Spatiotemporal behavior of sediment yield is a key for proper watershed management. This study analyzed statistical characteristics and trends of suspended sediment concentration (SCS), flow discharge (FD) and sediment particle sizes using data from 24 gage stations scattered throughout the United States. Analysis showed significant time- and location-specific differences of these variables. The median values of SSC, FD and percentage of particle sizes smaller than 63 μm (P63) for all 24 gage stations were found to be 510.236 mg l-1 (right skewed), 45.406 m3 s-1 (left skewed) and 78.648% (right skewed), respectively. Most of the stations exhibited significant trends (P < 0.001) in daily SSC (18 stations; one increasing and 17 decreasing), FD (19 stations; seven increasing and 12 decreasing), and P63 (15 stations; five increasing and 10 decreasing) as well. Further, 46% of the stations exhibited significant trends in all three variables. The wash load significantly contributed (79.085 ± 11.343%) to sediment load recorded at the gage stations. Results of the study can be used for developing best watershed management practices which may call for local or regional planning based on natural (i.e., precipitation amount, type and erosivity, watershed area, and soil erodibility) and human-affected (i.e., land use and hydraulic structures and water resources management) factors governing the study variables.

  2. Field observations of cohesive sediment dynamics in a partially stratified estuary

    NASA Astrophysics Data System (ADS)

    Huang, I. B.; Monismith, S. G.; Manning, A. J.

    2016-12-01

    This research focuses on understanding cohesive sediment dynamics and transport in a partially stratified estuary, the San Francisco Bay-Delta estuary. Three different datasets are used in this study: 1) Polaris transects: seven longitudinal transects collected on the R/V Polaris in collaboration with the USGS SFB monthly water monitoring project (http://sfbay.wr.usgs.gov/access/wqdata); 2) Questuary transects: two two-day transects collected on the R/V Questuary spanning from Suisun Bay to the Delta, near Sacramento, CA; and 3) Questuary stationary: a 48-hr stationary profiling experiment collected on the R/V Questuary at the low-salinity zone in Rio Vista, CA. Altogether, these cruises covered a spatial range of approximately 220 km from June 2008 to November 2015. Vertical profiles of particle size distributions (PSDs), total floc volume concentrations, pressure, salinity, temperature, fluorescence, suspended sediment concentrations (SSC via optical backscatter calibration), and photosynthetically irradiance (PAR) were collected in all experiments using a LISST 100X Type B or Type C (Sequoia Scientific) and a SBE 19+ CTD (Seabird Electronics). Background currents were monitored using a downward-looking 600 or 1200 kHz ADCP (RDI Teledyne) on all Questuary datasets, and in-situ dissipation profiles were measured using a free-falling VMP-200 (Rockland Scientific) in all datasets except for one Polaris transect. We make the following main observations. First, suspended sediment flocculation significantly enhances particle fall velocity and therefore sediment removal from the water column. Second, we argue that estuarine physics is the main driving mechanism behind floc size changes, rather than chemical or biological factors. Lastly, we show that suspended sediment and light penetration relationships can be improved by accounting for floc size changes under certain conditions.

  3. The effects of low-tide rainfall on metal content of suspended sediment in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Moskalski, S. M.; Torres, R.; Bizimis, M.; Bergamaschi, B. A.; Fleck, J.; Goni, M. A.

    2012-12-01

    Rain falling near low tide is capable of eroding and transporting cohesive sediment from marsh and mudflat surfaces. Given that metals adsorb strongly to silt- and clay-sized particles, it is conceivable that lowtide rainfall may also liberate previously-deposited metals from storage in intertidal sediment. To investigate the potential for rainfall as an agent of remobilization of metals, this study tested the hypothesis of sediment, and therefore metals and nutrients, mobilization during these punctuated low-tide rainfall events. Water samples were collected during low-tide rain events in winter and wind resuspension events in summer from a marsh in central California. The concentrations of suspended sediment, particulate organic carbon and nitrogen, and total adsorbed concentration (mass of metal per volume of filtered water) of most metals were higher during a low tide rainfall event than during wind-only and fair-weather events. Metal contents (mass of metal per mass of sediment) were also greater during the rain event for most metals. Principle components analysis and the relationships between total adsorbed metals and SSC suggest rainfall during low tide can mobilize a different source of sediment than the background sediment available for tidal and wind-wave resuspension. The metal content of bulk sediment samples from around the study area could not be matched satisfactorily to the suspended sediment in any of the events, implying that bulk sediment should not be used to extrapolate to suspended sediment in terms of adsorbed metal content. Some of the adsorbed metals were present during the rain event in amounts that could be toxic, depending on the actual bioavailability of the metals.; Summary plots of measured organic parameters. (A) POC (B) PN (C) C:N (D) total leachable metal concentration, sum of all measured metals. The solid line inside box is the median and the dashed line is the mean.

  4. Evaluation of the method of collecting suspended sediment from large rivers by discharge-weighted pumping and separation by continuous- flow centrifugation

    USGS Publications Warehouse

    Moody, J.A.; Meade, R.H.

    1994-01-01

    The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors

  5. Pesticide concentrations in water and in suspended and bottom sediments in the New and Alamo rivers, Salton Sea Watershed, California, April 2003

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Orlando, James L.; Kuivila, Kathryn

    2004-01-01

    This report contains pesticide concentration data for water, and suspended and bed sediment samples collected in April 2003 from twelve sites along the New and Alamo Rivers in the Salton Sea watershed, in southeastern California. The study was done in collaboration with the California State Regional Water Quality Control Board, Colorado River Region, to assess inputs of current-use pesticides associated with water and sediment into the New and Alamo Rivers. Five sites along the New River and seven sites along the Alamo River, downstream of major agricultural drains, were selected and covered the lengths of the rivers from the international boundary to approximately 1.5 km from the river mouths. Sampling from bridges occurred at seven of the twelve sites. At these sites, streamflow measurements were taken. These same sites were also characterized for cross-stream homogeneity by measuring dissolved oxygen, pH, specific conductance, temperature, and suspended solids concentration at several vertical (depths) and horizontal (cross-stream) points across the river. Large volume water samples (200?300 L) were collected for isolation of suspended sediments by flow-through centrifugation. Water from the outflow of the flow-through centrifuge was sampled for the determination of aqueous pesticide concentrations. In addition, bottom sediments were sampled at each site. Current-use pesticides and legacy organochlorine compounds (p,p'-DDT, p,p'-DDE and p,p'-DDD) were extracted from sediments and measured via gas chromatography/mass spectrometry (GC/MS). Organic carbon and percentage of fines were also determined for suspended and bottom sediments. Cross-stream transects of dissolved constituents and suspended sediments showed that the rivers were fairly homogeneous at the sites sampled. Streamflow was higher at the outlet sites, with the Alamo River having higher flow (1,240 cfs) than the New River (798 cfs). Twelve current-use pesticides, one legacy organochlorine compound (p

  6. Nutrient, suspended sediment, and trace element loads in the Blackstone River Basin in Massachusetts and Rhode Island, 2007 to 2009

    USGS Publications Warehouse

    Zimmerman, Marc J.; Waldron, Marcus C.; DeSimone, Leslie A.

    2015-01-01

    Analysis of the representative constituents (total phosphorus, total chromium, and suspended sediment) upstream and downstream of impoundments indicated that the existing impoundments, such as Rice City Pond, can be sources of particulate contaminant loads in the Blackstone River. Loads of particulate phosphorus, particulate chromium, and suspended sediment were consistently higher downstream from Rice City Pond than upstream during high-flow events, and there was a positive, linear relation between streamflow and changes in these constituents from upstream to downstream of the impoundment. Thus, particulate contaminants were mobilized from Rice City Pond during high-flow events and transported downstream. In contrast, downstream loads of particulate phosphorus, particulate chromium, and suspended sediment were generally lower than or equal to upstream loads for the former Rockdale Pond impoundment. Sediments associated with the former impoundment at Rockdale Pond, breached in the late 1960s, did not appear to be mobilized during the high-flow events monitored during this study.

  7. Vertical suspsended sediment fluxes observed from ocean gliders

    NASA Astrophysics Data System (ADS)

    Merckelbach, Lucas; Carpenter, Jeffrey

    2016-04-01

    Many studies trying to understand a coastal system in terms of sediment transport paths resort to numerical modelling - combining circulation models with sediment transport models. Two aspects herein are crucial: sediment fluxes across the sea bed-water column interface, and the subsequent vertical mixing by turbulence. Both aspects are highly complex and have relatively short time scales, so that the processes involved are implemented in numerical models as parameterisations. Due to the effort required to obtain field observations of suspended sediment concentrations (and other parameters), measurements are scarce, which makes the development and tuning of parameterisations a difficult task. Ocean gliders (autonomous underwater vehicles propelled by a buoyancy engine) provide a platform complementing more traditional methods of sampling. In this work we present observations of suspended sediment concentration (SSC) and dissipation rate taken by two gliders, each equipped with optical sensors and a microstructure sensor, along with current observations from a bottom mounted ADCP, all operated in the German Bight sector of the North Sea in Summer 2014. For about two weeks of a four-week experiment, the gliders were programmed to fly in a novel way as Lagrangian profilers to water depths of about 40 m. The benefit of this approach is that the rate of change of SSC - and other parameters - is local to the water column, as opposed to an unknown composition of temporal and spatial variability when gliders are operated in the usual way. Therefore, vertical sediment fluxes can be calculated without the need of the - often dubious - assumption that spatial variability can be neglected. During the experiment the water column was initially thermally stratified, with a cross-pycnocline diffusion coefficient estimated at 7\\cdot10-5 m2 s-1. Halfway through the experiment the remnants of tropical storm Bertha arrived at the study site and caused a complete mixing of the water

  8. Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data

    USGS Publications Warehouse

    Schenk, Liam N.; Anderson, Chauncey W.; Diaz, Paul; Stewart, Marc A.

    2016-12-22

    Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models for the Williamson River site showed strong correlations of turbidity with total phosphorus and suspended-sediment concentrations (adjusted coefficients of determination [Adj R2]=0.73 and 0.95, respectively). Regression models for the Wood River site had relatively poor, although statistically significant, relations of turbidity with total phosphorus, and turbidity and acoustic backscatter with suspended sediment concentration, with high prediction uncertainty. Total phosphorus loads for the partial 2014 water year (excluding October and November 2013) were 39 and 28 metric tons for the Williamson and Wood Rivers, respectively. These values are within the low range of phosphorus loads computed for these rivers from prior studies using water-quality data collected by the Klamath Tribes. The 2014 partial year total phosphorus loads on the Williamson and Wood Rivers are assumed to be biased low because of the absence of data from the first 2 months of water year 2014, and the drought conditions that were prevalent during that water year. Therefore, total phosphorus and suspended-sediment loads in this report should be considered as representative of a low-water year for the two study sites. Comparing loads from the Williamson and Wood River monitoring sites for November 2013–September 2014 shows that the Williamson and Sprague Rivers combined, as measured at the Williamson River site, contributed substantially more suspended sediment to Upper Klamath Lake than the Wood River, with 4,360 and 1,450 metric tons measured, respectively.Surrogate techniques have proven useful at

  9. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  10. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    PubMed

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

  11. Trends in Streamflow and Nutrient and Suspended-Sediment Concentrations and Loads in the Upper Mississippi, Ohio, Red, and Great Lakes River Basins, 1975-2004

    USGS Publications Warehouse

    Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.

    2009-01-01

    . Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.

  12. Quantifying Suspended Sediment Concentration from Subglacial Sediment Plumes Discharging from Two Svalbard Tidewater Glaciers using Landsat 8 and In Situ Measurements

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Hawley, R. L.; Chipman, J. W.; Benn, D.

    2016-12-01

    Marine-terminating outlet glaciers discharge most of an ice sheet's mass loss through iceberg calving, submarine melting, and meltwater runoff. While calving can be quantified by in situ and remote sensing observations, meltwater runoff, submarine melting, and the subglacial transport of meltwater are not well constrained due to inherent difficulties measuring the subglacial and proglacial environments. Previous studies have used sediment plumes and suspended sediment concentration (SSC) as a proxy for glacier meltwater runoff at land-terminating glaciers. However, the relationship between satellite reflectacne and SSC, established predominantly from land-terminating glacier data, does not relate well for tidewater glaciers. Additionally, the difficulties in sampling the near terminus region of large tidewater glaciers makes it challenging to accurately constrain or identify the relationship between sediment plumes and satellite reflectance. In this study we use simultaneous Landsat 8 imagery and in situ fjord measurements at two Svalbard tidewater glaciers to establish a relationship between SSC and Landsat 8 surface reflectacne in a tidewater glacier Setting. Results from fieldwork conducted during low and peak meltwater runoff periods at Kronebreen and Tunabreen glaciers will be presented.

  13. A model to investigate the influence of suspended sediment on the mass transport of a pollutant in open channel flow. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    An explicit two-dimensional finite difference model, designed to investigate the influence of suspended sediment on the pollutant transport process, is presented. Specific attention is directed toward examining the role of suspended sediment in: (1) the turbulent vertical transport mechanism in a stratified flow, and (2) pollutant uptake due to sorption. Results presented indicate that suspended sediment plays a major role in the pollutant transport process, and subsequently, any meaningful attempt to model the fate of a pollutant in an alluvial channel must account for the presence of a suspended sediment concentration profile. Similarly, the vertical and longitudinal pollutant concentration distributions provided by the model may be utilized to improve upon the predictive capacities of existing water quality models.

  14. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River

    NASA Astrophysics Data System (ADS)

    D'Alpaos, L.; Martini, P.; Carniello, L.

    2003-04-01

    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  15. Direct Versus Indirect Determination Of Suspended Sediment Associated Metals In A Mining-Influenced Watershed

    EPA Science Inventory

    The differentiation between the concentration of metals associated with suspended sediments and those in the dissolved phase is often of importance in aquatic ecosystems, for such reasons as toxicity evaluation, total maximum daily load calculations, and a better understanding of...

  16. Suspended-Sediment Export From Four Small Montane Humid-Tropical Watersheds With Varying Land use and Lithology, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.

    2003-12-01

    Intensive land-use conversion of forested landscapes to agricultural use accelerated in most of the global tropics during the 20th century and has resulted in large increases in soil erosion and suspended-sediment export. Fluvial sediment is one of the most abundant freshwater contaminants on earth. Stormflows episodically transport sediment to reservoirs, estuaries and in coastal waters where coral reefs are located. The sediment and associated contaminants such as pesticides, herbicides, and fertilizers, degrade water quality and are harmful to aquatic organisms in these areas. Improved understanding of the processes and rates of fluvial sediment transport in natural and anthropogenically disturbed settings enhances management of natural resources and aids in the establishment of standards for acceptable sediment concentrations. Four USGS WEBB (Water, Energy, and Biogeochemical Budgets) study watersheds in Puerto Rico (18° latitude) were paired to compare and contrast the effects of land use and bedrock geology on suspended-sediment yield. Sediment concentration, calculated as sediment yield normalized to runoff, was more than three times greater in two watersheds in secondary forest and pasture compared to sediment concentration in watersheds in primary forest. The influence of lithology was comparable: sediment concentration in intrusive-bedrock (quartz diorite and granodiorite) watersheds was more than three times higher than sediment concentration in volcaniclastic-bedrock (volcanic sandstone, mudstone, and breccia) watersheds. These contrasts highlight the well-known effect of land use on sediment concentration and yield but also demonstrate the strong control of bedrock geology. Most importantly, the high sediment yields in the watersheds that were converted to pasture and secondary forest, even after 60 years of forest reestablishment, provide a glimpse into the future of tropical watersheds elsewhere that are now undergoing deforestation. Erosion rates

  17. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    PubMed

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  18. A comparison of instrumental dewatering methods for the separation and concentration of suspended sediment for subsequent trace element analysis

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Hooper, R.C.

    1989-01-01

    The continuous-flow centrifuges can process whole water at an influent feed rate of 41 per minute; however, when suspended sediment concentrations are low (<30 mg l-1), when small volumes of whole water are to be processed (30 to 401), or when suspended sediment mean grain size is very fine (<10 ??m), influent feed rates of 21 per minute may be more efficient. Tangential-flow filtration can be used to process samples at the rate of 11 per minute. -from Authors

  19. Continuous automated sensing of streamflow density as a surrogate for suspended-sediment concentration sampling

    USGS Publications Warehouse

    Larsen, Matthew C.; Figueroa Alamo, Carlos; Gray, John R.; Fletcher, William

    2001-01-01

    A newly refined technique for continuously and automatically sensing the density of a water-sediment mixture is being tested at a U.S. Geological Survey streamflow-gaging station in Puerto Rico. Originally developed to measure crude oil density, the double bubbler instrument measures fluid density by means of pressure transducers at two elevations in a vertical water column. By subtracting the density of water from the value measured for the density of the water-sediment mixture, the concentration of suspended sediment can be estimated. Preliminary tests of the double bubbler instrument show promise but are not yet conclusive.

  20. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andó, Sergio; France-Lanord, Christian; Censi, Paolo; Vignola, Pietro; Galy, Valier; Lupker, Maarten

    2011-02-01

    Sediments carried in suspension represent a fundamental part of fluvial transport. Nonetheless, largely because of technical problems, they have been hitherto widely neglected in provenance studies. In order to determine with maximum possible precision the mineralogy of suspended load collected in vertical profiles from water surface to channel bottom of Rivers Ganga and Brahmaputra, we combined Raman spectroscopy with traditional heavy-mineral and X-ray diffraction analyses, carried out separately on low-density and dense fractions of all significant size classes in each sample (multiple-window approach). Suspended load resulted to be a ternary mixture of dominant silt enriched in phyllosilicates, subordinate clay largely derived from weathered floodplains, and sand mainly produced by physical erosion and mechanical grinding during transport in Himalayan streams. Sediment concentration and grain size increase steadily with water depth. Whereas absolute concentration of clay associated with Fe-oxyhydroxides and organic matter is almost depth-invariant, regular mineralogical and consequently chemical changes from shallow to deep load result from marked increase of faster-settling, coarser, denser, or more spherical grains toward the bed. Such steady intersample compositional variability can be modeled as a mixture of clay, silt and sand modes with distinct mineralogical and chemical composition. With classical formulas describing sediment transport by turbulent diffusion, absolute and relative concentrations can be predicted at any depth for each textural mode and each detrital component. Based on assumptions on average chemistry of detrital minerals and empirical formulas to calculate their settling velocities, the suspension-sorting model successfully reproduces mineralogy and chemistry of suspended load at different depths. Principal outputs include assessment of contributions by each detrital mineral to the chemical budget, and calibration of dense minerals too

  1. Effects of May through July 2015 storm events on suspended sediment loads, sediment trapping efficiency, and storage capacity of John Redmond Reservoir, east-central Kansas

    USGS Publications Warehouse

    Foster, Guy M.

    2016-06-20

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, computed the suspended-sediment inflows and retention in John Redmond Reservoir during May through July 2015. Computations relied upon previously published turbidity-suspended sediment relations at water-quality monitoring sites located upstream and downstream from the reservoir. During the 3-month period, approximately 872,000 tons of sediment entered the reservoir, and 57,000 tons were released through the reservoir outlet. The average monthly trapping efficiency during this period was 93 percent, and monthly averages ranged from 83 to 97 percent. During the study period, an estimated 980 acre-feet of storage was lost, over 2.4 times the design annual sedimentation rate of the reservoir. Storm inflows during the 3-month analysis period reduced reservoir storage in the conservation pool approximately 1.6 percent. This indicates that large inflows, coupled with minimal releases, can have substantial effects on reservoir storage and lifespan.

  2. Concentration and transport of chlordane and nonachlor associated with suspended sediment in the Mississippi River, May 1988 to June 1990

    USGS Publications Warehouse

    Rostad, C.E.

    1997-01-01

    Technical chlordane, a formerly widely used organochlorine pesticide, has become widespread in the environment. The distribution of technical chlordane in riverine environments may be due in part to resuspension and aqueous transport of contaminated bed sediment. To test this hypothesis, the Mississippi River was sampled for suspended sediment five times over a two- year period, at up to 17 sites from St. Louis to below New Orleans, including major tributaries. The ratio of chlordane to nonachlor concentrations averaged 3.6 during May-June 1988 for the Mississippi River below its confluence with the Ohio River. During March-April 1989, the ratio was 0.6, suggesting weathered technical chlordane contributions to the suspended sediment. During June 1989, the ratio averaged 1.1, indicating some input of less weathered technical chlordane. During February-March and May-June 1990, the ratios again shifted, from 0.8 to 1.3. This shifting ratio is likely due to resuspension of weathered technical chlordane associated with bed sediment during spring runoff. Annual transport by suspended sediment from the Mississippi River to the Gulf of Mexico was estimated to be 110 kg of chlordane and 100 kg of nonachlor.

  3. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-08-18

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  4. Characterization of streamflow, suspended sediment, and nutrients entering Galveston Bay from the Trinity River, Texas, May 2014–December 2015

    USGS Publications Warehouse

    Lucena, Zulimar; Lee, Michael T.

    2017-02-21

    The U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board and the Galveston Bay Estuary Program, collected streamflow and water-quality data at USGS streamflow-gaging stations in the lower Trinity River watershed from May 2014 to December 2015 to characterize and improve the current understanding of the quantity and quality of freshwater inflow entering Galveston Bay from the Trinity River. Continuous streamflow records at four USGS streamflow-gaging stations were compared to quantify differences in streamflow magnitude between upstream and downstream reaches of the lower Trinity River. Water-quality conditions were characterized from discrete nutrient and sedi­ment samples collected over a range of hydrologic conditions at USGS streamflow-gaging station 08067252 Trinity River at Wallisville, Tex. (hereinafter referred to as the “Wallisville site”), approximately 4 river miles upstream from where the Trinity River enters Galveston Bay.Based on streamflow records, annual mean outflow from Livingston Dam into the lower Trinity River was 2,240 cubic feet per second (ft3/s) in 2014 and 22,400 ft3/s in 2015, the second lowest and the highest, respectively, during the entire period of record (1966–2015). During this study, only about 54 percent of the total volume measured at upstream sites was accounted for at the Wallisville site as the Trinity River enters Galveston Bay. This difference in water volumes between upstream sites and the Wallisville site indicates that at high flows a large part of the volume released from Lake Livingston does not reach Galveston Bay through the main channel of the Trinity River. These findings indicate that water likely flows into wetlands and water bodies surrounding the main channel of the Trinity River before reaching the Wallisville site and is being stored or discharged through other channels that flow directly into Galveston Bay.To characterize suspended-sediment concentrations and loads in

  5. The erosion behaviour of biologically active sewer sediment deposits: observations from a laboratory study.

    PubMed

    Banasiak, Robert; Verhoeven, Ronny; De Sutter, Renaat; Tait, Simon

    2005-12-01

    The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.

  6. Concentrations, and estimated loads and yields of nutrients and suspended sediment in the Little River basin, Kentucky, 2003-04

    USGS Publications Warehouse

    Crain, Angela S.

    2006-01-01

    0.1 mg/L. Concentrations of suspended sediment were highest in the spring during runoff and lowest in the fall. The highest concentration of suspended sediment (1,020 mg/L) was observed at the Sinking Fork near Cadiz site. The median concentration of suspended sediment for all sites sampled was 12 mg/L. A nonparameteric statistical test (Wilcoxson rank-sum) showed that the median concentrations of suspended sediment were not different among any of the fixed-network sites. The Little River near Cadiz site contributed larger estimated mean annual loads of nitrite plus nitrate (2,500,000 pounds per year (lb/yr)) and total phosphorus (160,000 lb/yr) than the other three fixed-network sites. Of the two main upstream tributaries from the Little River near Cadiz site, the North Fork Little River was the greatest contributor of total phosphorus to the study area with an estimated mean annual load of 107,000 lb/yr or about 64 percent of the total estimated mean annual load at the Little River near Cadiz site. The other main upstream tributary, South Fork Little River, had an estimated mean annual load of total phosphorus that was about 20 percent of the mean annual load at the Little River near Cadiz site. Estimated loads of suspended sediment were largest at the Little River near Cadiz site, where the estimated mean annual load for 2003-04 was about 84,000,000 lb/yr. The North Fork Little River contributed an estimated 36 percent of the mean annual load of suspended sediment at the Little River near Cadiz site, while the South Fork Little River contributed an estimated 18 percent of the mean annual load at the Little River near Cadiz site. The North Fork Little River site had the largest estimated mean annual yield of total phosphorus (1,600 pounds per year per square mile (lb/yr/mi2)) and orthophosphate (1,100 lb/yr/mi2). A principal source of phosphorus for the North Fork Little River is discharge from wastewater-treatment facilities. The largest estimated mean annual

  7. Modelling suspended-sediment propagation and related heavy metal contamination in floodplains: a parameter sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.

    2014-09-01

    Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.

  8. Temporal and spatial variability in the flow and dispersal of suspended-sediment on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Presto, M.K.; Ogston, A.S.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    A multi-year study was conducted on a shallow fringing reef flat on Molokai, Hawaii to determine the temporal and spatial dispersal patterns of terrigenous suspended sediment. During this study, trade-wind conditions existed for the majority of the year on the reef flat. The trade-wind conditions produced strong currents and resuspended moderate amounts of sediment on the reef flat on a daily basis during the year of study, resulting in an overwhelming contribution to the total sediment flux. The magnitude and direction of the trade winds relative to the orientation of the coastline, the shallow-relief and broad morphology, and tidal elevation, provided the primary control of the physical processes that resuspended and transported sediment on the reef flat over the period of record. Spatial data indicate that much of the terrigenous sediment resuspended on the reef flat is transported predominantly alongshore and is confined to the inner- to mid-reef flat. Evidence for the limited across-shore mixing and transport is provided by the dominantly alongshore wind-driven currents during trade-wind conditions and the well-defined across-shore gradient in percentage calcium carbonate of the suspended sediment. Regions of slightly offshore suspended-sediment transport along the reef flat can be attributed to the circulation pattern set up by the interaction between the trade winds, coastal morphology, and anthropogenic coastal structures (i.e., fish ponds and wharf). The regions in which sediment were seen to move offshore provide the strongest link between the sediment dynamics on reef flat and fore reef, and qualitatively appears to be correlated with low coral coverage on the fore reef. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Estimates of suspended-sediment flux and bedform activity on the inner portion of the Eel continental shelf

    USGS Publications Warehouse

    Cacchione, D.A.; Wiberg, P.L.; Lynch, J.; Irish, J.; Traykovski, P.

    1999-01-01

    Energetic waves, strong bottom currents, and relatively high rates of sediment discharge from the Eel River combined to produce large amounts of suspended-sediment transport on the inner continental shelf near the Eel River during the winter of 1995-1996. Bottom-boundary-layer (BBL) measurements at a depth of ~50 m using the GEOPROBE tripod showed that the strongest near-bottom flows (combined wave and current speeds of over 1 m/s) and highest sediment concentrations (exceeding 2 g/l at ~1.2 m above the bed) occurred during two storms, one in December 1995 and the other in February 1996. Discharge from the Eel River during these storms was estimated at between 2 and 4 x 103 m3/s. Suspended-sediment flux (SSF) was measured 1.2 m above the bed and calculated throughout the BBL, by applying the tripod data to a shelf sediment-transport model. These results showed initially northward along-shelf SSF during the storms, followed by abrupt and persistent southward reversals. Along-shelf flux was more pronounced during and after the December storm than in February. Across-shelf SSF over the entire measurement period was decidedly seaward. This seaward transport could be responsible for surficial deposits of recent sediment on the outer shelf and upper continental slope in this region. Sediment ripples and larger bedforms were observed in the very fine to fine sand at 50-m depth using a sector-scanning sonar mounted on the tripod. Ripple wavelengths estimated from the sonar images were about 9 cm, which compared favorably with photographs of the bottom taken with a camera mounted on the tripod. The ripple patterns were stable during periods of low combined wave-current bottom stresses, but changed significantly during high-stress events, such as the February storm. Two different sonic altimeters recorded changes in bed elevation of 10 to 20 cm during the periods of measurement. These changes are thought to have been caused principally by the migration of low-amplitude, long

  10. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  11. Progress report on the effects of highway construction on suspended-sediment discharge in the Coal River and Trace Fork, West Virginia, 1975-81

    USGS Publications Warehouse

    Downs, S.C.; Appel, David H.

    1986-01-01

    Construction of the four-lane Appalachian Corridon G highway disturbed about 2 sq mi in the Coal River and 0.35 sq mi of the 4.75 sq mi Trace Fork basin in southern West Virginia. Construction had a negligible effect on runoff and suspended-sediment load in the Coal River and its major tributaries, the Little Coal and Big Coal Rivers. Drainage areas of the mainstem sites in the Coal River basin ranged from 269 to 862 sq mi, and average annual suspended-sediment yields ranged from 535 to 614 tons/sq mi for the 1975-81 water years. Suspended-sediment load in the smaller Trace Fork basin (4.72 sq mi) was significantly affected by the highway construction. Based on data from undisturbed areas upstream from construction, the normal background load at Trace Fork downstream from construction during the period July 1980 to September 1981 was estimated to be 830 tons; the measured load was 2,385 tons. Runoff from the 0.35 sq mi area disturbed by highway construction transported approximately 1,550 tons of sediment. Suspended-sediment loads from the construction zone were also higher than normal background loads during storms. (USGS)

  12. Recent Innovations in Monitoring Suspended-Sediment Mass Balance of the Colorado River Ecosystem Below Glen Canyon Dam: A laser-Based Approach

    NASA Astrophysics Data System (ADS)

    Melis, T. S.; Topping, D. J.; Rubin, D. M.; Agrawal, Y. C.

    2002-12-01

    Intensive monitoring of suspended-sediment in the Colorado River ecosystem below Glen Canyon Dam is a priority for environmental management. Historically, the program has been logistically complicated, costly and limited in spatial and temporal resolution. These elements have contributed to relatively large uncertainties in mass-balance estimates of sediment export. To improve mass-balance estimates, the Grand Canyon Monitoring and Research Center is field testing new and existing technologies to develop a continuous suspended-sediment transport protocol. A recent innovation includes use of optical forward-scattering instruments, LISST, in combination with programmable pumping samplers. The LISST-100 (Laser In-Situ Scattering and Transmissometry) is both a particle-size analyzer (size range 2.5 to 500 microns) and a transmissometer capable of measuring variable concentrations, depending on particle size. A second innovation, the LISST-25X, is a recently developed variation of the instrumentation that allows sand to be measured separately from finer particles. This is achieved by use of shaped focal plane detectors that compute 2 distinct weighted sums of angular scattering by suspended particles. The LISST-25X currently collects volume-concentration and grain size (Sauter-mean-diameter) data for suspended particles at four sites below the dam. Unit values are derived by averaging 1000 individual measurements every 15-minutes (sampling about 1.1 liters of water per hour). The volume-to-mass conversion is made once average particle density has been gravimetrically determined through conventional methods. During high-concentration conditions, laser-transmission values (T) can fall outside of the user-defined minimal threshold (20

  13. Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments

    PubMed Central

    Meral, Ramazan

    2008-01-01

    The limitation of traditional sampling method to provide detailed spatial and temporal profiles of suspended sediment concentration has led to an interest in alternative devices and methods based on scattering of underwater sound and light. In the present work, acoustic backscatter and LISST (the Laser In Situ Scattering Transmissometry) devices, and methodologies were given. Besides a laboratory study was conducted to compare pumping methods for different sediment radiuses at the same concentration. The glass spheres (ballotini) of three different radiuses of 115, 137 and 163 μm were used to obtain suspension in the sediment tower at laboratory. A quite good agreement was obtained between these methods and pumping results with the range at 60.6-94.2% for sediment concentration and 91.3-100% for radius measurements. These results and the other studies show that these methods have potential for research tools for sediment studies. In addition further studies are needed to determine the ability of these methods for sediment measurement under different water and sediment material conditions. PMID:27879747

  14. Characteristic length scales and time-averaged transport velocities of suspended sediment in the mid-Atlantic Region, USA

    USGS Publications Warehouse

    Pizzuto, James; Schenk, Edward R.; Hupp, Cliff R.; Gellis, Allen; Noe, Greg; Williamson, Elyse; Karwan, Diana L.; O'Neal, Michael; Marquard, Julia; Aalto, Rolf E.; Newbold, Denis

    2014-01-01

    Watershed Best Management Practices (BMPs) are often designed to reduce loading from particle-borne contaminants, but the temporal lag between BMP implementation and improvement in receiving water quality is difficult to assess because particles are only moved downstream episodically, resting for long periods in storage between transport events. A theory is developed that describes the downstream movement of suspended sediment particles accounting for the time particles spend in storage given sediment budget data (by grain size fraction) and information on particle transit times through storage reservoirs. The theory is used to define a suspended sediment transport length scale that describes how far particles are carried during transport events, and to estimate a downstream particle velocity that includes time spent in storage. At 5 upland watersheds of the mid-Atlantic region, transport length scales for silt-clay range from 4 to 60 km, while those for sand range from 0.4 to 113 km. Mean sediment velocities for silt-clay range from 0.0072 km/yr to 0.12 km/yr, while those for sand range from 0.0008 km/yr to 0.20 km/yr, 4–6 orders of magnitude slower than the velocity of water in the channel. These results suggest lag times of 100–1000 years between BMP implementation and effectiveness in receiving waters such as the Chesapeake Bay (where BMPs are located upstream of the characteristic transport length scale). Many particles likely travel much faster than these average values, so further research is needed to determine the complete distribution of suspended sediment velocities in real watersheds.

  15. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast

  16. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  17. Regional estimation of extreme suspended sediment concentrations using watershed characteristics

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Ouarda, Taha B. M. J.; St-Hilaire, André; Poulin, Jimmy

    2010-01-01

    SummaryThe number of stations monitoring daily suspended sediment concentration (SSC) has been decreasing since the 1980s in North America while suspended sediment is considered as a key variable for water quality. The objective of this study is to test the feasibility of regionalising extreme SSC, i.e. estimating SSC extremes values for ungauged basins. Annual maximum SSC for 72 rivers in Canada and USA were modelled with probability distributions in order to estimate quantiles corresponding to different return periods. Regionalisation techniques, originally developed for flood prediction in ungauged basins, were tested using the climatic, topographic, land cover and soils attributes of the watersheds. Two approaches were compared, using either physiographic characteristics or seasonality of extreme SSC to delineate the regions. Multiple regression models to estimate SSC quantiles as a function of watershed characteristics were built in each region, and compared to a global model including all sites. Regional estimates of SSC quantiles were compared with the local values. Results show that regional estimation of extreme SSC is more efficient than a global regression model including all sites. Groups/regions of stations have been identified, using either the watershed characteristics or the seasonality of occurrence for extreme SSC values providing a method to better describe the extreme events of SSC. The most important variables for predicting extreme SSC are the percentage of clay in the soils, precipitation intensity and forest cover.

  18. Estimation of annual suspended-sediment fluxes, 1931-95, and evaluation of geomorphic changes, 1950-2010, in the Arkansas River near Tulsa, Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.; Smith, S. Jerrod; Buck, Stephanie D.; Strong, Scott A.

    2011-01-01

    An understanding of fluvial sediment transport and changing channel morphology can assist planners in making responsible decisions with future riverine development or restoration projects. Sediment rating curves can serve as simple models and can provide predictive tools to estimate annual sediment fluxes. Sediment flux models can aid in the design of river projects by providing insight to past and potential future sediment fluxes. Historical U.S. Geological Survey suspended-sediment and discharge data were evaluated to estimate annual suspended-sediment fluxes for two stations on the Arkansas River located downstream from Keystone Dam in Tulsa County. Annual suspended-sediment fluxes were estimated from 1931-95 for the Arkansas River at Tulsa streamflow-gaging station (07164500) and from 1973-82 for the Arkansas River near Haskell streamflow-gaging station (07165570). The annual flow-weighted suspended-sediment concentration decreased from 1,970 milligrams per liter to 350 milligrams per liter after the completion of Keystone Dam at the Tulsa station. The streambed elevation at the Arkansas River at Tulsa station has changed less than 1 foot from 1970 to 2005, but the thalweg has shifted from a location near the right bank to a position near the left bank. There was little change in the position of most of the banks of the Arkansas River channel from 1950 to 2009. The most substantial change evident from visual inspection of aerial photographs was an apparent decrease in sediment storage in the form of mid-channel and meander bars. The Arkansas River channel between Keystone Dam and the Tulsa-Wagoner County line showed a narrowing and lengthening (increase in sinuosity) over the transition period 1950-77 followed by a steady widening and shortening of the river channel (decrease in sinuosity) during the post-dam (Keystone) periods 1977-85, 1985-2003, and 2003-10.

  19. Suspended matter mean distribution and seasonal cycle in the Río de La Plata estuary and the adjacent shelf from ocean color satellite (MODIS) and in-situ observations

    NASA Astrophysics Data System (ADS)

    Moreira, Diego; Simionato, Claudia G.; Gohin, Francis; Cayocca, Florence; Luz Clara Tejedor, Moira

    2013-10-01

    The Río de la Plata is one of the largest and most turbid estuaries of the world, carrying a total of 160 million tons y-1 of suspended sediments. The knowledge of their spatial distribution and their scales of variability is fundamental for management and scientific reasons, but has been limited by the scarcity of observations. During 2009 and 2010, in-situ data (CTD and turbidity profiles, and water and bottom sediment samples) were collected at 26 sites during six repeated cruises and from three fixed instruments deployed in the frame of the FREPLATA/FFEM experiment. In this paper we complement the analysis of this in-situ data base with 10 years of daily intermediate resolution (1 km) MODIS-Aqua observations processed for surface suspended matter using the IFREMER algorithm for coastal turbid waters. The aim of this work is to provide a comprehensive characterization of the annual mean suspended matter concentration distribution, to study its variability on seasonal time scale and to identify the involved physical mechanisms. The comparison between the statistics of the direct and remote sensed data is satisfactory, showing a good agreement in the magnitude and spatial distribution of the mean suspended sediments concentration, its standard deviation, so as the seasonal variability. Our data show that all along the year the concentration of surface suspended matter maximizes along the southern coast of the upper and intermediate estuary and at the tips of Samborombón Bay. This fact is linked in part with the higher solid discharge of the Paraná River - flowing along the southern coast - compared to the Uruguay River which flows following the northern coast. The former receives most of the sediments load to the Río de la Plata from the Bermejo River. The observed mean pattern is also related to the stronger tidal currents along the southern coast of the estuary and at the tips of Samborombón Bay, which act re-suspending sediments near the bottom. Then, wind

  20. River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.

    2015-12-01

    Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.

  1. Evaluation of water quality, suspended sediment, and stream morphology with an emphasis on effects of stormwater on Fountain and Monument Creek basins, Colorado Springs and vicinity, Colorado, 1981-2001

    USGS Publications Warehouse

    Edelmann, Patrick; Ferguson, Sheryl A.; Stogner, Sr., Robert W.; August, Marianne; Payne, William F.; Bruce, James F.

    2002-01-01

    This report documents water quality and suspended sediment with an emphasis on evaluating the effects of stormflow on Fountain Creek Basin in the vicinity of Colorado Springs, Colorado. Water-quality data collected at 11 sites between 1981 and 2001 were used to evaluate the effects of stormflow on water quality. Suspended-sediment data collected at seven sites from 1998 through 2001 were used to evaluate effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. A comparison of stormwater-quality concentrations measured between 1981 and 2001 to Colorado acute instream standards indicated that, except for isolated occurrences, stormwater quality met acute instream standards. At several sites, 5-day biochemical oxygen demand, fecal coliform, and selected nutrient concentrations tended to be highest during stormflow and lowest during base flow. Dissimilar to the other nutrients, dissolved nitrite plus nitrate concentrations generally were highest during base flow and lowest during stormflow. Most dissolved trace-element concentrations associated with stormflow decreased or showed little change compared to base flow. However, median concentrations of total copper, iron, lead, nickel, manganese, and zinc for stormflow samples generally were much larger than nonstorm samples. The substantially larger concentrations of total copper, iron, lead, nickel, manganese, and zinc measured at site 5800 during stormflow as compared to other sites indicates a relatively large source of these metals in the reach between sites 5530 and 5800. Semi-volatile organic compounds in samples collected during stormflow were detected relatively infrequently at the four sites monitored; however, analysis of pesticide data collected during stormflow showed a relatively frequent detection of pesticides at low levels. Nitrogen, phosphorus, and particulate trace-element loads substantially

  2. Evaluation of the ability of various remote sensors to map distributions of suspended sediments in the Gulf of Alaska

    NASA Technical Reports Server (NTRS)

    Ahlnas, Kristina; Royer, Thomas C.

    1989-01-01

    In the present investigation of the ability of various satellite-borne imaging systems to detect surface-suspended sediments, which tracked mushroom-shaped dipole eddies in a near shore current during April 22, 1985, it was found that the radiometric resolutions of the NOAA and DMSP satellites are insufficient to distinguish such eddies in low concentrations of suspended sediments. The Landsat TM can, however, detect the spiral structure of the dipole eddies in all three of its visible bands; the Landsat MSS can detect such details in Band 1, and the overall shape in Band 2.

  3. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  4. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  5. Effects of suspended sediment concentration and grain size on three optical turbidity sensors

    USGS Publications Warehouse

    Merten, Gustavo Henrique; Capel, Paul D.; Minella, Jean P.G.

    2014-01-01

    Purpose: Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process. Materials and methods: This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1). Results and discussion: The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal. Conclusions: The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.

  6. Suspended-sediment flux and retention in a backwater tidal slough complex near the landward boundary of an estuary

    USGS Publications Warehouse

    Morgan-King, Tara L.; Schoellhamer, David H.

    2013-01-01

    Backwater tidal sloughs are commonly found at the landward boundary of estuaries. The Cache Slough complex is a backwater tidal region within the Upper Sacramento–San Joaquin Delta that includes two features that are relevant for resource managers: (1) relatively high abundance of the endangered fish, delta smelt (Hypomesus transpacificus), which prefers turbid water and (2) a recently flooded shallow island, Liberty Island, that is a prototype for habitat restoration. We characterized the turbidity around Liberty Island by measuring suspended-sediment flux at four locations from July 2008 through December 2010. An estuarine turbidity maximum in the backwater Cache Slough complex is created by tidal asymmetry, a limited tidal excursion, and wind-wave resuspension. During the study, there was a net export of sediment, though sediment accumulates within the region from landward tidal transport during the dry season. Sediment is continually resuspended by both wind waves and flood tide currents. The suspended-sediment mass oscillates within the region until winter freshwater flow pulses flush it seaward. The hydrodynamic characteristics within the backwater region such as low freshwater flow during the dry season, flood tide dominance, and a limited tidal excursion favor sediment retention.

  7. Quality-assurance plan for the analysis of suspended sediment by the U.S. Geological Survey in Montana

    USGS Publications Warehouse

    Dodge, Kent A.; Lambing, John H.

    2006-01-01

    A quality-assurance plan has been developed for use by the sediment laboratory of the U.S. Geological Survey Montana Water Science Center in conducting activities related to the analysis of suspended sediment. The plan documents quality-assurance policies for sediment-laboratory certification, personnel responsibilities and training, documentation requirements, and laboratory safety. The plan also documents quality-assurance procedures related to laboratory equipment and supplies, sample management, sample analysis, analytical quality control, and data management.

  8. A Comparison of Turbidity-Based and Streamflow-Based Estimates of Suspended-Sediment Concentrations in Three Chesapeake Bay Tributaries

    USGS Publications Warehouse

    Jastram, John D.; Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Fluvial transport of sediment into the Chesapeake Bay estuary is a persistent water-quality issue with major implications for the overall health of the bay ecosystem. Accurately and precisely estimating the suspended-sediment concentrations (SSC) and loads that are delivered to the bay, however, remains challenging. Although manual sampling of SSC produces an accurate series of point-in-time measurements, robust extrapolation to unmeasured periods (especially highflow periods) has proven to be difficult. Sediment concentrations typically have been estimated using regression relations between individual SSC values and associated streamflow values; however, suspended-sediment transport during storm events is extremely variable, and it is often difficult to relate a unique SSC to a given streamflow. With this limitation for estimating SSC, innovative approaches for generating detailed records of suspended-sediment transport are needed. One effective method for improved suspended-sediment determination involves the continuous monitoring of turbidity as a surrogate for SSC. Turbidity measurements are theoretically well correlated to SSC because turbidity represents a measure of water clarity that is directly influenced by suspended sediments; thus, turbidity-based estimation models typically are effective tools for generating SSC data. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency Chesapeake Bay Program and Virginia Department of Environmental Quality, initiated continuous turbidity monitoring on three major tributaries of the bay - the James, Rappahannock, and North Fork Shenandoah Rivers - to evaluate the use of turbidity as a sediment surrogate in rivers that deliver sediment to the bay. Results of this surrogate approach were compared to the traditionally applied streamflow-based approach for estimating SSC. Additionally, evaluation and comparison of these two approaches were conducted for nutrient estimations. Results

  9. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  10. Assessment of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2011-01-01

    Elevated concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. This report describes an assessment of selected sediment-associated contaminants in samples collected in Bexar County from sites on the following streams: Medio Creek, Medina River, Elm Creek, Martinez Creek, Chupaderas Creek, Leon Creek, Salado Creek, and San Antonio River. During 2007-09, the U.S. Geological Survey periodically collected surficial streambed-sediment samples during base flow and suspended-sediment (large-volume suspended-sediment) samples from selected streams during stormwater runoff. All sediment samples were analyzed for major and trace elements and for organic compounds including halogenated organic compounds and polycyclic aromatic hydrocarbons (PAHs). Selected contaminants in streambed and suspended sediments in watersheds of the eight major streams in Bexar County were assessed by using a variety of methods—observations of occurrence and distribution, comparison to sediment-quality guidelines and data from previous studies, statistical analyses, and source indicators. Trace elements concentrations were low compared to the consensus-based sediment-quality guidelines threshold effect concentration (TEC) and probable effect concentration (PEC). Trace element concentrations were greater than the TEC in 28 percent of the samples and greater than the PEC in 1.5 percent of the samples. Chromium concentrations exceeded sediment-quality guidelines more frequently than concentrations of any other constituents analyzed in this study (greater than the TEC in 69 percent of samples and greater than the PEC in 8 percent of samples). Mean trace element concentrations generally are lower in Bexar County samples compared to concentrations in samples collected during previous studies in the Austin and Fort Worth, Texas, areas, but considering the relatively

  11. Contribution of radioactive 137Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction from a headwater catchment in Fukushima after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Iwagami, Sho; Onda, Yuichi; Tsujimura, Maki; Abe, Yutaka

    2017-01-01

    Radiocesium ( 137 Cs) migration from headwaters in forested areas provides important information, as the output from forest streams subsequently enters various land-use areas and downstream rivers. Thus, it is important to determine the composition of 137 Cs fluxes (dissolved fraction, suspended sediment, or coarse organic matter) that migrate through a headwater stream. In this study, the 137 Cs discharge by suspended sediment and coarse organic matter from a forest headwater catchment was monitored. The 137 Cs concentrations in suspended sediment and coarse organic matter, such as leaves and branches, and the amounts of suspended sediment and coarse organic matter were measured at stream sites in three headwater catchments in Yamakiya District, located ∼35 km northwest of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from August 2012 to September 2013, following the earthquake and tsunami disaster. Suspended sediment and coarse organic matter were sampled at intervals of approximately 1-2 months. The 137 Cs concentrations of suspended sediment and coarse organic matter were 2.4-49 kBq/kg and 0.85-14 kBq/kg, respectively. The 137 Cs concentrations of the suspended sediment were closely correlated with the average deposition density of the catchment. The annual proportions of contribution of 137 Cs discharge by suspended sediment, coarse organic matter, and dissolved fraction were 96-99%, 0.0092-0.069%, and 0.73-3.7%, respectively. The total annual 137 Cs discharge from the catchment was 0.02-0.3% of the deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by

  13. Suspended-sediment yields and stream-channel processes on Judy's Branch watershed in the St. Louis Metro East region in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Johnson, Gary P.; Roseboom, Donald P.; Sierra, Carlos R.

    2006-01-01

    Judy's Branch watershed, a small basin (8.64 square miles) in the St. Louis Metro East region in Illinois, was selected as a pilot site to determine suspended-sediment yields and stream-channel processes in the bluffs and American Bottoms (expansive low-lying valley floor in the region). Suspended-sediment and stream-chan-nel data collected and analyzed for Judy's Branch watershed are presented in this report to establish a baseline of data for water-resource managers to evaluate future stream rehabilitation and manage-ment alternatives. The sediment yield analysis determines the amount of sediment being delivered from the watershed and two subwatersheds: an urban tributary and an undeveloped headwater (pri-marily agricultural). The analysis of the subwater-sheds is used to compare the effects of urbanization on sediment yield to the river. The stream-channel contribution to sediment yield was determined by evaluation of the stream-channel processes operat-ing on the streambed and banks of Judy's Branch watershed. Bank stability was related to hydrologic events, bank stratigraphy, and channel geometry through model development and simulation. The average suspended-sediment yield from two upland subwatersheds (drainage areas of 0.23 and 0.40 sq.mi. was 1,163 tons per square mile per year (tons/sq.mi.-year) between July 2000 and June 2004. The suspended-sediment yield at the Route 157 station was 2,523 tons/sq.mi.-year, near the outlet of Judy's Branch watershed (drainage area = 8.33 sq.mi.). This is approximately 1,360 tons/sq.mi.-year greater than the average at the upland stations for the same time period. This result is unexpected in that, generally, the suspended-sediment yield decreases as the watershed area increases because of sediment stored in the channel and flood plain. The difference indicates a possible increase in yield from a source, such as bank retreat, and supports the concept that land-use changes increase stream-flows that may in turn result in

  14. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet

  15. Suspended matters mean distribution and seasonal cycle in the Río de la Plata estuary and the adjacent shelf from MODIS and in situ observations

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia G.; Moreira, Diego; Gohin, Francis; Cayocca, Florence; Tejedor, Moira Luz Clara

    2013-04-01

    Draining the second largest basin of South America, the Río de la Plata is one of the largest and most turbid estuaries of the world. Its fresh water plume impacts the properties of the shelf for more than 500 km. Even though turbidity in this estuary has been the object of several papers, inorganic suspended matter has deserved less attention because of the lack of observations. In this sense, daily 1 km resolution MODIS-Aqua data were processed for surface inorganic suspended matter in the estuary and the adjacent shelf using the IFREMER algorithm for Type 2 waters, providing 10 years of observations. The aim of this work is to analyze those data to characterize mean values and variability on seasonal time scales, so as to provide clues about the involved physical mechanisms. The analysis is complemented with in situ observations collected during six cruises to the area and from fixed instruments deployed during the FREPLATA/FFEM Experiment 2009-2010. The comparison between direct and remote sensed observations is very satisfactory, showing a good agreement in the magnitude and spatial distribution of the mean suspended sediments concentration, its standard deviation, so as the seasonal variability. Results suggest that the surface suspended matters' concentration in the Río de la Plata is strongly associated with the hydrodynamics and the scales of variability of the tributaries and the winds. All along the year the concentration of surface suspended matter maximizes along the southern (Argentinean) coast of the upper and intermediate estuary and at the tips of Samborombón Bay. This fact seems to be linked in part with the higher solid discharge of the Paraná River -flowing along the southern coast of the estuary- compared to the Uruguay River -which flows following the northern coast-. The former receives most of the sediments load to the Río de la Plata from the Bermejo River located about 1000 km upstream the estuary's head. The observed mean pattern

  16. Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary

    USGS Publications Warehouse

    Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.

    2015-01-01

    To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously-measuring temperature, salinity, depth, turbidity, and velocity sensors since 2010, and added a dissolved-oxygen sensor in 2012, at a near-bottom location in Alviso Slough (Alviso, California USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows correlated to episodic winter storms (~85 m3 s-1) and low base flow during the summer (~0.85 m3 s-1). Storms and associated runoff have the greatest influence on sediment flux. Strong spring tides promote upstream sediment flux and weak neap tides have only a small net flux. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides.

  17. The effect of suspended sediment and color on ultraviolet spectrophotometric nitrate sensors

    USGS Publications Warehouse

    Snazelle, Teri T.

    2016-03-08

    Four commercially available ultraviolet nitrate spectrophotometric sensors were evaluated by the U.S. Geological Survey Hydrologic Instrumentation Facility (HIF) to determine the effects of suspended sediment concentration (SSC) and colored dissolved organic matter (CDOM) on sensor accuracy. The evaluated sensors were: the Hach NITRATAX plus sc (5-millimeters (mm) path length), Hach NITRATAX plus sc (2 mm), S::CAN Spectro::lyser (5 mm), and the Satlantic SUNA V2 (5 mm). A National Institute of Standards and Technology-traceable nitrate-free sediment standard was purchased and used to create the turbid environment, and an easily made filtered tea solution was used for the CDOM test. All four sensors performed well in the test that evaluated the effect of suspended sediment on accuracy. The Hach 5 mm, Hach 2 mm, and the SUNA V2 met their respective manufacturer accuracy specifications up to concentrations of 4,500 milligrams per liter (mg/L) SSC. The S::CAN failed to meet its accuracy specifications when the SSC concentrations exceeded 4,000 mg/L. Test results from the effect of CDOM on accuracy indicated a significant skewing of data from all four sensors and showed an artificial elevation of measured nitrate to varying amounts. Of the four sensors tested, the Satlantic SUNA V2’s accuracy was affected the least in the CDOM test. The nitrate concentration measured by the SUNA V2 was approximately 24 percent higher than the actual concentration when estimated total organic carbon values exceeded 44 mg/L. Measured nitrate concentration falsely increased 49 percent when measured by the Hach 5 mm, and 75 percent when measured by the Hach 2 mm. The S::CAN’s reported nitrate concentration increased 96 percent. Path length plays an important role in the sensor’s ability to compensate measurements for matrix interferences, but does not solely determine how well a sensor can handle all interferences. The sensor’s proprietary algorithms also play a key role in matrix

  18. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    NASA Astrophysics Data System (ADS)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow

  19. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    USGS Publications Warehouse

    Crain, Angela S.

    2010-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the

  20. The effect of the new Massachusetts Bay sewage outfall on the concentrations of metals and bacterial spores in nearby bottom and suspended sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Casso, M.A.; Rendigs, R. R.; Lamothe, P.J.

    2002-01-01

    Since the new outfall for Boston's treated sewage effluent began operation on September 6, 2000, no change has been observed in concentrations of silver or Clostridium perfringens spores (an ecologically benign tracer of sewage), in bottom sediments at a site 2.5 km west of the outfall. In suspended sediment samples collected with a time-series sediment trap located 1.3 km south of the outfall, silver and C. perfringens spores increased by 38% and 103%, respectively, in post-outfall samples while chromium, copper, and zinc showed no change. All metal concentrations in sediments are <50% of warning levels established by the Massachusetts Water Resources Authority. An 11-year data set of bottom sediment characteristics collected three times per year prior to outfall startup provides perspective for the interpretation of post-outfall data. A greater than twofold increase in concentrations of sewage tracers (silver and C. perfringens) was observed in muddy sediments following the exceptional storm of December 11-16, 1992 that presumably moved contaminated inshore sediment offshore. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    NASA Astrophysics Data System (ADS)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream

  2. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  3. Suspended sediment assessment by combining sound attenuation and backscatter measurements - analytical method and experimental validation

    NASA Astrophysics Data System (ADS)

    Guerrero, Massimo; Di Federico, Vittorio

    2018-03-01

    The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.

  4. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2017-05-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  5. Spatiotemporal dynamics of suspended sediment within an actively urbanizing peri-urban catchment in Portugal

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Ferreira, Carla; Ferreira, Antonio

    2016-04-01

    Suspended sediment levels tend to be enhanced in urban catchments, but vary considerably with (amongst many other factors) the degree of active urban development or redevelopment within the catchment and 'urbanization style'. Relatively little, however, is known about the relationship between suspended solids and urbanization style in peri-urban Mediterranean environments. This paper focuses on spatiotemporal suspended sediment dynamics within a typical Portuguese peri-urban catchment, Ribeira dos Covoes, that is undergoing rapid urbanization. The catchment currently has a 40% urban cover, with 17% impervious surfaces, dispersed between woodland (56%) and agricultural areas (4%). The study uses suspended sediment concentration measurements made at the catchment outlet (ESAC) and in three upstream tributaries: (i) Espírito Santo, with a largest urban area (49%); (ii) Porto Bordalo, 39% urbanized; and (iii) Quinta, 22% urbanized, most of which (18%) being an enterprise park under construction. Water sampling was carried out manually during 10 storm hydrographs between October 2011 and March 2013. Suspended sediment concentrations (SSC) were derived by laboratory analysis of the filtered samples using the gravimetric method. In addition total dissolved solids concentrations (TDS) were estimated using conductivity readings. Greatest SSCs were recorded in the Quinta sub-catchment and at the catchment outlet at ESAC (113-4320 mg L-1 and 200-1656 mg L-1, respectively) than in the Espírito Santo and Porto Bordalo sub-catchments (183-852 mg L-1 and 47-598 mg L-1 respectively, despite their greater impervious cover. The greatest SSCs for Quinta result from it containing the construction site, but it showed lower TDS (56-4010 mg L-1), perhaps due to the coarse sandy nature of the construction site. Higher TDS concentrations, however, were displayed in Porto Bordalo (27-5400 mg L-1), possibly due to the loamy soil. Espírito Santo, comprising sandy-loam soils, displayed 27

  6. Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.

    2016-12-01

    The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.

  7. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    USGS Publications Warehouse

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  8. Modeling nearshore dispersal of river-derived multi-class suspended sediments and radionuclides during a flood event around the mouth of Niida River, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Uchiyama, Y.; Yamanishi, T.; Iwasaki, T.; Shimizu, Y.; Tsumune, D.; Misumi, K.; Onda, Y.

    2016-12-01

    A quadruple nested synoptic oceanic downscale modeling based on ROMS was carried out to investigate hydrodynamics, multi-class non-cohesive sediment transport and associated dispersal of suspended radionuclides (cesium-137; 137Cs) originated from the nuclear accident occurred at the Fukushima Dai-ichi Power Plant in March 2011. The innermost model has horizontal grid resolution of 50 m to marginally resolve the topography around the river mouth including the surf zone. The model is forced by the JCOPE2 oceanic reanalysis as the outermost boundary conditions, the GPV-MSM atmospheric reanalysis, and an in-house SWAN spectral wave hindcast embedded in the operational GPV-CWM wave reanalysis. A particular attention is paid to nearshore behaviors and inventory of the nuclides attached to terrestrial minerals with grain sizes ranging from 5 to 79 micrometers that have been occasionally discharged out to the coastal ocean through hydrological processes within the river basin even after several years since the accident. We examine oceanic dispersal of sediment and suspended 137Cs influxes from Niida River, Fukushima, evaluated with the iRIC-Nays2DH river model. Our focus is on the first flood event in late May of 2011 after the accident. Alongshore asymmetry in transport of suspended sediments and 137Cs is exhibited, comprising storm-driven southward transport confined in the shallow area due to shoreward Ekman transport associated with strong northerly wind, followed by northwestward wide-spread transport under mild southerly wind condition. About 70 % of the Niida River-derived suspended 137Cs remains near the mouth for 20 days after the flood event. Nevertheless, our model results as well as an observation suggest that the area is dominated by erosion as for high bed shear stress all the time, thus suspended radionuclides are redistributed to dissipate away in long term.

  9. Detecting Suspended Sediments from Remote Sensed Data in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Graves, S. J.; Hawkins, L.; He, M.; Smith, T.; Drewry, M.; Ebersole, S.; Travis, A.; Thorn, J.; Brown, B.

    2012-12-01

    The Sediment Analysis Network for Decision Support (SANDS) project utilized remotely sensed data from Landsat and MODIS, both prior and following landfall, to investigate suspended sediment and sediment redistribution. The satellite imagery was enhanced by applying a combination of cluster busting and classification techniques to color and infrared bands. Results from the process show patterns associated with sediment transport and deposition related to coastal processes, storm-related sediment transport, post-storm pollutant transport, and sediment-current interactions. Imagery prior to landfall and following landfall are shown to the left for Landsat and to the right for MODIS. Scientific analysis and production of enhanced imagery was conducted by the Geological Survey of Alabama. The Information Technology and Systems Center at the University of Alabama in Huntsville was responsible for data acquisition, development of the SANDS data portal and the archive and distribution through the Global Hydrology Resource Center, one of NASA's Earth Science Data Centers . SANDs data may be obtained from the GHRC at ghrc.nsstc.nasa.gov and from the SANDS data portal at sands.itsc.uah.edu. This project was funded by the NASA Applied Sciences Division

  10. Characteristics of suspended and streambed sediment within constructed chutes and the main channel at Upper Hamburg and Glovers Point Bends, Missouri River, Nebraska, 2008

    USGS Publications Warehouse

    Woodward, Brenda K.; Rus, David L.

    2011-01-01

    bank erosion and in-channel deposition was observed in both chutes during the study period. Chutes had little effect on Missouri River main-channel sediment characteristics, which could be explained by the much greater streamflow of the main channel. Between-chute comparisons showed no significant differences in the suspended-sediment characteristics; however, the Upper Hamburg Bend chute had a coarser streambed, wider channel, and much greater streamflow than did the Glovers Point Bend chute.

  11. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  12. Evaluating the impacts of logging activities on erosion and suspended sediment transport in the Caspar Creek watersheds

    Treesearch

    Jack Lewis

    1998-01-01

    Suspended sediment has been sampled at both the North and South Fork weirs of Caspar Creek in northwestern California since 1963, and at 13 tributary locations in the North Fork since 1986. The North Fork gaging station (NFC) was used as a control to evaluate the effects of logging in the South Fork, in the 1970's, on annual sediment loads. In the most...

  13. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W. L.; He, B.; Takara, K.; Luo, P. P.; Nover, D.; Hu, M. C.

    2015-03-01

    It is important to understand the mechanisms that control the fate and transport of suspended sediment (SS) in rivers, because high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the SPARROW (SPAtially Referenced Regression on Watershed Attributes) watershed model was applied to estimate the sources and transport of SS in surface waters of the Ishikari River basin (14 330 km2), the largest watershed in Hokkaido, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients, including small streams (streams with drainage area < 200 km2) and large streams, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing land is associated with the largest sediment yield at around 1006 kg km-2 yr-1, followed by agricultural land (234 kg km-2 yr-1). Estimation of incremental yields shows that 35% comes from agricultural lands, 23% from forested lands, 23% from developing lands, and 19% from stream channels. The results of this study improve our understanding of sediment production and transportation in the Ishikari River basin in general, which will benefit both the scientific and management communities in safeguarding water resources.

  14. Turbidity current with a roof: Direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment

    NASA Astrophysics Data System (ADS)

    Cantero, Mariano I.; Balachandar, S.; Cantelli, Alessandro; Pirmez, Carlos; Parker, Gary

    2009-03-01

    In this work we present direct numerical simulations (DNS) of sediment-laden channel flows. In contrast to previous studies, where the flow has been driven by a constant, uniform pressure gradient, our flows are driven by the excess density imposed by suspended sediment. This configuration provides a simplified model of a turbidity current and is thus called the turbidity current with a roof configuration. Our calculations elucidate with DNS for the first time several fascinating features of sediment-laden flows, which may be summarized as follows. First, the presence of sediment breaks the symmetry of the flow because of a tendency to self-stratify. More specifically, this self-stratification is manifested in terms of a Reynolds-averaged suspended sediment concentration that declines in the upward normal direction and a Reynolds-averaged velocity profile with a maximum that is below the channel centerline. Second, this self-stratification damps the turbulence, particularly near the bottom wall. Two regimes are observed, one in which the flow remains turbulent but the level of turbulence is reduced and another in which the flow relaminarizes in a region near the bottom wall, i.e., bed. Third, the analysis allows the determination of a criterion for the break between these two regimes in terms of an appropriately defined dimensionless settling velocity. The results provide guidance for the improvement of Reynolds-averaged closures for turbulent flow in regard to stratification effects. Although the analysis reported here is not performed at the scale of large oceanic turbidity currents, which have sufficiently large Reynolds numbers to be inaccessible via DNS at this time, the implication of flow relaminarization is of considerable importance. Even a swift oceanic turbidity current which at some point crosses the threshold into the regime of relaminarization may lose the capacity to reentrain sediment that settles on the bed and thus may quickly die as it loses its

  15. The effects of stream crossings on total suspended sediment in North Carolina Piedmont forests

    Treesearch

    Johnny Boggs; Ge Sun; Steve McNulty

    2017-01-01

    This study determined total suspended sediment (TSS) at six stream crossings that represented a range of site conditions and forest operations in the Piedmont of North Carolina. Two wood and three steel bridgemats and one culvert were installed to cross the streams. The road classes for the crossings included four temporary skid trails and two permanent forest haul...

  16. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  17. Total Suspended Matter (TSM) and Maximum Signal Depth (Z90_max) for Monitoring the Evolution of Sediment Resuspension Process in Shallow Coastal Environments

    NASA Astrophysics Data System (ADS)

    Filipponi, Federico; Zucca, Francesco; Taramelli, Andrea; Valentini, Emiliana

    2015-12-01

    Monitoring sediment fluxes patterns in coastal area, like dispersion, sedimentation and resuspension processes, is a relevant topic for scientists, decision makers and natural resources management. Time series analysis of Earth Observation (EO) data may contribute to the understanding and the monitoring of processes in sedimentary depositional marine environment, especially for shallow coastal areas. This research study show the ability of optical medium resolution imagery to interpret the evolution of sediment resuspension from seafloor in coastal areas during intense wind forcings. Intense bora wind events in northern Adriatic Sea basin during winter season provoke considerable wave-generated resuspension of sediments, which cause variation in water column turbidity. Total Suspended Matter (TSM) product has been selected as proxy for qualitative and quantitative analysis of resuspended sediments. In addition, maximum signal depth (Z90_max), has been used to evaluate the evolution of sediment concentration in the water column.

  18. Storage filters upland suspended sediment signals delivered from watersheds

    USGS Publications Warehouse

    Pizzuto, James E.; Keeler, Jeremy; Skalak, Katherine; Karwan, Diana

    2017-01-01

    Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.

  19. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  20. Remote Sensing of Suspended Sediments and Shallow Coastal Waters

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.; Gao, Bo-Cai; Davis, Curtiss O.

    2002-01-01

    Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  1. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the

  2. Occurrence, distribution, and concentrations of selected contaminants in streambed- and suspended-sediment samples collected in Bexar County, Texas, 2007-09

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2011-01-01

    High concentrations of sediment-associated contaminants are typically associated with urban areas such as San Antonio, Texas, in Bexar County, the seventh most populous city in the United States. U.S. Geological Survey personnel periodically collected surficial streambed-sediment samples during 2007-09 and collected suspended-sediment samples from selected streams after storms during 2008 and 2009. All sediment samples were analyzed for major and trace elements, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons.

  3. Monitoring urban impacts on suspended sediment, trace element, and nutrient fluxes within the City of Atlanta, Georgia, USA: Program design, methodological considerations, and initial results

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2008-01-01

    Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long-term water-quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year-1; ??? 94% of the transport occurred in conjunction with storm-flow, which also accounted for ??? 65% of the annual discharge. Typically, storm-flow averaged ??? 20% of theyear. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean-daily discharge and a single rating curve-derived suspended sediment concentration. Due to the small and 'flashy' nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates (?? 15%) require calculation time-steps as short as every 2-3 h. Based on annual median base-flow/storm-flow chemical concentrations, the annual fluxes of ??? 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ??? 90% of the transport of these constituents occur in conjunction with storm-flow. As such, base-flow sediment-associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment-associated fluxes range from 50% to 60%; even so, storm-related transport typically exceeds 80%. Hence, in urban environments, non-point-source appear to be the dominant contributors to the fluxes of these constituents.

  4. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  5. Sr and Nd isotopes of suspended sediments from rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Hatting, Karina; Santos, Roberto V.; Sondag, Francis

    2014-05-01

    The Rb-Sr and Sm-Nd isotopic systems are important tools to constrain the provenance of sediment load in river systems. This study presents the isotopic composition of Sr and Nd isotopes and major and minor elements in suspended sediments from the Marañón-Solimões, Amazonas and Beni-Madeira rivers. The data were used to constrain the source region of the sediments and to better understand the main seasonal and spatial transport processes within the basin based on the variations of the chemical and isotopic signals. They also allow establishing a relationship between sediment concentrations and flow rate values. The study presents data collected during a hydrological year between 2009 and 2010. The Marañón-Solimões River presents low Sr isotopic values (0.7090-0.7186), broad EpslonNd(0) range (-15.17 to -8.09) and Nd model (TDM) ages varying from 0.99 to 1.81 Ga. Sources of sediments to the Marañón-Solimões River include recent volcanic rocks in northern Peru and Ecuador, as well as rocks with long crustal residence time and carbonates from the Marañón Basin, Peru. The Beni-Madeira River has more radiogenic Sr isotope values (0.7255-0.7403), more negative EpslonNd(0) values (-20.46 to -10.47), and older Nd isotope model ages (from 1.40 to 2.35 Ga) when compared to the Marañón-Solimões River. These isotope data were related to the erosion of Paleozoic and Cenozoic foreland basins that are filled with Precambrian sediments derived from the Amazonian Craton. These basins are located in Bolivian Subandina Zone. The Amazon River presents intermediate isotopic values when compared to those found in the Marañón-Solimões and Beni-Madeira rivers. Its Sr isotope ratios range between 0.7193 and 0.7290, and its EpslonNd(0) values varies between -11.09 and -9.51. The Nd isotope model ages of the suspended sediments vary between 1.28 and 1.77 Ga. Concentrations of soluble and insoluble elements indicate a more intense weathering activity in sediments of the Beni

  6. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay

  7. Monitoring suspended sediments and turbidity in Sahelian basins

    NASA Astrophysics Data System (ADS)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (< 250m2) are critical for Sahelian societies, monitoring turbidity requires the use of high temporal and spatial resolution sensors like Landsat 7 and 8, Sentinel-2 as well SPOT5-TAKE5 data. Compared to many other regions of the world, the particularly high turbidity values found in tropical Africa challenges the use of remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015

  8. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    NASA Astrophysics Data System (ADS)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  9. Cross-Validation of Suspended Sediment Concentrations Derived from Satellite Imagery and Numerical Modeling of the 1997 New Year's Flood on the Feather River, CA

    NASA Astrophysics Data System (ADS)

    Kilham, N. E.

    2009-12-01

    deposition calculations. At each of three upstream channel boundaries, hourly SSC was derived from instantaneous discharge and SSC records at USGS gages for winter months (December-April) following dam closure on the Feather, Yuba, and Bear Rivers (r2 = 0.61; r2 = 0.81; r2 = 0.55). Model channel concentrations declined downstream from about 90 mg L-1 to 40 mg L-1 as sediment input was depleted through decanting of river water overbank, advection through floodplain channels, and deposition onto the floodplain. Similar downstream declines in the image values suggest that bed and bank erosion downstream of the major gages did not contribute much new sediment two weeks following the flood peak. Model predicted concentrations agree with image derived concentrations to within 10 mg L-1, although the model predicts a more rapid drawdown of floodplain flow than is apparent from the image. Aalto, R., 1995. Discordance between suspended sediment diffusion theory and observed sediment concentration profiles in rivers. M.S., University of Washington, Seattle, WA. Rouse, H.R., 1937. Modern conceptions of the mechanics of turbulence. Transactions, American Society of Civil Engineers, 102: 463-543.

  10. Field observation and analysis of wave-current-sediment movement in Caofeidian Sea area in the Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Zuo, Li-qin; Lu, Yong-jun; Wang, Ya-ping; Liu, Huai-xiang

    2014-06-01

    In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m3 and the average value being 0.03 kg/m3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended

  11. An operation manual for a time-series, storm-activated suspended sediment sampler deployed in the coastal ocean: function, maintenance, and testing procedures

    USGS Publications Warehouse

    Rendigs, Richard R.; Bothner, Michael H.

    2004-01-01

    This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.

  12. Modeling suspended sediment sources and transport in the Ishikari River Basin, Japan using SPARROW

    NASA Astrophysics Data System (ADS)

    Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Hu, M.

    2014-10-01

    It is important to understand the mechanisms that control suspended sediment (SS) fate and transport in rivers as high suspended sediment loads have significant impacts on riverine hydroecology. In this study, the watershed model SPARROW (SPAtially Referenced Regression on Watershed Attributes) was applied to estimate the sources and transport of SS in surface waters of the Ishikari River Basin (14 330 km2), the largest watershed on Hokkaido Island, Japan. The final developed SPARROW model has four source variables (developing lands, forest lands, agricultural lands, and stream channels), three landscape delivery variables (slope, soil permeability, and precipitation), two in-stream loss coefficients including small stream (streams with drainage area < 200 km2), large stream, and reservoir attenuation. The model was calibrated using measurements of SS from 31 monitoring sites of mixed spatial data on topography, soils and stream hydrography. Calibration results explain approximately 95.96% (R2) of the spatial variability in the natural logarithm mean annual SS flux (kg km-2 yr-1) and display relatively small prediction errors at the 31 monitoring stations. Results show that developing-land is associated with the largest sediment yield at around 1006.27 kg km-2 yr-1, followed by agricultural-land (234.21 kg km-2 yr-1). Estimation of incremental yields shows that 35.11% comes from agricultural lands, 23.42% from forested lands, 22.91% from developing lands, and 18.56% from stream channels. The results of this study improve our understanding of sediments production and transportation in the Ishikari River Basin in general, which will benefit both the scientific and the management community in safeguarding water resources.

  13. Processes forcing the suspended sediments distribution in a wide, shallow and microtidal estuary: a numerical case study for the Río de la Plata

    NASA Astrophysics Data System (ADS)

    Simionato, Claudia; Moreira, Diego

    2017-04-01

    The impact of the diverse mechanisms driving the suspended sediments distribution in the wide, shallow and microtidal Río de la Plata (RdP) estuary and the adjacent shelf is studied by means of a set of process-oriented numerical simulations. With that aim, a regional application of the hydro-sedimentological Model for Applications at Regional Scale (MARS) is implemented, tested and run under diverse conditions. Even the simulations are idealized, they reproduce both qualitatively and quantitatively well the main features of the suspended sediments observed distribution, particularly the mean values of concentration and its gradients: perpendicular to the estuary axis at the upper and intermediate RdP and parallel to the estuary axis at its outer part. Even though naturally the diameter of the sediments that deposit decays with the distance to the sources (with sands and silts dominating in the upper estuary and fine silts and clays over the Barra del Indio), model results show that the large width and the geometry of the estuary play an important role in the sedimentation process. The widening and deepening, and the associated significant reduction of the currents speed that occurs after (i) the confluence of the tributaries and (ii) downstream the Barra del Indio Shoal, favors sediments deposition downstream those areas. Even though tides are of small amplitude in the study area, they have a significant impact on the lateral mixing and the re-suspension of bottom sediments; this last augments the concentration of fine sediments in the layers close to the bottom but their energy is not enough to rise them up to the surface. The model reproduces the increment in the concentration of fine sediments observed in the areas where tidal dissipation energy by bottom friction maximizes (over the southern coast of the RdP and around Punta Piedras and Punta Rasa), but shows that tides alone cannot account for the observed maxima. Winds (which can be quite large over this

  14. The effect of weathering in the Buyukmelen River basin on the geochemistry of suspended and bed sediments and the hyrogeochemical characteristics of river water, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem

    2010-07-01

    , and to quality class 2 based on Mn concentration in summer period. Chemical index of alteration (CIA) indices observed in the suspended and bed sediments (average of 55) suggest that their source area underwent moderate degrees of chemical weathering processes. According to Upper Continental Crust (UCC) values, the suspended sediment was rich in elements such as Fe 2O 3, CaO, MgO, MnO, TiO 2, P 2O 5, V, Cr, Co, Cu, Zn, As, Cd, Sb, Hg and Pb. The element concentrations of the suspended sediments were related to size fractionation, mainly of clay content. The mentioned enrichment was contributed by agglomerate, basalt, volcanic sandstone and graywacke from rocks in the study area. Source of ions such as Al, Fe, Mn, Ba, Cr, Co, Cu, Ni, Ti and Hg and major in the Buyukmelen River is interaction with rocks such as the agglomerate, basalt, andesite, volcanic sandstone and graywacke. As suggested by Singh et al. (2005), before weathering of some rocks in the Buyukmelen River basin, it was determined that they were graywacke and literanite based on the geochemistry of the suspended and bed sediments.

  15. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  16. Effect of daily oscillation in temperature and increased suspended sediment on growth and smolting in juvenile chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Shrimpton, J.M.; Zydlewski, Joseph D.; Heath, J.W.

    2007-01-01

    We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.

  17. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    PubMed

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  18. Discharge, suspended sediment, bedload, and water quality in Clear Creek, western Nevada, water years 2010-12

    USGS Publications Warehouse

    Huntington, Jena M.; Savard, Charles S.

    2015-09-30

    During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.

  19. Concentrations, fluxes, and yields of nitrogen, phosphorus, and suspended sediment in the Illinois River basin, 1996-2000

    USGS Publications Warehouse

    Terrio, Paul J.

    2006-01-01

    Concentrations, spatial and temporal variations, and fluxes of nitrogen, phosphorus, and suspended sediment were determined for 16 streams in the Illinois River Basin, Illinois from October 1996 through September 2000. Water samples were collected through the National Water-Quality Assessment's Lower Illinois River Basin (LIRB) and Upper Illinois River Basin (UIRB) Study Units on a monthly to weekly frequency from watersheds representing predominantly agricultural and urban land, as well as areas of mixed land-use. Streams in agricultural watersheds had high concentrations and fluxes of nitrate nitrogen, whereas streams in predominantly urban watersheds had high concentrations (above background levels) of ammonia nitrogen, organic nitrogen, and phosphorus. Median concentrations of nitrate nitrogen and total phosphorus were similar at the two Illinois River sampling stations (Illinois River at Ottawa, Ill. and Illinois River at Valley City, Ill.) that represented the downstream points of the UIRB and LIRB Study Units, respectively, and integrated multiple land-use areas. Concentrations of nitrogen were typically highest in the spring and lowest in the fall in agricultural watersheds, but highest in the winter in urban watersheds. Phosphorus concentrations in urban watersheds were highest in the fall and winter, but there was minimal seasonal variation in phosphorus concentrations in agricultural watersheds. Concentrations of nitrate and total nitrogen were affected primarily by non-point sources and hydrologic factors such as streamflow, storm intensity, watershed configuration, and soil permeability, whereas concentrations of phosphorus were affected largely by point-source contributions that typically have little seasonal variation. Seasonal variation in hydrologic conditions was an important factor for seasonal variation in nutrient concentration. Fluxes and yields of nitrogen and phosphorus forms varied substantially throughout the Illinois River Basin, and

  20. Suspended sediment concentration in the Lower Sea Scheldt (Belgium): long term trends and relation to mud disposal

    NASA Astrophysics Data System (ADS)

    Depreiter, Davy; van Holland, Gijsbert; Lanckriet, Thijs; Beirinckx, Kirsten; Vanlede, Joris; Maris, Tom

    2015-04-01

    In this presentation, results from different monitoring and research projects (OMES, MONEOS, Flexible Disposal and Marine-Fluvial mud ratio) will be integrated to increase the insight in the trends and relation between mud disposal and the increasing sediment concentrations (SSC) in the Lower Sea Scheldt. In the Scheldt Estuary, major projects have been carried out in the past decade, among which the third deepening of the navigation channel and the opening of the Deurganck dock. Maintenance dredging is carried out to guarantee a minimum navigation depth. A rising trend in the volume of mud dredged in the Lower Sea Scheldt is observed since 2006, the year after the opening of the Deurganck Dock. The trend is explained by increasing mud volumes dredged in this dock and on a nearby sill. This volume culminated in 2011 (4.8 million m³) when the depth of this dock was increased to its design depth. The dredged mud is disposed upstream, quickly to be resuspended. Near the mud disposal location, yearly averaged SSC (measured at 4.5 m above bed) tripled between 2005 and 2011 (108 to 348 mg/L), and SSC peaks increased even stronger. A multivariate regression model indicated a strong correlation between mud disposal volumes and timing and observed SSC. Mud disposal volumes and SSC where somewhat lower again after 2011. The SSC increase raises an alert with regard to the risk for a regime shift towards a hyperturbid system. Increasing SSC may indeed decrease the hydraulic resistance initiating a feedback mechanism that results in further increasing SSC values. It thus appears that more mud is being circulated: the Deurganck dock acts as mud sink, from which the mud is - after dredging and disposal - resuspended. The mud may have different sources: fluvial or marine influx. The increasing SSC might not only be related to the mud disposal, but also to changing tidal characteristics that enhance the influx of marine suspended sediments. To elucidate this, an analysis of the

  1. An integrated suspended sediment budgeting of the agricultural Can Revull catchment (Mallorca, Spain)

    NASA Astrophysics Data System (ADS)

    Estrany, J.; Garcia, C.

    2012-04-01

    The Mediterranean region of Europe has a long history of human settlement and human impacts. The very high spatial and temporal variability of fluvial processes in the region also creates problems for measurement and monitoring and for assessment of effects. Extensive rainfed herbaceous crops are one of the most representative agricultural elements of this region, which should be one of the major factor affecting erosion processes. Although land use is commonly seen as resulting in increased sediment yields, the implementation of soil and water conservation practices can have the reverse effect. Sediment budgets offer a means to assess the sources, storage, rates of transport, yields, and efficiency of delivery of sediment for a range of catchment scales. Field measurements were conducted in Can Revull, a small agricultural catchment (1.03 km2) on the island of Mallorca. This study uses 137Cs measurements, sediment source fingerprinting and continuous turbidity records of four hydrological years (2004-2005 to 2007-2008) to quantify the individual components of the budget. A large proportion of the material mobilized from cultivated fields without conservation practices (gross erosion was 775 t yr-1; 1,270 t km-2 yr-1) was, however, subsequently deposited either within the field of origin (112 t yr-1; 180 t km-2 yr-1) or at intermediate locations between the source field and the channel network (field-to-channel conveyance loss was 591 t yr-1; 1,090 t km-2 yr-1). The estimates of sediment accumulation rates on the floodplain in the lower reaches of the catchment indicate that the mean sedimentation rate was 0.47 g cm-2 yr-1. This value was extrapolated to the total area of the floodplain to estimate a total annual conveyance loss or storage of 150 t yr-1. Monitoring at the catchment outlet over the study period indicated a mean annual suspended sediment yield of 7 t km-2 yr-1. The sum of the estimates of sediment yield and floodplain storage (157 t yr-1) was taken

  2. Effects of effects of suspended sediment on early-life stage survival of Yaqui chub, an endangered USA–Mexico borderlands cyprinid

    USGS Publications Warehouse

    Barkalow, Stephani L. Clark; Bonar, Scott A.

    2015-01-01

    High levels of total suspended sediment (TSS) can have negative consequences on fishes, such as altering food supply, lowering food acquisition, clogging gills, and disrupting reproduction. While effects of TSS on salmonids and estuarine fish are well studied, less is known about possible negative impacts of suspended sediment on desert fishes. Several imperiled desert fishes inhabit streams and springs near the U.S.–Mexico border and are potentially threatened by increased sediment loads from borderlands activity such as livestock grazing, road building, illegal traffic, and law enforcement patrols. One such species is the Yaqui Chub Gila purpurea, a federally listed endangered cyprinid. We exposed Yaqui Chub embryos and fry (mean TL = 12.6 mm; SE = 0.42) to a range of TSS levels commonly found in one of the only streams they inhabit, Black Draw, which crosses the Arizona–Mexico border. We tested effects of 0; 300; 500; 1,000; 5,000; and 10,000 mg/L TSS loads on fry and embryos over a 5-d period in three replicate containers for each treatment. Fifty percent hatch rate (i.e., median lethal concentration, LC50) was 3,977 mg/L for embryos. The LC50 for fry (concentration at which half died) was 8,372 mg/L after 12 h of exposure; however, after 5-d exposure, LC50 leveled at 1,197 mg/L. The TL of fry did not change significantly in any treatment over the 5-d period. Suspended sediment in Black Draw reached concentrations lethal to Yaqui Chub embryo and fry during four floods in 2012. Although some desert fishes have evolved in rivers and streams subject to elevated TSS and are tolerant to high TSS concentrations, other fish species are less tolerant and may be impacted by land practices which increase erosion into stream systems. Management of critically endangered desert fishes should include considerations of the effects of increased suspended sediment.

  3. Hydrologic and Suspended-Sediment Data for Reelfoot Lake, Obion and Lake Counties, Northwestern Tennessee, May 1985-September 1986

    DTIC Science & Technology

    1986-01-01

    DATE 1986 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Hydrologic and Suspended-Sediment Data for Reelfoot Lake , Obion and...ANSI Std Z39-18 Ii-nmRO IiO~IC l!!Jm srLISPENDED- SEDIMENT DATA FOR REELFOOT LAKE , OBION AND LAKE COIJNTHES, IWXUWWESTERN TENNESSEE, IMAY...references 4 Hydrologic data 5 1. !Uap showing location of project area, Reelfoot Lake , streamflow monitoring stations. lake -stage monitoring

  4. Suspended sediment dynamics in a large-scale oceanic turbidity current: Direct measurements from the Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, Steve; Azpiroz, Maria; Cartigny, Matthieu; Clare, Mike; Parsons, Dan; Sumner, Esther; Talling, Pete

    2017-04-01

    Turbidity currents transport prodigious volumes of sediment to the deep ocean, depositing a greater volume of sediment than any other process on Earth. Thus far, only a handful of studies have reported direct measurements of turbidity currents, with typical flow durations ranging from a few minutes to a few hours. Consequently, our understanding of turbidity current dynamics is largely derived from scaled laboratory experiments and numerical models. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements of velocity and backscatter were acquired along profiles through the water column at five and six second intervals by two acoustic Doppler current profilers (ADCPs) on separate moorings suspended 80 m and 200 m above the canyon floor, at a water depth of 2000 m. We present a novel inversion method that combines the backscatter from the two ADCPs, acquired at different acoustic frequencies, which enables the first high resolution quantification of sediment concentration and grain size within an oceanic turbidity current. Our results demonstrate the presence of high concentrations of coarse sediment within a fast moving, thin frontal cell, which outruns a slower-moving, thicker, trailing body that can persist for several days. Thus, the flows stretch while propagating down-canyon, demonstrating a behavior that is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended clay-sized sediment and the flow structure is shown to be influenced by interactions with the internal tides in the canyon.

  5. Depth and areal extent of sheet and rill erosion based on radionuclides in soils and suspended sediment

    NASA Astrophysics Data System (ADS)

    Whiting, Peter J.; Bonniwell, E. Chris; Matisoff, Gerald

    2001-12-01

    Sheetwash and rilling are two important mechanisms of soil erosion by runoff. The relative contribution of each mechanism has been a vexing question because measuring thin sheet erosion is difficult. Fortuitously, various fallout radionuclides have distinct distributions in the soil column; thus, different depths of erosion produce suspended sediment with unique radionuclide signatures. Those signatures can be used to estimate the depth and areal extent of sheet and rill erosion. We developed a model to execute multiple mass balances on soil and radionuclides to quantify these erosion mechanisms. Radionuclide activities (7Be, 137Cs, 210Pb) in the soil of a 6.03 ha agricultural field near Treynor, Iowa, and in suspended sediment washed off the field during thunderstorm runoff were determined by gamma spectroscopy. Using the model, we examined 15.5 million possible combinations of the depth and areal extent of rill and sheet erosion. The best solution to the mass balances corresponded to rills eroding 0.38% of the basin to a depth of 35 mm and sheetwash eroding 37% of the basin to a depth of 0.012 mm. Rill erosion produced 29 times more sediment than sheet erosion.

  6. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  7. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    PubMed

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  8. Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    NASA Astrophysics Data System (ADS)

    Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.

    2017-05-01

    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) "new water" dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.

  9. Tropical river suspended sediment and solute dynamics in storms during an extreme drought

    USGS Publications Warehouse

    Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.

    2017-01-01

    Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.

  10. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  11. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-06-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C), and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic matter in the river will increase, which will possibly affect brown trout negatively.

  12. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    NASA Astrophysics Data System (ADS)

    Arismendi, Ivan; Groom, Jeremiah D.; Reiter, Maryanne; Johnson, Sherri L.; Dent, Liz; Meleason, Mark; Argerich, Alba; Skaugset, Arne E.

    2017-08-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time periods ("before", "after road construction/improvement", and "after forest harvest and hauling"). We hypothesized that the combined effects of road construction/improvement and the hauling following forest harvest would increase turbidity and SSC in these streams. We tested whether the differences between paired samples from above and below road crossing exceeded various biological thresholds, using literature values of biological responses to increases in SSC and turbidity. Overall, we found minimal increases of both turbidity and SSC after road improvement, forest harvest, and hauling. Because flow is often used as a surrogate for turbidity or SSC we examined these relationships using data from locations above road crossings that were unaffected by roads or forest harvest and hauling. In addition, we examined the association between turbidity and SSC for these background locations. We found a positive, but in some cases weak association between flow and turbidity, and between flow and SSC; the relationship between turbidity and SSC was more robust, but also inconsistent among sites over time. In these low order streams, the concentrations and transport of suspended sediment seems to be highly influenced by the variability of local conditions. Our study provides an expanded understanding of current forest road management practice effects on fine-grained sediment in streams and introduces alternative metrics using multiple thresholds to evaluate potential indicators of biological relevance.

  13. Suspended Sediment Moves 10 km Before Entering Storage: Re-Interpreting a 20th Century Industrial Mercury Release as a Tracer Experiment, South River, Virginia

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.

    2014-12-01

    Recent analyses suggest that the velocity of downstream transport of suspended sediment (averaged over long timescales that include periods of transport and storage in alluvial deposits) can be represented as the ratio Ls/T, where Ls is a distance particles move before entering storage and T is the waiting time particles spend in storage before being remobilized. Sediment budget analyses suggest that Ls is 1-100 km in the mid-Atlantic region, while T may be ~103 years, such that particles move 3-5 orders of magnitude slower than the water in the channel. Given the well-known inaccuracy of sediment budgets, independent verification from a tracer study would be desirable. Here, an historic industrial release of mercury is interpreted as a decadal sediment tracer experiment, releasing sediment particles "tagged" with mercury that are deposited on floodplains. As expected, floodplain mercury inventories decrease exponentially downstream, with a characteristic decay length of 10 km (95% confidence interval: 5-25 km) that defines the distance suspended particles typically move downstream before entering storage. Floodplain mercury inventories are not significantly different above and below three colonial age mill dams (present at the time of mercury release but now breached), suggesting that these results reflect ongoing processes. Suspended sediment routing models that neglect long-term storage, and the watershed management plans based on them, may need revision.

  14. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    PubMed

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. An inversion of the estuarine circulation by sluice water discharge and its impact on suspended sediment transport

    NASA Astrophysics Data System (ADS)

    Schulz, Kirstin; Gerkema, Theo

    2018-01-01

    The Wadden Sea is characterized by a complex topography of branching channels and intertidal flats, in which the interplay between fresh water discharges, wind forcing and the tidal current causes sediment transport rates and direction to be highly variable in space and time. During three field campaigns, indications of a negative estuarine circulation have been found in a channel adjacent to the coast in the Western Dutch Wadden Sea. Contrary to the classical picture of estuarine circulation, a periodic density stratification was observed that builds up during flood and breaks down during ebb. This can be related to a large freshwater source at the mouth of the channel, the sluice in Kornwerderzand. In this study, observations of this phenomenon are presented, and with the help of a numerical model the different drivers for residual suspended matter transport in this area, namely tidal asymmetries in the current velocity and the above mentioned periodic stratification, are investigated. It is found that the residual current in the area of interest points in ebb direction, caused by both the elongated ebb flow phase and the periodic stratification. On the contrary, the stronger flood currents cause a transport of suspended matter in flood direction. This transport is counteracted and therefore diminished by the effects of the sluice discharge.

  16. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1978-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  17. Laboratory requirements for in-situ and remote sensing of suspended material

    NASA Technical Reports Server (NTRS)

    Kuo, C. Y.; Cheng, R. Y. K.

    1976-01-01

    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.

  18. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007

    USGS Publications Warehouse

    Meade, R.H.; Moody, J.A.

    2010-01-01

    Before 1900, the Missouri-Mississippi River system transported an estimated 400 million metric tons per year of sediment from the interior of the United States to coastal Louisiana. During the last two decades (1987-2006), this transport has averaged 145 million metric tons per year. The cause for this substantial decrease in sediment has been attributed to the trapping characteristics of dams constructed on the muddy part of the Missouri River during the 1950s. However, reexamination of more than 60 years of water- and sediment-discharge data indicates that the dams alone are not the sole cause. These dams trap about 100-150 million metric tons per year, which represent about half the decrease in sediment discharge near the mouth of the Mississippi. Changes in relations between water discharge and suspended-sediment concentration suggest that the Missouri-Mississippi has been transformed from a transport-limited to a supply-limited system. Thus, other engineering activities such as meander cutoffs, river-training structures, and bank revetments as well as soil erosion controls have trapped sediment, eliminated sediment sources, or protected sediment that was once available for transport episodically throughout the year. Removing major engineering structures such as dams probably would not restore sediment discharges to pre-1900 state, mainly because of the numerous smaller engineering structures and other soil-retention works throughout the Missouri-Mississippi system. ?? 2009 John Wiley & Sons, Ltd.

  19. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme

    NASA Astrophysics Data System (ADS)

    Vauchel, Philippe; Santini, William; Guyot, Jean Loup; Moquet, Jean Sébastien; Martinez, Jean Michel; Espinoza, Jhan Carlo; Baby, Patrice; Fuertes, Oscar; Noriega, Luis; Puita, Oscar; Sondag, Francis; Fraizy, Pascal; Armijos, Elisa; Cochonneau, Gérard; Timouk, Franck; de Oliveira, Eurides; Filizola, Naziano; Molina, Jorge; Ronchail, Josyane

    2017-10-01

    The Madeira River is the second largest tributary of the Amazon River. It contributes approximately 13% of the Amazon River flow and it may contribute up to 50% of its sediment discharge to the Atlantic Ocean. Until now, the suspended sediment load of the Madeira River was not well known and was estimated in a broad range from 240 to 715 Mt yr-1. Since 2002, the HYBAM international network developed a new monitoring programme specially designed to provide more reliable data than in previous intents. It is based on the continuous monitoring of a set of 11 gauging stations in the Madeira River watershed from the Andes piedmont to the confluence with the Amazon River, and discrete sampling of the suspended sediment concentration every 7 or 10 days. This paper presents the results of the suspended sediment data obtained in the Madeira drainage basin during 2002-2011. The Madeira River suspended sediment load is estimated at 430 Mt yr-1 near its confluence with the Amazon River. The average production of the Madeira River Andean catchment is estimated at 640 Mt yr-1 (±30%), the corresponding sediment yield for the Andes is estimated at 3000 t km-2 yr-1 (±30%), and the average denudation rate is estimated at 1.20 mm yr-1 (±30%). Contrary to previous results that had mentioned high sedimentation rates in the Beni River floodplain, we detected no measurable sedimentation process in this part of the basin. On the Mamoré River basin, we observed heavy sediment deposition of approximately 210 Mt yr-1 that seem to confirm previous studies. But while these studies mentioned heavy sedimentation in the floodplain, we showed that sediment deposition occurred mainly in the Andean piedmont and immediate foreland in rivers (Parapeti, Grande, Pirai, Yapacani, Chimoré, Chaparé, Secure, Maniqui) with discharges that are not sufficiently large to transport their sediment load downstream in the lowlands.

  20. A Technique for Remote Sensing of Suspended Sediments and Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Technical Reports Server (NTRS)

    Li, Rong-Rong; Kaufman, Yoram J.

    2002-01-01

    We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 micron that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  1. Contributions of human activities to suspended-sediment yield during storm events from a steep, small, tropical watershed, American Samoa

    NASA Astrophysics Data System (ADS)

    Messina, A. T.; Biggs, T. W.

    2014-12-01

    Anthropogenic watershed disturbance by agriculture, deforestation, roads, and urbanization can alter the timing, composition, and mass of sediment loads to adjacent coral reefs, causing enhanced sediment stress on corals near the outlets of impacted watersheds like Faga'alu, American Samoa. To quantify the increase in sediment loading to the adjacent priority coral reef experiencing sedimentation stress, suspended-sediment yield (SSY) from undisturbed and human-disturbed portions of a small, steep, tropical watershed was measured during baseflow and storm events of varying magnitude. Data on precipitation, discharge, turbidity, and suspended-sediment concentration (SSC) were collected over three field campaigns and continuous monitoring from January 2012 to March 2014, which included 88 storm events. A combination of paired- and nested-watershed study designs using sediment budget, disturbance ratio, and sediment rating curve methodologies was used to quantify the contribution of human-disturbed areas to total SSY. SSC during base- and stormflows was significantly higher downstream of an open-pit aggregate quarry, indicating the quarry is a key sediment source requiring sediment discharge mitigation. Comparison of event-wise SSY from the upper, undisturbed watershed, and the lower, human-disturbed watershed showed the Lower watershed accounted for more than 80% of total SSY on average, and human activities have increased total sediment loading to the coast by approximately 200%. Four storm characteristics were tested as predictors of event SSY using Pearson's and Spearman's correlation coefficients. Similar to mountainous watersheds in semi-arid and temperate watersheds, SSY from both the undisturbed and disturbed watersheds had the highest correlation with event maximum discharge, Qmax (Pearson's R=0.88 and 0.86 respectively), and were best fit by a power law relationship. The resulting model of event-SSY from Faga'alu is being incorporated as part of a larger

  2. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    USGS Publications Warehouse

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  3. Near-bottom suspended matter concentration on the Continental Shelf during storms: estimates based on in situ observations of light transmission and a particle size dependent transmissometer calibration

    USGS Publications Warehouse

    Moody, J.A.; Butman, B.; Bothner, Michael H.

    1987-01-01

    A laboratory calibration of Sea Tech and Montedoro-Whitney beam transmissometers shows a linear relation between light attenuation coefficient (cp) and suspended matter concentration (SMC) for natural sediments and for glass beads. However the proportionality constant between cp and SMC depends on the particle diameter and particle type. Thus, to measure SMC, observations of light attenuation must be used with a time-variable calibration when suspended particle characteristics change with time. Because of this variable calibration, time series of light attenuation alone may not directly reflect SMC and must be interpreted with care.The near-bottom concentration of suspended matter during winter storms on the U.S. East Coast Continental Shelf is estimated from light transmission measurements made 2 m above the bottom and from the size distribution of suspended material collected simultaneously in sediment traps 3 m above the bottom. The average concentrations during six storms between December 1979 and February 1980 in the Middle Atlantic Bight ranged from 2 to 4 mg l1 (maximum concentration of 7 mg l1) and 8 to 12 mg l1 (maximum concentration of 22 mg l1) on the south flank of Georges Bank.

  4. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States

    USGS Publications Warehouse

    Smalling, Kelly L.; Reilly, Timothy J.; Sandstrom, Mark W.; Kuivila, Kathryn

    2013-01-01

    To document the environmental occurrence and persistence of fungicides, a robust and sensitive analytical method was used to measure 34 fungicides and an additional 57 current-use pesticides in bed sediments and suspended solids collected from areas of intense fungicide use within three geographic areas across the United States. Sampling sites were selected near or within agricultural research farms using prophylactic fungicides at rates and types typical of their geographic location. At least two fungicides were detected in 55% of the bed and 83% of the suspended solid samples and were detected in conjunction with herbicides and insecticides. Six fungicides were detected in all samples including pyraclostrobin (75%), boscalid (53%), chlorothalonil (41%) and zoxamide (22%). Pyraclostrobin, a strobilurin fungicide, used frequently in the United States on a variety of crops, was detected more frequently than p,p′-DDE, the primary degradate of p,p′-DDT, which is typically one of the most frequently occurring pesticides in sediments collected within highly agricultural areas. Maximum fungicide concentrations in bed sediments and suspended solids were 198 and 56.7 μg/kg dry weight, respectively. There is limited information on the occurrence, fate, and persistence of many fungicides in sediment and the environmental impacts are largely unknown. The results of this study indicate the importance of documenting the persistence of fungicides in the environment and the need for a better understanding of off-site transport mechanisms, particularly in areas where crops are grown that require frequent treatments to prevent fungal diseases.

  5. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  6. Investigating the temporal dynamics of suspended sediment during flood events with 7Be and 210Pbxs measurements in a drained lowland catchment

    PubMed Central

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Manière, Louis; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2017-01-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments. PMID:28169335

  7. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    NASA Astrophysics Data System (ADS)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  8. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK)

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Dadson, Simon J.; Prudhomme, Christel; Whitehead, Paul G.

    2016-11-01

    The effects of climate change and variability on river flows have been widely studied. However the impacts of such changes on sediment transport have received comparatively little attention. In part this is because modelling sediment production and transport processes introduces additional uncertainty, but it also results from the fact that, alongside the climate change signal, there have been and are projected to be significant changes in land cover which strongly affect sediment-related processes. Here we assess the impact of a range of climatic variations and land covers on the River Thames catchment (UK). We first calculate a response of the system to climatic stressors (average precipitation, average temperature and increase in extreme precipitation) and land-cover stressors (change in the extent of arable land). To do this we use an ensemble of INCA hydrological and sediment behavioural models. The resulting system response, which reveals the nature of interactions between the driving factors, is then compared with climate projections originating from the UKCP09 assessment (UK Climate Projections 2009) to evaluate the likelihood of the range of projected outcomes. The results show that climate and land cover each exert an individual control on sediment transport. Their effects vary depending on the land use and on the level of projected climate change. The suspended sediment yield of the River Thames in its lowermost reach is expected to change by -4% (-16% to +13%, confidence interval, p = 0.95) under the A1FI emission scenario for the 2030s, although these figures could be substantially altered by an increase in extreme precipitation, which could raise the suspended sediment yield up to an additional +10%. A 70% increase in the extension of the arable land is projected to increase sediment yield by around 12% in the lowland reaches. A 50% reduction is projected to decrease sediment yield by around 13%.

  9. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    USGS Publications Warehouse

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Results of the geomorphological and suspended-sediment monitoring components were largely in agreement and consistent with those of a related effort that monitored the logperch population before and during construction. These findings suggest that construction and sediment-control practices sufficiently protected in-stream habitat and the organisms that inhabit those locations, namely the Roanoke logperch, during the period monitored.

  10. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban tributary, San Francisco Bay, California.

    PubMed

    McKee, Lester J; Gilbreath, Alicia N

    2015-08-01

    Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during

  11. The observation of underwater frazil ice formation and upward sediment transport in an Arctic polynya in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Ito, M.; Ohshima, K. I.; Fukamachi, Y.; Simizu, D.; Mahoney, A. R.; Eicken, H.

    2016-12-01

    Sea ice is a great contributor to energy- and salt-budget, dense water formation and bio-related material cycle in the polar ocean. In coastal polynya, the ice production becomes maximum when open water is maintained owing to underwater frazil ice formation associated with supercooling. In addition, an interaction between frazil ice and re-suspended sediment can be a major process of sediment incorporation into sea ice. Although these process have been reported from laboratory experiments and numerical simulations, in-situ observations have been limited because the under-ice observation is logistically challenging and detection methods of frazil ice and sedimentary particles have not been well established. Since 2009, mooring observations with ADCPs, Ice-Profiling Sonars and C-T recorders have been continuously carried out off Barrow in the Chukchi Sea, through a collaboration between Hokkaido University and University of Alaska Fairbanks. Recently, some in-situ measurements reported the possibility that an ADCP can detect frazil ice and re-suspended sediment using acoustic backscatter strength data. Thus, we analyzed the ADCP data in the Chukchi Sea, focusing on underwater frazil ice formation and upward sediment transport. In winter, polynyas were formed episodically around the observational sites several times by offshore-ward strong winds of > 10 m/s. During these polynya events, surface-intensified signals were detected throughout the water column at two sites with water depths of 40 - 50 m simultaneously. In these cases, potential supercooling occurred and signals were particularly enhanced at timings of in-situ supercooling. Thus, we interpreted these signals as those of frazil ice. On the other hand, bottom-intensified signals originating from re-suspended sediment were detected throughout the water column just after frazil ice was detected. These signals were associated with strong ocean currents of 1 m/s. Thus, sedimentary particles are likely dispersed

  12. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  13. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Treesearch

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  14. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In

  15. Observations on the use of acoustic Doppler velocimeters over rough beds with suspended sediment

    USDA-ARS?s Scientific Manuscript database

    Acoustic Doppler velocimeters provide a means for measuring velocities and turbulence in challenging circumstances, such as in flows with suspended particles, which are difficult or impossible with laser-based techniques. The relatively non-intrusive measurement resulting from the offset sampling v...

  16. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  17. Interactions of infectious F-specific RNA bacteriophages with suspended matter and sediment: Towards an understanding of FRNAPH distribution in a river water system.

    PubMed

    Fauvel, Blandine; Ogorzaly, Leslie; Cauchie, Henry-Michel; Gantzer, Christophe

    2017-01-01

    The association of viruses with settling particles is certainly a major process controlling the spread of viral pollution in surface water and sediment. To better understand the viral distribution in a river system, the behavior of F-specific RNA bacteriophages (FRNAPHs) was investigated in relationship with the suspended solids and sediment. The partitioning of phage particles (free or associated with solids) in surface water and the attachment capabilities of eight distinct strains of phages to sediment were studied in lab experiments. In situ observations were also performed with the genotyping of 166 individual plaques of FRNAPHs isolated from surface water and sediment. The results reported here demonstrate a variation of the status of infectious phages as a function of the hydro-climatological conditions. Phage-solid association seems to mainly occur during the peak of rainfall-runoff events but also to a certain extent during the recession phase compared to low flow conditions. The transfer of phages from the water column to sediment may occur at this time. Furthermore, the ability of FRNAPHs to interact with sediment was established for six strains out of eight, belonging to genogroups II, III and IV. A similar dynamic was observed for strains within a same genogroup despite different intensity of attachment and inactivation rates for strains of genogroups III and IV. The latter results match the in situ observations in the water and sediment compartments of the studied area. Infectious FRNAPH genogroup II was more abundant in sediment than in surface water. Its capability to sorb to sediment and its higher persistence in the environment compared to genogroups III and IV were the two main explanations. Together, lab and in situ experiments produce an overall vision of the mechanisms governing FRNAPH distribution among the water column and riverbed sediment. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  18. Distribution of suspended sediment in a partially mixed estuary, Charleston Harbor, South Carolina, U.S.A.

    NASA Astrophysics Data System (ADS)

    Althausen, J. D.; Kjerfve, Björn

    1992-11-01

    A well-defined turbidity maximum zone (TMZ) exists 15-45 km upstream of the entrance to Charleston Harbor, South Carolina, on the Cooper River, where the salinity varies between 5-15 ppt. The TMZ is characterized by less than 60% light transmission over a 5 cm path-length near the bottom, as compared to 70-90% light transmission elsewhere. The TMZ oscillates along the Cooper River 3-13 km during a tidal cycle. The range of total suspended sediment (TSS) concentration is 40-100 mg l -1 in the TMZ, while 10-30 mg l -1 is the most common TSS concentration elsewhere in the estuarine portion of Charleston Harbor and the Cooper River. Transmissivity is well-correlated with TSS ( r2 = 0·77) throughout the estuary. TSS concentration depends largely on tidal stage and varies significantly from spring to neap tide. Spring tide TSS concentrations are 2-3 times greater than concentrations during neap tides. The net downstream transport of suspended sediment is primarily a function of fresh water discharge, but is particularly large when flood events coincide with spring tides as was evident during the sampling of the TMZ following Hurricane Hugo (22 September 1989).

  19. An analysis of bedload and suspended load interactions

    NASA Astrophysics Data System (ADS)

    Recking, alain; Navratil, Oldrich

    2013-04-01

    Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to

  20. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2

  1. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are

  2. ROSGREN STREAM TYPES AS A TOOL FOR PREDICTING BEDLOAD AND SUSPENDED SEDIMENT EXPORT IN LOW-ORDER LAKE SUPERIOR WATERSHEDS

    EPA Science Inventory

    Bedload samples were collected from 48 second and third order Lake Superior tributaries during snowmelt in 1998 and 1999. Suspended sediment samples were collected over a three-year period during baseflow, rain events, and snowmelt. This work was part of a comparative watershed...

  3. Characterizing Flow and Suspended Sediment Trends in the Sacramento River Basin, CA Using Hydrologic Simulation Program - FORTRAN (HSPF)

    NASA Astrophysics Data System (ADS)

    Stern, M. A.; Flint, L. E.; Flint, A. L.; Wright, S. A.; Minear, J. T.

    2014-12-01

    A watershed model of the Sacramento River Basin, CA was developed to simulate streamflow and suspended sediment transport to the San Francisco Bay Delta (SFBD) for fifty years (1958-2008) using the Hydrological Simulation Program - FORTRAN (HSPF). To compensate for the large model domain and sparse data, rigorous meteorological development and characterization of hydraulic geometry were employed to spatially distribute climate and hydrologic processes in unmeasured locations. Parameterization techniques sought to include known spatial information for tributaries such as soil information and slope, and then parameters were scaled up or down during calibration to retain the spatial characteristics of the land surface in un-gaged areas. Accuracy was assessed by comparing model calibration to measured streamflow. Calibration and validation of the Sacramento River ranged from "good" to "very good" performance based upon a "goodness-of-fit" statistical guideline. Model calibration to measured sediment loads were underestimated on average by 39% for the Sacramento River, and model calibration to suspended sediment concentrations were underestimated on average by 22% for the Sacramento River. Sediment loads showed a slight decreasing trend from 1958-2008 and was significant (p < 0.0025) in the lower 50% of stream flows. Hypothetical climate change scenarios were developed using the Climate Assessment Tool (CAT). Several wet and dry scenarios coupled with temperature increases were imposed on the historical base conditions to evaluate sensitivity of streamflow and sediment on potential changes in climate. Wet scenarios showed an increase of 9.7 - 17.5% in streamflow, a 7.6 - 17.5% increase in runoff, and a 30 - 93% increase in sediment loads. The dry scenarios showed a roughly 5% decrease in flow and runoff, and a 16 - 18% decrease in sediment loads. The base hydrology was most sensitive to a temperature increase of 1.5 degrees Celsius and an increase in storm intensity and

  4. A Technique For Remote Sensing Of Suspended Sediments And Shallow Coastal Waters Using MODIS Visible and Near-IR Channels

    NASA Astrophysics Data System (ADS)

    Li, R.; Kaufman, Y.

    2002-12-01

    ABSTRACT We have developed an algorithm to detect suspended sediments and shallow coastal waters using imaging data acquired with the Moderate Resolution Imaging SpectroRadiometer (MODIS). The MODIS instruments on board the NASA Terra and Aqua Spacecrafts are equipped with one set of narrow channels located in a wide 0.4 - 2.5 micron spectral range. These channels were designed primarily for remote sensing of the land surface and atmosphere. We have found that the set of land and cloud channels are also quite useful for remote sensing of the bright coastal waters. We have developed an empirical algorithm, which uses the narrow MODIS channels in this wide spectral range, for identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. In our algorithm, we take advantage of the strong water absorption at wavelengths longer than 1 æm that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.

  5. Sediment flux measurements at the oceanic boundary of a large estuary

    NASA Astrophysics Data System (ADS)

    Downing-Kunz, M.; Work, P. A.; Schoellhamer, D. H.

    2016-12-01

    Sediment is an important resource for San Francisco Bay (SFB), in the context of wetland restoration projects, dredging operations, ecosystem health, and contaminant transport and fate. One way to help manage sediment (and sediment-associated contaminants) in SFB is by developing a quantitative sediment budget to account for sources, sinks, and storage of sediment. Previously developed sediment budgets have shown that sediment exchange at the oceanic boundary of SFB (Golden Gate) is the most poorly understood element of the SFB sediment budget, owing to logistical challenges that inhibit routine field observations. In this study, field observations of suspended-sediment flux at the Golden Gate were conducted on ebb and flood tides during two distinct periods of the 2016 hydrograph: peak (4,000 m3/s) and low (200 m3/s) rates of freshwater inflow to SFB. Suspended-sediment flux was estimated from a boat-mounted acoustic Doppler current profiler that provided measurements of discharge and acoustic backscatter (ABS) at a cross-section near the oceanic boundary. Discrete water samples were analyzed for suspended-sediment concentration (SSC) and related to ABS. During the period of peak freshwater inflow, maximum discharge observed at Golden Gate reached 130,000 m3/s during ebb tide; observed SSC (20-40 mg/L) were lower than expected compared to upstream conditions. A network of five SSC monitoring stations extending 5-80 km upstream demonstrated a watershed-sourced sediment pulse (SSC reaching 200 mg/L) moved downstream to within 20 km of the oceanic boundary, an observation corroborated by concurrent satellite imagery. This finding, combined with lower SSC near the Golden Gate, suggests the sediment pulse was trapped within SFB, indicating a freshwater inflow threshold exceeding 4,000 m3/s for sediment export at the oceanic boundary. Such trapping could provide additional sediment to benefit wetland restoration efforts.

  6. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    USGS Publications Warehouse

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  7. Organic Compounds, Trace Elements, Suspended Sediment, and Field Characteristics at the Heads-of-Tide of the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers, New Jersey, 2000-03

    USGS Publications Warehouse

    Bonin, Jennifer L.; Wilson, Timothy P.

    2006-01-01

    Concentrations of suspended sediment, particulate and dissolved organic carbon, trace elements, and organic compounds were measured in samples from the heads-of-tide of the five tributaries to the Newark and Raritan Bays during June 2000 to June 2003. The samples were collected as part of the New Jersey Department of Environmental Protection Toxics Reduction Workplan/Contaminant Assessment Reduction Program. Samples of streamwater were collected at water-quality sampling stations constructed near U.S. Geological Survey gaging stations on the Raritan, Passaic, Hackensack, Rahway, and Elizabeth Rivers. Sampling was conducted during base-flow conditions and storms. Constituent concentrations were measured to determine the water quality and to calculate the load of sediment and contaminants contributed to the bays from upstream sources. Water samples were analyzed for suspended sediment, dissolved organic carbon, particulate organic carbon, and specific conductance. Samples of suspended sediment and water were analyzed for 98 distinct polychlorinated biphenyl congeners, 7 dioxins, 10 furans, 27 pesticides, 26 polycyclic aromatic hydrocarbons, and the trace elements cadmium, lead, mercury, and methyl-mercury. Measurements of ultra-low concentrations of organic compounds in sediment and water were obtained by collecting 1 to 3 grams of suspended sediment on glass fiber filters and by passing at least 20 liters of filtered water through XAD-2 resin. The extracted sediment and XAD-2 resin were analyzed for organic compounds by high- and low-resolution gas chromatography mass-spectrometry that uses isotope dilution procedures. Trace elements in filtered and unfiltered samples were analyzed for cadmium, lead, mercury, and methyl-mercury by inductively coupled charged plasma and mass-spectrometry. All constituent concentrations are raw data. Interpretation of the data will be completed in the second phase of the study.

  8. Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Dwinovantyo, Angga; Manik, Henry M.; Prartono, Tri; Susilohadi; Ilahude, Delyuzar

    2017-01-01

    Measurement of suspended sediment concentration (SSC) is one of the parameters needed to determine the characteristics of sediment transport. However, the measurement of SSC nowadays still uses conventional technique and it has limitations; especially in temporal resolution. With advanced technology, the measurement can use hydroacoustic technology such as Acoustic Doppler Current Profiler (ADCP). ADCP measures the intensity of backscatter as echo intensity unit from sediment particles. The frequency of ADCP used in this study was 400 kHz. The samples were measured and collected from Lembeh Strait, North Sulawesi. The highest concentration of suspended sediment was 98.89 mg L-1 and the lowest was 45.20 mg L-1. Time series data showed the tidal condition affected the SSC. From the research, we also made correction from sound signal losses effect such as spherical spreading and sound absorption to get more accurate results by eliminating these parameters in echo intensity data. Simple linear regression analysis at echo intensity measured from ADCP to direct measurement of SSC was performed to obtain the estimation of the SSC. The comparison result of estimation of SSC from ADCP measurements and SSC from laboratory analyses was insignificantly different based on t-test statistical analysis with 95% confidence interval percentage.

  9. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  10. Longitudinal variation in lateral trapping of fine sediment in tidal estuaries: observations and a 3D exploratory model

    NASA Astrophysics Data System (ADS)

    Chen, Wei; de Swart, Huib E.

    2018-03-01

    This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.

  11. Concentrations, loads, and yields of total phosphorus, total nitrogen, and suspended sediment and bacteria concentrations in the Wister Lake Basin, Oklahoma and Arkansas, 2011-13

    USGS Publications Warehouse

    Buck, Stephanie D.

    2014-01-01

    The Poteau Valley Improvement Authority uses Wister Lake in southeastern Oklahoma as a public water supply. Total phosphorus, total nitrogen, and suspended sediments from agricultural runoff and discharges from wastewater treatment plants and other sources have degraded water quality in the lake. As lake-water quality has degraded, water-treatment cost, chemical usage, and sludge production have increased for the Poteau Valley Improvement Authority. The U.S. Geological Survey (USGS), in cooperation with the Poteau Valley Improvement Authority, investigated and summarized concentrations of total phosphorus, total nitrogen, suspended sediment, and bacteria (Escherichia coli and Enterococcus sp.) in surface water flowing to Wister Lake. Estimates of total phosphorus, total nitrogen, and suspended sediment loads, yields, and flow-weighted mean concentrations of total phosphorus and total nitrogen concentrations were made for the Wister Lake Basin for a 3-year period from October 2010 through September 2013. Data from water samples collected at fixed time increments during base-flow conditions and during runoff conditions at the Poteau River at Loving, Okla. (USGS station 07247015), the Poteau River near Heavener, Okla. (USGS station 07247350), and the Fourche Maline near Leflore, Okla. (USGS station 07247650), water-quality stations were used to evaluate water quality over the range of streamflows in the basin. These data also were collected to estimate annual constituent loads and yields by using regression models. At the Poteau River stations, total phosphorus, total nitrogen, and suspended sediment concentrations in surface-water samples were significantly larger in samples collected during runoff conditions than in samples collected during base-flow conditions. At the Fourche Maline station, in contrast, concentrations of these constituents in water samples collected during runoff conditions were not significantly larger than concentrations during base

  12. Catch and Release: A dense, longitudinal array of water quality sondes reveals spatial and temporal complexities in suspended sediment flux

    NASA Astrophysics Data System (ADS)

    Guilinger, J. J.; Crosby, B. T.

    2017-12-01

    Excessive suspended sediment in streams is one of the most common causes for industrial, ecological and recreational stream impairment in the US. Identifying the primary geomorphic or anthropogenic sources of sediment is a key step in the effective mitigation of impairment. This study seeks to identify sources of suspended sediment in an agriculturally impaired watershed, Marsh Creek, in southeast Idaho. We employ thirteen multi-parameter water quality sensors to simultaneously measure stage, turbidity, temperature and conductivity every 15 minutes over a full calendar year. Examined at both the event and annual scale, these data enable mass balance calculations for mainstem and tributary contributions. Revealed in this monitoring is an approximately eight-fold longitudinal increase in sediment flux over 74 km that is largely augmented by eroding mainstem banks in reaches with higher stream power in the lower 30 km, with less than 20% contributed from tributaries. Independent data confirming the bank source were acquired through cost-effective sediment fingerprinting using 15N and C:N signatures from potential soil endmembers. Additionally, Google Street View-type longitudinal imagery of banks was collected via a kayak survey to confirm the spatial extent and magnitude of bank erosion along Marsh Creek. These data converge on bank erosion as the primary source of fine sediment. Sediment load at various hierarchical temporal and spatial scales is impacted by in-stream storage and remobilization, especially over shorter timescales ranging from daily to seasonal periods. Once averaged over the annual scale, local, temporary in-channel storage is overcome and these data reveal source reaches that can be prioritized for restoration and mitigation projects.

  13. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Discharge, SSC, and turbidity were strongly related at the Coldbrook site but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek. Stony Clove Creek had high SSCs and turbidity regardless of discharge, and although concentrations and turbidity values generally increased with increasing discharge, the relation was not strong. Five of the six sites used to investigate the relations between SSC and laboratory turbidity had a coefficient of determination (r2) greater than 0.7. Relations were not as strong between SSC and the turbidity measured by in situ probes because the period of record was shorter and therefore the sample sizes were smaller. Data from in situ turbidity probes were strongly related to turbidity data measured in the laboratory for all but one of the monitoring sites where the relation was strongly leveraged by one sample. Although the in situ turbidity probes appeared to provide a good surrogate for SSC and could allow more accurate calculations of suspended-sediment load than discrete suspended-sediment samples alone, more data would be required to define the regression models throughout the range in discharge, SSCs, and turbidity levels that occur at each monitoring site. Nonetheless, the in situ probes provided much greater detail about the relation between discharge and turbidity than did the grab samples and storm samples measured in the laboratory.

  14. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  15. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    USGS Publications Warehouse

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  16. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8 to 415 μm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 data sets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-2012 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38-69,264 km2). An unrealistically low computed effective density (mass SSC/volumetric SSC) of 1.24 g/mL (95% confidence interval: 1.05-1.45 g/mL) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over two orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/mL (range: 2.56-2.87 g/mL, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  17. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  18. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  19. Sudden clearing of estuarine waters upon crossing the threshold from transport to supply regulation of sediment transport as an erodible sediment pool is depleted: San Francisco Bay, 1999

    USGS Publications Warehouse

    Schoellhamer, David H.

    2011-01-01

    The quantity of suspended sediment in an estuary is regulated either by transport, where energy or time needed to suspend sediment is limiting, or by supply, where the quantity of erodible sediment is limiting. This paper presents a hypothesis that suspended-sediment concentration (SSC) in estuaries can suddenly decrease when the threshold from transport to supply regulation is crossed as an erodible sediment pool is depleted. This study was motivated by a statistically significant 36% step decrease in SSC in San Francisco Bay from water years 1991–1998 to 1999–2007. A quantitative conceptual model of an estuary with an erodible sediment pool and transport or supply regulation of sediment transport is developed. Model results confirm that, if the regulation threshold was crossed in 1999, SSC would decrease rapidly after water year 1999 as observed. Estuaries with a similar history of a depositional sediment pulse followed by erosion may experience sudden clearing.

  20. A smoothed particle hydrodynamics (SPH) study on polydisperse sediment from technical activities on seabed

    NASA Astrophysics Data System (ADS)

    Tran-Duc, Thien; Phan-Thien, Nhan; Khoo, Boo Cheong

    2018-02-01

    Technical activities to collect poly-metallic nodules on a seabed are likely to disturb the top-layer sediment and re-suspend it into the ambient ocean water. The transport of the re-suspended polydisperse-sized sediment is a process in which particles' size variation leads to a difference in their settling velocities; and thus the polydispersity in sizes of sediment has to be taken into account in the modeling process. The sediment transport within a window of 12 km is simulated and analyzed numerically in this study. The sediment characteristic and the ocean current data taken from the Peru Basin, Pacific Ocean, are used in the simulations. More than 50% of the re-suspended sediment are found to return to the bottom after 24 h. The sediment concentration in the ambient ocean water does not exceed 3.5 kg/m3 during the observed period. The deposition rate steadily increases and reaches 70% of the sediment re-suspension rate after 24 h. The sediment plume created by the activities comprises mainly very fine sediment particles (clays and silts), whereas coarser particles (sands) are found in abundance in the deposited sediment within 1 km from the source location. It is also found that the deposition process of the re-suspended sediment is changed remarkably as the current velocity increases from 0.05 m/s (medium current) to 0.1 m/s (strong current). The strong sediment deposition trend is also observed as the sediment source moves continuously over a region due to the sediment scattering effect.

  1. A Satellite Imagery Approach to Monitor Turbidity and Total Suspended Sediments in Green Bay, WI

    NASA Astrophysics Data System (ADS)

    Khazaei, B.; Hamidi, S.; Hosseiny, S. M. H.; Ekhtari, N.

    2017-12-01

    Fox River is a major source of land-based pollutants, nutrients, and sediment that flows into the southern Green Bay (GB). GB supplies one-third of the total nutrient loading to Lake Michigan. This can play a significant role in the biological functioning of the Bay and development of managerial scenarios. To name a few, it can degrade the quality of the aquatic life, add to the costs for treatment processes, and reduce coastal quality. Water quality evaluation is a time consuming and costly process. Spaceborne imagery data provides a cheap and valuable source of information as an alternative for field monitoring of the water resources. Sediment is an optically active variable; hence; remote sensing techniques can be utilized to estimate Total Suspended Sediments (TSS) and Turbidity (TU) of water. In this study, we developed relationships between remote sensing imagery data with daily in situ measurements of TSS and TU in the summers of 2011 to 2014. Surface reflectance (SR) values obtained from Band 1 of MYD09GQ dataset-a level 2 product of MODerate Resolution Imaging Spectroradiometer (MODIS). This band covers SR between 620 and 670nm, in which, the wavelength is sensitive to mineral suspended matters most. After elimination of days with cloud contamination, 118 pairs of data remained for analysis. Several possible functions were tested and exponential function was the best estimator of the SR-TSS and SR-TU relationships with R2 values of 0.8269 and 0.8688, respectively. We then used 2014 data to validate the proposed functions. The model was able to estimate TSS and TU with NRMSE values of 0.36 and 0.30. It indicates that the model can be well-applied to predict TSS and TU within a reasonable margin of error. Then, equations were used to map the spatiotemporal dynamics of sediment in GB. Area of the plume ranges between 12 to 180 km2 while 50% of the time the area of the turbid plume is more than 106 km2. Expectedly, the concentration of sediment is much higher

  2. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  3. Tidal and meteorological forcing of sediment transport in tributary mudflat channels.

    PubMed

    Ralston, David K; Stacey, Mark T

    2007-06-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.

  4. Tidal and meteorological forcing of sediment transport in tributary mudflat channels

    PubMed Central

    Ralston, David K.; Stacey, Mark T.

    2011-01-01

    Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides. PMID:21499572

  5. Source tracing of fluvial suspended sediments by magnetic and geochemical particle characterization: example of the Canche watershed (Nord-Pas-de-Calais, France)

    NASA Astrophysics Data System (ADS)

    Patault, Edouard; Alary, Claire; Franke, Christine; Gauthier, Arnaud; Abriak, Nor-Edine

    2016-04-01

    In France, erosion by water run-off is estimated to 1.5 t ha-1yr-1 and can exceed 10 t ha-1yr-1 in large growing areas, such as the North of France (Nord-Pas-de-Calais). In this region, the Canche watershed (1294 km2) sustains heavy loss of fertile soils. The land use is mainly dominated by arable lands (80%) and in 2013, 104 kt of suspended sediment transited to the estuary. As demonstrated in literature, agricultural soil erosion leads to the gradual disappearance and depletion of fertile soil, which constitute a non-renewable resource at human time scale. Additionally, water erosion can significantly damage the aquatic habitat and can be responsible for the input of nutrients, bacteria, pesticides, heavy metals and radionuclides into surface waters. Conscious of these effects, many programs have emerged in the Nord-Pas-de-Calais to reduce erosion. This study presents a combination of environmental magnetic proxy parameters and geochemical analyses on sediments and suspended particulate matter. The aim is to develop effective tools to trace erosion by water run-off and quantify this process. In order to identify the respective sediment sources in the Canche watershed, sediment trap samples of suspended particulate matter were recovered at key positions along the Canche watershed. The preliminary results show that magnetic concentration (Mrs) shows typical values for the agricultural soils in the region, but these variations in magnetic concentrations and total irons concentrations are not always correlated, which may be explained by the iron speciation. In calculating the so-called S-ratio for each sample we can distinguish changes in magneto-mineralogy (and thus iron speciation) from magnetite-dominated assemblages in the mainstream Canche (naturel background signal) to high-coercivity-dominated assemblages in the tributaries, typical for soil erosion material rich in hematite/goethite. In combination with the element concentrations from ICP analyses, this proxy

  6. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    NASA Astrophysics Data System (ADS)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  7. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water

  8. Sediment analyses for selected sites on the South Platte River in Colorado and Nebraska, and the North Platte and Platte rivers in Nebraska; suspended sediment, bedload, and bed material

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment samples were collected on the South Platte, North Platte, and Platte Rivers in Colorado and Nebraska during the 1979 and 1980 runoff seasons. Suspended-sediment concentrations ranged from 62 to 3,705 milligrams per liter and the maximum load was 45,547 metric tons per day. The percentage of suspended sediment samller than sand (less than 0.062 millimeter) was as follows: 23 to 78 percent for the South Platte River, 9 to 30 percent for the North Platte River, and 2 to 89 percent for the Platte River. Bedload-transport rates ranged from 0.0085 to 0.67 kilogram per second per meter of channel width for the entire study area. The median grain size of bedload ranged from 0.6 to 2.6 millimeters for the South Platte River, 0.5 to 0.8 millimeter for the North Platte River, and 0.6 to 1.2 millimeters for th Platte River. The median grain size of bed material for the South Platte River ranged from 0.3 to 2.4 millimeters, compared to 0.5 to 0.9 millimeter for the North Platte River, and 0.4 to 3.1 millimeters for the Platte River. (USGS)

  9. Impacts of logging on storm peak flows, flow volumes and suspended sediment loads in Caspar Creek, California

    Treesearch

    Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer

    2001-01-01

    Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...

  10. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  11. Are stream stabilization projects reducing suspended sediment concentrations and turbidity in the New York City Water Supply Watershed?

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Davis, W. D.

    2015-12-01

    Turbidity and suspended sediment concentrations (SSCs) are primary water quality concerns in the upper Esopus Creek watershed, the main tributary to the Ashokan reservoir. The Ashokan reservoir is one of 6 surface water reservoirs that constitute about 90% of New York City's drinking water supply. This study quantified turbidity levels and SSCs at 10 locations throughout the upper Esopus Creek watershed for 3 years prior to the implementation of 2 stream stabilization projects and for 18 months after the projects were completed. More than 93 percent of the total-suspended sediment load occurred on days with flows greater than or equal to the 90th percentile of flows observed during the study period. Discharge, SSC, and turbidity were strongly related at the outlet of the upper Esopus Creek, but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek, the largest tributary. Stony Clove Creek, consistently produced higher SSCs and turbidity than any of the other Esopus Creek tributaries. Nonetheless, there was not a strong relation between either turbidity or SSC and discharge because there was a series of eroding banks in contact with fine grained glacio-lacustrine deposits and associated hill slope failures within the Stony Clove Creek watershed that delivered elevated turbidity and SSCs to the stream during all flow conditions. Stream bank stabilization projects were completed at two of the largest bank failures. After the projects were completed there was decrease in stream SSC and turbidity however, flows during the 18 months following the projects were lower than before the projects. Nevertheless, a shift in the SSC and turbidity discharge rating curves suggests that the stream stabilization projects resulted in lower turbidity levels and SSCs for similar discharge conditions as compared to before the projects thereby reducing sediment yields

  12. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  13. How do changes in suspended sediment concentration alone influence the size of mud flocs under steady turbulent shearing?

    NASA Astrophysics Data System (ADS)

    Tran, Duc; Kuprenas, Rachel; Strom, Kyle

    2018-04-01

    Modeling the size and settling velocity of sediment under the influence of flocculation is crucial for the accurate prediction of mud movement and deposition in sediment transport modeling of environments such as agricultural streams, large coastal rivers, estuaries, river plumes, and turbidity currents. Yet, collecting accurate and high resolution data on mud flocs is difficult. As a result, models that account for the influence of flocculation on mud settling velocity are based on sparse data that often present non-congruent relationship in floc properties with basic influencers of flocculations such as suspended sediment concentration. This study examines the influence of suspended sediment concentration on floc size populations within a turbulent suspension. Specifically, the work investigates: (1) the relationship between the equilibrium floc size and suspended sediment concentration under conditions of steady concentration and turbulent shearing; and (2) the speed at which mature flocs adapt to an unsteady drop in the concentration when turbulent shear is constant. Two sets of experiments were used to investigate the target processes. All work was conducted in laboratory mixing tanks using a floc camera and a newly developed image acquisition method. The new method allows for direct imaging and sizing of flocs within turbulent suspensions of clay in concentrations ranging from 15 to 400 mg/L, so that no transfer of the sample to another settling column or imaging tank is needed. The primary conclusions from the two sets of experiments are: (1) that the equilibrium floc size in an energetic turbulent suspension is linearly and positively related to concentration over the range of C = 50 to 400 mg/L, yet with a smaller-than-expected slope based on previous data and models from low-energy environments; and (2) that floc sizes decrease quickly (with a time lag on the order of 1-15 min) to time-varying decreases in concentration at turbulent shearing of G = 50s-1

  14. Rapid formation of hyperpycnal sediment gravity currents offshore of a semi-arid California river

    USGS Publications Warehouse

    Warrick, J.A.; Xu, Jie; Noble, M.A.; Lee, H.J.

    2008-01-01

    Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January-February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (???5 cm/s) were observed in the lower 20-40 cm of the water column 4-6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25-50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (???1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.

  15. Glider monitoring of shelf suspended particle dynamics and transport during storm and flooding conditions

    NASA Astrophysics Data System (ADS)

    Bourrin, François; Many, Gaël; Durrieu de Madron, Xavier; Martín, Jacobo; Puig, Pere; Houpert, Loic; Testor, Pierre; Kunesch, Stéphane; Mahiouz, Karim; Béguery, Laurent

    2015-10-01

    Transfers of particulate matter on continental margins primarily occur during energetic events. As part of the CASCADE (CAscading, Storm, Convection, Advection and Downwelling Events) experiment, a glider equipped with optical sensors was deployed in the coastal area of the Gulf of Lions, NW Mediterranean in March 2011 to assess the spatio-temporal variability of hydrology, suspended particles properties and fluxes during energetic conditions. This deployment complemented a larger observational effort, a part of the MOOSE (Mediterranean Ocean Observing System of the Environment) network, composed of a coastal benthic station, a surface buoy and moorings on the continental slope. This set of observations permitted to measure the impact of three consecutive storms and a flood event across the entire continental shelf. Glider data showed that the sediment resuspension and transport observed at the coastal station during the largest storm (Hs>4 m) was effective down to a water depth of 80 m. The mid-shelf mud belt, located between 40 and 90 m depth, appears as the zone where the along-shelf flux of suspended sediment is maximum. Besides, the across-shelf flux of suspended sediment converges towards the outer limit of the mid-shelf mud belt, where deposition of suspended particles probably occurs and contributes to the nourishment of this area. Hydrological structures, suspended particles transport and properties changed drastically during stormy periods and the following flood event. Prior to the storms, the shelf waters were weakly stratified due in particular to the presence of cold dense water on the inner- and mid-shelf. The storms rapidly swept away this dense water, as well as the resuspended sediments, along the shelf and towards a downstream submarine canyon. The buoyant river plumes that spread along the shelf after the flooding period provoked a restratification of the water column on the inner- and mid-shelf. The analysis of glider's optical data at

  16. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  17. Suspended-sediment transport and storage: A demonstration of acoustic methods in the evaluation of reservoir management strategies for a small water-supply reservoir in western Colorado

    USGS Publications Warehouse

    Williams, Cory A.; Richards, Rodney J.; Collins, Kent L.

    2015-01-01

    The U.S. Bureau of Reclamation (USBR) and local stakeholder groups are evaluating reservoir-management strategies within Paonia Reservoir. This small reservoir fills to capacity each spring and requires approximately half of the snowmelt-runoff volume from its sediment-laden source waters, Muddy Creek. The U.S. Geological Survey is currently conducting high-resolution (15-minute data-recording interval) sediment monitoring to characterize incoming and outgoing sediment flux during reservoir operations at two sites on Muddy Creek. The high-resolution monitoring is being used to establish current rates of reservoir sedimentation, support USBR sediment transport and storage models, and assess the viability of water-storage recovery in Paonia Reservoir. These sites are equipped with in situ, single-frequency, side-looking acoustic Doppler current meters in conjunction with turbidity sensors to monitor sediment flux. This project serves as a demonstration of the capability of using surrogate techniques to predict suspended-sediment concentrations in small streams (less than 20 meters in width and 2 meters in depth). These two sites provide the ability to report near real-time suspended-sediment concentrations through the U.S. Geological Survey National Water Information System (NWIS) web interface and National Real-Time Water Quality websites (NRTWQ) to aid in reservoir operations and assessments.

  18. Hydrologic and suspended-sediment data for Reelfoot Lake, Obion and Lake Counties, northwestern Tennessee, May 1985-September 1986

    USGS Publications Warehouse

    Garrett, J.W.

    1988-01-01

    Hydrologic data for Reelfoot Lake in Obion and Lake Counties, Tennessee, were collected at 4 surface water inflow stations, 1 outflow station, 2 rainfall stations, 2 lake elevation stations, and 29 wells for the period May 1, 1985 through September 30, 1986. Additionally, suspended-sediment data were collected at three stations on two of the major tributaries to the lake. (USGS)

  19. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  20. Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington

    USGS Publications Warehouse

    Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

    2005-01-01

    Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease