Sample records for observed temperature anisotropy

  1. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  2. Temperature anisotropy of the Jovian sulfur nebula

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Siscoe, G. L.; Mekler, Y.

    1979-01-01

    The apparent paradox between the reported observation of a 3-eV gyration energy of Jupiter's ionized sulfur nebula and its observed thickness is discussed. An observation of the thickness of the cloud taken nearly edge-on is presented and shown to imply a large bounce-averaged anisotropy of the sulfur in temperature. These observations are used to construct a self-consistent model of the sulfur nebula in which the sulfur ions are injected by Io as ions and remain sufficiently collisionless in the magnetosphere to maintain the anisotropy for a time longer than a characteristic diffusion time. It is also shown that the proton-electron plasma is collisionally thermalized and provides an adequate means of tapping the rotational energy of the planet to provide the power radiated in the sulfur lines.

  3. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteini, L.; Schwartz, S. J.; Hellinger, P.

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion speciesmore » have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.« less

  4. Substrate temperature effect on the structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Hellman, F.; Elam, W. T.; Koon, N. C.

    1993-05-01

    Using extended x-ray absorption fine structures (EXAFS) measurements we have investigated the atomic environment around the Fe atom in a series of amorphous Tb0.26Fe0.74 films having different magnetic anisotropy energies owing to different deposition temperatures. The polarization properties of synchrotron radiation allowed the separate study of structure parallel and perpendicular to the sample plane. An anisotropy between these two structures was observed. Modeling results indicate this anisotropy is due to anisotropic pair correlations where the Fe-Fe pairs are statistically preferred in-plane and the Fe-Tb pairs out-of-plane. The amplitude of this anisotropy scales with both the substrate temperature and the magnetic anisotropy energy. A ≊1% in-plane compression of the Fe-Fe distance was measured between the in-plane and out-of-plane structure of the sample grown at 77 K. This sample had no detectable local chemical anisotropy suggesting that intrinsic stress plays an important role in determining its magnetic anisotropy.

  5. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Malik, M. Usman; Masood, W.; Qureshi, M. N. S.; Mirza, Arshad M.

    2018-05-01

    The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q) distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  6. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  7. Strength and Anisotropy in Tournemire Shale: Temperature, Pressure and Time Dependences

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; Zhi, G.; David, C.; Dick, P.

    2017-12-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. We conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France, under two different temperatures (26°C, 75°C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1along, perpendicular and 45° to bedding). In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1 15 minutes. The brittle creep failure stress of our Tournemire shale samples was systematically observed 50% higher than its short-term peak strength, with larger final axial strain accumulated. During creep, ultrasonic wave velocities first decreased, and then increased gradually. The magnitude of elastic wave velocity variations showed an important orientation and temperature dependence: velocities measured perpendicular to bedding showed increased variation, variation that was enhanced at higher temperature and higher pressure. The case of complete elastic anisotropy reversal was observed for sample deformed perpendicular to bedding, with amount of axial strain needed to reach anisotropy reversal reduced at higher temperature. SEM observations highlight the competition between crack growth, sealing/healing, and possibly mineral rotation, pressure solution or anisotropic compaction during creep defromation. Our study highlights that the short-term peak strength has little meaning in shale material, which can over-consolidate importantly by `plastic' flow. In addition, we show that elastic

  8. Temperature dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/ferromagnetic bilayers

    NASA Astrophysics Data System (ADS)

    Yamato, T.; Kume, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    Temperature dependence of the exchange anisotropy was investigated for (0 0 1)-oriented top-type Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and bottom-type Ni 80Fe 20 (3 nm)/Mn 89Pt 11 (30 nm) and Co 90Fe 10 (3 nm)/Mn 89Pt 11 (30 nm) bilayers. The top-type MnPt/NiFe bilayers exhibited both 1 and 4-fold anisotropies in their in-plane torque curves at 80 K. For tAF=3 nm, rapid decrease of 1-fold component and gradual decrease of 4-fold component were observed with increasing temperature. While for tAF=30 nm, the 1 and 4-fold anisotropies decreased similarly with temperature. In the bottom-type bilayers, by using CoFe ferromagnetic layer, the 4-fold anisotropy was found to become twice as that of the NiFe/MnPt bilayer.

  9. Kinetic instabilities in the solar wind driven by temperature anisotropies

    NASA Astrophysics Data System (ADS)

    Yoon, Peter H.

    2017-12-01

    The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.

  10. Deposition-temperature dependence of structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Elam, W. T.; Koon, N. C.; Hellman, F.

    1994-02-01

    The anisotropic local structure in a series of amorphous Tb26Fe74 films deposited at different deposition temperatures and having different magnetic anisotropy energies have been investigated using polarization-dependent extended x-ray-absorption fine-structure measurements. Samples deposited at temperatures >=300 K exhibit anisotropic pair correlations where like atomic pairs are favored in plane and unlike pairs are favored out of plane. Both the anisotropic pair correlations and the perpendicular magnetic anisotropy increase with increasing deposition temperature. In contrast, a sample deposited at 77 K was found to have isotropic pair correlations, low perpendicular magnetic anisotropy, and a large (~=1%) in-plane compression.

  11. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  12. Millimeter Wavelength Observations of Galactic Sources with the Mobile Anisotropy Telescope (MAT)

    NASA Astrophysics Data System (ADS)

    Cruz, K. L.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Miller, A. D.; Nolta, M. R.; Page, L. A.; Puchalla, J. L.; Torbet, E.; Tran, H. T.

    1999-12-01

    The Mobile Anisotropy Telescope (MAT) has completed two observing seasons (1997 and 1998) in Chile from the Cerro Toco site. Although the primary goal of MAT was to measure anisotropy in the Cosmic Microwave Background (CMB) radiation, the chosen observation scheme also allowed daily viewing of the Galactic Plane. We present filtered maps at 30, 40 and 144 GHz of a region of the Galactic Plane which contains several millimeter-bright regions including the Carinae nebula and IRAS 11097-6102. We report the best fit brightness temperatures as well as the total flux densities in the MAT beams (0.9, 0.6 and 0.2 degrees FWHM) . The data are calibrated with respect to Jupiter whose flux is known to better than 8% in all frequency bands. This work was funded by the National Science Foundation and the Packard Foundation.

  13. LETTER TO THE EDITOR: Anisotropy of ion temperature in a reversed-field-pinch plasma

    NASA Astrophysics Data System (ADS)

    Sasaki, K.; Hörling, P.; Fall, T.; Brzozowski, J. H.; Brunsell, P.; Hokin, S.; Tennfors, E.; Sallander, J.; Drake, J. R.; Inoue, N.; Morikawa, J.; Ogawa, Y.; Yoshida, Z.

    1997-03-01

    Anomalous heating of ions has been observed in the EXTRAP-T2 reversed-field-pinch (RFP) plasma. Ions are heated primarily in the parallel direction (with respect to the magnetic field), resulting in an appreciable anisotropy of the ion temperature. This observation suggests that the magnetohydrodynamic fluctuations are dissipated primarily by the ion viscosity.

  14. Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation

    NASA Astrophysics Data System (ADS)

    Liu, Yanyu; Mao, Pingli; Zhang, Feng; Liu, Zheng; Wang, Zhi

    2018-04-01

    In order to investigate the effect of temperature on the anisotropic behaviour of AZ31 magnesium alloy rolling sheet under high strain rate deformation, the Split Hopkinson Pressure Bar was used to analyse the dynamic mechanical properties of AZ31 magnesium alloy rolling sheet in three directions, rolling direction(RD), transverse direction (TD) and normal direction (ND). The texture of the rolling sheet was characterised by X-ray analysis and the microstructure prior and after high strain rate deformation was observed by optical microscope (OM). The results demonstrated that AZ31magnesium alloy rolling sheet has strong initial {0 0 0 2} texture, which resulted at the obvious anisotropy in high strain rate deformation at 20 °C. The anisotropy reflected in stress-strain curve, yield stress, peak stress and microstructure. The anisotropy became much weaker when the deformation temperature increased up to 250 °C. Continuing to increase the deformation temperature to 350 °C the anisotropy of AZ31 rolling sheet essentially disappeared. The decreasing tendency of anisotropy with increasing temperature was due to the fact that when the deformation temperature increased, the critical resolved shear stress (CRSS) for pyramidal 〈c + a〉 slip, which was the predominant slip mechanism for ND, decreased close to that of twinning, which was the predominant deformation mechanism for RD and TD. The deformation mechanism at different directions and temperatures and the Schmid factor (SF) at different directions were discussed in the present paper.

  15. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  16. Whistler Waves With Electron Temperature Anisotropy And Non-Maxwellian Distribution Functions

    NASA Astrophysics Data System (ADS)

    Masood, W.

    2017-12-01

    Low frequency waves (˜ 100Hz), popularly known as Lion roars, are ubiquitously observed by satellites in terrestrial magnetosheath. By dint of both wave and electron data from the Cluster spacecraft and employing the linear kinetic theory for the electromagnetic waves, Masood et. al. (Ann. Geophysicae. 24, 1725-1735 (2006)) examined the conjecture made by Thorne and Tsurutani (Nature, 93, 384 (1981)) that whistler waves with electron temperature anisotropy are the progenitors of lion roars. It turned out that the study based upon the bi-Maxwellian distribution function did not come up with a satisfactory explanation of certain disagreements between theory and data. In this paper, we revisit the problem using the generalized (r, q) distribution to carry out the linear stability analysis. It is shown that good qualitative and quantitative agreements are found between theory and data using this distribution. Whistler waves with electron temperature anisotropy are also investigated with other non-Maxwellian distribution functions and general comparison is made in the end and differences in each case are highlighted. The possible applications in space plasmas are also pointed out.

  17. Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties.

    PubMed

    Wilhelmsen, Øivind; Trinh, Thuat T; Lervik, Anders

    2018-01-01

    Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.

  18. Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Øivind; Trinh, Thuat T.; Lervik, Anders

    2018-01-01

    Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass densities as arguments. By using rather the internal energy as starting point and including the entropy density as an additional argument, following thereby the phenomenological approach from classical thermodynamics, the extended theory suggests that the configurational part of the temperature has different contributions from the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension. Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface, where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.

  19. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parakkat, Vineeth Mohanan; Ganesh, K. R.; Anil Kumar, P. S., E-mail: anil@physics.iisc.ernet.in

    The dependence of perpendicular magnetization and Curie temperature (T{sub c}) of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pt{sub s}) and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness) respectively and the T{sub c} was measured using SQUID magnetometer. We have observed a systematic dependence of T{sub c} on the thickness of Pt{sub s}. For 8 nm thickness of Pt{sub s} the Co layer of 0.35 nm showed ferromagnetism with perpendicular anisotropy atmore » room temperature. As the thickness of the Pt{sub s} was decreased to 2 nm, the T{sub c} went down below 250 K. XRD data indicated polycrystalline growth of Pt{sub s} on SiO{sub 2}. On the contrary Ta buffer layer promoted the growth of Pt(111). As a consequence Ta(5 nm)/Pt(3 nm)/Co(0.35 nm)/Pt(2 nm) had much higher T{sub c} (above 300 K) with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic T{sub c} and anisotropy by varying the Pt{sub s} thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pt{sub s} layer which hosts the Co layer.« less

  20. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  1. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    PubMed

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  2. Shape anisotropy in patterned ferromagnetic GaMnAsP films with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, X.; Li, X.; Dong, S.-N.; Dobrowolska, M.; Furdyna, J. K.

    2018-05-01

    We investigate the effects of physical dimensions on the behavior of magnetic anisotropy in lithographically-fabricated nanoscale squares of the ferromagnetic semiconductor GaMnAsP using SQUID magnetometry and ferromagnetic resonance (FMR). Both measurements show that perpendicular magnetic anisotropy is strongly affected by the size of the ferromagnetic nano-scale elements, while their Curie temperature and their in-plane anisotropy remain unchanged in the range studied. In addition to uniform-mode FMR, we observe a series of spin-wave resonances, whose analysis suggests that surface anisotropy plays an important role in determining the properties of nanoscale magnets.

  3. The Large-Scale Cosmic-Ray Anisotropy as Observed with Milagro

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Allen, B. T.; Aune, T.; Berley, D.; Casanova, S.; Chen, C.; Dingus, B. L.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Gonzalez, M. M.; Goodman, J. A.; Hoffman, C. M.; Hopper, B.; Hüntemeyer, P. H.; Kolterman, B. E.; Lansdell, C. P.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Nemethy, P.; Noyes, D.; Pretz, J.; Ryan, J. M.; Parkinson, P. M. Saz; Shoup, A.; Sinnis, G.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.; Walker, G. P.; Williams, D. A.; Yodh, G. B.

    2009-06-01

    Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) ×10-3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.

  4. Anisotropy in the lowermost mantle beneath the circum-Pacific: observations and modelling

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2014-12-01

    The lowermost 300 km of mantle (D'') acts as the lower boundary layer to mantle convection. Numerous observations find that this layer is anisotropic, unlike the bulk of the lower mantle above, which is isotropic. The causal mechanism for this anisotropy remains elusive, though its organisation is likely to be imposed by deformation associated with mantle convection. The subduction of the Tethys ocean (since 180 Ma) is predicted to have deposited slab material in D'' in circum-Pacific regions, making these regions cold, encouraging the phase transformation in the MgSiO3 polymorph bridgmanite to a post-perovskite (ppv) structure. These regions are probably rich in ppv. Here we present new observations of anisotropy from shear wave splitting of ScS phases recorded in the epicentral distance range 50-85 degrees. These observations are corrected for anisotropy in the upper mantle beneath source and receiver. Due to the layout of events and receivers we primarily sample D'' beneath the landward side of the circum-Pacific. A detailed pattern of anisotropy is revealed. Anisotropy predominantly leads to SH fast wave propagation with an inferred average strength of 0.9%. This is consistent with many previous observations. However, we do not limit our observations to the SH/SV system. Many observations show non SH/SV fast polarisation. We interpret these data for tilted transverse isotropy (TTI) style anisotropy. We resolve non-radial anisotropy at unprecedented global scale, in turn placing new constraints on the D'' flow field. We test the ability of the flow model TX2008 (Simmons et al., 2009) to fit our observations. This is achieved by modelling the development of a lattice preferred orientation texture of a ppv layer subject to this flow field using a visco-plastic self consistent theory (Walker et al., 2011). Due to uncertainty in the slip system of ppv three candidate glide planes are trialled: (100)/{110}, (010), and (001). The seismic anisotropy of these models is

  5. Introduction to temperature anisotropies of Cosmic Microwave Background radiation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoshi

    2014-06-01

    Since its serendipitous discovery, Cosmic Microwave Background (CMB) radiation has been recognized as the most important probe of Big Bang cosmology. This review focuses on temperature anisotropies of CMB which make it possible to establish precision cosmology. Following a brief history of CMB research, the physical processes working on the evolution of CMB anisotropies are discussed, including gravitational redshift, acoustic oscillations, and diffusion dumping. Accordingly, dependencies of the angular power spectrum on various cosmological parameters, such as the baryon density, the matter density, space curvature of the universe, and so on, are examined and intuitive explanations of these dependencies are given.

  6. Temperature dependence of magnetization and anisotropy in uniaxial NiFe₂O₄ nanomagnets: Deviation from the Callen-Callen power law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Biplab K.; Ghosh, C. K.; Chattopadhyay, K. K., E-mail: kalyan-chattopadhyay@yahoo.com

    2014-10-21

    The thermal variation of magnetic anisotropy (K) and saturation magnetization (M{sub S}) for uniaxial nickel ferrite (NiFe₂O₄) nanomagnets are investigated. Major magnetic hysteresis loops are measured for the sample at temperatures over the range 5–280 K using a vibrating sample magnetometer. The high-field regimes of the hysteresis loops are modeled using the law of approach to saturation, based on the assumption that at sufficiently high field only direct rotation of spin-moment take place, with an additional forced magnetization term that is linear with applied field. The uniaxial anisotropy constant K is calculated from the fitting of the data to the theoreticalmore » equation. As temperature increases from 5 K to 280 K, a 49% reduction of K, accompanied by an 85% diminution of M{sub S} is observed. Remarkably, K is linearly proportional to M{sub S}₂.₆ in the whole temperature range violating the existing theoretical model by Callen and Callen. The unusual power-law behavior for the NiFe₂O₄ uniaxial nanomagnets is ascribed to the non-negligible contributions from inter-sublattice pair interactions, Neel surface anisotropy, and higher order anisotropies. A complete realization of the unusual anisotropy-magnetization scaling behavior for nanoscale two-sublattice magnetic materials require a major modification of the existing theory by considering the exact mechanism of each contributions to the effective anisotropy.« less

  7. The temperature dependence of the anisotropy constants for nickel

    NASA Astrophysics Data System (ADS)

    Szpunar, B.

    1984-04-01

    A universal function is suggested for the description of the temperature dependence of the anisotropy constants for Ni. The function has been obtained from the extended Stevens operators for J→ {1}/{2}. The prediction is in good agreement with experimental data.

  8. Relationship between Magnetic Anisotropy below Pseudogap Temperature and Short-Range Antiferromagnetic Order in High-Temperature Cuprate Superconductor

    NASA Astrophysics Data System (ADS)

    Morinari, Takao

    2018-06-01

    The central issue in high-temperature cuprate superconductors is the pseudogap state appearing below the pseudogap temperature T*, which is well above the superconducting transition temperature. In this study, we theoretically investigate the rapid increase of the magnetic anisotropy below the pseudogap temperature detected by the recent torque-magnetometry measurements on YBa2Cu3Oy [Y. Sato et al., Nat. Phys. 13, 1074 (2017)]. Applying the spin Green's function formalism including the Dzyaloshinskii-Moriya interaction arising from the buckling of the CuO2 plane, we obtain results that are in good agreement with the experiment and find a scaling relationship. Our analysis suggests that the characteristic temperature associated with the magnetic anisotropy, which coincides with T*, is not a phase transition temperature but a crossover temperature associated with the short-range antiferromagnetic order.

  9. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  10. Temperature anisotropy instabilities stimulated by the interplay of the core and halo electrons in space plasmas

    NASA Astrophysics Data System (ADS)

    Lazar, M.; Shaaban, S. M.; Fichtner, H.; Poedts, S.

    2018-02-01

    Two central components are revealed by electron velocity distributions measured in space plasmas, a thermal bi-Maxwellian core and a bi-Kappa suprathermal halo. A new kinetic approach is proposed to characterize the temperature anisotropy instabilities driven by the interplay of core and halo electrons. Suggested by the observations in the solar wind, direct correlations of these two populations are introduced as co-variations of the key parameters, e.g., densities, temperature anisotropies, and (parallel) plasma betas. The approach involving correlations enables the instability characterization in terms of either the core or halo parameters and a comparative analysis to depict mutual effects. In the present paper, the instability conditions are described for an extended range of plasma beta parameters, making the new dual approach relevant for a wide variety of space plasmas, including the solar wind and planetary magnetospheres.

  11. Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors Cr I3 and CrB r3

    NASA Astrophysics Data System (ADS)

    Richter, Nils; Weber, Daniel; Martin, Franziska; Singh, Nirpendra; Schwingenschlögl, Udo; Lotsch, Bettina V.; Kläui, Mathias

    2018-02-01

    Chromium trihalides are layered and exfoliable semiconductors and exhibit unusual magnetic properties with a surprising temperature dependence of the magnetization. By analyzing the evolution of the magnetocrystalline anisotropy with temperature in chromium iodide Cr I3 , we find it strongly changes from Ku=300 ±50 kJ / m3 at 5 K to Ku=43 ±7 kJ / m3 at 60 K , close to the Curie temperature. We draw a direct comparison to CrB r3 , which serves as a reference, and where we find results consistent with literature. In particular, we show that the anisotropy change in the iodide compound is more than 3 times larger than in the bromide. We analyze this temperature dependence using a classical model, showing that the anisotropy constant scales with the magnetization at any given temperature below the Curie temperature, indicating that the temperature dependence can be explained by a dominant uniaxial anisotropy where this scaling results from local spin clusters having thermally induced magnetization directions that deviate from the overall magnetization.

  12. INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: daniel.verscharen@unh.edu, E-mail: s.bourouaine@unh.edu, E-mail: benjamin.chandran@unh.edu

    2013-08-20

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. Wemore » validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.« less

  13. Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.

    PubMed

    Alam, Khurshid

    2016-05-12

    Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.

  14. SIGNIFICANT FOREGROUND UNRELATED NON-ACOUSTIC ANISOTROPY ON THE 1 DEGREE SCALE IN WILKINSON MICROWAVE ANISOTROPY PROBE 5-YEAR OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Bizhu; Zhang Shuangnan; Lieu, Richard

    2010-01-01

    The spectral variation of the cosmic microwave background (CMB) as observed by WMAP was tested using foreground reduced WMAP5 data, by producing subtraction maps at the 1 deg. angular resolution between the two cosmological bands of V and W, for masked sky areas that avoid the Galactic disk. The resulting V - W map revealed a non-acoustic signal over and above the WMAP5 pixel noise, with two main properties. First, it possesses quadrupole power at the approx1 muK level which may be attributed to foreground residuals. Second, it fluctuates also at all values of l> 2, especially on the 1more » deg. scale (200 approx< l approx< 300). The behavior is random and symmetrical about zero temperature with an rms approx7 muK, or 10% of the maximum CMB anisotropy, which would require a 'cosmic conspiracy' among the foreground components if it is a consequence of their existence. Both anomalies must be properly diagnosed and corrected if 'precision' cosmology is the claim. The second anomaly is, however, more interesting because it opens the question on whether the CMB anisotropy genuinely represents primordial density seeds.« less

  15. The effect of crustal anisotropy on SKS splitting analysis—synthetic models and real-data observations

    NASA Astrophysics Data System (ADS)

    Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad

    2018-05-01

    The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models, we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions (RF) can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.

  16. Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: Nine years of Cluster observations in the Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Yushkov, E.; Petrukovich, A.; Artemyev, A.; Nakamura, R.

    2017-09-01

    We investigate the distribution and possible origins of thermal anisotropic electrons in the Earth's magnetotail, using 9 years of Cluster observations. We mainly focus on relation between electron anisotropy and Bz and By magnetic field components (in GSM coordinates). The anisotropy of electron population is characterized by temperature ratio T∥/T⊥ and by the maximum of phase space density ratio F∥/F⊥ (∥ and ⊥ are relative to the background magnetic field). The population identified by large F∥/F⊥ is organized as short-time (dozens of seconds) bursts with enhanced F∥ and can be observed even in the plasma sheet with small T∥/T⊥. The thermal anisotropy T∥/T⊥ is larger for time intervals characterized by stronger Bz and By: the strong By corresponds to the T∥/T⊥ peak around the magnetotail neutral plane Bx=0, whereas the strong Bz corresponds to larger T∥/T⊥ with a flat profile across the magnetotail. There is a dawn-dusk asymmetry: large T∥/T⊥ corresponds mostly to strong Bz at the dusk flank and to strong By at the dawn flank. Using these differences of the electron anisotropy dependence on By and Bz, we discuss two possible mechanisms responsible for the anisotropy formation.

  17. Short-wavelength plasma turbulence and temperature anisotropy instabilities: Recent computational progress

    DOE PAGES

    Gary, S. Peter

    2015-04-06

    Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less

  18. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  19. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been

  20. Constraints on Inner Core Anisotropy Using Array Observations of P'P'

    NASA Astrophysics Data System (ADS)

    Frost, Daniel A.; Romanowicz, Barbara

    2017-11-01

    Recent studies of PKPdf travel times suggest strong anisotropy (4% or more) in the quasi-western inner core hemisphere. However, the availability of paths sampling at low angles to the Earth's rotation axis (the fast axis) is limited. To augment this sampling, we collected a travel time data set for the phase P'P'df (PKPPKPdf), for which at least one inner core leg is quasi-polar, at two high latitude seismic arrays. We find that the inferred anisotropy is weak (on the order of 0.5 to 1.5%), confirming previous results based on a much smaller P'P' data set. While previous models of inner core anisotropy required very strong alignment of anisotropic iron grains, our results are more easily explained by current dynamic models of inner core growth. We observe large travel time anomalies when one leg of P'P'df is along the South Sandwich to Alaska path, consistent with PKPdf observations, and warranting further investigation.

  1. Weibel instability for a streaming electron, counterstreaming e-e, and e-p plasmas with intrinsic temperature anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.

    2014-05-15

    The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less

  2. Site-specific magnetic anisotropies in R2Fe14B systems

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Tsuchiura, H.

    2018-04-01

    The local magnetic anisotropy of R ions in R2Fe14B (R = Dy, Ho) systems is studied based on a microscopic effective spin model constructed from the information obtained by using first-principles calculations. By taking into account up to 6-th order crystal electric field parameters, the model satisfactory describes the observed magnetization curves and the temperature dependence of anisotropy constants. We found that at low temperatures, the noncollinear structure appears in the Ho2Fe14B system reflecting the local magnetic anisotropy.

  3. Anisotropy influence on the failure of Ti6Al4V sheets deformed at room and elevated temperature

    NASA Astrophysics Data System (ADS)

    Wang, Q. L.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    Ti6Al4V sheets are usually difficult-to-form at room temperature as a consequence of their strong basal texture and hcp crystal lattice. The heating of the alloy below the beta transus temperature is recognized to enhance its formability, reducing the flow stress and increasing the ductility. However, the influence of the sheet anisotropy on the material failure hasn't been studied yet. To this aim, the paper presents the anisotropy influence on the failure characteristics of Ti6Al4V titanium alloy sheets making use of tensile tests carried out at room temperature and 600°C on smooth, notched and shear samples in order to have various stress states. The fracture strain is measured and the effect of the sample orientation and stress state is identified. To determine the actual stress state for each sample geometry, a numerical model is set up and calibrated using elasto-plastic data from uni-axial tensile tests on smooth samples. Finally, the fracture surfaces are observed through SEM analysis to explain the failure characteristics.

  4. Constraining the Mechanism of D" Anisotropy: Diversity of Observation Types Required

    NASA Astrophysics Data System (ADS)

    Creasy, N.; Pisconti, A.; Long, M. D.; Thomas, C.

    2017-12-01

    A variety of different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy are usually ambiguous, as seismic observations rarely (if ever) uniquely constrain a mechanism. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, typical data sets cannot constrain a unique scenario suggested by the mineral physics literature. In this work, we determine what types of body wave observations are required to uniquely constrain a mechanism for D" anisotropy. We test multiple possible models based on both single-crystal and poly-phase elastic tensors provided by mineral physics studies. We predict shear wave splitting parameters for SKS, SKKS, and ScS phases and reflection polarities off the D" interface for a range of possible propagation directions. We run a series of tests that create synthetic data sets by random selection over multiple iterations, controlling the total number of measurements, the azimuthal distribution, and the type of phases. We treat each randomly drawn synthetic dataset with the same methodology as in Ford et al. (2015) to determine the possible mechanism(s), carrying out a grid search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. We find is it difficult to uniquely constrain the starting model with a realistic number of seismic anisotropy measurements with only one measurement technique or phase type. However, having a mix of SKS, SKKS, and ScS measurements, or a mix of shear wave splitting and reflection polarity measurements, dramatically increases the probability of uniquely

  5. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  6. Ultrafast pump-probe and 2DIR anisotropy and temperature-dependent dynamics of liquid water within the E3B model.

    PubMed

    Ni, Yicun; Skinner, J L

    2014-07-14

    Recently, Tainter et al. [J. Chem. Phys. 134, 184501 (2011)] reparameterized a new rigid water model (E3B) that explicitly includes three-body interactions in its Hamiltonian. Compared to commonly used water models such as SPC/E and TIP4P, the new model shows better agreement with experiment for many physical properties including liquid density, melting temperature, virial coefficients, etc. However, the dynamics of the E3B model, especially as a function of temperature, has not been systematically evaluated. Experimental nonlinear vibrational spectroscopy is an ideal tool to study the dynamics of matter in condensed phases. In the present study, we calculate linear and nonlinear vibrational spectroscopy observables for liquid water using the E3B model at five temperatures: 10, 30, 50, 70 and 90 °C. Specifically, we calculate absorption and Raman spectra and pump-probe anisotropy for HOD in H2O at all temperatures, frequency-resolved pump-probe anisotropy for HOD in both H2O and D2O at 30 °C, and 2DIR anisotropy for HOD in D2O at 30 °C. In all cases, we find reasonable agreement with experiment, and for the ultrafast spectroscopy our results are a significant improvement over those of the SPC/E model. A likely reason for this improvement is that the three-body interaction terms in the E3B model are able to model cooperative hydrogen bonding. We also calculate rotational and frequency relaxation times at all temperatures, and fit the results to the Arrhenius equation. We find that the activation energy for hydrogen-bond switching in liquid water is 3.8 kcal/mol, which agrees well with the experimental value of 3.7 kcal/mol obtained from anisotropy decay experiments.

  7. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ek-In, Surapat; Ruffolo, David; Malakit, Kittipat

    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find thatmore » the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.« less

  8. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  9. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Goodman, J. A.; Góra, D.; Grant, D.; Gross, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Sheremata, C.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zilles, A.; Zoll, M.; IceCube Collaboration

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10-3 level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30° and an amplitude of (- 1.58 ± 0.46stat ± 0.52sys) × 10-3 at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 ± 0.38stat ± 0.96sys) × 10-3.

  10. Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets

    DOE PAGES

    Zhuravlev, I. A.; Antropov, V. P.; Belashchenko, K. D.

    2015-11-16

    The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe 1–xCo x) 2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. The anomalies are associated with the changes in band occupations due to Stoner-like band shifts and with the selective suppression of spin-orbit “hot spots” by thermal spin fluctuations. Under certain conditions, the anisotropy can increase, rather than decrease, with decreasing magnetization. These peculiar electronic mechanisms are in stark contrast to the assumptions of the existing models.

  11. The influence of magnetic order on the magnetoresistance anisotropy of Fe 1+δ–xCu xTe

    DOE PAGES

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...

    2017-06-08

    We performed resistance measurements on [Formula: see text]Cu x Te with [Formula: see text] in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cumore » content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For [Formula: see text] the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  12. Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Bourouaine, S.; Valentini, F.; Marsch, E.; Veltri, P.

    2014-04-01

    Solar wind "in situ" measurements from the Helios spacecraft in regions of the Heliosphere close to the Sun (˜0.3 AU), at which typical values of the proton plasma beta are observed to be lower than unity, show that the alpha particle distribution functions depart from the equilibrium Maxwellian configuration, displaying significant elongations in the direction perpendicular to the background magnetic field. In the present work, we made use of multi-ion hybrid Vlasov-Maxwell simulations to provide theoretical support and interpretation to the empirical evidences above. Our numerical results show that, at variance with the case of βp≃1 discussed in Perrone et al. (2011), for βp=0.1 the turbulent cascade in the direction parallel to the ambient magnetic field is not efficient in transferring energy toward scales shorter than the proton inertial length. Moreover, our numerical analysis provides new insights for the theoretical interpretation of the empirical evidences obtained from the Helios spacecraft, concerning the generation of temperature anisotropy in the particle velocity distributions.

  13. Anisotropy Changes of a Fluorescent Probe during the Micellar Growth and Clouding of a Nonionic Detergent.

    PubMed

    Komaromy-Hiller; von Wandruszka R

    1996-01-15

    The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.

  14. Temperature dependence of the anisotropy field of L10 FePt near the Curie temperature

    NASA Astrophysics Data System (ADS)

    Richter, H. J.; Parker, G. J.

    2017-06-01

    Near the Curie temperature, the anisotropy field of magnetically uniaxial L10 FePt is expected to follow the scaling law (1 - T/Tc)β, where T is the temperature and Tc is the Curie temperature. In the literature, β values between 0.36 and 0.65 have been reported. Based on recording measurements and micromagnetic analysis, we show that only the values of β near the low end of the reported range are compatible with the data. We also conclude that thermally activated magnetization reversal at temperatures near Tc cannot be ignored, even at time scales smaller than 1 ns. We demonstrate that thermally activated magnetization reversal at temperatures close to Tc is well described by conventional theory with a frequency factor f0 of the order of 1012 Hz. It is reasoned that the unusually high value for f0 is a consequence of the temperature-induced reduction of the degree of alignment of the micro-spins within the grains.

  15. The influence of magnetic order on the magnetoresistance anisotropy of Fe1 + δ-x Cu x Te

    NASA Astrophysics Data System (ADS)

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; Analytis, J. G.; Birgeneau, R. J.

    2017-07-01

    We performed resistance measurements on \\text{F}{{\\text{e}}1+δ -x} Cu x Te with {{x}\\text{EDX}}≤slant 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For {{x}\\text{EDX}}=0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.

  16. Observation of the seismic anisotropy effects on free oscillations below 4 mHz

    NASA Astrophysics Data System (ADS)

    Hu, X.; Liu, L.

    2009-12-01

    We present observations of significant fundamental spheroidal-toroidal mode coupling at frequencies below 4 mHz in the early part of vertical component records from seismic stations on near-equatorial source-receiver propagation paths and in Antarctica after the 26 December 2004 and 28 March 2005 great Sumatra earthquakes. When seismic surface waves propagate along the equator, the particle motion of Love waves runs parallels to the Earth’s rotation axis, and the particle motion of Rayleigh waves runs perpendicular to it, thus the Coriolis force has no vertical deflection effect on Love waves and no transverse deflection effect on the Rayleigh waves. Coriolis coupling can be naturally minimized at a station on a nearequatorial source-receiver propagation path. In Antarctica, especially near the South Pole, the vertical deflection of toroidial motion is very weak but there are lateral gradients in the anisotropic properties of upper mantle. Therefore, we can find a chance to directly observe seismic anisotropy coupling below 4 mHz without the disturbance of Coriolis coupling at Antarctic station, and at the seismic station locate close to the Earth’s equator when the epicenter also locates close to the equator. Our observations of strong anomalous toroidal-spheroidal coupling at these stations provide direct evidence to confirm the theory that the azimuthal anisotropy has pronounced effects on the quasi-toroidal mode excitations at the frequencies below 4 mHz, which can convince the skeptics that anisotropy really is visible in the low-frequency normal mode data. Strong anisotropic coupling is usually observed at stations having the geometric nodes for the spheroidal fundamentals, giving the association of quasi-toroidal excitation with the geometric effect. The presence of significant anisotropy coupling below 4 mHz depends not only on anisotropic depth, anisotropic identities and orientations but also on radiation nodes for Rayleigh waves and geometry nodes

  17. Triggering of explosive reconnection in a thick current sheet via current sheet compression: Less current sheet thinning, more temperature anisotropy

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Shinohara, I.; Fujimoto, M.

    2016-12-01

    Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.

  18. The evolution of in-plane magnetic anisotropy in CoFeB/GaAs(001) films annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Tu, Hongqing; Wang, Ji; Wei, Lujun; Yuan, Yuan; Zhang, W.; You, Biao; Du, Jun

    2018-05-01

    A considerable in-plane uniaxial magnetic anisotropy (UMA) field (Hu ˜ 300 Oe) could be achieved when the amorphous CoFeB film was deposited on the GaAs(001) wafer by magnetron-sputtering after proper etch-annealed procedure. In order to get deep insights into the mechanism of the UMA, the film was annealed at different temperatures and the evolution of the in-plane magnetic anisotropy was investigated carefully. With increasing the annealing temperature (TA), the UMA could be maintained well when TA reached 250°C, but became very weak at 300°C. However, when TA was elevated to 400°C, another UMA (Hu ˜ 130 Oe) was built accompanied with a fourfold magnetic anisotropy with its strength of about 50 Oe. In terms of the magnetic anisotropy evolution along with TA, the anelastic strain, which is thought to be resulted from the interfacial interaction between CoFeB and GaAs, may play a dominant role in producing the enhanced UMA based on the `bond-orientational' anisotropy (BOA) model.

  19. The influence of magnetic order on the magnetoresistance anisotropy of Fe 1 + δ–xCu xTe

    DOE PAGES

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...

    2017-05-17

    In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  20. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslibeiki, B.; Kameli, P.; Salamati, H.

    2016-02-01

    Superparamagnetic manganese ferrite nanoparticles with mean size of = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (Hc) increased and squareness (Mr/Ms) decreased. The obtained effective anisotropy constant (Keff), by susceptibility measurements, was from 1.72 × 106 to 2.36 × 106 ergs/cm3 for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 106 to 0.34 × 106 erg/cm3). Also, the Keff was two orders of magnitude greater than that of bulk MnFe2O4. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.

  1. Separation of diamagnetic and paramagnetic anisotropy by high-field, low-temperature torque measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Volkmar; Hirt, Ann M.; Rosselli, Pascal; Martín-Hernández, Fátima

    2007-01-01

    The anisotropy of magnetic susceptibility (AMS) of rocks can be composed of contributions from ferromagnetic, paramagnetic and diamagnetic minerals. However, in general the AMS of only one fraction is of interest. While there are several approaches to isolate the ferromagnetic contribution to the AMS, the separation of the diamagnetic from the paramagnetic contribution is still problematic. A new method for the separation of these two contributions based on high-field torque measurements at room and low-temperature is presented. The paramagnetic anisotropy increases at low temperature according to the Curie-Weiss law, whereas the diamagnetic contribution is temperature independent. If the paramagnetic AMS is due to perfectly oblate or prolate minerals and the ratio of the susceptibility differences at two temperatures is known, paramagnetic and diamagnetic AMS can be separated. When measuring in fields high enough to saturate the ferromagnetic phases all three contributions to the AMS can be separated. The separation of paramagnetic and diamagnetic AMS is demonstrated on natural crystals and synthetic calcite-muscovite aggregates. A high-field torque magnetometer, equipped with a cryostat for measurements at 77 K, allows sensitive measurements at two different temperatures. The sensitivity at 77 K is 3 × 10-7 J and standard-sized (palaeomagnetic) samples of 11.4 cm3 can be measured. This new method is especially suited for the investigation of diamagnetic fabrics of impure carbonate rocks.

  2. Room temperature optical anisotropy of a LaMnO 3 thin-film induced by ultra-short pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munkhbaatar, Purevdorj; Marton, Zsolt; Tsermaa, Bataarchuluun

    Ultra-short laser pulse induced optical anisotropy of LaMnO 3 thin films grown on SrTiO 3 substrates were observed by irradiation with a femto-second laser pulse with the fluence of less than 0.1 mJ/cm 2 at room temperature. The transmittance and reflectance showed different intensities for different polarization states of the probe pulse after pump pulse irradiation. The theoretical optical transmittance and re ectance that assumed an orbital ordering of the 3d eg electrons in Mn 3+ ions resulted in an anisotropic time dependent changes similar to those obtained from the experimental results, suggesting that the photo-induced optical anisotropy of LaMnOmore » 3 is a result of photo-induced symmetry breaking of the orbital ordering for an optically excited state.« less

  3. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  4. Observation of the large scale cosmic-ray anisotropy at TeV energies with the Milagro detector

    NASA Astrophysics Data System (ADS)

    Kolterman, Brian E.

    Cosmic-rays with energies in the range of 1-100 TeV are nearly isotropic in their arrival directions due to interactions with randomly scattered inhomogeneities in the Galactic magnetic field. Observation of the large scale anisotropy in the arrival direction of these cosmic-rays is therefore a useful tool in constraining theoretical models of cosmic-ray propagation, probing the magnetic field structure in our interstellar neighborhood, as well as providing information about the distribution of sources. In this work results are presented of a harmonic analysis of the large scale cosmic-ray anisotropy as observed by the Milagro observatory. A two- dimensional display of the anisotropy projections in right ascension is generated by the fitting of three harmonics to 18 separate declination bands. Milagro is a water Cherenkov detector located at an elevation of 2630m in the Jemez mountains outside of Los Alamos, NM. With a live time > 90 and a large field-of-view (~2 sr), Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven year data sample consisting of more than 95 billion events. A sidereal anisotropy is observed with a magnitude around 0.1% for cosmic-rays with a median energy of 6 TeV. The dominant feature in this data set is a deficit region of depth (-2.85±0.06 stat. ±0.08 syst.)×10 -3 in the direction of the Galactic North Pole with a range in declination of - 10 to 45 degrees and 150 to 225 degrees in right ascension. The anisotropy also shows evidence of a time dependence, with a steady increase in the magnitude of the signal in this region over the course of seven years. An analysis of the energy dependence of the anisotropy in this region is also presented showing possible deviation of the spectral index of the anisotropy signal from that of the nominal cosmic-ray background. The anisotropy of cosmic-rays in universal time is analyzed showing a dipole structure at

  5. Observations of seismic anisotropy above/below D" discontinuity and its mineral physics interpretation

    NASA Astrophysics Data System (ADS)

    Usui, Y.; Tsuchiya, T.

    2011-12-01

    TIA of MgO with [100] oriented vertically, the MgO LPO model could explain the anisotropy above the discontinuity. On the other hand, we found that TIA of PPv[001] in the aggregates (PPv + MgO) can explain the anisotropy below the discontinuity. Recent deformation experiment [Miyagi et al., 2010] and theoretical calculation [Metsue and Tsuchiya, 2011] suggest that the deformation texture of PPv is dominated by the (001) slip plane under the lowermost mantle condition. This slip system can make the TIA of PPv with [001] oriented vertically under the stressed condition. Therefore, the TIA of PPv[001] could be a main cause of the anisotropy in the D" layer. The LPO pattern is very limited to explain the observation. The VSV < VSH anisotropy could be caused by horizontal shear in the lowermost mantle. Thus, the shear stress may exist even above D" layer. Research supported by the Ehime Univ. G-COE program "Deep Earth Mineralogy".

  6. On the origin of the anisotropy observed beneath the westernmost Mediterranean region

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi

    2017-04-01

    The Iberian Peninsula and Northern Morocco region provides an excellent opportunity to investigate the origin of subcrustal anisotropy. Following the TopoIberia-Iberarray experiment, anisotropic properties have been explored in a dense network of 60x60 km spaced broad-band stations, resulting in more than 300 sites investigated over an area extending from the Bay of Biscay to the Sahara platform and covering more than 6000.000 km2. The rather uniform N100°E FPD retrieved beneath the Variscan Central Iberian Massif is consistent with global mantle flow models taking into account contributions of surface plate motion, density variations and net lithosphere rotation. The origin of this anisotropy is hence globally related to the lattice preferred orientation of mantle minerals generated by mantle flow at asthenospheric depths, although significant regional variations are observed. The anisotropic parameters retrieved from single events providing high quality data show significant differences for stations located in the Variscan units of NW Iberia, suggesting that the region includes multiple anisotropic layers or complex anisotropy systems have to be considered there. The rotation of the FDE along the Gibraltar arc following the curvature of the Rif-Betic chain has been interpreted as an evidence of mantle flow deflected around the high velocity slab beneath the Gibraltar Arc. Beneath the SW corner of Iberia and the High Atlas zone, small delay times and inconsistent FPD have been detected, suggesting the presence of vertical mantle flow affecting the anisotropic structure of the asthenosphere. Future developments will include a better integration with the anisotropic estimations provided by Pn tomography and, in particular, with those arising from surface wave tomographic inversions using TopoIberia-Ibearray results. Additionally, the contribution of crustal anisotropy could be estimated from the analysis of receiver functions. The detailed knowledge on the

  7. The temperature dependence of magnetic anisotropy of Nd-Fe-B thin films

    NASA Astrophysics Data System (ADS)

    Sato, Takuya; Hashimoto, Ryuji; Tanaka, Yoshitomo; Suzuki, Kenichi; Enokido, Yasushi; Choi, Kyung-Ku; Suzuki, Takao

    2018-05-01

    The magnetic properties of Nd-Fe-B thin films with the three different compositions (#1: Nd12.6Fe81.5B5.9, #2: Nd14.6Fe78.1B7.4 and #3: Nd22.6Fe66.2B11.2) are discussed. With increasing Nd content, the c-axis orientation along the film normal is enhanced. It is found that sample #2 possesses the saturation magnetization Ms very close to that for Nd2Fe14B over a temperature range from 100 to about 300K. The magnetic anisotropy constant Ku2 for sample #2 is the highest among those samples, but smaller by about 20%, as compared to that for Nd2Fe14B. It is of interest to note that the temperature TR at which Ku1 changes its sign is lower by about 30K as compared to that previously reported for Nd2Fe14B. The reason for this discrepancy is not clear, but could be due to the presence of the minority phases of Nd-rich compounds and also a possible contribution of the magneto-elastic effect to the net magnetic anisotropy.

  8. Investigation of the variance and spectral anisotropies of the solar wind turbulence with multiple point spacecraft observations

    NASA Astrophysics Data System (ADS)

    Vech, Daniel; Chen, Christopher

    2016-04-01

    One of the most important features of the plasma turbulence is the anisotropy, which arises due to the presence of the magnetic field. The understanding of the anisotropy is particularly important to reveal how the turbulent cascade operates. It is well known that anisotropy exists with respect to the mean magnetic field, however recent theoretical studies suggested anisotropy with respect to the radial direction. The purpose of this study is to investigate the variance and spectral anisotropies of the solar wind turbulence with multiple point spacecraft observations. The study includes the Advanced Composition Analyzer (ACE), WIND and Cluster spacecraft data. The second order structure functions are derived for two different spacecraft configurations: when the pair of spacecraft are separated radially (with respect to the spacecraft -Sun line) and when they are separated along the transverse direction. We analyze the effect of the different sampling directions on the variance anisotropy, global spectral anisotropy, local 3D spectral anisotropy and discuss the implications for our understanding of solar wind turbulence.

  9. Observations of Solar Energetic Particle Anisotropies at MeV Energies from STEREO/LET

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; von Rosenvinge, T. T.

    2016-12-01

    During the transport of solar energetic particles (SEPs) through interplanetary space, their pitch-angle distributions are modified by the competing effects of scattering and magnetic focusing. Thus, measurements of SEP anisotropies can reveal conditions such as magnetic field strength, topology, and turbulence levels at heliospheric locations far removed from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures angular distributions in the ecliptic for SEP protons, helium, and heavier ions up to iron with energies of about 2-12 MeV/nucleon. Anisotropies observed with this instrument include unidirectional outward beams at the onset of magnetically well-connected SEP events when particles experienced little scattering, bidirectional flows within many interplanetary coronal mass ejections, sunward particle flows when the spacecraft was magnetically connected to the back side of a shock, and loss-cone distributions when particles with large pitch angles were magnetically mirrored at a remote field enhancement that was too weak to reflect particles with the smallest pitch angles. Observations at a 1-minute cadence also revealed peculiar oscillations in the width of a beamed distribution at the onset of the 23 July 2012 extreme SEP event. The shapes of the pitch angle distributions often vary with energy and differ for H, He, and heavier species, perhaps as a result of rigidity dependence of the pitch angle diffusion coefficient. We present a selection of the more interesting LET anisotropy observations made throughout solar cycle 24 and discuss the implications of these observations for SEP transport in the heliosphere.

  10. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; ...

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ω r < Ω e, where Ω e is the electron cyclotron frequency, and a characteristic spectral gap at ω r ≃ Ω e/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probesmore » A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ω e/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  11. Results from the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  12. Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Ejima, Satoshi; Fehske, Holger

    2018-02-01

    Improving matrix-product state techniques based on the purification of the density matrix, we are able to accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion anisotropy in the Haldane, large-D , and antiferromagnetic phases. Distinct thermally activated scattering processes make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches. In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important and strongly enhances the spectral weight for momentum transfer π .

  13. Observation of Anisotropy in the Galactic Cosmic Ray Arrival Directions at 400 TEV With IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2011-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33x l0(epx 9) muon events with a median angular resolution of approx 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 Te V. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.30 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  14. Generation of ion temperature anisotropy in kinetic hybrid-Vlasov simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-12-01

    The interplanetary medium is a multi-component and weakly collisional system generally observed to be in a fully turbulent regime [1,2]. The system dynamics at short spatial scales appears to be dominated by kinetic effects that drive the interstellar gas far from the configuration of thermodynamic equilibrium [3-5]. We present a numerical analysis of a turbulent plasma composed of kinetic ions (protons and alpha particles) and fluid electrons in the typical conditions of the solar-wind environment, developed by using a low-noise hybrid Vlasov-Maxwell code [6,7] in a five dimensional phase space configuration (two dimensions in physical space and three dimensions in velocity space) [8]. The ion dynamics at short spatial scales (shorter than the proton skin depth) display several interesting aspects, mainly consisting in the departure of the distribution functions from the typical Maxwellian configuration, which has been systematically quantified through the evalutation of the temperature anisotropy ratio (perpendicular to parallel temperature ratio) with respect to the local magnetic field. This temperature anisotropy appears to be a direct effect of the turbulent nature of the system dynamics. Moreover, the turbulent activity leads to the generation of coherent structures, such as vortices and current sheets. Conditioned ion temperature distributions suggest heating associated with coherent structures; the distribution of ion temperatures moves towards higher values with increasing PVI threshold for the upper inertial range in the turbulent spectra. This behavior is more evident for alpha particles than for protons. The physical phenomenology recovered in these numerical simulations reproduces very common features recovered in 'in situ' measurements in the turbulent solar wind [9-11], suggesting that the multi-ion Vlasov model represents a valid approach to the understanding of the nature of complex kinetic effects in astrophysical plasmas. [1] R. Bruno and V

  15. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    NASA Astrophysics Data System (ADS)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  16. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Treesearch

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  17. Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-02-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic-ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic-ray-induced muons recorded by the partially deployed IceCube observatory between 2009 May and 2010 May. The data include a total of 33 × 109 muon events with a median angular resolution of ~3°. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic-ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high-energy sky map shows a different anisotropy structure including a deficit with a post-trial significance of -6.3σ. This anisotropy reveals a new feature of the Galactic cosmic-ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  18. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six

  19. First Intrinsic Anisotropy Observations With the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Padin, S.; Cartwright, J. K.; Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Holzapfel, W. L.; Myers, S. T.; hide

    2001-01-01

    We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 in altitude in northern Chile. Our observations show a sharp decrease in C_l in the range l = 400 - 1500. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough 1-range to show this decrease in a single experiment. The power, C_l, at l approximately 600 is higher than measured by Boomerang and Maxima, with the differences being significant at the 2.7sigma and 1.9sigma levels, respectively. The C_l we have measured enable us to place limits on the density parameter, Omega(tot) <= 0.4 or Omega(tot) >= 0.7 (90% confidence).

  20. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of themore » exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.« less

  1. The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Almqvist, Bjarne S. G.

    2014-12-01

    The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800-1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic anisotropy.

  2. Microstructure anisotropy of nanocrystalline titanium produced by cryomechanical grain fragmentation

    NASA Astrophysics Data System (ADS)

    Pohribnaya, Yu. M.; Moskalenko, V. A.; Braude, I. S.

    2018-05-01

    Using X-ray diffraction analysis, a systematic study was undertaken of the parameters of the deformation microstructure formed in commercially pure VT1-0 titanium as a result of cryogenic rolling at a temperature of 77 K at different degrees of compression. In order to ascertain the anisotropy of the microstructure, a comparative analysis of diffraction patterns, dimensions of crystallites (coherent scattering regions) L and microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 in the rolling plane and in a plane perpendicular to the rolling direction was performed by comparison with the relative activity of deformation modes. As a result, anisotropy was detected in the distribution of integral intensities of diffraction peaks for mutually perpendicular planes. The established difference in the dimensions of crystallites in the rolling plane and in the plane perpendicular to the rolling direction indicates the shape anisotropy of the crystallites. The effect of morphological anisotropy of crystallites/grains is most pronounced for the nanocrystalline state. The observed complex variation in the microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 ( e ) with compression deformation is well correlated with relative slip and twinning activity, which affect the level of local internal stresses and the possibility of their relaxation. The observed anisotropy with respect to the magnitude of microdeformations may be attributed to the presence of oriented grain boundaries associated with the shape anisotropy of crystallites/grains.

  3. Tunable dimensional crossover and magnetocrystalline anisotropy in Fe 2 P -based alloys

    DOE PAGES

    Zhuravlev, I. A.; Antropov, V. P.; Vishina, A.; ...

    2017-10-01

    Electronic structure calculations are used to examine the magnetic properties of Fe 2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe 2P develops a pronounced two-dimensional character due to the suppression of the magnetization in one of the sublattices, but the interlayer coupling is very sensitive to band filling and structural distortions. This feature suggests a natural explanation of the observed sharp enhancement of the Curie temperature by alloying with multiple elements, such as Co, Ni, Si,more » and B. The magnetocrystalline anisotropy is also tunable by electron doping, reaching a maximum near the electron count of pure Fe 2P. These findings enable the optimization of the alloy content, suggesting co-alloying of Fe 2P with Co (or Ni) and Si as a strategy for maximizing the magnetocrystalline anisotropy at and above room temperature.« less

  4. Temperature effect of elastic anisotropy and internal strain development in advanced nanostructured alloys: An in-situ synchrotron X-ray investigation

    DOE PAGES

    Gan, Yingye; Mo, Kun; Yun, Di; ...

    2017-03-19

    Nanostructured ferritic alloys (NFAs) are promising structural materials for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner's model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young's modulus and Poisson's ratio of the NFAs. Temperature dependencemore » of elastic anisotropy was observed in the NFAs. Lastly, an analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less

  5. Mixing the Solar Wind Proton and Electron Scales: Effects of Electron Temperature Anisotropy on the Oblique Proton Firehose Instability

    NASA Technical Reports Server (NTRS)

    Maneva, Y.; Lazar, M.; Vinas, A.; Poedts, S.

    2016-01-01

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons,? unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much faster and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma ß and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.

  6. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    NASA Astrophysics Data System (ADS)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  7. Seismic Anisotropy in Mantle Transition Zone: Constraints from Observations and Synthetic Modeling of SS Precursors

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Schmerr, N. C.; Waszek, L.; Beghein, C.; Weidner, E. C.

    2017-12-01

    Mantle transition zone (MTZ) is delineated by the 410 and 660 km discontinuities and plays an important role in mantle convection. Mineral physics experiments predict that wadsleyite and ringwoodite can have 13% and 2% single-crystal anisotropy respectively, indicating that seismic anisotropy is likely to exist in the upper part of the MTZ when MTZ minerals are aligned by mantle flow (e.g. subducting slabs). Here we use the SS precursors to study the topography change and seismic anisotropy in the vicinity of MTZ discontinuities. An up-to-date SS precursor dataset consisting of 45,624 records was collected to investigate MTZ topography and anisotropy. We stacked the whole dataset into 9 geographical caps to obtain the global topography of 410 and 660 km discontinuities. The MTZ is thickened by 15 km beneath subduction zones (e.g. Japan and South America) and also thinned by 15 km beneath mantle plume regions (e.g. Bowie and Iceland hotspots), which is consistent with thermal heterogeneity in the mid-mantle. We identify four locations with sufficient bounce point density and azimuthal coverage of SS precursors to study azimuthal anisotropy in MTZ; the central Pacific, the northwest Pacific, Greenland and the central Atlantic. We stack the data by the azimuth of SS bounce points falling within the range of 2000 km in these four locations. The goal is to detect the azimuthal dependence of travel time and amplitude of SS precursors, thus to constrain azimuthal anisotropy in MTZ. The central Pacific bin has fast direction at 110° for both S410S and S660S azimuthal stacks, which is interpreted as seismic anisotropy in the overlying upper mantle. We also stack data in subduction zones by the relative azimuths of bounce points compared to mantle flow directions to test the hypothesis that subducting slabs can cause azimuthal anisotropy in MTZ. A trench-parallel fast direction is observed for both S410S and S660S travel times and amplitudes, but not for their differential

  8. Observation of an Anisotropy in the Galactic Cosmic Ray Arrival Direction at 400 TeV with IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; hide

    2012-01-01

    In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33 x 10(exp 9) muon events with a median angular resolution of approx. 3 degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3 sigma. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.

  9. The time and spatial behavior of solar flare proton anisotropies observed in deep space on Pioneers 10 and 11

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ogallagher, J. J.

    1975-01-01

    The anisotropy of solar flare protons from the direction of the 'garden hose' magnetic field line has been analyzed for 24 events observed by the University of Chicago experiment on Pioneers 10 and 11 in 1972 and 1973. The anisotropy versus time profiles during individual events are in general consistent with diffusive propagation, but several cases are observed where the decay is better described by an exponential time decay. The anisotropy amplitude evaluated at the time of maximum intensity for each event shows evidence for a gradual decrease with increasing distance from the sun which is qualitatively consistent with diffusive propagation and suggests that the effective interplanetary diffusion coefficient parallel to the magnetic field increases slowly with heliocentric distance.

  10. Determination of the out-of-plane anisotropy contributions (first and second anisotropy terms) in amorphous Nd-Co thin films by micromagnetic numerical simulations

    NASA Astrophysics Data System (ADS)

    Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.

    2018-06-01

    Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.

  11. Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature

    NASA Astrophysics Data System (ADS)

    Robson, Joseph

    2014-10-01

    Mechanical anisotropy and asymmetry are often pronounced in wrought magnesium alloys and are detrimental to formability and service performance. Single crystals of magnesium are highly anisotropic due to the large difference in critical resolved shear stress between the softest and hardest deformation modes. Polycrystalline magnesium alloys exhibit lower anisotropy, influenced by texture, solute level, and precipitates. In this work, a fundamental study of the effects of alloying, precipitate formation, and texture on the change in anisotropy and asymmetry from the pure magnesium single crystal case to polycrystalline alloys has been performed. It is demonstrated that much of the reduction in anisotropy and asymmetry arises from overall strengthening as solute, precipitates, and grain boundary effects are accounted for. Precipitates are predicted to be more effective than solute in reducing anisotropy and asymmetry, but shape and habit are critical since precipitates produce highly anisotropic strengthening. A small deviation from an ideal basal texture (15 deg spread) has a very strong effect in reducing anisotropy and asymmetry, similar in magnitude to the maximum effect produced by precipitation. Elasto-plastic modeling suggests that this is due to a contribution from basal slip to initial plastic deformation, even when global yield is not controlled by this mode.

  12. The effects of strong temperature anisotropy on the kinetic structure of collisionless slow shocks and reconnection exhausts. II. Theory

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hsin; Drake, J. F.; Swisdak, M.

    2011-09-01

    Simulations of collisionless oblique propagating slow shocks have revealed the existence of a transition associated with a critical temperature anisotropy ɛ = 1 - μ0(P|| - P⊥)/B2 = 0.25 (Y.-H. Liu, J. F. Drake, and M. Swisdak, Phys. Plasmas 18, 062110 (2011)). An explanation for this phenomenon is proposed here based on anisotropic fluid theory, in particular, the anisotropic derivative nonlinear-Schrödinger-Burgers equation, with an intuitive model of the energy closure for the downstream counter-streaming ions. The anisotropy value of 0.25 is significant because it is closely related to the degeneracy point of the slow and intermediate modes and corresponds to the lower bound of the coplanar to non-coplanar transition that occurs inside a compound slow shock (SS)/rotational discontinuity (RD) wave. This work implies that it is a pair of compound SS/RD waves that bound the outflows in magnetic reconnection, instead of a pair of switch-off slow shocks as in Petschek's model. This fact might explain the rareness of in-situ observations of Petschek-reconnection-associated switch-off slow shocks.

  13. Observation of cosmic-ray anisotropy in the decade below 1 PeV with a pentagon array

    NASA Astrophysics Data System (ADS)

    Moghaddam, S. Mortazavi; Bahmanabadi, M.

    2018-03-01

    The study of the anisotropy of the arrival directions is an essential tool to investigate the origin and propagation of cosmic rays primaries. A pentagon array has been designed to collect data around the knee region of cosmic ray spectrum. The experimental results of this array obtained from October 2016 to October 2017. During this period, more than 5.3 ×105 extensive air shower events at energies in the decade below 1 PeV has been accumulated by this array at Sharif University of Technology in Tehran (3 5 ° 4 3'N , 5 1 ° 2 0'E , 1200m a .s .l =890 g cm-2 ). In analyzing the data set, we have used appropriate techniques of analysis and considered environmental effects. We report the analysis of the sidereal anisotropy of Galactic cosmic rays (GCRs). In this analysis, in addition to the Compton- Getting effect due to the motion of the earth in the Galaxy, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.

  14. MIXING THE SOLAR WIND PROTON AND ELECTRON SCALES: EFFECTS OF ELECTRON TEMPERATURE ANISOTROPY ON THE OBLIQUE PROTON FIREHOSE INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Y.; Lazar, M.; Poedts, S.

    2016-11-20

    The double adiabatic expansion of the nearly collisionless solar wind plasma creates conditions for the firehose instability to develop and efficiently prevent the further increase of the plasma temperature in the direction parallel to the interplanetary magnetic field. The conditions imposed by the firehose instability have been extensively studied using idealized approaches that ignore the mutual effects of electrons and protons. Recently, more realistic approaches have been proposed that take into account the interplay between electrons and protons, unveiling new regimes of the parallel oscillatory modes. However, for oblique wave propagation the instability develops distinct branches that grow much fastermore » and may therefore be more efficient than the parallel firehose instability in constraining the temperature anisotropy of the plasma particles. This paper reports for the first time on the effects of electron plasma properties on the oblique proton firehose (PFH) instability and provides a comprehensive vision of the entire unstable wave-vector spectrum, unifying the proton and the smaller electron scales. The plasma β and temperature anisotropy regimes considered here are specific for the solar wind and magnetospheric conditions, and enable the electrons and protons to interact via the excited electromagnetic fluctuations. For the selected parameters, simultaneous electron and PFH instabilities can be observed with a dispersion spectrum of the electron firehose (EFH) extending toward the proton scales. Growth rates of the PFH instability are markedly boosted by the anisotropic electrons, especially in the oblique direction where the EFH growth rates are orders of magnitude higher.« less

  15. Direct observation of dynamical magnetization reversal process governed by shape anisotropy in single NiFe2O4 nanowire.

    PubMed

    Zhang, Junli; Zhu, Shimeng; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Fu, Jiecai

    2018-05-31

    Discovering how the magnetization reversal process is governed by the magnetic anisotropy in magnetic nanomaterials is essential and significant to understand the magnetic behaviour of micro-magnetics and to facilitate the design of magnetic nanostructures for diverse technological applications. In this study, we present a direct observation of a dynamical magnetization reversal process in single NiFe2O4 nanowire, thus clearly revealing the domination of shape anisotropy on its magnetic behaviour. Individual nanoparticles on the NiFe2O4 nanowire appear as single domain states in the remanence state, which is maintained until the magnetic field reaches 200 Oe. The magnetization reversal mechanism of the nanowire is observed to be a curling rotation mode. These observations are further verified by micromagnetic computational simulations. Our findings show that the modulation of shape anisotropy is an efficient way to tune the magnetic behaviours of cubic spinel nano-ferrites.

  16. Low-Temperature Dielectric Anisotropy Driven by an Antiferroelectric Mode in SrTiO3

    NASA Astrophysics Data System (ADS)

    Casals, Blai; Schiaffino, Andrea; Casiraghi, Arianna; Hämäläinen, Sampo J.; López González, Diego; van Dijken, Sebastiaan; Stengel, Massimiliano; Herranz, Gervasi

    2018-05-01

    Strontium titanate (SrTiO3 ) is the quintessential material for oxide electronics. One of its hallmark features is the transition, driven by antiferrodistortive (AFD) lattice modes, from a cubic to a ferroelastic low-temperature phase. Here we investigate the evolution of the ferroelastic twin walls upon application of an electric field. Remarkably, we find that the dielectric anisotropy of tetragonal SrTiO3 , rather than the intrinsic domain wall polarity, is the main driving force for the motion of the twins. Based on a combined first-principles and Landau-theory analysis, we show that such anisotropy is dominated by a trilinear coupling between the polarization, the AFD lattice tilts, and a previously overlooked antiferroelectric (AFE) mode. We identify the latter AFE phonon with the so-called "R mode" at ˜440 cm-1 , which was previously detected in IR experiments, but whose microscopic nature was unknown.

  17. The effect of dipole-dipole interactions on coercivity, anisotropy constant, and blocking temperature of MnFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslibeiki, B., E-mail: b.aslibeiki@tabrizu.ac.ir; Kameli, P.; Salamati, H.

    2016-02-14

    Superparamagnetic manganese ferrite nanoparticles with mean size of 〈D〉 = 6.5(±1.5) nm were synthesized through a solvothermal method using Tri-ethylene glycol as a solvent. The peak temperature of zero field cooled measurements of magnetization and AC magnetic susceptibility curves shifted toward higher temperatures by applying different pressures from 0 to 1 kbar and increasing the powders compaction. The frequency dependence of AC susceptibility measurements indicated the presence of weak dipole-dipole interactions between nanoparticles. By increasing the powders compaction and interactions strength, the coercive field (H{sub c}) increased and squareness (M{sub r}/M{sub s}) decreased. The obtained effective anisotropy constant (K{sub eff}), by susceptibilitymore » measurements, was from 1.72 × 10{sup 6} to 2.36 × 10{sup 6 }ergs/cm{sup 3} for pressure of 0 to 1 kbar. These values are larger than those obtained from hysteresis loops at 5 K (0.14 × 10{sup 6} to 0.34 × 10{sup 6 }erg/cm{sup 3}). Also, the K{sub eff} was two orders of magnitude greater than that of bulk MnFe{sub 2}O{sub 4}. Size, surface effects, and total energy barrier between equilibrium states were reported as the main causes of large anisotropy. Below 75 K, a signature of weak surface spin glass was observed. However, memory effect experiment indicated that there is no collective superspin glass state in the samples. This study suggests the role of powders compaction on properties of a magnetic nanoparticles system. Furthermore, the coercivity, the anisotropy constant, and the blocking temperature are affected by changing nanoparticles compaction.« less

  18. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE PAGES

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.; ...

    2017-11-14

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  19. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  20. Temperature of the inflaton and duration of inflation from Wilkinson microwave anisotropy probe data.

    PubMed

    Bhattacharya, Kaushik; Mohanty, Subhendra; Rangarajan, Raghavan

    2006-03-31

    If the initial state of the inflaton field is taken to have a thermal distribution instead of the conventional zero particle vacuum state then the curvature power spectrum gets modified by a temperature dependent factor such that the fluctuation spectrum of the microwave background radiation is enhanced at larger angles. We compare this modified cosmic microwave background spectrum with Wilkinson microwave anisotropy probe data to obtain an upper bound on the temperature of the inflaton at the time our current horizon crossed the horizon during inflation. We further conclude that there must be additional -foldings of inflation beyond what is needed to solve the horizon problem.

  1. Scaling of the Stress and Temperature Dependence of the Optical Anisotropy in Ba(Fe 1-x Co x ) 2As 2

    DOE PAGES

    Mirri, C.; Dusza, A.; Bastelberger, S.; ...

    2016-09-15

    We revisit our recent investigations of the optical properties in the underdoped regime of the title compounds with respect to their anisotropic behavior as a function of both temperature and uniaxial stress across the ferro-elastic tetragonal-to-orthorhombic transition. By exploiting a dedicated pressure device, we can tune and control uniaxial stress in situ thus changing the degree of detwinning of the samples in the orthorhombic SDW state as well as pressure-inducing an orthorhombicity in the paramagnetic tetragonal phase. Here we discover a hysteretic behavior of the optical anisotropy; its stress versus temperature dependence across the structural transition bears testimony to themore » analogy with the magnetic-field versus temperature dependence of the magnetization in a ferromagnet when crossing the Curie temperature. In this context, we find furthermore an intriguing scaling of the stress and temperature dependence of the optical anisotropy in Ba(Fe 1-xCo x) 2As 2.« less

  2. In-plane optical anisotropy of InAs/GaSb superlattices with alternate interfaces

    PubMed Central

    2013-01-01

    The in-plane optical anisotropy (IPOA) in InAs/GaSb superlattices has been studied by reflectance difference spectroscopy (RDS) at different temperatures ranging from 80 to 300 K. We introduce alternate GaAs- and InSb-like interfaces (IFs), which cause the symmetry reduced from D2d to C2v. IPOA has been observed in the (001) plane along [110] and [11¯0] axes. RDS measurement results show strong anisotropy resonance near critical point (CP) energies of InAs and GaSb. The energy positions show red shift and RDS intensity decreases with the increasing temperature. For the superlattice sample with the thicker InSb-like IFs, energy positions show red shift, and the spectra exhibit stronger IPOA. The excitonic effect is clearly observed by RDS at low temperatures. It demonstrates that biaxial strain results in the shift of the CP energies and IPOA is enhanced by the further localization of the carriers in InSb-like IFs. PMID:23799946

  3. Inner Core Anisotropy: Can Seismic Observations be Reconciled with Ab Initio Calculations of Elasticity?

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2016-12-01

    Body-wave and normal-mode observations have revealed an inner-core structure that is radially layered, axially anisotropic, and hemispherically asymmetric. Previous theoretical studies have examined the consistency of these features with the elasticity of iron crystals thought to dominate inner-core composition, but a fully consistent model has been elusive. Here we compare the seismic observation with effective-medium models derived from ab initio calculations of the elasticity tensors for hcp-Fe and bcc-Fe. Our estimates are based on Jordan's (GJI, 2015) effective medium theory, which is derived from a self-consistent, second-order Born approximation. The theory provides closed-form expressions for the effective elastic parameters of 3D anisotropic, heterogeneous media in which the local anisotropy is a constant hexagonal stiffness tensor C stochastically oriented about a constant symmetry axis \\hat{s} and the statistics of the small-scale heterogeneities are transversely isotropic in the plane perpendicular to \\hat{s}. The stochastic model is then described by a dimensionless "aspect ratio of the heterogeneity", 0 ≤ η < ∞, and a dimensionless "orientation ratio of the anisotropy", 0 ≤ ξ < ∞. The latter determines the degree to which the axis of C is aligned with \\hat{s}. We compute the loci of models with \\hat{s} oriented along the Earth's rotational axis ( \\hat{s} = north) by varying ξ and η for various ab initio estimates of C. We show that a lot of widely used estimates of C are inconsistent with most published normal-mode models of inner-core anisotropy. In particular, if the P-wave fast axis aligns with the rotational axis, which is required to satisfy the body-wave observations, then these hcp-Fe models predict that the fast polarization of the S waves is in the plane perpendicular to \\hat{s}, which disagrees with most normal-mode models. We have attempted to resolve this discrepancy by examining alternative hcp-Fe models, including

  4. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in

  5. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE PAGES

    Prime, Michael B.

    2017-07-01

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  6. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael B.

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  7. Temperature effect of elastic anisotropy and internal strain development in advanced nanostructured alloys: An in-situ synchrotron X-ray investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Yingye; Mo, Kun; Yun, Di

    2017-04-01

    Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperaturemore » dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less

  8. Evolution of relative drifts and temperature anisotropies in expanding collisionless plasmas—1.5D vs. 2.5D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.; Araneda, J. A.

    2016-02-01

    We compare the results from 1.5D and 2.5D hybrid simulations (with fluid electrons, and kinetic/particle-in-cell protons and α particles) to investigate the effect of the solar wind expansion on the evolution of ion relative drifts in collisionless fast wind streams. We initialize the system with initial relative drifts and follow its evolution in time within and without the expanding box model, which takes into account the gradual solar wind expansion in the interplanetary medium. The decay of the differential streaming follows similar pattern in the 1.5D and 2.5D non-expanding cases. For the 1.5D studies we find no difference in the evolution of the initial relative drift speed with and without expansion, whereas in the two-dimensional case the differential streaming is further suppressed once the solar wind expansion is taken into account. This implies that a stronger acceleration source is required to compensate for the effect of the expansion and produce the observed solar wind acceleration rate. The 1.5D case shows stronger oscillations in all plasma properties with higher temperature anisotropies for the minor ions in the first few hundred gyro-periods of the simulations. Yet the preferential perpendicular heating for the minor ions is stronger in the 2.5D case with higher temperature anisotropies at the final stage.

  9. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    NASA Astrophysics Data System (ADS)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  10. Large angular scale CMB anisotropy from an excited initial mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Yusofi, E.

    2016-07-01

    According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit ℓ < 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H << M * < M p and on the slow-roll parameter ɛ. Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

  11. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    NASA Astrophysics Data System (ADS)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  12. Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.; hide

    2001-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

  13. Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Thantirige, Rukshan M.; John, Jacob; Pradhan, Nihar R.; Carter, Kenneth R.; Tuominen, Mark T.

    2016-06-01

    Here, we report wafer scale fabrication of densely packed Fe nanostripe-based magnetic thin films on a flexible substrate and their magnetic anisotropy properties. We find that Fe nanostripes exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops with energy products (BHmax) exceeding 3 MGOe at room temperature. High density Fe nanostripes were fabricated on 70 nm flexible polyethylene terephthalate (PET) gratings, which were made by a roll-to-roll (R2R) UV nanoimprint lithography technique. We observed large in-plane uniaxial anisotropies along the long dimension of nanostripes that can be attributed to the shape. Temperature dependent hysteresis measurements confirm that the magnetization reversal is driven by non-coherent rotation reversal processes.

  14. X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus

    2016-10-01

    Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.

  15. The Cosmic Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  16. Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling

    NASA Astrophysics Data System (ADS)

    Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.

    2017-12-01

    North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the

  17. Cosmic-ray anisotropy studies with IceCube

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  18. Changes in the Molar Ellipticities of HEWL Observed by Circular Dichroism and Quantitated by Time Resolved Fluorescence Anisotropy Under Crystallizing Conditions

    NASA Technical Reports Server (NTRS)

    Sumida, John

    2002-01-01

    Fluid models for simple colloids predict that as the protein concentration is increased, crystallization should occur at some sufficiently high concentration regardless of the strength of attraction. However, empirical measurements do not fully support this assertion. Measurements of the second virial coefficient (B22) indicate that protein crystallization occurs only over a discrete range of solution parameters. Furthermore, observations of a strong correlation between protein solubility and B22, has led to an ongoing debate regarding the relationship between the two. Experimental work in our lab, using Hen Egg White Lysozyme (HEWL), previously revealed that the rotational anisotropy of the protein under crystallizing conditions changes systematically with pH, ionic strength and temperature. These observations are now supported by recent work revealing that small changes in the molar ellipticity also occur systematically with changes in ionic strength and temperature. This work demonstrates that under crystallization conditions, the protein native state is characterized by a conformational heterogeneity that may prove fundamental to the relationship between protein crystallization and protein solubility.

  19. Search for anisotropy in the Debye-Waller factor of HCP solid 4He

    NASA Astrophysics Data System (ADS)

    Barnes, Ashleigh L.; Hinde, Robert J.

    2016-02-01

    The properties of hexagonal close packed (hcp) solid 4He are dominated by large atomic zero point motions. An accurate description of these motions is therefore necessary in order to accurately calculate the properties of the system, such as the Debye-Waller (DW) factors. A recent neutron scattering experiment reported significant anisotropy in the in-plane and out-of-plane DW factors for hcp solid 4He at low temperatures, where thermal effects are negligible and only zero-point motions are expected to contribute. By contrast, no such anisotropy was observed either in earlier experiments or in path integral Monte Carlo (PIMC) simulations of solid hcp 4He. However, the earlier experiments and the PIMC simulations were both carried out at higher temperatures where thermal effects could be substantial. We seek to understand the cause of this discrepancy through variational quantum Monte Carlo simulations utilizing an accurate pair potential and a modified trial wavefunction which allows for anisotropy. Near the melting density, we find no anisotropy in an ideal hcp 4He crystal. A theoretical equation of state is derived from the calculated energies of the ideal crystal over a range of molar volumes from 7.88 to 21.3 cm3, and is found to be in good qualitative agreement with experimental data.

  20. Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province

    NASA Astrophysics Data System (ADS)

    Ferré, Eric C.; Gébelin, Aude; Conder, James A.; Christensen, Nik; Wood, Justin D.; Teyssier, Christian

    2014-03-01

    The Minnesota River Valley (MRV) subprovince is a well-exposed example of late Archean lithosphere. Its high-grade gneisses display a subhorizontal layering, most likely extending down to the crust-mantle boundary. The strong linear fabric of the gneisses results from high-temperature plastic flow during collage-related contraction. Seismic anisotropies measured up to 1 GPa in the laboratory, and seismic anisotropies calculated through forward-modeling indicate ΔVP ~5-6% and ΔVS ~3%. The MRV crust exhibits a strong macroscopic layering and foliation, and relatively strong seismic anisotropies at the hand specimen scale. Yet the horizontal attitude of these structures precludes any substantial contribution of the MRV crust to shear wave splitting for vertically propagating shear waves such as SKS. The origin of the regionally low seismic anisotropy must lie in the upper mantle. A horizontally layered mantle underneath the United States interior could provide an explanation for the observed low SWS.

  1. Fully kinetic Biermann battery and associated generation of pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.

    2018-03-01

    The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.

  2. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  3. Azimuthal anisotropy of the Pacific region

    NASA Astrophysics Data System (ADS)

    Maggi, Alessia; Debayle, Eric; Priestley, Keith; Barruol, Guilhem

    2006-10-01

    Azimuthal anisotropy is the dependence of local seismic properties on the azimuth of propagation. We present the azimuthally anisotropic component of a 3D SV velocity model for the Pacific Ocean, derived from the waveform modeling of over 56,000 multi-mode Rayleigh waves followed by a simultaneous inversion for isotropic and azimuthally anisotropic vsv structure. The isotropic vsv model is discussed in a previous paper (A. Maggi, E. Debayle, K. Priestley, G. Barruol, Multi-mode surface waveform tomography of the Pacific Ocean: a close look at the lithospheric cooling signature, Geophys. J. Int. 166 (3) (2006). doi:10.1111/j.1365-246x.2006.03037.x). The azimuthal anisotropy we find is consistent with the lattice preferred orientation model (LPO): the hypothesis of anisotropy generation in the Earth's mantle by preferential alignment of anisotropic crystals in response to the shear strains induced by mantle flow. At lithospheric depths we find good agreement between fast azimuthal anisotropy orientations and ridge spreading directions recorded by sea-floor magnetic anomalies. At asthenospheric depths we find a strong correlation between fast azimuthal anisotropy orientations and the directions of current plate motions. We observe perturbations in the pattern of seismic anisotropy close to Pacific hot-spots that are consistent with the predictions of numerical models of LPO generation in plume-disturbed plate motion-driven mantle flow. These observations suggest that perturbations in the patterns of azimuthal anisotropy may provide indirect evidence for plume-like upwelling in the mantle.

  4. Magnetic anisotropy and magnetite textures from experimental shear deformation

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Moskowitz, Bruce

    2015-04-01

    Magnetite is a common accessory mineral in crustal rocks and exerts a dominant influence on the magnetic anisotropy of rocks when present. Therefore the deformation behavior of magnetite strongly determines how magnetic fabric develops with increasing strain in a deforming rock. Here we show results from experimental deformation of magnetite-silicate aggregates in high-temperature transpressional shear experiments (1000-1200°C) under moderate shear stresses (10-130 MPa) using a gas-medium deformation apparatus. Anisotropy of magnetic susceptibility, shape preferred orientation (SPO) of magnetite, and electron backscatter diffraction (EBSD) were each used to characterize the magnetite deformation fabrics and intragrain microstructures. Magnetic anisotropy and SPO each increase strongly with increasing strain, which ranged between 100-300%. An interesting feature of the deformation fabrics is that both magnetite SPO and magnetic fabric intensity are stronger at higher temperatures, indicating that strain partitioning between magnetite and the plagioclase matrix decreases at higher temperatures. Although flow laws for magnetite predict it to be weaker than dry plagioclase at the experimental conditions, the temperature-dependence of the fabric strength indicates that magnetite is more viscous than the "wet" plagioclase used in the experiments. In contrast to the magnetic and shape fabrics, crystallographic preferred orientation (CPO) of magnetite is very weak in all deformed samples. In EBSD orientation mapping of individual particles, incipient subgrain boundary formation is evident in magnetite grains, indicating that dislocation creep processes were active in magnetite despite the lack of a well-developed CPO. The weak magnetite CPOs are primarily attributed to multiple slip systems acting in parallel. These findings support the observations of previous studies that crystallographic textures in cubic minerals such as magnetite may be inherently weak or slow to

  5. Enzyme entrapment in polyaniline films observed via fluorescence anisotropy and antiquenching

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis R.; McCaffrey, Marisa; Epstein, Arthur J.

    2014-05-01

    The facile entrapment of oxidoreductase enzymes within polyaniline polymer films by inducing hydrophobic collapse using phosphate buffered saline (PBS) has been shown to be a cost-effective method for fabricating organic biosensors. Here, we use fluorescence anisotropy measurements to verify enzyme immobilization and subsequent electron donation to the polymer matrix, both prerequisites for an effective biosensor. Specifically, we measure a three order of magnitude decrease in the ratio of the fluorescence to rotational lifetimes. In addition, the observed fluorescence antiquenching supports the previously proposed model that the polymer chain assumes a severely coiled conformation when exposed to PBS. These results help to empirically reinforce the theoretical basis previously laid out for this biosensing platform.

  6. General kinetic solution for the Biermann battery with an associated pressure anisotropy generation

    NASA Astrophysics Data System (ADS)

    Schoeffler, K. M.; Silva, L. O.

    2018-01-01

    Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.

  7. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  8. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Jin, Jin-Ling; Zhang, Xiang-Qun; Li, Guo-Ke; Cheng, Zhao-Hua; Zheng, Lin; Lu, Yi

    2011-05-01

    The magnetocaloric effect (MCE) in TbMnO3 single crystals was investigated by isothermal magnetization curves for the ab plane at low temperatures. Large magnetic entropy change, ΔSM = -18.0 J/kg K, and the refrigerant capacity, RC = 390.7 J/kg, are achieved near the ordering temperature of Tb3+ moment (TNTb) under 70 kOe along the a axis. Furthermore, the TbMnO3 single crystal exhibits a giant MCE anisotropy. The difference of ΔSMand RC between the a and b axes is field and temperature dependent, which reaches maximum values of 11.4 J/kg K and 304.1 J/kg, respectively. By taking magnetocrystalline anisotropy into account, the rotating ΔSMwithin the ab plane can be well simulated, indicating that the anisotropy of ΔSMis directly contributed from the magnetocrystalline anisotropy. Our finding for giant MCE anisotropy in TbMnO3 single crystals explores the possibility of using this material for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  9. Anisotropic shock jump conditions: Theory and observations

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Zhang, X. X.; Song, P.

    1995-01-01

    The MHD Rankine-Hugoniot (RH) relations for shock waves in a collisionless plasma with bi-Maxwellian distribution functions are considered. While by introducing the pressure anisotropy parameter xi in the RH relations, the number of unknowns -- B, V, n, p and xi (a total of 9) -- becomes one more than the total number of the conservation equations, it is possible to use the observed quantities on both sides of the shock to study the anisotropy changes across the shock. A simple relation for the anisotropy change across the shock is derived as a function of the ratio of magnetic fields m(= B'/B), the shock normal angle theta(sub Bn) and the plasma beta and beta' (primes are downstream values). Since m and theta(sub Bn) can be determined accurately in observation, the reliability of the anisotropy change deduced is mostly dependent on the accuracy of the measurements beta and beta'. We have applied the results to six low-beta quasi-perpendicular (Q perpendicular) laminar bow shock crossings with temperature anisotropy measured in the magnetosheath. In the six test cases, it is found that the predicted pressure anisotropies agree well with those observed in the magnetosheath.

  10. Charged magnetic domain walls as observed in nanostructured thin films: dependence on both film thickness and anisotropy.

    PubMed

    Favieres, C; Vergara, J; Madurga, V

    2013-02-13

    The magnetic domain configurations of soft magnetic, nanostructured, pulsed laser-deposited Co films were investigated. Their dependence on both the thickness t (20 nm ≤ t ≤ 200 nm) and the anisotropy was studied. Charged zigzag walls, with a characteristic saw-tooth vertex angle θ, were observed. θ changed with t from θ ≈ 17° to ≈25°, presenting an intermediate sharp maximum that has not been described before. The reduced length of the zigzag walls also exhibited a peak at t ≈ 70 nm. The relationship between the total reduced length and the density energy of the magnetic wall allowed us to establish a change from a Néel-type to a Bloch-type core of the zigzag walls at this thickness, t ≈ 70 nm. We also accounted for the magnetic energy arising from the surface roughness of the thinner films after imaging the film surface morphologies. Moreover, this distinctive behaviour of the zigzag walls of these low-anisotropy films was compared to that of high-anisotropy films.

  11. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    NASA Astrophysics Data System (ADS)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can

  12. Constraints on seismic anisotropy of the innermost inner core from observations of antipode PKIIKP phases

    NASA Astrophysics Data System (ADS)

    Niu, F.

    2006-12-01

    While the existence of seismic anisotropy in the inner core is well accepted, its magnitude and depth variations are still debated. Besides seismic anisotropy, there is growing evidence that suggests the top several hundred kilometers of the inner core exhibits a hemispherical variation in both velocity (the isotropic wave speed and the magnitude of anisotropy) and attenuation structure. When the PKIKP wave propagates through the uppermost ~400 km of the inner core and reaches a distance less than ~155°, there are two other phases, PKiKP and PKPbc, which have mantle ray paths very close to it. The former is a P wave that reflects off the inner-core boundary (ICB) and the latter is P wave that travels above the ICB. These two phases are usually used as reference phases to infer the uppermost structure of the inner core. As the result, the top ~400 km of the inner core is relatively well studied and its structure is well known. On the other hand to study the deeper ~800 km of the inner core, one must use PKIKP arrivals observed at greater distances where there is no regular phase can be used as a suitable reference phase to remove mantle anomalies. PKPab is sometime used as the reference, but it is generally considered to be a poor reference phase as it has a very different ray path from PKIPK in the mantle and it also travels along the core-mantle boundary (CMB) where very strong lateral heterogeneities are known to exist. Another approach is to use a 3D global mantle velocity model to correct the mantle anomalies in the PKIKP travel time residuals. Using this approach Ishii and Dziewonski (2002) found that the innermost ~300 km exhibits a distinct seismic anisotropy from the rest of body, which they used to argue that the Earth's center might have a unique early history in the core's formation and evolution. Here we report on an observation of the PKIIKP phase, an underside reflected P wave at the ICB, for both the major- and minor-arc ray paths. The major

  13. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE PAGES

    Perret, Edith; Xu, Dongwei; Highland, M. J.; ...

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  14. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (1010) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1210] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. The island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growthmore » rate F-n, with an exponent n = 0:25 + 0.02. The results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  15. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  16. Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy

    DOE PAGES

    Hayami, Satoru; Lin, Shi-Zeng; Batista, Cristian D.

    2016-05-12

    We clarify the conditions for the emergence of multiple-Q structures out of lattice and easy-axis spin anisotropy in frustrated magnets. By considering magnets whose exchange interaction has multiple global minima in momentum space, we find that both types of anisotropy stabilize triple-Q orderings. Moderate anisotropy leads to a magnetic field-induced skyrmion crystal, which evolves into a bubble crystal for increasing spatial and spin anisotropy. Finally, the bubble crystal exhibits a quasi-continuous (devil’s staircase) temperature dependent ordering wave-vector, characteristic of the competition between frustrated exchange and strong easy-axis anisotropy.

  17. Observation by an air-shower array in Tibet of the multi-TeV cosmic-ray anisotropy due to terrestrial orbital motion around the Sun.

    PubMed

    Amenomori, M; Ayabe, S; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, J Y; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mori, S; Mu, J; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Sakata, M; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Utsugi, T; Wang, B S; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhaxisangzhu; Zhou, X X

    2004-08-06

    We report on the solar diurnal variation of the galactic cosmic-ray intensity observed by the Tibet III air shower array during the period from 1999 to 2003. In the higher-energy event samples (12 and 6.2 TeV), the variations are fairly consistent with the Compton-Getting anisotropy due to the terrestrial orbital motion around the Sun, while the variation in the lower-energy event sample (4.0 TeV) is inconsistent with this anisotropy. This suggests an additional anisotropy superposed at the multi-TeV energies, e.g., the solar modulation effect. This is the highest-precision measurement of the Compton-Getting anisotropy ever made.

  18. Kinetic Features Observed in the Solar Wind Electron Distributions

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Lazar, M.; Poedts, S.

    2016-12-01

    More than 120 000 of velocity distributions measured by Helios, Cluster and Ulysses in the ecliptic have been analyzed within an extended range of heliocentric distances from 0.3 to over 4 AU. The velocity distribution of electrons reveal a dual structure with a thermal (Maxwellian) core and a suprathermal (Kappa) halo. A detailed observational analysis of these two components provides estimations of their temperatures and temperature anisotropies, and we decode any potential interdependence that their properties may indicate. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analysis and providing valuable clues about the temperature of the Kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, that seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anti-correlated anisotropies of the core and halo populations and the increase of their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated most probably by the anisotropy-driven instabilities. Estimating the temperature of the solar wind particles and their anisotropies is particularly important for understanding the origin of these deviations from thermal equilibrium as well as their effects.

  19. Transverse susceptibility as a probe of the magnetocrystalline anisotropy-driven phase transition in Pr0.5Sr0.5CoO3

    NASA Astrophysics Data System (ADS)

    Frey Huls, N. A.; Bingham, N. S.; Phan, M. H.; Srikanth, H.; Stauffer, D. D.; Leighton, C.

    2011-01-01

    Half-doped Pr1-xSrxCoO3 (x=0.5) displays anomalous magnetism, most notably manifest in the field-cooled magnetization versus temperature curves under different applied cooling fields. Recently, an explanation was advanced that a magnetocrystalline anisotropy transition driven by a structural transition at 120 K is the origin of this behavior. In this paper, we further elucidate the nature of the magnetic anisotropy across the low-temperature phase transition in this material by means of transverse susceptibility (TS) measurements performed using a self-resonant tunnel diode oscillator. TS probes magnetic materials by means of a small radio frequency oriented transverse to a dc field that sweeps from positive to negative saturation. TS scans as a function of field clearly reveal peaks associated with the anisotropy (HK) and switching fields (HS). When peak position is examined as a function of temperature, ˜120 K the signature of a ferromagnetic-to-ferromagnetic phase transition is evident as a sharp feature in HK and a corresponding cusp in HS. A third TS peak (not previously observed in other classes of magnetic oxides such as manganites and spinel ferrites) is found to be correlated with the crossover field (Hcr) in the unconventional magnetization versus temperature [M(T)] behavior. We observe a strong temperature dependence of Hcr at ˜120 K using this technique, which suggests the magnetic-field-influenced magnetocrystalline anisotropy transition. We show the switching between the high-field magnetization state and the low-field magnetization state associated with the magnetocrystalline anisotropy transition is irreversible when the magnetic field is recycled. Finally, we demonstrate that the TS peak magnitude indicates easy axis switching associated with this phase transition, even in these polycrystalline samples. Our results further confirm that TS provides new insights into the magnetic behavior of complex oxides.

  20. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Liao, X. L.; Jing, H. L.; Deng, Z. G.; Yen, F.; Wang, S. Y.; Wang, J. S.

    2013-10-01

    Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  1. Effect of a quartic anisotropy energy on the ''spiral magnetic'' coexistence state of superconductivity and ferromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, G.H.; Hu, C.

    1988-02-01

    The effect of three types of ''quartic'' anisotropy energy (i.e., in the M/sup 4/ term of the magnetic Ginzburg-Landau free energy) on the polarization of the ''spiral magnetic'' state of Blount and Varma is studied near the onset temperature. For a quartic anisotropy with uniaxial symmetry, we find continuous polarization transitions from circular to elliptical and then to linear as the strength of a uni-easy-axis anisotropy is increased. (No transition is found for the uni-hard-axis case.) If the quartic anisotropy has cubic symmetry, we find a discontinuous transition directly between circular and linear, without going through an elliptic stage, whenmore » the sign of the anisotropy energy is to favor the cubic axes. (The polarization stays circular at all strengths of the anisotropy energy if the sign of the latter is to favor the body diagonals.) Finally, we model the anisotropy in primitive tetragonal ErRh/sub 4/B/sub 4/ with a quadratic anisotropy giving a hard c axis, plus a quartic anisotropy in the basal plane with a square symmetry. A first-order polarization transition directly between circular and linear is also obtained for this case, when the quartic anisotropy favors the principal axes in the basal plane. This last case studied provides a plausible explanation for the linear polarization observed in the coexistence state of ErRh/sub 4/B/sub 4/. .AE« less

  2. Thermal conductivity anisotropy in nanostructures and nanostructured materials

    NASA Astrophysics Data System (ADS)

    Termentzidis, Konstantinos

    2018-03-01

    Thermal conductivity anisotropy is a subject for both fundamental and application interests. The anisotropy can be induced either by van der Waals forces in bulk systems or by nanostructuration. Here, we will examine four cases in which thermal anisotropy has been observed: (i) Si/Ge superlattices which exhibit higher thermal anisotropy between in-plane and cross-plane directions for the case of smooth interfaces, (ii) amorphous/crystalline superlattices with much higher anisotropy than the crystalline/crystalline superlattices and which can reach a factor of six when the amorphous fraction increases, (iii) the impact of the density of edge and screw dislocations on the thermal anisotropy of defected GaN, and (iv) the influence of the growth direction of Bi2Te3 nanowires on thermal conductivity.

  3. Whistler wave generation by electron temperature anisotropy during asymmetric magnetic reconnection in space

    NASA Astrophysics Data System (ADS)

    Swerdlow, Josh; Yoo, Jongsoo; Kim, Eun-Hwa; Yamada, Masaaki; Ji, Hantao

    2017-10-01

    Generation of whistler waves during asymmetric reconnection is studied by analyzing data from a MMS (Magnetospheric Multiscale) event. In particular, the possible role of electron temperature anisotropy in excitation of whistler waves on the magnetosphere side is discussed. The local electron distribution function is fitted into a sum of bi-Maxwellian distribution functions. Then, the dispersion relation solver, WHAMP (waves in homogeneous, anisotropic, multicomponent plasmas), is used to obtain the local dispersion relation and growth rate of the whistler waves. We compare the theoretical calculations with the measured dispersion relation. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  4. CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.

    2018-04-01

    Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.

  5. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  6. Texture and Elastic Anisotropy of Mantle Olivine

    NASA Astrophysics Data System (ADS)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  7. Implications inferred from anisotropy parameter of proton distributions related to EMIC waves in the inner magnetosphere.

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Lee, D. Y.

    2017-12-01

    In the classic theory of wave-particle resonant interaction, anisotropy parameter of proton distribution is considered as an important factor to determine an instability such as ion cyclotron instability. The particle distribution function is often assumed to be a bi-Maxwellian distribution, for which the anisotropy parameter can be simplified to temperature anisotropy (T⊥/T∥-1) independent of specific energy of particles. In this paper, we studied the proton anisotropy related to EMIC waves using the Van Allen Probes observations in the inner magnetosphere. First, we found that the real velocity distribution of protons is usually not expressed with a simple bi-Maxwellian distribution. Also, we calculated the anisotropy parameter using the exact formula defined by Kennel and Petschek [1966] and investigated the linear instability criterion of them. We found that, for majority of the EMIC wave events, the threshold anisotropy condition for proton cyclotron instability is satisfied in the expected range of resonant energy. We further determined the parallel plasma beta and its inverse relationship with the anisotropy parameter. The inverse relationship exists both during the EMIC wave times and non-EMIC wave times, but with different slopes. Based on this result, we demonstrate that the parallel plasma beta can be a critical factor that determines occurrence of EMIC waves.

  8. Extrinsic Versus Intrinsic Seismic Anisotropy and Attenuation

    NASA Astrophysics Data System (ADS)

    Montagner, J. P.; Ricard, Y. R.; Capdeville, Y.; Bodin, T.; Wang, N.

    2015-12-01

    The apparent large scale anisotropy is the mixing of intrinsic anisotropic minerals (LPO) and extrinsic anisotropy due to materials with fine layering, fluid inclusions, cracks (SPO) . The same issue arises for attenuation (with many different anelastic processes). The proportion of extrinsic and intrinsic anisotropy and attenuation in the Earth mantle is still an open question. The interpretation of observations of seismic anisotropy and attenuation is the subject of controversies and often contradictory according to their intrinsic or extrinsic nature. Fine layering is a good candidate for explaining at the same time a large part of observed radial anisotropy (Wang et al., Geophys. Res. Lett., 2013) and attenuation (Ricard et al., Earth Planet. Sci. Lett., 2014). A plausible model of mixing of materials in a chaotic convecting fluid creates a spectrum of heterogeneity varying like 1/k (k wavenumber of the heterogeneity). A body wave propagating in a finely layered medium will be scattered and its distorted waveform can be interpreted as due to attenuation with a quality factor Q. We showed that, with the specific 1/k spectrum and only 6-9% RMS heterogeneity, the resulting apparent attenuation Q is frequency independent. Aggregates of randomly orientated anisotropic minerals are good candidates for giving rise to this extrinsic apparent attenuation. The relationship for a 1/k spectrum with apparent seismic anisotropy is also explored.

  9. Magnetic anisotropy behaviour of pyrrhotite as determined by low- and high-field experiments

    NASA Astrophysics Data System (ADS)

    Martín-Hernández, F.; Dekkers, M. J.; Bominaar-Silkens, I. M. A.; Maan, J. C.

    2008-07-01

    Here we report on the sources of magnetic anisotropy in pyrrhotite, an iron sulphide present in many rocks as an important carrier of the Natural Remanent Magnetization. While the magnetic hysteresis parameters of pyrrhotite are well known, the existing database concerning its anisotropy behaviour is patchy and ambiguous. Therefore, a collection of 11 seemingly single crystals of natural pyrrhotite was scrutinized. Before embarking on the anisotropy determinations the set of single crystals was extensively characterized rock magnetically by measuring Curie temperatures, hysteresis loops, IRM acquisition curves, and FORC diagrams (the latter three all at room temperature). First the variation of the low-field susceptibility as function of applied field and grain size was evaluated for fields ranging from 1 to 450 A m-1. Existing grain size dependent data and the present larger crystals show a logarithmic grain size dependence. This enables estimating the grain size for unimodal pyrrhotite distributions in rocks. Measured trends are better fitted with an exponential function than with a Rayleigh Law style function. Based on the rock magnetic characterization and the behaviour of the anisotropy of magnetic susceptibility six samples (of the original 11) were selected for the high-field anisotropy determinations within the basal plane. Those data were acquired with a torque cantilever-type magnetometer. As expected, most single crystals showed a pure 6-θ curve within their basal plane because of the easy axis configuration. In some crystals, however, lower harmonic terms overlapped the 6-θ term. This may be the dominant source of the observed variation in magnetic anisotropy properties. Torque data of three of the six samples were of sufficient quality to allow evaluation of K1. Re-evaluation of existing torque data and including the present newly derived determinations, yields for the anisotropy constant of pyrrhotite within the basal plane K1: (2.7 +/- 0.2) 104 Jm

  10. Anisotropy properties of the quartzite from Jegłowa, Poland

    NASA Astrophysics Data System (ADS)

    Marciniszyn, Tomasz; Sieradzki, Adam

    2013-06-01

    Marciniszyn, T. and Sieradzki, A. 2013. Anisotropy properties of the quartzite from Jegłowa, Poland. Acta Geologica Polonica, 63 (2), 265-269. Warszawa. Results of the dielectric spectroscopy, thermal and dilatometric measurements of the quartzite rock are presented. Based on the dielectric measurements performed in a wide range of the frequency (101 - 5 × 107 Hz) at temperature of 300K the piezoresonance in quartzite was found. A chemical composition of quartzite was examined by XRF. The anisotropy of the thermal conductivity was observed. The thermal conductivity coefficient changes from 13.2 [W/Km] to 5.6 [W/Km] for the [100] and [001] direction, respectively. Based on the thermal expansion measurement the thermal expansion coefficient of quartzite was estimated to be α Q = 8.0 × 10-6 [K-1 ] ±0.7 × 10-6 .

  11. Seismic anisotropy along the Cyprean arc and northeast Mediterranean Sea inferred from shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda

    2014-08-01

    The Cyprean arc is considered to be a convergent boundary in the Eastern Mediterranean where the African plate is being subducted beneath the Anatolian plate. Mapping the lateral variations of seismic anisotropy parameters can provide essential hints to mantle dynamics and flow patterns in relation to the geometry and style of deformation developed under different pressure, temperature conditions around the subducting African lithosphere. In this study, seismic anisotropy parameters, fast polarization directions (ϕ) and delay times (δt) beneath the Cyprean arc and NE Mediterranean Sea are inferred from the shear wave splitting analysis performed on core-mantle refracted teleseismic shear waves (SKS phases). Earthquake data used in the present work are extracted from the continuous recordings of 8 broad-band seismic stations located in the study region for a time period during 1999 and 2012. The overall results exhibits clear evidences of mantle anisotropy with relatively uniform NE-SW aligned fast polarization directions. No abrupt changes in fast polarization directions (ϕ) are observed. However, near the Dead Sea Transform Fault, ϕ values tend to rotate from NE-SW to N-S and NW-SE in accordance with Pn anisotropy observations. Delay times (δt) vary between 0.61 s ± 0.10 s and 1.90 s ± 0.13 s. The range of delay times are generally consistent with those observed in the mantle rather than implying a crustal anisotropy. A predominant pattern of NNE-SSW fast polarization directions that is coherent with earlier SKS splitting measurements observed beneath north, central and East Anatolia suggests a SW directed asthenospheric flow caused by slab rollback process along the Hellenic and Cyprean arcs. Furthermore, apparent splitting parameters did not exhibit any significant directional dependence which may imply possibility of the presence of anisotropic models with two-layer anisotropy or dipping axis of symmetry beneath the northeast Mediterranean Sea and

  12. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    NASA Astrophysics Data System (ADS)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  13. The nature of the lithosphere-asthenosphere boundary from laboratory investigations of olivine anisotropy

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Qi, Chao; Warren, Jessica; Kohlstedt, David; Holtzman, Benjamin; Wallis, David

    2017-04-01

    The nature of the lithosphere-asthenosphere boundary (LAB) determines the mechanical coupling between rigid plates and the underlying convecting mantle. Seismological studies reveal distinct reflectors (G discontinuity) in the uppermost oceanic mantle that are sometimes interpreted as the LAB. The discontinuity in seismic velocity is suggested to arise from abrupt changes in composition, including the melt fraction. Interestingly, these reflectors roughly correlate with the location of discontinuities in radial seismic anisotropy, but do not correlate with the location of discontinuities in azimuthal anisotropy. To investigate the correlation between these datasets, we draw on recent laboratory measurements of crystallographic texture development in olivine-rich rocks. The textural evolution of dry olivine aggregates has been well described in recent experiments, while micromechanical models are available for incorporating these observations into larger-scale models of upper-mantle flow. Unfortunately, the systematics of textural evolution in melt-bearing olivine aggregates have not been similarly described. Here we present a new experimental data set detailing the evolution of anisotropy during deformation of partially molten peridotite. Torsion experiments were conducted on samples composed of San Carlos olivine and basaltic melt at a temperature of 1473 K and a confining pressure of 300 MPa. Seismically fast axes of olivine tend to lie at a high angle to the flow direction in a manner similar to previous experiments. The anisotropy in these samples is weak compared to that in dry, melt-free olivine deformed to similar strains. The anisotropy also exhibits relatively little change in strength and orientation with progressive deformation. Detailed microstructural analyses allow us to distinguish between competing models for the grain-scale deformation processes, favoring one in which crystallographically controlled grain shapes govern grain rotations. We

  14. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.

    2003-01-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral

  15. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    PubMed

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  16. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  17. Direct observation of in-plane anisotropy of the superconducting critical current density in Ba (Fe1-xCox) 2As2 crystals

    NASA Astrophysics Data System (ADS)

    Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.

    2018-01-01

    The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.

  18. Thermoelectric anisotropy in the iron-based superconductor Ba (Fe1-xCox) 2As2

    NASA Astrophysics Data System (ADS)

    Matusiak, Marcin; Rogacki, Krzysztof; Wolf, Thomas

    2018-06-01

    We report on the in-plane anisotropy of the Seebeck and Nernst coefficients as well as of the electrical resistivity determined for a series of strain-detwinned single crystals of Ba (Fe1-xC ox) 2A s2 . Two underdoped samples (x =0.024 , 0.045) exhibiting a transition from the tetragonal paramagnetic phase to the orthorhombic spin density wave (SDW) phase (at Ttr=100 and 60 K, respectively) show an onset of Nernst anisotropy at temperatures above 200 K, which is significantly higher than Ttr. In the optimally doped sample (x =0.06 ) the transport properties also appear to be in-plane anisotropic below T ≈120 K, despite the fact that this particular composition does not show any evidence of long-range magnetic order. However, the anisotropy observed in the optimally doped crystal is rather small, and for the Seebeck and Nernst coefficients the difference between values measured along and across the uniaxial strain has an opposite sign to those observed for underdoped crystals with x =0.024 and 0.045. For these two samples, the insensitivity of the Nernst anisotropy to the SDW transition suggests that the origin of nematicity might be something other than magnetic.

  19. Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Malandraki, O.; Dröge, W.; Kartavykh, Y.

    2014-07-01

    Context. In February 2011, the two STEREO spacecrafts reached a separation of 180 degrees in longitude, offering a complete view of the Sun for the first time ever. When the full Sun surface is visible, source active regions of solar energetic particle (SEP) events can be identified unambiguously. STEREO, in combination with near-Earth observatories such as ACE or SOHO, provides three well separated viewpoints, which build an unprecedented platform from which to investigate the longitudinal variations of SEP events. Aims: We show an ensemble of SEP events that were observed between 2009 and mid-2013 by at least two spacecrafts and show a remarkably wide particle spread in longitude (wide-spread events). The main selection criterion for these events was a longitudinal separation of at least 80 degrees between active region and spacecraft magnetic footpoint for the widest separated spacecraft. We investigate the events statistically in terms of peak intensities, onset delays, and rise times, and determine the spread of the longitudinal events, which is the range filled by SEPs during the events. Energetic electron anisotropies are investigated to distinguish the source and transport mechanisms that lead to the observed wide particle spreads. Methods: According to the anisotropy distributions, we divided the events into three classes depending on different source and transport scenarios. One potential mechanism for wide-spread events is efficient perpendicular transport in the interplanetary medium that competes with another scenario, which is a wide particle spread that occurs close to the Sun. In the latter case, the observations at 1 AU during the early phase of the events are expected to show significant anisotropies because of the wide injection range at the Sun and particle-focusing during the outward propagation, while in the first case only low anisotropies are anticipated. Results: We find events for both of these scenarios in our sample that match the

  20. EFFECTS OF THE TEMPERATURE ANISOTROPY ON THE MASER INSTABILITY EXCITED BY LOWER ENERGY CUTOFF BEHAVIOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. F.; Wu, D. J.; Yan, Y. H., E-mail: djwu@pmo.ac.cn, E-mail: djwu@pmo.ac.cn

    The electron-cyclotron maser (ECM) conventionally driven by velocity anisotropies of energetic electrons trapped in magnetic fields is one of the most important radio-emission mechanisms in astrophysics. Recently, Wu and Tang proposed that a proper lower energy cutoff behavior of power-law electrons can effectively excite the ECM emission. This paper considers effects of temperature anisotropy on this new ECM mechanism. The results show that the growth rates of the ECM emissions increase with {beta}{sub perpendicular0} and {beta}{sub ||0}, where {beta}{sub perpendicular0} and {beta}{sub ||0} are the perpendicular and parallel velocity spreads (in units of the light velocity c) of the energeticmore » electron beam, respectively. Moreover, the growth rates of O1 and X2 modes both sensitively depend on the ratio of the electron-cyclotron frequency to the plasma frequency {Omega} and reach their extremum values at {Omega} {approx_equal} 1.5 for the O1 mode and at {Omega} {approx_equal} 1.0 for the X2 mode. Meanwhile, as the mean velocity of the electron beam {beta}{sub s} (in units of c) increases, the growth rate of the O1 mode remains approximately constant and that of the X2 mode decreases considerably.« less

  1. Anisotropy in Fracking: A Percolation Model for Observed Microseismicity

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn; Turcotte, Donald L.; Rundle, John B.

    2015-01-01

    Hydraulic fracturing (fracking), using high pressures and a low viscosity fluid, allow the extraction of large quantiles of oil and gas from very low permeability shale formations. The initial production of oil and gas at depth leads to high pressures and an extensive distribution of natural fractures which reduce the pressures. With time these fractures heal, sealing the remaining oil and gas in place. High volume fracking opens the healed fractures allowing the oil and gas to flow to horizontal production wells. We model the injection process using invasion percolation. We use a 2D square lattice of bonds to model the sealed natural fractures. The bonds are assigned random strengths and the fluid, injected at a point, opens the weakest bond adjacent to the growing cluster of opened bonds. Our model exhibits burst dynamics in which the clusters extend rapidly into regions with weak bonds. We associate these bursts with the microseismic activity generated by fracking injections. A principal object of this paper is to study the role of anisotropic stress distributions. Bonds in the y-direction are assigned higher random strengths than bonds in the x-direction. We illustrate the spatial distribution of clusters and the spatial distribution of bursts (small earthquakes) for several degrees of anisotropy. The results are compared with observed distributions of microseismicity in a fracking injection. Both our bursts and the observed microseismicity satisfy Gutenberg-Richter frequency-size statistics.

  2. Simulation of clustering and anisotropy due to Co step-edge segregation in vapor-deposited CoPt3

    NASA Astrophysics Data System (ADS)

    Maranville, B. B.; Schuerman, M.; Hellman, F.

    2006-03-01

    An atomistic mechanism is proposed for the creation of structural anisotropy and consequent large perpendicular magnetic anisotropy in vapor-deposited films of CoPt3 . Energetic considerations of bonding in Co-Pt suggest that Co segregates to step edges due to their low coordination, for all film orientations, while Pt segregates to the two low index surfaces. Coalescence of islands during growth cause these Co-rich step edges to become flat thin Co platelets in a Pt rich matrix, giving rise to the experimentally observed magnetic anisotropy. This proposed model is tested with kinetic Monte Carlo simulation of the vapor deposition growth. A tight-binding, second-moment approximation to the interatomic potential is used to calculate the probability of an atom hopping from one surface site to another, assuming an Arrhenius-like activation model of surface motion. Growth is simulated by allowing many hopping events per adatom. The simulated as-grown films show an asymmetry in Co-Co bonding between the in-plane and out-of-plane directions, in good agreement with experimental data. The growth temperature dependence found in the simulations is strong and similar to that seen in experiments, and an increase in Co edge segregation with increasing temperature is also observed.

  3. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which canmore » iteratively be used to obtain the lensing solution at the desired order.« less

  4. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  5. Solar Cycle Dependence of the Diurnal Anisotropy of 0.6 TeV Cosmic-ray Intensity Observed with the Matsushiro Underground Muon Detector

    NASA Astrophysics Data System (ADS)

    Munakata, K.; Mizoguchi, Y.; Kato, C.; Yasue, S.; Mori, S.; Takita, M.; Kóta, J.

    2010-04-01

    We analyze the temporal variation of the diurnal anisotropy of sub-TeV cosmic-ray intensity observed with the Matsushiro (Japan) underground muon detector over two full solar activity cycles in 1985-2008. We find an anisotropy component in the solar diurnal anisotropy superimposed on the Compton-Getting anisotropy due to Earth's orbital motion around the Sun. The phase of this additional anisotropy is almost constant at ~15:00 local solar time corresponding to the direction perpendicular to the average interplanetary magnetic field at Earth's orbit, while the amplitude varies between a maximum (0.043% ± 0.002%) and minimum (~0.008% ± 0.002%) in a clear correlation with the solar activity. We find a significant time lag between the temporal variations of the amplitude and the sunspot number (SSN) and obtain the best correlation coefficient of +0.74 with the SSN delayed for 26 months. We suggest that this anisotropy might be interpreted in terms of the energy change due to the solar-wind-induced electric field expected for galactic cosmic rays (GCRs) crossing the wavy neutral sheet. The average amplitude of the sidereal diurnal variation over the entire period is 0.034% ± 0.003%, which is roughly one-third of the amplitude reported from air shower and deep-underground muon experiments monitoring multi-TeV GCR intensity suggesting a significant attenuation of the anisotropy due to the solar modulation. We find, on the other hand, only a weak positive correlation between the sidereal diurnal anisotropy and the solar activity cycle in which the amplitude in the "active" solar activity epoch is about twice the amplitude in the "quiet" solar activity epoch. This implies that only one-fourth of the total attenuation varies in correlation with the solar activity cycle and/or the solar magnetic cycle. We finally examine the temporal variation of the "single-band valley depth" (SBVD) quoted by the Milagro experiment and, in contrast with recent Milagro's report, we find no

  6. Magnetocrystalline anisotropy of Fe2 + ion in silicon- or germanium-substituted yttrium iron garnet at zero temperature

    NASA Astrophysics Data System (ADS)

    Rudowicz, Czeslaw

    1982-01-01

    The present work reports the theoretical considerations of the magnetocrystalline anisotropy of ferrous ions induced by tetravalent dopants in yttrium iron garnet. Using the spin Hamiltonian developed earlier by us and the molecular field (h) approximation we derive the cubic anisotropy constants K1 and K2 at zero temperature. We adopt the Alben's et al. model of twelve inequivalent Fe2+ sites in silicon-substituted yttrium iron garnet. Results are given for h = 400, 300, 200 and the spin Hamiltonian parameters with the trigonal Δ = 300, 400, 500, 600, 700 and the nontrigonal crystal field parameter Γ = 200, 300 cm-1. The agreement with the experimental K1 and K2 is quite good. The discussion reveals that the properties of the far and near sites in the two-center model can now be theoretically explained. The theoretical ratios of K1(far) to K1(near) agree well with experiment. Thus our results speak in favor of the orbital singlet rather than the doublet model assumed previously for Fe2+ in silicon- or germanium-substituted yttrium iron garnets.

  7. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP Data

    NASA Technical Reports Server (NTRS)

    Dunkey, J.; Komatsu, E.; Nolta, M.R.; Spergel, D.N.; Larson, D.; Hinshaw, G.; Page, L.; Bennett, C.L.; Gold, B.; Jarosik, N.; hide

    2008-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP), launched in 2001, has mapped out the Cosmic Microwave Background with unprecedented accuracy over the whole sky. Its observations have led to the establishment of a simple concordance cosmological model for the contents and evolution of the universe, consistent with virtually all other astronomical measurements. The WMAP first-year and three-year data have allowed us to place strong constraints on the parameters describing the ACDM model. a flat universe filled with baryons, cold dark matter, neutrinos. and a cosmological constant. with initial fluctuations described by nearly scale-invariant power law fluctuations, as well as placing limits on extensions to this simple model (Spergel et al. 2003. 2007). With all-sky measurements of the polarization anisotropy (Kogut et al. 2003; Page et al. 2007), two orders of magnitude smaller than the intensity fluctuations. WMAP has not only given us an additional picture of the universe as it transitioned from ionized to neutral at redshift z approx.1100. but also an observation of the later reionization of the universe by the first stars. In this paper we present cosmological constraints from WMAP alone. for both the ACDM model and a set of possible extensions. We also consider tlle consistency of WMAP constraints with other recent astronomical observations. This is one of seven five-year WMAP papers. Hinshaw et al. (2008) describe the data processing and basic results. Hill et al. (2008) present new beam models arid window functions, Gold et al. (2008) describe the emission from Galactic foregrounds, and Wright et al. (2008) the emission from extra-Galactic point sources. The angular power spectra are described in Nolta et al. (2008), and Komatsu et al. (2008) present and interpret cosmological constraints based on combining WMAP with other data. WMAP observations are used to produce full-sky maps of the CMB in five frequency bands centered at 23, 33, 41, 61, and 94 GHz

  8. The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Hellinger, Petr

    2017-12-01

    We study the stability of large-amplitude, circularly polarized Alfvén waves in an anisotropic plasma described by the double-adiabatic/CGL closure, and in particular the effect of a background thermal pressure anisotropy on the well-known properties of Alfvén wave parametric decay in magnetohydrodynamics (MHD). Anisotropy allows instability over a much wider range of values of parallel plasma beta (β ∥) when ξ = p 0⊥/p 0∥ > 1. When the pressure anisotropy exceeds a critical value, ξ ≥ ξ* with ξ* ≃ 2.7, there is a new regime in which the parametric instability is no longer quenched at high β ∥, and in the limit β ∥ ≫ 1, the growth rate becomes independent of β ∥. In the opposite case of ξ < ξ*, the instability is strongly suppressed with increasing parallel plasma beta, similarly to the MHD case. We analyze marginal stability conditions for parametric decay in the (ξ, β ∥) parameter space and discuss possible implications for Alfvénic turbulence in the solar wind.

  9. Experimental study on the deformation microstructures of lawsonite blueschist and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Choi, S.; Jung, H.

    2017-12-01

    Various seismic anisotropy has been observed in the world, especially along subduction zones, and a part of the seismic anisotropy can be caused by the subducting slab, which is poorly understood. One of the main rocks at the top of the subducting slab in cold subduction zones is lawsonite blueschist, which has been rarely studied experimentally. Since lawsonite blueschist is composed of elastically anisotropic minerals such as glaucophane and lawsonite, development of the lattice preferred orientation (LPO) of these minerals can cause a large seismic anisotropy. Therefore, to understand deformation microstructures (i.e., LPOs) of lawsonite and glaucophane and the resultant seismic anisotropy, we conducted deformation experiments of lawsonite blueschist in simple shear using a modified Griggs apparatus. The experiments were performed under the pressures (P = 1 - 2 GPa), temperatures (T = 230 - 400 °), shear strain (γ = 1 - 4), and shear strain rates (10-6 - 10-4 s-1). LPOs of minerals were determined by SEM/EBSD technique. LPO of glaucophane after experiments at the shear strain (1 < γ ≤ 4.0) showed that the maxima of (110) poles and [100] axes were aligned subnormal to the shear plane and the maximum of [001] axes subparallel to the shear direction. LPO of lawsonite showed that at low strain (γ ≤ 1.4) the maximum of [010] axes were aligned sub-parallel to the shear direction, but at high strain (γ ≥ 2.1) the maximum of [100] axes were aligned sub-parallel to the direction with the [001] axes aligned subnormal to the shear plane. Using the LPO data, seismic properties of each minerals were calculated. Glaucophane showed a high P-wave anisotropy (7.7 - 16.9 %) and relatively low maximum S-wave anisotropy (4.4 - 9.2 %). In contrast, lawsonite showed much higher maximum S-wave anisotropy (8.3 - 20.7 %) than glaucophane, but showed a low P-wave anisotropy in the range of 4.7 - 10.3 %. Our results indicate that seismic anisotropy observed at the top of cold

  10. Differential cosmic expansion and the Hubble flow anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolejko, Krzysztof; Nazer, M. Ahsan; Wiltshire, David L., E-mail: bolejko@physics.usyd.edu.au, E-mail: ahsan.nazer@canterbury.ac.nz, E-mail: david.wiltshire@canterbury.ac.nz

    2016-06-01

    The Universe on scales 10–100 h {sup −1}Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Groupmore » in the Friedmann-Lemaitre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions, which match the standard FLRW model on ∼> 100 h {sup −1}Mpc scales but exhibit nonkinematic relativistic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the 'Great Attractor'. While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the relativistic differential expansion of the background geometry; a natural feature of solutions to Einstein's equations not included in the current standard model of cosmology.« less

  11. Supernovae anisotropy power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodsi, Hoda; Baghram, Shant; Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28°more » which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.« less

  12. Magnetization and anisotropy of cobalt ferrite thin films

    NASA Astrophysics Data System (ADS)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  13. Anisotropy of thermal infrared remote sensing over urban areas : assessment from airborne data and modeling approach

    NASA Astrophysics Data System (ADS)

    Hénon, A.; Mestayer, P.; Lagouarde, J.-P.; Lee, J. H.

    2009-09-01

    Due to the morphological complexity of the urban canopy and to the variability in thermal properties of the building materials, the heterogeneity of the surface temperatures generates a strong directional anisotropy of thermal infrared remote sensing signal. Thermal infrared (TIR) data obtained with an airborne FLIR camera over Toulouse (France) city centre during the CAPITOUL experiment (feb. 2004 - feb. 2005) show brightness temperature anisotropies ranging from 3 °C by night to more than 10 °C by sunny days. These data have been analyzed in view of developing a simple approach to correct TIR satellite remote sensing from the canopy-generated anisotropy, and to further evaluate the sensible heat fluxes. The methodology is based on the identification of 6 different classes of surfaces: roofs, walls and grounds, sunlit or shaded, respectively. The thermo-radiative model SOLENE is used to simulate, with a 1 m resolution computational grid, the surface temperatures of an 18000 m² urban district, in the same meteorological conditions as during the observation. A pixel-by-pixel comparison with both hand-held temperature measurements and airborne camera images allows to assess the actual values of the radiative and thermal parameters of the scene elements. SOLENE is then used to simulate a generic street-canyon geometry, whose sizes average the morphological parameters of the actual streets in the district, for 18 different geographical orientations. The simulated temperatures are then integrated for different viewing positions, taking into account shadowing and masking, and directional temperatures are determined for the 6 surface classes. The class ratios in each viewing direction are derived from images of the district generated by using the POVRAY software, and used to weigh the temperatures of each class and to compute the resulting directional brightness temperature at the district scale for a given sun direction (time in the day). Simulated and measured

  14. Love-to-Rayleigh Conversions and Seismic Anisotropy in Cascadia

    NASA Astrophysics Data System (ADS)

    Rieger, Duayne Matthew

    Seismic anisotropy is often attributed to the development of lattice-preferred orientation (LPO) of olivine crystals in peridotite, induced by the dislocation creep component of mantle deformation (Karato et al., 2008; Ribe, 1992). Mantle-flow-induced seismic anisotropy is often modeled in the simple form of hexagonal symmetry, where the anisotropic volume is uniaxially fast or slow. This relationship between seismic anisotropy and mantle deformation allows for the mapping of mantle dynamics using measurements of seismic anisotropy. Presently, methods of measuring seismic anisotropy in Earth's mantle include shear-wave splitting and surface-wave tomography. These methods are tuned to seismically fast axes laying in the horizontal or surface-tangent plane and are limited in discerning clipping seismic fast axes. This is a shortcoming. It is reasonable to suspect the presence of dipping seismic fast axes induced by mantle flow in several tectonic regimes such as subduction zones. The slab rollback model of the subduction zone system has been argued to exhibit trench-parallel subslab anisotropy due to the lateral evacuation of the subslab mantle material (Hall et al., 2000; Russo and Silver, 1994). This model has been emboldened by the dominance of trench-parallel shear-wave-splitting measurements in the subslab mantle of global subduction zones. This model has significant geodynamic implications, requiring viscous decoupling between the subslab mantle and the sub-ducting slab. The Cascadian subduction zone is of particular scientific interest. While experiencing slab rollback (Zandt and Humphreys, 2008), trench-perpendicular shear-wave-splitting measurements are observed in the subslab mantle of Cascadia (Currie et al., 2004; Eakin et al., 2010; Long and Silver, 2008; 2009). This suggests either viscous coupling resulting in slab-entrained flow or the presence of an alternate relationship between finite strain in the mantle and seismic anisotropy. The ability to

  15. Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. R.; Efstathiou, G.

    1984-01-01

    Detailed calculations of the temperature fluctuations in the cosmic background radiation for universes dominated by massive collisionless relics of the big bang are presented. An initially adiabatic constant curvature perturbation spectrum is assumed. In models with cold dark matter, the simplest hypothesis - that galaxies follow the mass distribution leads to small-scale anisotropies which exceed current observational limits if omega is less than 0.2 h to the -4/3. Since low values of omega are indicated by dynamical studies of galaxy clustering, cold particle models in which light traces mass are probably incorrect. Reheating of the pregalactic medium is unlikely to modify this conclusion. In cold particle or neutrino-dominated universes with omega = 1, presented predictions for small-scale and quadrupole anisotropies are below current limits. In all cases, the small-scale fluctuations are predicted to be about 10 percent linearly polarized.

  16. Lg Attenuation Anisotropy Across the Western US

    NASA Astrophysics Data System (ADS)

    Phillips, W. S.; Rowe, C. A.; Stead, R. J.; Begnaud, M. L.

    2017-12-01

    The USArray has allowed us to map seismic attenuation of local and regional phases to unprecedented spatial extent and resolution. Following standard mantle Pn velocity anisotropy methods, we have incorporated azimuthal anisotropy into our tomographic inversion of high-frequency Lg amplitudes. The Lg is a crustal shear phase made up of many trapped modes, thus results can be considered to be crustal averages. Azimuthal anisotropy reduces residual variance by just over 10% for 1.5-3 Hz Lg. We observe a median anisotropic variation of 12%, and a high of 50% in the Salton Trough. Low attenuation (high-Q) directions run parallel to topographic fabric and major strike slip faults in tectonically active areas, and often run parallel to mantle shear wave splitting directions in stable regions. Tradeoffs are of concern, and synthetic tests show that elongated attenuation anomalies will produce anisotropy artifacts, but of factors 2-3 times lower than observations. In particular, the strength of a long, narrow high-Q anomaly will trade off with high-Q directions parallel to the long axis, while an elongated low-Q anomaly will trade off with high-Q directions perpendicular to the long axis. We observe an elongated low-Q anomaly associated with the Walker Lane; however, observed high-Q directions run parallel to the long axis of this anomaly, opposite to the tradeoff effect, supporting the anisotropic observation, and implying that the effect may be underestimated. Further, we observe an elongated high-Q anomaly associated with the Great Valley and Sierra Nevada that runs across the long axis, again opposite to the tradeoff effect. This study was performed using waveforms, event locations and phase picks made available by IRIS, NEIC and ANF, and processing was done using semi-automated means, thus this is a technique that can be applied quickly to study crustal anisotropy over large areas when appropriate station density is available.

  17. Large-angle cosmic microwave background anisotropies in an open universe

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  18. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  19. Reference interaction site model and optimized perturbation theories of colloidal dumbbells with increasing anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munaò, Gianmarco, E-mail: gmunao@unime.it; Costa, Dino; Caccamo, Carlo

    We investigate thermodynamic properties of anisotropic colloidal dumbbells in the frameworks provided by the Reference Interaction Site Model (RISM) theory and an Optimized Perturbation Theory (OPT), this latter based on a fourth-order high-temperature perturbative expansion of the free energy, recently generalized to molecular fluids. Our model is constituted by two identical tangent hard spheres surrounded by square-well attractions with same widths and progressively different depths. Gas-liquid coexistence curves are obtained by predicting pressures, free energies, and chemical potentials. In comparison with previous simulation results, RISM and OPT agree in reproducing the progressive reduction of the gas-liquid phase separation as themore » anisotropy of the interaction potential becomes more pronounced; in particular, the RISM theory provides reasonable predictions for all coexistence curves, bar the strong anisotropy regime, whereas OPT performs generally less well. Both theories predict a linear dependence of the critical temperature on the interaction strength, reproducing in this way the mean-field behavior observed in simulations; the critical density—that drastically drops as the anisotropy increases—turns to be less accurate. Our results appear as a robust benchmark for further theoretical studies, in support to the simulation approach, of self-assembly in model colloidal systems.« less

  20. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  1. Energetic Electrons in Dipolarization Events: Spatial Properties and Anisotropy

    NASA Technical Reports Server (NTRS)

    Birn, J.; Runov, A.; Hesse, M.

    2014-01-01

    Using the electromagnetic fields of an MHD simulation of magnetotail reconnection, flow bursts, and dipolarization, we further investigate the acceleration of electrons to suprathermal energies. Particular emphasis is on spatial properties and anisotropies as functions of energy and time. The simulation results are compared with Time History of Events and Macroscale Interactions during Substorms observations. The test particle approach successfully reproduces several observed injection features and puts them into a context of spatial maps of the injection region(s): a dominance of perpendicular anisotropies farther down the tail and closer to the equatorial plane, an increasing importance of parallel anisotropy closer to Earth and at higher latitudes, a drop in energy fluxes at energies below approximately 10 keV, coinciding with the plasma density drop, together with increases at higher energy, a triple peak structure of flux increases near 0 deg, 90 deg, and 180 deg, and a tendency of flux increases to extend to higher energy closer to Earth and at lower latitudes. We identified the plasma sheet boundary layers and adjacent lobes as a main source region for both increased and decreased energetic electron fluxes, related to the different effects of adiabatic acceleration at high and low energies. The simulated anisotropies tend to exceed the observed ones, particularly for perpendicular fluxes at high energies. The most plausible reason is that the MHD simulation lacks the effects of anisotropy-driven microinstabilities and waves, which would reduce anisotropies.

  2. Tuning the surface anisotropy in Fe-doped NiO nanoparticles.

    PubMed

    Moura, K O; Lima, R J S; Coelho, A A; Souza-Junior, E A; Duque, J G S; Meneses, C T

    2014-01-07

    Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.

  3. Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Kumar, Santosh; Balakrishnan, Geetha; Edwards, Rachel S.; Lees, Martin R.; Petit, Leon; Staunton, Julie B.

    2018-03-01

    Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo5 gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo5 , and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.

  4. Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets.

    PubMed

    Patrick, Christopher E; Kumar, Santosh; Balakrishnan, Geetha; Edwards, Rachel S; Lees, Martin R; Petit, Leon; Staunton, Julie B

    2018-03-02

    Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo_{5} gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo_{5}, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.

  5. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.

    2003-09-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full-sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can be carried out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a maximum entropy method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1%, and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (βs~-2.5) near star-forming regions, especially in the plane, and steepest (βs~-3) in the halo. This is consistent with a picture of relativistic cosmic-ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to βs<-3. The modeled thermal dust spectral index is also steep in the WMAP bands, with

  6. Electron spin resonance studies of Bi1-xScxFeO3 nanoparticulates: Observation of an enhanced spin canting over a large temperature range

    NASA Astrophysics Data System (ADS)

    Titus, S.; Balakumar, S.; Sakar, M.; Das, J.; Srinivasu, V. V.

    2017-12-01

    Bi1-xScxFeO3 (x = 0.0, 0.1, 0.15, 0.25) nano particles were synthesized by sol gel method. We then probed the spin system in these nano particles using electron spin resonance technique. Our ESR results strongly suggest the scenario of modified spin canted structures. Spin canting parameter Δg/g as a function of temperature for Scandium doped BFO is qualitatively different from undoped BFO. A broad peak is observed for all the Scandium doped BFO samples and an enhanced spin canting over a large temperature range (75-210 K) in the case of x = 0.15 doping. We also showed that the asymmetry parameter and thereby the magneto-crystalline anisotropy in these BSFO nanoparticles show peaks around 230 K for (x = 0.10 and 0.15) and beyond 300 K for x = 0.25 system. Thus, we established that the Sc doping significantly modifies the spin canting and magneto crystalline anisotropy in the BFO system.

  7. Upper mantle anisotropy from long-period P polarization

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.

    2001-10-01

    We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.

  8. Random-anisotropy model: Monotonic dependence of the coercive field on D/J

    NASA Astrophysics Data System (ADS)

    Saslow, W. M.; Koon, N. C.

    1994-02-01

    We present the results of a numerical study of the zero-temperature remanence and coercivity for the random anisotropy model (RAM), showing that, contrary to early calculations for this model, the coercive field increases monotonically with increases in the strength D of the random anisotropy relative to the strength J at the exchange field. Local-field adjustments with and without spin flips are considered. Convergence is difficult to obtain for small values of the anisotropy, suggesting that this is the likely source of the nonmonotonic behavior found in earlier studies. For both large and small anisotropy, each spin undergoes about one flip per hysteresis cycle, and about half of the spin flips occur in the vicinity of the coercive field. When only non-spin-flip adjustments are considered, at large anisotropy the coercivity is proportional to the anisotropy. At small anisotropy, the rate of convergence is comparable to that when spin flips are included.

  9. Effects of subduction and slab gaps on mantle flow beneath the Lesser Antilles based on observations of seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Bouin, Marie-Paule

    2016-04-01

    Subduction is a key process in the formation of continental crust. However, the interaction of the mantle with the subducting slab is not fully understood and varies between subduction zones. The flow geometry and stress patterns influence seismic anisotropy; since anisotropic layers lead to variations in the speed of seismic waves as a function of the direction of wave propagation, mantle flow can be constrained by investigating the structure of these anisotropic layers. In this study we investigate seismic anisotropy in the eastern Greater and the Lesser Antilles along a subduction environment, including the crust and the upper mantle as regions of interest. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to observe and distinguish between anisotropy in the crust, the mantle wedge and the sub-slab mantle. Local event delay times (0.21±0.12s) do not increase with depth, indicating a crustal origin and an isotropic mantle wedge. Teleseismic delay times are larger (1.34±0.47s), indicating sub-slab anisotropy. The results suggest trench-parallel mantle flow, with the exception of trench-perpendicular alignment in narrow regions east of Puerto Rico and south of Martinique, suggesting mantle flow through gaps in the slab. This agrees with the continuous northward mantle flow that is caused by the subducting slab proposed by previous studies of that region. We were able to identify a pattern previously unseen by other studies; on St. Lucia a trench-perpendicular trend also indicated by the stations around can be observed. This pattern can be explained by a mantle flow through a gap induced by the subduction of the boundary zone between the North and South American plates. This feature has been proposed for that area using tomographic modelling (van Benthem et al., 2013). It is based on previous results by Wadge & Shepherd (1984), who observed a vertical gap in the Wadati

  10. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-07

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  11. Magnetic anisotropy and magnetization reversal in Co/Cu multilayers nanowires

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Chen, J. Y.; Shi, D. W.; Iqbal, Javed; Han, Xiufeng

    2012-04-01

    The Co/Cu multilayer nanowires fabricated in an array using anodized aluminum oxide (AAO) template by electrodeposition method, have been investigated. It has been observed that the magnetization reversal mode and magnetic anisotropy depend upon the Co and Cu layer thicknesses. Magnetization reversal occurs by curling mode at around Co = 400 nm and Cu = 10 nm, while for Co = 30 nm and Cu = 60 nm, magnetization reversal occurs by nucleation mode. A change of magnetic anisotropy from out of plane to in plane is observed when thickness of Cu layer tCu = 60 nm and that of Co tCo = 30 nm. Magnetic anisotropy is lost when thickness of the Co layer tCo = 400 nm and that of Cu tCu= 10 nm. Magnetic properties have been explained by the competition among shape anisotropy, magnetostatic interactions and magnetocrystalline anisotropy. Magnetic properties can be tuned accordingly depending upon the thickness of the Co and Cu nanodisks.

  12. Induced anisotropy in FeCo-based nanocomposites: Early transition metal content dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S; DeGeorge, V; Ohodnicki, PR

    2014-05-07

    Soft magnetic nanocomposites variants of FeCo-based (HTX002) alloys (Fe65Co35)(81+x)B12Nb4-xSi2Cu1, exhibiting high inductions (up to 1.9 T), low losses, and high temperature stability are studied for high frequency inductors and current sensors. For alloys with x 0, 1, 1.5, 2, and 3, we report field induced anisotropy, K-U, after annealing at temperatures of 340-450 degrees C for 1 h in a 2 T transverse magnetic field. The anisotropy field, H-K, measured by AC permeametry on toroidal cores, and by first order reversal curves on square sections of ribbon, decreases with annealing temperature and saturates at high annealing temperatures suggesting a nanostructuremore » related anisotropy mechanism in which the amorphous phase exhibits a higher H-K than the crystalline phase. A high saturation induction nanocrystalline phase and high H-K amorphous phase were achieved by low temperature annealing resulting in a value of K-U exceeding 14 X 10(3) erg/cm(3), more than twice that reported previously for Fe-rich amorphous and nanocomposite alloys. (C) 2014 AIP Publishing LLC.« less

  13. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  14. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  15. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    NASA Astrophysics Data System (ADS)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  16. Equatorial anisotropy of the Earth's inner-inner core

    NASA Astrophysics Data System (ADS)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  17. In-plane anisotropy of the electric field gradient in Ba(Fe 1 -xCox)2As2 observed by 75As NMR

    NASA Astrophysics Data System (ADS)

    Toyoda, Masayuki; Ichikawa, Akihiro; Kobayashi, Yoshiaki; Sato, Masatoshi; Itoh, Masayuki

    2018-05-01

    We have performed 75As NMR measurements on single crystals to investigate the nematic behavior via the in-plane anisotropy of the electronic state at the As site far from Co impurities in the representative iron arsenides Ba (Fe1-xCox) 2As2 . From the analysis of the angular dependence of the NMR satellites in the c plane using the binominal distribution, we find that there is the in-plane fourfold symmetry breaking, namely, the orthorhombic-type anisotropy in the electric field gradient (EFG) at the As site with no Co atom at the nearest neighboring Fe sites even in the tetragonal phase of both BaFe2As2 and Ba (Fe1-xCox) 2As2(x ≠0 ) . The NMR spectrum in the antiferromagnetically ordered state of BaFe2As2 is shown not to support a nanotwin model on the basis of the nematic order proposed from the pair-distribution analysis of neutron scattering data. Based on results of the x and temperature T dependences of the in-plane anisotropy in the wide x and T ranges, the symmetry breaking is concluded to come from the local orthorhombic domains induced by disorder such as Co impurities or lattice imperfections. Furthermore, we find that the asymmetry parameter of EFG η obeys the Curie-Weiss law which may be governed by nematic susceptibility, and the Weiss temperature becomes zero at xc˜0.05 in Ba (Fe1-xCox) 2As2 .

  18. Heterogeneity and anisotropy in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain

    2015-10-01

    The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.

  19. Effect of magnetic anisotropy and particle size distribution on temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna

    Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.

  20. Direction-dependent stability of skyrmion lattice in helimagnets induced by exchange anisotropy

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan

    2018-06-01

    Exchange anisotropy provides a direction dependent mechanism for the stability of the skyrmion lattice phase in noncentrosymmetric bulk chiral magnets. Based on the Fourier representation of the skyrmion lattice, we explain the direction dependence of the temperature-magnetic field phase diagram for bulk MnSi through a phenomenological mean-field model incorporating exchange anisotropy. Through quantitative comparison with experimental results, we clarify that the stability of the skyrmion lattice phase in bulk MnSi is determined by a combined effect of negative exchange anisotropy and thermal fluctuation. The effect of exchange anisotropy and the order of Fourier representation on the equilibrium properties of the skyrmion lattice is discussed in detail.

  1. Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.

    1994-01-01

    The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely

  2. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  3. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; hide

    2013-01-01

    We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter Lambda-CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities Omega(sub b)h(exp 2), Omega(sub c)h(exp 2)and Omega(sub Lambda), are each determined to a precision of approx. 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional Lambda-CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their Lambda-CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to Omega(sub kappa) = (0.0027 (sub +0.0039) (sup -0.0038;) the summed mass of neutrinos is limited to Sigma M(sub nu) < 0.44 eV (95% CL); and the number of relativistic species is found to lie within N(sub eff) = 3.84 +/- 0+/-40, when the full data are analyzed. The joint constraint on N(sub eff) and the primordial helium abundance, Y(sub He), agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental

  4. Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2017-12-01

    Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing

  5. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    NASA Astrophysics Data System (ADS)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  6. Modeling elastic anisotropy in strained heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to < 1 0 5 > facets on the surface.

  7. Modeling elastic anisotropy in strained heteroepitaxy.

    PubMed

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  8. Magnetic phase transition in Heisenberg antiferromagnetic films with easy-axis single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    2012-03-01

    The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law n with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.

  9. On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J. A. D.

    2009-09-01

    We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth's mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.

  10. Solar energetic particle anisotropies and insights into particle transport

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  11. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure.

    PubMed

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.

  12. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure

    PubMed Central

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-01-01

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984

  13. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO 3/Pb(Mg,Nb,Ti)O 3 magneto-electric heterostructure

    DOE PAGES

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less

  14. Anisotropy of the Mechanical Properties of TbF3 Crystals

    NASA Astrophysics Data System (ADS)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  15. An alternative NMR method to determine nuclear shielding anisotropies for molecules in liquid-crystalline solutions with (13)C shielding anisotropy of methyl iodide as an example.

    PubMed

    Tallavaara, Pekka; Jokisaari, Jukka

    2008-03-28

    An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.

  16. Magnetic loss, permeability, and anisotropy compensation in CoO-doped Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Beatrice, Cinzia; Dobák, Samuel; Tsakaloudi, Vasiliki; Ragusa, Carlo; Fiorillo, Fausto; Martino, Luca; Zaspalis, Vassilis

    2018-04-01

    Mn-Zn ferrite samples prepared by conventional solid state reaction method and sintering at 1325 °C were Co-enriched by addition of CoO up to 6000 ppm and characterized versus frequency (DC - 1GHz), peak polarization (2 mT - 200 mT), and temperature (23 °C - 120 °C). The magnetic losses at room temperature are observed to pass through a deep minimum value around 4000 ppm CoO at all polarizations values. This trend is smoothed out either by approaching the MHz range or by increasing the temperature. Conversely, the initial permeability attains its maximum value around the same CoO content, while showing moderate monotonical decrease with increasing CoO at the typical working temperatures of 80 - 100 °C. The energy losses, measured by a combination of fluxmetric and transmission line methods, are affected by the eddy currents, on the conventional 5 mm thick ring samples, only beyond a few MHz. Their assessment relies on the separation of rotational and domain wall processes, which can be done by analysis of the complex permeability and its frequency behavior. This permits one, in particular, to calculate the magnetic anisotropy and its dependence on CoO content and temperature and bring to light its decomposition into the host lattice and Co2+ temperature dependent contributions. The temperature and doping dependence of initial permeability and magnetic losses can in this way be qualitatively justified, without invoking the passage through zero value of the effective anisotropy constant upon doping.

  17. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results

    NASA Technical Reports Server (NTRS)

    Weiland, J.L.; Hill, R.S.; Odegard, 3.; Larson, D.; Bennett, C.L.; Dunkley, J.; Jarosik, N.; Page, L.; Spergel, D.N.; Halpern, M.; hide

    2008-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) is a Medium-Class Explorer (MIDEX) satellite aimed at elucidating cosmology through full-sky observations of the cosmic microwave background (CMB). The WMAP full-sky maps of the temperature and polarization anisotropy in five frequency bands provide our most accurate view to date of conditions in the early universe. The multi-frequency data facilitate the separation of the CMB signal from foreground emission arising both from our Galaxy and from extragalactic sources. The CMB angular power spectrum derived from these maps exhibits a highly coherent acoustic peak structure which makes it possible to extract a wealth of information about the composition and history of the universe. as well as the processes that seeded the fluctuations. WMAP data have played a key role in establishing ACDM as the new standard model of cosmology (Bennett et al. 2003: Spergel et al. 2003; Hinshaw et al. 2007: Spergel et al. 2007): a flat universe dominated by dark energy, supplemented by dark matter and atoms with density fluctuations seeded by a Gaussian, adiabatic, nearly scale invariant process. The basic properties of this universe are determined by five numbers: the density of matter, the density of atoms. the age of the universe (or equivalently, the Hubble constant today), the amplitude of the initial fluctuations, and their scale dependence. By accurately measuring the first few peaks in the angular power spectrum, WMAP data have enabled the following accomplishments: Showing the dark matter must be non-baryonic and interact only weakly with atoms and radiation. The WMAP measurement of the dark matter density puts important constraints on supersymmetric dark matter models and on the properties of other dark matter candidates. With five years of data and a better determination of our beam response, this measurement has been significantly improved. Precise determination of the density of atoms in the universe. The agreement between

  18. Anisotropy of Observed and Simulated Turbulence in Marine Stratocumulus

    NASA Astrophysics Data System (ADS)

    Pedersen, J. G.; Ma, Y.-F.; Grabowski, W. W.; Malinowski, S. P.

    2018-02-01

    Anisotropy of turbulence near the top of the stratocumulus-topped boundary layer (STBL) is studied using large-eddy simulation (LES) and measurements from the POST and DYCOMS-II field campaigns. Focusing on turbulence ˜100 m below the cloud top, we see remarkable similarity between daytime and nocturnal flight data covering different inversion strengths and free-tropospheric conditions. With λ denoting wavelength and zt cloud-top height, we find that turbulence at λ/zt≃0.01 is weakly dominated by horizontal fluctuations, while turbulence at λ/zt>1 becomes strongly dominated by horizontal fluctuations. Between are scales at which vertical fluctuations dominate. Typical-resolution LES of the STBL (based on POST flight 13 and DYCOMS-II flight 1) captures observed characteristics of below-cloud-top turbulence reasonably well. However, using a fixed vertical grid spacing of 5 m, decreasing the horizontal grid spacing and increasing the subgrid-scale mixing length leads to increased dominance of vertical fluctuations, increased entrainment velocity, and decreased liquid water path. Our analysis supports the notion that entrainment parameterizations (e.g., in climate models) could potentially be improved by accounting more accurately for anisotropic deformation of turbulence in the cloud-top region. While LES has the potential to facilitate improved understanding of anisotropic cloud-top turbulence, sensitivity to grid spacing, grid-box aspect ratio, and subgrid-scale model needs to be addressed.

  19. Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bi, Jiang-lin; Liu, Rui-jia; Chen, Xu; Liu, Jin-ping

    2016-10-01

    Monte Carlo simulation has been performed in detail to study magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire with core-shell structure. The ground phase diagrams are obtained for different single-ion anisotropies. The system can display rich phase transitions such as the second- and first-order phase transitions, the tricritical points and the compensation points. Especially, emphasis has been given to the effects of the single-ion anisotropy and the temperate on the magnetization, the internal energy, the specific heat, the compensation points and hysteresis loops of the system as well as two sublattices. A number of characteristic phenomena such as such as various types of magnetization curves and triple, duadruple as well as quintuple hysteresis loops behaviors have been observed for certain physical parameters, originating from the competitions among the anisotropies, temperature and the longitudinal magnetic field. It is found that the single-ion anisotropy and the temperature strongly affect the coercivity and the remanence of the system. A satisfactory agreement can be achieved from comparisons between our results and previous theoretical and experimental works.

  20. Measurement of the magnetic anisotropy energy constants for magneto-optical recording media

    NASA Technical Reports Server (NTRS)

    Hajjar, R. A.; Wu, T. H.; Mansuripur, M.

    1992-01-01

    Measurement of the magneto-optical polar Kerr effect is performed on rare earth-transition metal (RE-TM) amorphous films using in-plane fields. From this measurement and the measurement of the saturation magnetization using a vibrating sample magnetometer (VSM), the magnetic anisotropy constants are determined. The temperature dependence is presented of the magnetic anisotropy in the range of -175 to 175 C. The results show a dip in the anisotropy near magnetic compensation. This anomaly is explained based on the finite exchange coupling between the rare earth and transition metal subnetworks.

  1. Creep-induced anisotropy in covalent adaptable network polymers.

    PubMed

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  2. Changes in reflectance anisotropy of wheat crop during different phenophases

    NASA Astrophysics Data System (ADS)

    Lunagaria, Manoj M.; Patel, Haridas R.

    2017-04-01

    The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.

  3. Cosmic strings and the microwave sky. I - Anisotropy from moving strings

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A method is developed for calculating the component of the microwave anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method is only valid for impact parameters from the string much smaller than the horizon size at the time the photon passes the string. The method makes it possible to calculate the temperature pattern around arbitrary string configurations numerically in terms of one-dimensional integrals. This method is applied to temperature jump across a string, confirming and extending previous work. It is also applied to cusps and kinks on strings, and to determining the temperature pattern far from a strong loop. The temperature pattern around a few loop configurations is explicitly calculated. Comparisons with the work of Brandenberger et al. (1986) indicates that they have overestimated the MBR anisotropy from gravitational radiation emitted from loops.

  4. The competition between magnetocrystalline and shape anisotropy on the magnetic and magneto-transport properties of crystallographically aligned CuCr2Se4 thin films

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Esters, M.; Johnson, D. C.; Yurkin, G.; Tarasov, A.; Rautsky, M.; Volochaev, M.; Lyashchenko, S.; Ivantsov, R.; Petrov, D.; Solovyov, L. A.

    2017-12-01

    Crystallographically aligned nanocrystalline films of the ferromagnetic spinel CuCr2Se4 were successfully synthesized and their structure and alignment were confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The average size of the crystallites is about 200-250 nm, and their (1 1 1) crystal planes are parallel to the film plane. A good match of the film's electronic structure to that of bulk CuCr2Se4 is confirmed by transverse Kerr effect measurements. Four easy 〈1 1 1〉 axes are present in the films. One of these axes is oriented perpendicular and three others are oriented at an angle of 19.5° relative to the film plane. The magnetic properties of the films are determined by a competition between the out-of-plane magnetocrystalline anisotropy and the in-plane shape anisotropy. Magnetic measurements show that the dominating type of anisotropy switches from shape to magnetocrystalline anisotropy near 160 K, which leads to a switch of the effective easy axis from inside the film plane at room temperature to perpendicular to the film plane as the temperature decreases. At last, a moderately large, negative value of the low-temperature magnetoresistance was observed for the first time in CuCr2Se4 films.

  5. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Meinhold, Peter; Lubin, Philip; Muciaccia, Pio Francesco; Silk, Joseph

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass.

  6. Anisotropy and applied-field effects on the spiral magnetic coexistence state of ferromagnetic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, G.H.

    1988-01-01

    The effect of three types of quartic anisotropy energy on the polarization of the spiral-magnetic state of Blount and Varma is studied near the onset temperature. A quartic anisotropy with uniaxial symmetry and a quartic anisotropy with cubic symmetry are studied, and the anisotropy in primitive tetragonal ErRh{sub 4}B{sub 4} is modeled with a quadratic anisotropy giving a hard c-axis, plus a quartic anisotropy in the basal plane with a square symmetry. Details of the magnetizations, wave vectors, and polarizations are presented. Further, using a variational approach, the author investigates the effects, in a slab geometry, of an infinitesimal andmore » finite magnetic field applied parallel to the slab on the spiral magnetic state. By additionally calculating the effects on the normal ferroparamagnetic state and the uniform superconducting state, he studies applied field vs. temperature phase diagrams. Due to the large experimental uncertainty in the material parameters, an extended range of values is studied, producing a number of interesting and physically unique phase diagrams. A categorization of the types of phase diagrams over the selected range of the material parameters is presented. Finally, the effective superconducting penetration depth in the presence of the spiral magnetic state is calculated.« less

  7. Diffusion anisotropy of poor metal solute atoms in hcp-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scotti, Lucia, E-mail: lxs234@bham.ac.uk; Mottura, Alessandro, E-mail: a.mottura@bham.ac.uk

    2015-05-28

    Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a resultmore » of the bond angle distortion.« less

  8. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  9. Complex seismic anisotropy beneath Germany from shear wave splitting and surface wave models

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Long, M. D.; Becker, T. W.; Lebedev, S.

    2013-12-01

    Seismic anisotropy beneath stable continental interiors likely reflects a host of processes, including deformation in the lower crust, frozen anisotropy from past deformation processes in the lithospheric mantle, and present-day mantle flow in the asthenosphere. Because the anisotropic structure beneath continental interiors is generally complicated and often exhibits heterogeneity both laterally and with depth, a complete characterization of anisotropy and its interpretation in terms of deformational processes is challenging. In this study, we aim to expand our understanding of continental anisotropy by characterizing in detail the geometry and strength of azimuthal anisotropy beneath Germany and the surrounding region, using a combination of shear wave splitting and surface wave constraints. We utilize data from long-running broadband stations in and around Germany, collected from a variety of national and temporary European networks. We measure the splitting of SKS, SKKS, and PKS phases, with the aim of obtaining the best possible backazimuthal coverage. Preliminary results indicate that anisotropy beneath Germany is generally complex; we observe shear wave splitting patterns that are complicated and are inconsistent with a single horizontal layer of anisotropy beneath the station. Observed delay times are generally small (<1 sec), and there is a preponderance of null *KS arrivals in the dataset, with null measurements detected over a fairly large range of backazimuths. We also observe dramatic differences in splitting patterns over relatively short horizontal distances. Although we note backazimuthal variations in splitting at several stations, we do not observe a clear 90-degree periodicity that one would expect for the case of multiple anisotropic layers. We are currently carrying out comparisons between our observed splitting patterns and those predicted from tomographic models of azimuthal anisotropy derived from surface wave observations. The ultimate goal

  10. Stress anisotropy and velocity anisotropy in low porosity shale

    NASA Astrophysics Data System (ADS)

    Kuila, U.; Dewhurst, D. N.; Siggins, A. F.; Raven, M. D.

    2011-04-01

    Shales are known for often marked intrinsic anisotropy of many of their properties, including strength, permeability and velocity for example. In addition, it is well known that anisotropic stress fields can also have a significant impact on anisotropy of velocity, even in an isotropic medium. This paper sets out to investigate the ultrasonic velocity response of well-characterised low porosity shales from the Officer Basin in Western Australia to both isotropic and anisotropic stress fields and to evaluate the velocity response to the changing stress field. During consolidated undrained multi-stage triaxial tests on core plugs cut normal to bedding, V pv increases monotonically with increasing effective stress and V s1 behaves similarly although with some scatter. V ph and V sh remain constant initially but then decrease within each stage of the multi-stage test, although velocity from stage to stage at any given differential stress increases. This has the impact of decreasing both P-wave (ɛ) and S-wave anisotropy (γ) through application of differential stress within each loading stage. However, increasing the magnitude of an isotropic stress field has little effect on the velocity anisotropies. The intrinsic anisotropy of the shale remains reasonably high at the highest confining pressures. The results indicate the magnitude and orientation of the stress anisotropy with respect to the shale microfabric has a significant impact on the velocity response to changing stress fields.

  11. Seismic anisotropy and large-scale deformation of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene

    2013-12-01

    Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.

  12. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Chluba, J.

    2018-07-01

    Correlations between cosmic microwave background (CMB) temperature, polarization, and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, and PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separations. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  13. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Chluba, J.

    2018-04-01

    Correlations between cosmic microwave background (CMB) temperature, polarization and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separation. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  14. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    NASA Astrophysics Data System (ADS)

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  15. IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdini, Andrea; Grappin, Roland

    2015-08-01

    We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less

  16. Constraints from the CMB temperature and other common observational data sets on variable dark energy density models

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Tortora, Crescenzo

    2011-08-01

    The thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx∝(1+z)m, z being the redshift, are discussed following the outline of Jetzer et al. [P. Jetzer, D. Puy, M. Signore, and C. Tortora, Gen. Relativ. Gravit. 43, 1083 (2011).GRGVA80001-770110.1007/s10714-010-1091-4]. These kinds of models are proven to lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have concentrated on the temperature-redshift relation of radiation, which has been constrained using a very recent collection of cosmic microwave background (CMB) temperature measurements up to z˜3. For the first time, we have combined this observational probe with a set of independent measurements (Supernovae Ia distance moduli, CMB anisotropy, large-scale structure and observational data for the Hubble parameter), which are commonly adopted to constrain dark energy models. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Anyway, while temperature measurements and Supernovae Ia tend to predict slightly decaying models, the contrary happens if CMB data are included. Future observations, in particular, measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff of this kind of dark energy model.

  17. Voltage control of magnetic anisotropy in epitaxial Ru/Co2FeAl/MgO heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Seki, Takeshi; Kubota, Takahide; Takanashi, Koki; Mitani, Seiji

    2017-03-01

    Voltage control of magnetic anisotropy (VCMA) in magnetic heterostructures is a key technology for achieving energy-efficiency electronic devices with ultralow power consumption. Here, we report the first demonstration of the VCMA effect in novel epitaxial Ru/Co2FeAl(CFA)/MgO heterostructures with interfacial perpendicular magnetic anisotropy (PMA). Perpendicularly magnetized tunnel junctions with the structure of Ru/CFA/MgO were fabricated and exhibited an effective voltage control on switching fields for the CFA free layer. Large VCMA coefficients of 108 and 139 fJ/Vm for the CFA film were achieved at room temperature and 4 K, respectively. The interfacial stability in the heterostructure was confirmed by repeating measurements. Temperature dependences of both the interfacial PMA and the VCMA effect were also investigated. It is found that the temperature dependences follow power laws of the saturation magnetization with an exponent of ~2, where the latter is definitely weaker than that of conventional Ta/CoFeB/MgO. The significant VCMA effect observed in this work indicates that the Ru/CFA/MgO heterostructure could be one of the promising candidates for spintronic devices with voltage control.

  18. Effect of anisotropy on intensity fluctuations in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2018-04-01

    For an optical spherical wave propagating in an oceanic turbulent medium, the effect of anisotropy on the received intensity fluctuations is investigated. For different anisotropy factors, the variations of the scintillation index vs. the ratio that determines the relative strength of temperature and salinity in the index fluctuations, the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, viscosity, link length and the wavelength are plotted. It is found that, for all the oceanic turbulence and the link parameters of interest, as the medium becomes more anisotropic, the intensity of the optical spherical wave fluctuates less. It is concluded that the performance of an optical wireless communication systems (OWCS) operating in anisotropic oceanic turbulence is better than the performance of OWCS operating in isotropic oceanic turbulence.

  19. Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand

    USGS Publications Warehouse

    Johnson, J. H.; Savage, M.K.; Townend, J.

    2011-01-01

    We have created a benchmark of spatial variations in shear wave anisotropy around Mount Ruapehu, New Zealand, against which to measure future temporal changes. Anisotropy in the crust is often assumed to be caused by stress-aligned microcracks, and the polarization of the fast quasi-shear wave (??) is thus interpreted to indicate the direction of maximum horizontal stress, but can also be due to aligned minerals or macroscopic fractures. Changes in seismic anisotropy have been observed following a major eruption in 1995/96 and were attributed to changes in stress from the depressurization of the magmatic system. Three-component broadband seismometers have been deployed to complement the permanent stations that surround Ruapehu, creating a combined network of 34 three-component seismometers. This denser observational network improves the resolution with which spatial variations in seismic anisotropy can be examined. Using an automated shear wave splitting analysis, we examine local earthquakes in 2008. We observe a strong azimuthal dependence of ?? and so introduce a spatial averaging technique and two-dimensional tomography of recorded delay times. The anisotropy can be divided into regions in which ?? agrees with stress estimations from focal mechanism inversions, suggesting stress-induced anisotropy, and those in which ?? is aligned with structural features such as faults, suggesting structural anisotropy. The pattern of anisotropy that is inferred to be stress related cannot be modeled adequately using Coulomb modeling with a dike-like inflation source. We suggest that the stress-induced anisotropy is affected by loading of the volcano and a lithospheric discontinuity. Copyright 2011 by the American Geophysical Union.

  20. Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Lyakhovsky, V.; Marco, S.; Weinberger, R.

    2016-07-01

    This study examines the limitations of the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air and presents technical improvements that significantly reduce the instrumental drift and measurement errors. We analyzed the temperature profile of porous chalk core after cooling in liquid nitrogen and found that the average temperature of the sample during the LT-AMS measurement in air is higher than 77K and close to 92K. This analysis indicates that the susceptibility of the paramagnetic minerals are amplified by a factor ˜3.2 relative to that of room temperature AMS (RT-AMS). In addition, it was found that liquid nitrogen was absorbed in the samples during immersing and contributed diamagnetic component of ˜-9 × 10-6 SI to the total mean susceptibility. We showed that silicone sheet placed around and at the bottom of the measuring coil is an effective thermal protection, preventing instrument drift by the cold sample. In this way, the measuring errors of LT-AMS reduced to the level of RT-AMS, allowing accurate comparison with standard AMS measurements. We examined the applicability of the LT-AMS measurements on chalk samples that consist <5% (weight) of paramagnetic minerals and showed that it helps to efficiently enhance the paramagnetic fabric. The present study offers a practical approach, which can be applied to various types of rocks to better delineate the paramagnetic phase using conventional equipment.

  1. Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study

    PubMed Central

    Czeslik, C.; Royer, C.; Hazlett, T.; Mantulin, W.

    2003-01-01

    The preservation of enzyme activity and protein binding capacity upon protein adsorption at solid interfaces is important for biotechnological and medical applications. Because these properties are partly related to the protein flexibility and mobility, we have studied the internal dynamics and the whole-body reorientational rates of two enzymes, staphylococcal nuclease (SNase) and hen egg white lysozyme, over the temperature range of 20–80°C when the proteins are adsorbed at the silica/water interface and, for comparison, when they are dissolved in buffer. The data were obtained using a combination of two experimental techniques, total internal reflection fluorescence spectroscopy and time-resolved fluorescence anisotropy measurements in the frequency domain, with the protein Trp residues as intrinsic fluorescence probes. It has been found that the internal dynamics and the whole-body rotation of SNase and lysozyme are markedly reduced upon adsorption over large temperature ranges. At elevated temperatures, both protein molecules appear completely immobilized and the fractional amplitudes for the whole-body rotation, which are related to the order parameter for the local rotational freedom of the Trp residues, remain constant and do not approach zero. This behavior indicates that the angular range of the Trp reorientation within the adsorbed proteins is largely restricted even at high temperatures, in contrast to that of the dissolved proteins. The results of this study thus provide a deeper understanding of protein activity at solid surfaces. PMID:12668461

  2. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE PAGES

    Kong, Tai; Meier, William R.; Lin, Qisheng; ...

    2016-10-24

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  3. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai; Meier, William R.; Lin, Qisheng

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  4. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimizationmore » of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.« less

  5. On the parameter dependence of the whistler anisotropy instability

    NASA Astrophysics Data System (ADS)

    An, Xin; Yue, Chao; Bortnik, Jacob; Decyk, Viktor; Li, Wen; Thorne, Richard M.

    2017-02-01

    The evolution of the whistler anisotropy instability relevant to whistler-mode chorus waves in the Earth's inner magnetosphere is studied using kinetic simulations and is compared with satellite observations. The electron distribution is constrained by the whistler anisotropy instability to a marginal stability state and presents an upper bound of electron anisotropy, which agrees with satellite observations. The electron beta β∥e separates whistler waves into two groups: (i) quasi-parallel whistler waves for β∥e≳0.02 and (ii) oblique whistler waves close to the resonance cone for β∥e≲0.02. Landau damping is important in the saturation and relaxation stage of the oblique whistler wave growth. The saturated magnetic field energy of whistler waves roughly scales with the electron beta β∥e2, shown in both simulations and satellite observations. These results suggest the critical role of electron beta β∥e in determining the whistler wave properties in the inner magnetosphere.

  6. D" anisotropy and slip systems in post-perovskite

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically

  7. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  8. Effect of size and shape dependent anisotropy on superparamagnetic property of CoFe2O4 nanoparticles and nanoplatelets

    NASA Astrophysics Data System (ADS)

    Chandekar, Kamlesh V.; Kant, K. Mohan

    2017-09-01

    Superparamagnetic cobalt ferrite (CoFe2O4) spherical nanoparticles and rhomboidal nanoplatelets were synthesized by co-precipitation at 80 °C (S1) and hydrothermal route at 150 °C (S2). X-ray diffraction (XRD) pattern confirms formation of cubic inverse spinel structure of as prepared cobalt ferrite samples (S1 and S2) with average crystallite size of 13 nm and 18.7 nm for S1 and S2 respectively. Transmission electron microscopy (TEM) reveals spherical and rhomboidal shaped with average particle size 16.7 nm (S1) and 19.8 nm (S2). The zero field cooled magnetization MZFCvs. T exhibit a broad maxima at 400 K and 510 K for S1 and S2 respectively. The blocking temperature TB is obtained as 310 K and 341 K for S1 and S2 respectively, by fitting coercive field at different temperatures to T 1 / 2 law. The morphology of S1 and S2 corresponds to shape dependence of continuum approach. The effective demagnetization factors estimated as ΔN1 = 0 and ΔN2 = 0 . 749 for S1 and S2 samples respectively. The uniaxial anisotropy and shape anisotropy observed to be dominant in spherical shaped and rhomboidal shaped CoFe2O4 nanoparticles respectively. The uniaxial anisotropy constant of S1 sample is estimated as 56 (kJ/m3) at TB = 310 K whereas the effective anisotropy constant for S2 sample is 627 (kJ/m3) at TB = 341 K , in which shape anisotropy constant 605 (kJ/m3) dominates over contribution from uniaxial anisotropy constant 22 (kJ/m3) in S2 sample.

  9. Theoretical model of hardness anisotropy in brittle materials

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2012-07-01

    Anisotropy is prominent in the hardness test of single crystals. However, the anisotropic nature is not demonstrated quantitatively in previous hardness model. In this work, it is found that the electron transition energy per unit volume in the glide region and the orientation of glide region play critical roles in determining hardness value and hardness anisotropy for a single crystal material. We express the mathematical definition of hardness anisotropy through simple algebraic relations. The calculated Knoop hardnesses of the single crystals are in good agreement with observations. This theory, extended to polycrystalline materials by including hall-petch effect and quantum size effect, predicts that the polycrystalline diamond with low angle grain boundaries can be harder than single-crystal bulk diamond. Combining first-principles technique and the formula of hardness anisotropy the hardness of monoclinic M-carbon, orthorhombic W-carbon, Z-carbon, and T-carbon are predicted.

  10. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  11. Constraints on patchy reionization from Planck CMB temperature trispectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namikawa, Toshiya

    Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less

  12. Constraints on patchy reionization from Planck CMB temperature trispectrum

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya

    2018-03-01

    We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2 σ . While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ˜0.5 as R ≳10 Mpc . Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.

  13. Constraints on patchy reionization from Planck CMB temperature trispectrum

    DOE PAGES

    Namikawa, Toshiya

    2018-03-05

    Here, we present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. Here, we estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at 2σ. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchymore » reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of ~ 0.5 as R ≳ 10 Mpc. Further, our constraint implies that large-scale B -modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of r ≳ 0.001 if the B mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.« less

  14. Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Kennett, B. L. N.

    2000-12-01

    Records of both Rayleigh and Love waves have been analyzed to determine the pattern of anisotropy in the Australasian region. The approach is based on a two-stage inversion. Starting from a smooth PREM model with transverse isotropy about a vertical symmetry axis, the first step is an inversion of the waveforms of surface waves to produce path specific one-dimensional (1-D) upper mantle models. Under the assumption that the 1-D models represent averages along the paths, the results from 1584 Love and Rayleigh wave seismograms are combined in a tomographic inversion to provide a representation of three-dimensional structure for wavespeed heterogeneities and anisotropy. Polarization anisotropy with SH faster than SV is retrieved in the upper 200-250 km of the mantle for most of Precambrian Australia. In this depth interval, significant lateral variations in the level of polarization anisotropy are present. Locally, the anisotropy can be large, reaching an extreme value of 9% that is difficult to reconcile with current mineralogical models. However, the discrepancy may be explained in part by the presence of strong lateral heterogeneities along the path, or by effects introduced by the simplifying assumption of transverse isotropy for each path. The consistency between the location of polarization and azimuthal anisotropy in depth suggests that both observations share a common origin. The observation of polarization anisotropy down to at least 200 km supports a two-layered anisotropic model as constrained by the azimuthal anisotropy of SV waves. In the upper layer, 150 km thick, anisotropy would be related to past deformation frozen in the lithosphere while in the lower layer, anisotropy would reflect present day deformation due to plate motion.

  15. COSMIC-RAY SMALL-SCALE ANISOTROPIES AND LOCAL TURBULENT MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Farber, R.; Xu, S.

    2016-10-10

    Cosmic-ray anisotropy has been observed in a wide energy range and at different angular scales by a variety of experiments over the past decade. However, no comprehensive or satisfactory explanation has been put forth to date. The arrival distribution of cosmic rays at Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium- and small-scalemore » angular structure could be an effect of nondiffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation for the observed small-scale anisotropy observed at the TeV energy scale may be the effect of particle propagation in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low- β compressible magnetohydrodynamic turbulence to study how the cosmic rays’ arrival direction distribution is perturbed when they stream along the local turbulent magnetic field. We utilize Liouville’s theorem for obtaining the anisotropy at Earth and provide the theoretical framework for the application of the theorem in the specific case of cosmic-ray arrival distribution. In this work, we discuss the effects on the anisotropy arising from propagation in this inhomogeneous and turbulent interstellar magnetic field.« less

  16. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV

    DOE PAGES

    Aab, Alexander; et al.

    2017-09-22

    We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less

  17. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, Alexander; et al.

    We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less

  18. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  19. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  20. Crystal preferred orientation of amphibole and implications for seismic anisotropy in the crust

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong

    2016-04-01

    Strong seismic anisotropy is often observed in the middle to lower crust and it has been considered to be originated from the crystal preferred orientation (CPO) of anisotropic minerals such as amphibole. Amphibolite is one of the dominant rocks in the middle to lower crust. In this study, crystal preferred orientations of hornblende in amphibolites at Yeoncheon and Chuncheon areas in South Korea were determined by using the electron backscattered diffraction (EBSD)/SEM with HKL Channel 5 software. In Yeoncheon area, hornblende showed two types of CPOs. Type-I CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and [001] axes aligned subparallel to lineation. Type-II CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and (010) poles aligned subparallel to lineation (refer to Ko and Jung, 2015, Nature Communications). In Chuncheon area, three types of CPOs of hornblende were observed. In addition to the type-I and -II CPOs described above, type-III CPO of hornblende was observed in Chuncheon area and it is characterized as (100) poles of hornblende aligned subnormal to foliation and both [001] axes and (010) poles aligned as a girdle subparallel to foliation. Using the observed CPO and the single crystal elastic constant of hornblende, seismic anisotropy of hornblende was calculated. Seismic anisotropy of P-wave was strong in the range of 10.2 - 13.5 %. Seismic anisotropy of S-wave was also strong in the range of 6.9 - 11.2 %. These results show that hornblende deformed in nature can produce a strong CPO, resulting in a strong seismic anisotropy in the middle to lower crust. Taking into account of the CPO of plagioclase in the rock, seismic anisotropies of whole rock turned out to be maximum P-wave anisotropy (Vp) of 9.8% and maximum S-wave anisotropy (Vs) of 8.2%. Therefore, strong seismic anisotropy found in the middle to lower crust in nature can be attributed to the CPO of hornblende in amphibolite.

  1. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on.

  2. D" Anisotropy Beneath the Caribbean, Central America and the East Pacific

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Wookey, J.; Kendall, J.

    2009-05-01

    Whilst the majority of the Earth's lower mantle appears to be relatively homogeneous, by contrast the few hundred kilometres above the core-mantle boundary (CMB) are host to a region of probable large chemical and thermal heterogeneity. Seismic observations of this region---known as D"---include a large increase in S-wave velocity that can vary in depth laterally over distances of <~100~km and significant seismic anisotropy (the variation of wavespeed with direction). The most recent candidate to explain these features in D" (including its anisotropy and bounding discontinuity) is the experimentally observed transformation of MgSiO3-perovskite to a post-perovskite structure at near CMB pressures and temperatures. As the phase change has a positive Clapeyron slope, regions where the geotherm is colder than average at the CMB---such as areas beneath long-term subduction---should show evidence of such a discontinuity and, depending on the alignment of mantle minerals or other structure, should also exhibit seismic anisotropy. We study the D" region beneath the Caribbean, Central America and the east Pacific using S and ScS phases mainly from deep-focus earthquakes with magnitude >~Mw~5.5 and depths >~550 km. Our method allows the incorporation of previous estimates of source-side upper mantle anisotropy, and by comparing the splitting parameters of the two phases (thus correcting for anisotropy in the upper mantle below the receiver), we obtain measurements of splitting in ScS alone; hence measuring the anisotropy in the lowermost mantle. The S and ScS phases are detected on around 450 seismic stations in Canada and the US (including Hawaii), yielding over 270 measurements of anisotropy in D". The measurements cover an area ˜4,000~km by ˜2,000~km centred on the CMB beneath Central America, and exhibit ˜1% S-wave anisotropy. In the Caribbean, they show a small but detectable departure from the first-order transverse isotropy with a vertical axis of symmetry (VTI

  3. Cubic anisotropy in (Ga,Mn)As layers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Sawicki, M.; Proselkov, O.; Sliwa, C.; Aleshkevych, P.; Domagala, J. Z.; Sadowski, J.; Dietl, T.

    2018-05-01

    Historically, comprehensive studies of dilute ferromagnetic semiconductors, e.g., p -type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative theoretical description of effects associated with spin-orbit interactions in solids, such as crystalline magnetic anisotropy. In particular, the theory was successful in explaining uniaxial magnetic anisotropies associated with biaxial strain and nonrandom formation of magnetic dimers in epitaxial (Ga,Mn)As layers. However, the situation appears much less settled in the case of the cubic term: the theory predicts switchings of the easy axis between in-plane <100 > and <110 > directions as a function of the hole concentration, whereas only the <100 > orientation has been found experimentally. Here, we report on the observation of such switchings by magnetization and ferromagnetic resonance studies on a series of high-crystalline quality (Ga,Mn)As films. We describe our findings by the mean-field p -d Zener model augmented with three new ingredients. The first one is a scattering broadening of the hole density of states, which reduces significantly the amplitude of the alternating carrier-induced contribution. This opens the way for the two other ingredients, namely the so-far disregarded single-ion magnetic anisotropy and disorder-driven nonuniformities of the carrier density, both favoring the <100 > direction of the apparent easy axis. However, according to our results, when the disorder gets reduced, a switching to the <110 > orientation is possible in a certain temperature and hole concentration range.

  4. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  5. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  6. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2.

    PubMed

    Khan, M A; Leuenberger, Michael N

    2018-04-18

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS 2 , has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS 2 is magnetic in nature with a magnetic moment μ of  ∼2 [Formula: see text] and, remarkably, exhibits an exceptionally large atomic scale MAE [Formula: see text] of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin-orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 [Formula: see text] and 3 [Formula: see text] by varying the Fermi energy [Formula: see text], which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS 2 :Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS 2 and could provide a route to nanoscale spintronic devices.

  7. Seismic anisotropy of 70 Ma Pacific-plate upper mantle

    NASA Astrophysics Data System (ADS)

    Mark, H. F.; Lizarralde, D.; Collins, J. A.; Miller, N. C.; Hirth, G.; Gaherty, J. B.; Evans, R. L.

    2017-12-01

    We present a new measurement of seismic anisotropy and velocity gradients in the Pacific-plate upper mantle based on data from the NoMelt experiment. The seismic velocity structure of oceanic lithosphere reflects the processes involved in its formation at mid-ocean ridges and subsequent evolution off-axis. Increasing mantle depletion with depth due to melt extraction predicts negative velocity gradients, as does cooling with age. Alignment of olivine by corner flow predicts azimuthal anisotropy. Some models predict the strength of anisotropy should decrease with depth. Measurements of uppermost mantle velocities have not fully verified these predictions. Observations of direct Pn phases demonstrate that positive velocity gradients exist; and anisotropy measurements, while consistent with strain-induced olivine alignment, vary widely and generally suggest weaker fabric development than is observed in ophiolite samples. These discrepancies raise questions about the extent to which mantle structure evolves through time due to processes such as cracking and alteration, and hinder the use of seismic measurements to make more detailed inferences on aspects of lithospheric formation processes. We have measured anisotropy and vertical velocity gradients to 10 km below the Moho on 70 Ma lithosphere between the Clarion and Clipperton fracture zones. The lithosphere at the study site has not been obviously affected by tectonic or magmatic events since its formation. We find 6.2% anisotropy at the Moho with a mean velocity of 8.14 km/s and the fast direction parallel to paleospreading. Velocity gradients are estimated at 0.02 km/s/km in the fast direction and near 0 km/s/km in the slow direction. The gradient estimates can be explained by aligned microcracks oriented perpendicular to spreading that close with depth. Cracks are expected to close by 10 km below the Moho. At that depth the strength of anisotropy increases to 9%, close to the strength estimated from ophiolite

  8. Anisotropy and the knee of the energy spectrum

    NASA Technical Reports Server (NTRS)

    Clay, R. W.

    1985-01-01

    The measured cosmic ray energy spectrum exhibits clear structure (the knee) at approx 3 x 10 to the 15th power eV (sea level shower size approx 3 x 10 to the 5th power particles). Additionally, at energies in this general region, there occur apparent changes in shower development such that the observed characteristics of showers at this energy appear different to those characteristics observed at somewhat higher energies. At energies just below this region, the cosmic ray anisotropy amplitude apparently begins a progressive increase with energy. The latter effect does not clearly fit with the first two since there appears to be no significant change exactly at the knee. However, the phase of the first harmonic of the anisotropy appears to show a substantial change just where the energy spectrum shows structure and in the middle of the shower development changes. The first harmonic phase appears to change from approx. 18 hours R.A. to approx. 5 hours R.A. as the energy of observation moves through the knee. In this paper the latter change is examined in some detail by taking into account information contained in the second harmonic of the anisotropy.

  9. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Menezes, Marcos; Almeida, Clara; de Cicco, Marcelo; Achete, Carlos; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas; Prioli, Rodrigo

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction coefficient of graphene is highly dependent on the scanning direction: Under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  10. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Almeida, Clara M.; Prioli, Rodrigo; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas S.; de Cicco, Marcelo; Menezes, Marcos G.; Achete, Carlos A.; Capaz, Rodrigo B.

    2016-08-01

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  11. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  12. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV.

    PubMed

    2017-09-22

    Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Using 3 × 10 4 cosmic rays with energies above 8 × 10 18 electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km 2 sr year, we determined the existence of anisotropy in arrival directions. The anisotropy, detected at more than a 5.2σ level of significance, can be described by a dipole with an amplitude of [Formula: see text] percent toward right ascension α d = 100 ± 10 degrees and declination δ d = [Formula: see text] degrees . That direction indicates an extragalactic origin for these ultrahigh-energy particles. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Will COBE challenge the inflationary paradigm - Cosmic microwave background anisotropies versus large-scale streaming motions revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, K.M.

    1991-03-01

    The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 tomore » the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.« less

  14. Observations of the anisotropy in the cosmic microwave background by the FIRS, SK93, and MSAM-I experiments

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Cheng, Ed; Silverberg, Bob; Ganga, Ken; Page, Lyman; Jarosik, Norm; Netterfield, Barth; Wilkinson, Dave; Meyer, Stephan; Inman, Casey; hide

    1994-01-01

    The observations and results from the FIRS, SK93, and MSAM-1, experiments are discussed. These experiments search for anisotropy in the cosmic microwave background over a range in angular scale from 180 deg to 0.5 deg and a range in frequency from 26 to 680 GHz. Emphasis is placed on the observing strategy and potential systematic errors. Contamination of the data by galactic sources is addressed. Future directions are indicated. The results for all three experiments, as found by us and others, are given in the context of the standard CDM model, Q(sub CDM), and the model-independent band-power estimates.

  15. I-Love-Q anisotropically: Universal relations for compact stars with scalar pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2015-06-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum, and quadrupole moment) have recently been found to be interrelated in a manner that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis and model selection for future radio, x-ray, and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to magnetic fields or phase transitions in their interior. We investigate here whether pressure anisotropy affects the approximate universal relations and, if so, whether it prevents their use in future astrophysical observations. We achieve this by numerically constructing slowly rotating and tidally deformed, anisotropic, compact stars in general relativity to third order in stellar rotation relative to the mass shedding limit. We adopt simple models for pressure anisotropy where the matter stress-energy tensor is diagonal for a spherically symmetric spacetime but the tangential pressure differs from the radial one. We find that the equation-of-state variation increases as one increases the amount of anisotropy, but within the anisotropy range studied in this paper (motivated from anisotropy due to crystallization of the core and pion condensation), anisotropy affects the universal relations only weakly. The relations become less universal by a factor of 1.5-3 relative to the isotropic case when anisotropy is maximal, but even then they remain approximately universal to 10%. We find evidence that this increase in variability is strongly correlated to an increase in the eccentricity variation of isodensity contours, which provides further support for the emergent approximate symmetry explanation of universality. Whether one can use universal relations in actual observations ultimately

  16. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE PAGES

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  17. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  18. Superposition model analysis of the magnetocrystalline anisotropy of Ba-ferrite

    NASA Astrophysics Data System (ADS)

    Novák, Pavel

    1994-06-01

    Theoretical analysis of the first magnetocrystalline anisotropy constantK 1 of BaFe12O19 is performed. Two contributions toK 1 are considered — single ion anisotropy and dipolar anisotropy. ParameterD which determines the magnitude of the single ion contribution is calculated on the basis of the superposition model. It is argued that the disagreement between calculated and observed values ofK 1 is most likely connected with the contribution of Fe3+ ions on bipyramidal sites, for which the value ofD is uncertain.

  19. Precise measurement of dielectric anisotropy in ice Ih at 39 GHz

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takeshi; Fujita, Shuji; Morishima, Shigenori; Mae, Shinji

    1997-03-01

    The dielectric permittivities parallel and perpendicular to the c axis (optic axis) of ice Ih were measured using an open resonator at 39 GHz in the temperature range 194-262 K. The dielectric anisotropy in ice at microwave frequencies is important for understanding remote sensing data in polar regions, obtained by ice radar and satellite-born microwave radar and radiometer. The measured samples were natural single-crystal ice collected from Mendenhall Glacier, Alaska. A very precise measurement was achieved by detecting two resonant peaks, one from the ordinary component and the other from the extraordinary component, simultaneously, from one sample. The real part of dielectric anisotropy, Δɛ'=ɛ∥c'-ɛ⊥c', at 39 GHz was 0.0339±0.0007 (1.07%±0.02%) at 252 K and slightly depended on temperature. Reference measurements at 1 MHz using parallel plate electrodes were also carried out. The measured dielectric anisotropy at microwave frequencies agrees very well with the value at 1 MHz. The absolute values of ɛ∥c' and ɛ⊥c' at 39 GHz were, respectively, smaller than those at 1 MHz and the difference was about 0.044 at 252 K. The results suggest that a small dispersion exists between GHz and MHz frequencies, but there is no frequency dependence in the value of anisotropy.

  20. Deformation in D″ Beneath North America From Anisotropy

    NASA Astrophysics Data System (ADS)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The

  1. Plasma currents and anisotropy in the tail-dipole transition region

    NASA Astrophysics Data System (ADS)

    Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.

    2017-12-01

    Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (<2), ions are transversely anisotropic near Earth but isotropic in the tail, whereas electrons are isotropic closer to Earth but field-aligned in tail. For large Kp (>4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.

  2. ARGO-YBJ OBSERVATION OF THE LARGE-SCALE COSMIC RAY ANISOTROPY DURING THE SOLAR MINIMUM BETWEEN CYCLES 23 AND 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre

    2015-08-10

    This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10{sup 11} showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10{sup −3} with respect to a uniform flux, superimposed on smaller size structures. The harmonicmore » analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.« less

  3. Applying Nyquist's method for stability determination to solar wind observations

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher G.; Kasper, Justin C.; Korreck, K. E.; Stevens, Michael L.

    2017-10-01

    The role instabilities play in governing the evolution of solar and astrophysical plasmas is a matter of considerable scientific interest. The large number of sources of free energy accessible to such nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures, densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore seek a general method of stability determination that may be automated for future analysis of solar wind observations. This work describes an efficient application of the Nyquist instability method to the Vlasov dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities that had been previously identified using fits extracted from in situ observations in Gary et al. (2016). Future proposed applications of this method are discussed.

  4. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  5. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  6. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve

  7. Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration

    NASA Astrophysics Data System (ADS)

    Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.

    2009-05-01

    We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.

  8. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large

  9. Thermal conductivity anisotropy of rocks

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Keehm, Youngseuk; Shin, Sang Ho

    2013-04-01

    The interior heat of the lithosphere of the Earth is mainly transferred by conduction that depends on thermal conductivity of rocks. Many sedimentary and metamorphic rocks have thermal conductivity anisotropy, i.e. heat is preferentially transferred in the direction parallel to the bedding and foliation of these rocks. Deming (JGR, 1994) proposed an empirical relationship between K(perp) and anisotropy (K(par)/K(perp)) using 89 measurements on rock samples from literatures. In Deming's model, thermal conductivity is almost isotropic for K(perp) > 4 W/mK, but anisotropy is exponentially increasing with decreasing K(perp), with final anisotropy of ~2.5 at K(perp) < 1.0 W/mK. However, Davis et al. (JGR, 2007) argued that there is little evidence for Deming's suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for rocks with low thermal conductivity. Davis et al. insisted that Deming's increase in anisotropy for 1 < K(perp) < 4 W/mK with decreasing K(perp) could be due to the fractures filled with air or water, which causes thermal conductivity anisotropy. To test Deming's suggestion and Davis et al.'s argument on thermal conductivity anisotropy, we measured thermal conductivity parallel (K(par)) and perpendicular (K(perp)) to bedding or foliation and performed analytical & numerical modeling. Our measurements on 53 rock samples show the anisotropy range from 0.79 to 1.36 for 1.84 < K(prep) < 4.06 W/mK. Analytical models show that anisotropy can increase or stay the same at the range of 1 < K(perp) < 4 W/mK. Numerical modeling for gneiss shows that anisotropy ranges 1.21 to 1.36 for 2.5 < K(perp) < 4.8 W/mK. Another numerical modeling with interbedded coal layers in high thermal conductivity rocks (3.5 W/mK) shows anisotropy of 1.87 when K(perp) is 1.7 W/mK. Finally, numerical modeling with fractures indicates that the fractures does not seem to affect thermal conductivity anisotropy significantly. In conclusion, our

  10. Anisotropy in the lowermost mantle beneath the Indian Ocean Geoid Low from ScS splitting measurements

    NASA Astrophysics Data System (ADS)

    Padma Rao, B.; Ravi Kumar, M.; Singh, Arun

    2017-02-01

    The Indian Ocean Geoid Low (IOGL) to the south of Indian subcontinent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high-quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (˜1.01%) in the D'' layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL.

  11. Deformation fabrics of blueschist facies phengite-rich, epidote-glaucophane schists from Ring Mountain, California and implications for seismic anisotropy in subduction zone

    NASA Astrophysics Data System (ADS)

    Jung, H.; HA, Y.; Raymond, L. A.

    2016-12-01

    In many subduction zones, strong seismic anisotropy is observed. A part of the seismic anisotropy can be attributed to the subducting oceanic crust, which is transformed to blueschist facies rocks under high-pressure, high-temperature conditions. Because glaucophane, epidote, and phengite constituting the glaucophane schists are very anisotropic elastically, seismic anisotropy in the oceanic crust in hot subduction zones can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied deformation fabrics and seismic properties of phengite-rich, epidote-glaucophane schists from the Franciscan Complex of Ring Mountain, California. The blueschist samples are mainly composed of glaucophane, epidote, and phengite, with minor garnet, titanite, and chlorite. Some samples contain abundant phengite (up to 40 %). We determined LPOs of minerals using SEM/EBSD and calculated seismic anisotropy of minerals and whole rocks. LPOs of glaucophane have [001] axes aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Epidote [001] axes are aligned subnormal to foliation, with both (110) and (010) poles subparallel to lineation. LPOs of phengite are characterized by maxima of [001] axes subnormal to foliation, and both (110) and (010) poles and [100] axes aligned in a girdle subparallel to foliation. Phengite showed much stronger seismic anisotropy (AVP = 42%, max.AVS = 37%) than glaucophane or epidote. Glaucophane schist with abundant phengite showed much stronger seismic anisotropy (AVP = 30%, max.AVS = 23%) than epidote-glaucophane schist without phengite (AVP = 13%, max.AVS = 9%). Therefore, phengite clearly can significantly affect seismic anisotropy of whole rocks. When the subduction angle of phengite-rich blueschist facies rocks is considered for a 2-D corner flow model, the polarization direction of fast S-waves for vertically propagating S-waves changed to a nearly trench-parallel direction for the subduction

  12. Layered Crustal Anisotropy in the NE Tibetan Plateau Inferred from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Yang, Y.; Zheng, Y.

    2016-12-01

    The Tibetan Plateau is the highest and largest plateau in the world with an average elevation of 4-5 km and 60-70 km thick crust, about twice of the thickness of average continental crust. Two end-member models have bene invoked to explain the crustal thickening and the growth of the plateau: (1) continuous and uniform thickening of the whole crust and (2) mid/lower crustal channel flow. However, which mechanism dominates the crustal thickening and the growth of the plateau is still under hot debate. Seismic anisotropy can provide observational constraints on deformation mode, which would have distinguished pattern resulting from the two different thickening models. Thus, by studying seismic anisotropy, we can distinguish different models of crustal thickening and plateau growth. In this study, we employ an eikonal tomography method of ambient noise to investigate azimuthal anisotropy of Rayleigh waves in the NE Tibetan Plateau. Our tomography reveals significant anisotropy in the crust. In particular, stratification of crustal azimuthal anisotropy is observed: an upper crustal anisotropic layer characterized by a NE-SW fast direction and a mid/lower crustal anisotropic layer with a NNE-SSW fast direction. The dominantly NE-SW oriented anisotropy in the upper crust is likely caused by shape-preferred orientation (SPO) of faults and fractures in the shallow depths. The anisotropy in the mid/lower crust, however, is nearly orthogonal to that in the shallow crust, suggesting a different mechanism. The NNE-SSW fast direction coincides with the proposed flow direction by the crustal flow model in NE Tibetan Plateau, suggesting anisotropy in the mid/lower crust may be related to the crustal flow. The two-layered crustal stratigraphy observed in the NE Tibetan Plateau is contrary to the continuous thickening model, but favours the crustal flow model.

  13. Evidence for a Significant Level of Extrinsic Anisotropy Due to Heterogeneities in the Mantle.

    NASA Astrophysics Data System (ADS)

    Alder, C.; Bodin, T.; Ricard, Y. R.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, it provides important constraints on the geometry of mantle deformation. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. Here, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1D and 2D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, i.e. varying as 1/k, with k the wavenumber of these heterogeneities. The 1D toy models correspond to simple layered media. In the 2D case, our models depict marble-cake patterns in which an anomaly in S-wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, i.e. apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1D and 2D media. In addition, we predict that 10 % of chemical heterogeneities in 2D marble-cake models can induce more than 3.9 % of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic

  14. Anisotropies in the cosmic microwave background: an analytic approach

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; Sugiyama, Naoshi

    1995-05-01

    We introduce a conceptually simple yet powerful analytic method which traces the structure of cosmic microwave background anisotropies to better than 5%-10% in temperature fluctuations on all scales. It is applicable to any model in which the gravitational potential is known and last scattering is sufficiently early. Moreover, it recovers and explains the presence of the 'Doppler peaks' at degree scales as driven acoustic oscillations of the photon-baryon fluid. We treat in detail such subtleties as the time dependence of the gravitational driving force, anisotropic stress from the neutrino quadrupole, and damping during the recombination process, again all from an analytic standpoint. We apply this formalism to the standard cold dark matter model to gain physical insight into the anisotropies, including the dependence of the peak locations and heights on cosmological parameters such as Omegab and h. Furthermore, the ionization history controls damping due to the finite thickness of the last scattering surface, which is in fact mianly caused by photon diffusion. In addition to being a powerful probe into the nature of anisotropies, this treatment can be used in place of the standard Boltzmann code where 5%-10% accuracy in temperature fluctuations is satisfactory and/or speed is essential. Equally importantly, it can be used as a portable standard by which numerical codes can be tested and compared.

  15. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    DOE PAGES

    Lamichhane, Tej N.; Taufour, Valentin; Masters, Morgan W.; ...

    2016-08-29

    Here, ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ B/f.u. and 2.1 μ B/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (Δ S) is estimated to be –6.7 kJ m –3 K –1 around 369 K. The easy axis of magnetizationmore » is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ~4.6 T for ZrMnP and ~10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.« less

  16. Heterogeneity and Anisotropy of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Deuss, Arwen

    2014-05-01

    Seismic observations provide strong evidence that Earth's inner core is anisotropic, with larger velocity in the polar than in the equatorial direction. The top 60-80 km of the inner core is isotropic; evidence for an innermost inner core is less compelling. The anisotropy is most likely due to alignment of hcp (hexagonal close-packed) iron crystals, aligned either during solidification or by deformation afterward. The existence of hemispherical variations used to be controversial, but there is now strong evidence from both seismic body wave and normal mode observations, showing stronger anisotropy, less attenuation, and a lower isotropic velocity in the western hemisphere. Two mechanisms have been proposed to explain the hemispherical pattern: either (a) inner core translation, wherein one hemisphere is melting and the other is solidifying, or (b) thermochemical convection in the outer core, leading to different solidification conditions at the inner core boundary. Neither is (yet) able to explain all seismically observed features, and a combination of different mechanisms is probably required.

  17. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  18. The signal of mantle anisotropy in the coupling of normal modes

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  19. Magnetic and elastic wave anisotropy in partially molten rocks: insight from experimental melting of synthetic quartz-mica schist (Invited)

    NASA Astrophysics Data System (ADS)

    Almqvist, B.; Misra, S.; Biedermann, A. R.; Mainprice, D.

    2013-12-01

    We studied the magnetic and elastic wave speed anisotropy of a synthetically prepared quartz-mica schist, prior to, during and after experimental melting. The synthetic rock was manufactured from a mixture of powders with equal volumes of quartz and muscovite. The powders were initially compacted with 200 MPa uniaxial stress at room temperature and sealed in a stainless steel canister. Subsequently the sealed canister was isostatically pressed at 180 MPa and 580 °C for 24 hours. This produced a solid medium with ~25 % porosity. Mica developed a preferred grain-shape alignment due to the initial compaction with differential load, where mica flakes tend to orient perpendicular to the applied stress and hence define a synthetic foliation plane. In the last stage we used a Paterson gas-medium apparatus, to pressurize and heat the specimens up to 300 MPa and 750 °C for a six hour duration. This stage initially compacted the rock, followed by generation of melt, and finally crystallization of new minerals from the melt. Elastic wave speed measurements were performed in situ at pressure and temperature, with a transducer assembly mounted next to the sample. Magnetic measurements were performed before and after the partial melt experiments. Anisotropy was measured in low- and high-field, using a susceptibility bridge and torsion magnetometer, respectively. Additionally we performed measurements of hysteresis, isothermal remanent magnetization (IRM) and susceptibility as a function of temperature, to investigate the magnetic properties of the rock. The elastic wave speed, before the melting-stage of the experiment, exhibits a distinct anisotropy with velocities parallel to the foliation being about 15 % higher than normal to the foliation plane. Measurements of the magnetic anisotropy in the bulk sample show that anisotropy is originating from the preferred orientation of muscovite, with a prominent flattening fabric. In contrast, specimens that underwent partial melting

  20. Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe 2

    DOE PAGES

    Parker, David S.; May, Andrew F.; Singh, David J.

    2015-06-05

    Here we study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe 2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe 2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe 2 has already exhibited a ZT value of 1.5 in amore » high-temperature disordered fcc phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi 2Te 3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe 2 has substantial promise as a room temperature thermoelectric, and estimate its performance.« less

  1. Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust

    NASA Astrophysics Data System (ADS)

    Agius, Matthew R.; Lebedev, Sergei

    2014-12-01

    Geophysical and geological data suggest that Tibetan middle crust is a partially molten, mechanically weak layer, but it is debated whether this low-viscosity layer is present beneath the entire plateau, what its properties are, how it deforms, and what role it has played in the plateau's evolution. Broad-band seismic surface waves yield resolution in the entire depth range of the Tibetan crust and can be used to constrain its shear-wave velocity structure (indicative of crustal composition, temperature and partial melting) and radial anisotropy (indicative of the patterns of deformation). We measured Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 7-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds of interstation measurements, made with cross-correlation and waveform-inversion methods. Shear-velocity profiles were then determined by extensive series of non-linear inversions of the data, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy. Shear wave speeds within the Tibetan middle crust are anomalously low and, also, show strong lateral variations across the plateau. The lowest mid-crustal shear speeds are found in the north and west of the plateau (˜3.1-3.2 km s-1), within a pronounced low-velocity zone. In southeastern Tibet, crustal shear wave speeds increase gradually towards southeast, whereas in the north, the change across the Kunlun Fault is relatively sharp. The lateral variations of shear speeds within the crust are indicative of those in temperature. A mid-crustal temperature of 800 °C, reported previously, can account for the low shear velocities across Lhasa. In the north, the temperature is higher and exceeds the solidus, resulting in partial melting that we estimate at 3-6 per cent. Strong radial anisotropy is required by the data in western-central Tibet (>5 per cent) but not in northeastern Tibet. The amplitude

  2. Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillian, G.; Kibayashi, A.; Learned, J. G.

    2007-03-15

    The relative sidereal variation in the arrival direction of primary cosmic ray nuclei of median energy 10 TeV was measured using downward, through-going muons detected with the Super-Kamiokande-I detector. The projection of the anisotropy map onto the right ascension axis has a first harmonic amplitude of (6.64{+-}0.98 stat{+-}0.55 syst)x10{sup -4} and a phase at maximum at (33.2 deg. {+-}8.2 deg. stat{+-}5.1 deg. syst) right ascension. A sky map in equatorial coordinates indicates an excess region in the constellation of Taurus and a deficit region toward Virgo. The excess region is centered at ({alpha}{sub T},{delta}{sub T})=(75 deg. {+-}7 deg., -5 deg.more » {+-}9 deg.) with a half-opening angle {chi}{sub T}=(39{+-}7) deg.; the excess flux is (0.104{+-}0.020)% above the isotropic expectation. The corresponding parameters for the deficit region are ({alpha}{sub V},{delta}{sub V})=(205 deg. {+-}7 deg., 5 deg. {+-}10 deg.), {chi}{sub V}=(54{+-}7) deg., and (-0.094{+-}0.014)%. The data do not allow us to rule out a pure dipole form for the anisotropy (allowed at 13% confidence level); they are better described by the excess and deficit cones described above. We explored the implications under the assumption that the true anisotropy is not distorted too much by the analysis filter so that it is well-described by the observed excess and deficit cones.« less

  3. Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc

    2017-04-01

    Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.

  4. Issues on generating primordial anisotropies at the end of inflation

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  5. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard

    2017-05-01

    The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

  6. Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence

    NASA Astrophysics Data System (ADS)

    Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.

    2016-12-01

    Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.

  7. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    NASA Technical Reports Server (NTRS)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  8. Effects of irregularity anisotropy on Faraday polarization fluctuations

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Nghiem, S. V.; Yoo, C.

    1989-01-01

    The previous model (Lee et al., 1982) of the Faraday polarization fluctuations (FPF) is extended after taking into account the anisotropic nature of the commonly observed, rodlike and sheetlike ionospheric irregularities. Striking effects of irregularity anisotropy are found in the longitudinal radio propagation. However, if the wave propagation angle is not small (say, greater than 5 deg), the effects of irregularity anisotropy on FPF introduced by rodlike irregularities weaken significantly, while those caused by sheetlike irregularities remain prominent. Therefore, under the same ionospheric propagation conditions, sheetlike ionospheric irregularities are more effective than rodlike ionospheric irregularities in causing the FPF of radio waves. It is expected that intense FPF of VHF radio signals can be observed not only near the equatorial anomaly but also in the auroral region.

  9. Flow, melt and fossil seismic anisotropy beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay

    2014-05-01

    Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.

  10. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-02-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  11. Study of anisotropy, magnetization reversal and damping in ultrathin Co films on MgO (0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Bedanta, Subhankar

    2018-01-01

    Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.

  12. Observations of the azimuthal dependence of normal mode coupling below 4 mHz at the South Pole and its nearby stations: Insights into the anisotropy beneath the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao Gang

    2016-08-01

    Normal mode coupling pair 0S26-0T26 and 0S27-0T27 are significantly present at the South Pole station QSPA after the 2011/03/11 Mw9.1 Tohoku earthquake. In an attempt to determine the mechanisms responsible for the coupling pairs, I first investigate mode observations at 43 stations distributed along the polar great-circle path for the earthquake and observations at 32 Antarctic stations. I rule out the effect of Earth's rotation as well as the effect of global large-scale lateral heterogeneity, but argue instead for the effect of small-scale local azimuthal anisotropy in a depth extent about 300 km. The presence of quasi-Love waveform in 2-5 mHz at QSPA and its nearby stations confirms the predication. Secondly, I analyze normal mode observations at the South Pole location after 28 large earthquakes from 1998 to 2015. The result indicates that the presence of the mode coupling is azimuthal dependent, which is related to event azimuths in -46° to -18°. I also make a comparison between the shear-wave splitting measurements of previous studies and the mode coupling observations of this study, suggesting that their difference can be explained by a case that the anisotropy responsible for the mode coupling is not just below the South Pole location but located below region close to the Transantarctic Mountains (TAM). Furthermore, more signals of local azimuthal anisotropy in normal-mode observations at QSPA and SBA, such as coupling of 0S12-0T11 and vertical polarization anomaly for 0T10, confirms the existence of deep anisotropy close to TAM, which may be caused by asthenospheric mantle flow and edge convection around cratonic keel of TAM.

  13. Two-dimensional hybrid simulations of kinetic plasma turbulence: Current and vorticity vs proton temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franci, Luca; INFN-Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto F.no; Hellinger, Petr, E-mail: petr.hellinger@asu.cas.cz

    2016-03-25

    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the othermore » hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.« less

  14. Observation of Magnetic Radial Vortex Nucleation in a Multilayer Stack with Tunable Anisotropy.

    PubMed

    Karakas, Vedat; Gokce, Aisha; Habiboglu, Ali Taha; Arpaci, Sevdenur; Ozbozduman, Kaan; Cinar, Ibrahim; Yanik, Cenk; Tomasello, Riccardo; Tacchi, Silvia; Siracusano, Giulio; Carpentieri, Mario; Finocchio, Giovanni; Hauet, Thomas; Ozatay, Ozhan

    2018-05-08

    Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.

  15. A phenomenological approach to study the effect of uniaxial anisotropy on the magnetization of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sánchez-Marín, N.; Cuchillo, A.; Knobel, M.; Vargas, P.

    2018-04-01

    We study the effect of the uniaxial anisotropy in a system of ideal, noninteracting ferromagnetic nanoparticles by means of a thermodynamical model. We show that the effect of the anisotropy can be easily assimilated in a temperature shift Ta∗, in analogy to what was proposed by Allia et al. (2001) in the case of interacting nanomagnets. The phenomenological anisotropic Ta∗ parameter can be negative, indicating an antiferromagnetic-like behavior, or positive, indicating a ferromagnetic-like character as seen in the inverse susceptibility behavior as a function of temperature. The study is done considering an easy axis distribution to take into account the anisotropy axis dispersion in real samples (texture). In the case of a volumetric uniform distribution of anisotropy axes, the net effect makes Ta∗ to vanish, and the magnetic susceptibility behaves like a conventional superparamagnetic system, whereas in the others a finite value is obtained for Ta∗ . When magnetic moment distribution is considered, the effect is to enhance the Ta∗ parameter, when the dispersion of the magnetic moments becomes wider.

  16. Seismic anisotropy and the state of stress in volcanic systems

    NASA Astrophysics Data System (ADS)

    Kendall, Michael

    2017-04-01

    The active magmatic and hydrothermal systems of volcanoes can lead to complicated stress patterns that can vary over short spatial and temporal scales. An attractive approach to studying the state of stress in such systems is to investigate seismic anisotropy using shear-wave splitting in upper-crustal earthquakes. Anisotropy can be caused by a range of mechanisms, including crystal preferred orientation and fine scale layering, but the dominant mechanism in volcanic systems is likely the preferred alignment of fluid-filled cracks and fractures. In general, cracks and fractures in the near surface tend to align parallel to the dominant direction of maximum horizontal stress. However, the observed patterns in volcanoes indicate more complicated stress patterns, which sometimes even change in time. A challenge is to untangle the magmatic versus hydrothermal control on stress. Here I summarise observations of seismic anisotropy across several volcanoes in different settings. Seismic anisotropy of the upper crust in the vicinity of the Soufrière Hills volcano - on the island of Montserrat in the Lesser Antilles - has been studied using shear wave splitting (SWS) analysis of shallow volcano-tectonic events. Clear spatial variations in anisotropy are observed, which are consistent with structurally controlled anisotropy resulting from a left-lateral transtensional array of faults that crosses the volcanic complex. Corbetti and Aluto are two volcanoes located roughly 100 km apart in the Main Ethiopian Rift. Their evolution is strongly controlled by pre-existing structural trends. In the case of Aluto, the anisotropy follows the Wonji fault belt in a rift parallel nearly N-S direction, but significantly oblique to the older border faults. In contrast, the shear-wave splitting at Corbetti is more complicated and supports ideas of the influence of a much-older pre-existing cross-rift structure known as the Goba-Bonga fault. Ontake volcano in Japan is another arc volcano. It

  17. Strain control of giant magnetic anisotropy in metallic perovskite SrCoO3-δ thin films.

    PubMed

    Hu, Songbai; Cazorla, Claudio; Xiang, Feixiang; Ma, Hongfei; Wang, Jianyuan; Wang, Jianbo; Wang, Xiaolin; Ulrich, Clemens; Chen, Lang; Seidel, Jan

    2018-06-08

    Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here we demonstrate strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90º upon application of moderate epitaxial strains ranging from -1.2% to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is giant as shown by magnetic hysteresis loops rendering an anisotropy energy density of ~106 erg/cm3. The local variance of magnetic force microscopy (MFM) upon temperature and magnetic field reveals that the evolution of magnetic domains in SCO thin film is strongly dependent on the magnetic anisotropy.

  18. Random anisotropy model approach on ion beam sputtered Co 20Cu 80 granular alloy

    NASA Astrophysics Data System (ADS)

    Errahmani, H.; Hassanaı̈n, N.; Berrada, A.; Abid, M.; Lassri, H.; Schmerber, G.; Dinia, A.

    2002-03-01

    The Co 20Cu 80 granular film has been elaborated using ion beam sputtering technique. The magnetic properties of the sample were studied in the temperature range 5-300 K at H⩽50 kOe. From the thermomagnetisation curve, which is found to obey to the Bloch law, we have extracted the spin wave stiffness constant D and the exchange constant A. The magnetic experimental results have been interpreted in the framework of random anisotropy model. We have determined the local anisotropy constant KL and the local correlation length of anisotropy axis Ra, which is compared to the experimental grains size obtained by transmission electronic microscopy.

  19. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  20. Seismic anisotropy in the lowermost mantle near the Perm Anomaly

    NASA Astrophysics Data System (ADS)

    Long, Maureen D.; Lynner, Colton

    2015-09-01

    The lower mantle is dominated by two large structures with anomalously low shear wave velocities, known as Large Low-Shear Velocity Provinces (LLSVPs). Several studies have documented evidence for strong seismic anisotropy at the base of the mantle near the edges of the African LLSVP. Recent work has identified a smaller structure with similar low-shear wave velocities beneath Eurasia, dubbed the Perm Anomaly. Here we probe lowermost mantle anisotropy near the Perm Anomaly using the differential splitting of SKS and SKKS phases measured at stations in Europe. We find evidence for lowermost mantle anisotropy in the vicinity of the Perm Anomaly, with geographic trends hinting at lateral variations in anisotropy across the boundaries of the Perm Anomaly as well as across a previously unsampled portion of the African LLSVP border. Our observations suggest that deformation is concentrated at the boundaries of both the Perm Anomaly and the African LLSVP.

  1. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery

    NASA Astrophysics Data System (ADS)

    Kovacheva, M.; Chauvin, A.; Jordanova, N.; Lanos, P.; Karloukovski, V.

    2009-06-01

    The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln's construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven's floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).

  2. Magnetization switching process in a torus nanoring with easy-plane surface anisotropy

    NASA Astrophysics Data System (ADS)

    Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.

    2017-11-01

    We have studied the effects of surface shape anisotropy in the magnetization behavior of a torus nanoring by means of Monte Carlo simulations. Stable states (vortex and reverse vortex states) and metastable states (onion and asymmetric onion states) were found in the torus nanoring. The probability of occurrence of the metastable states (stable states) tends to decrease (increase) as the amount of Monte Carlo steps per spin, temperature steps and negative values of the anisotropy constant increase. We evaluated under which conditions it is possible to switch the magnetic state of the torus nanoring from a vortex to a reverse vortex state by applying a circular magnetic field at certain temperature interval. The switching probability (from a vortex to a reverse vortex state) depends on the value of the current intensity, which generates the circular magnetic field, and the temperature interval where the magnetic field is applied. There is a linear relationship between the current intensity and the minimum temperature interval above which the vortex state can be switched.

  3. Through-process characterization of local anisotropy of Non-oriented electrical steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    He, Youliang; Mehdi, Mehdi; Hilinski, Erik J.; Edrisy, Afsaneh

    2018-05-01

    Magnetic Barkhausen noise (MBN) signals were measured on a non-oriented electrical steel through all the thermomechanical processing stages, i.e. hot rolling, hot band annealing, cold rolling and final annealing. The temperature of the final annealing was varied from 600 °C to 750 °C so that the steel consisted of partially or completely recrystallized microstructures and different levels of residual stresses. The angular MBNrms (root mean square) values were compared to the texture factors in the same directions, the latter being calculated from the crystallographic texture measured by electron backscatter diffraction (EBSD). It was found that, in the cold-rolled, hot-rolled and completely recrystallized steels, the angular MBNrms followed a cosine function with respect to the angle of magnetization, while in partially recrystallized state such a relation does not exist. After cold rolling, the maximum MBNrms was observed in the rolling direction (RD) and the minimum MBNrms was in the transverse direction (TD), which was inconsistent with the magnetocrystalline anisotropy as indicated by the texture factor. After hot rolling, the maximum and minimum MBNrms values were observed in the TD and RD, respectively, exactly opposite to the cold-rolled state. If the steel was completely recrystallized, the maximum MBNrms was normally observed at a direction that was 15-30° from the minimum texture factor. If the steel was partially recrystallized, both the magnetocrystalline anisotropy of the material and the residual stress contributed to the angular MBNrms, which resulted in the deviation of the relationship from a cosine function. The relative strength of the two factors determined which factor would dominate the overall magnetic anisotropy.

  4. Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    2015-11-01

    A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.

  5. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  6. Unusual enhancement of effective magnetic anisotropy with decreasing particle size in maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S.

    2017-05-01

    In magnetic nanoparticles (NPs), the observed increase in the effective magnetic anisotropy Keff with the decrease in particle size D is often interpreted, sometimes unsuccessfully, using the equation Keff = Kb + (6KS/D), where Kb is the bulk-like anisotropy of the core spins and KS is the anisotropy of spins in the surface layer. Here, we test the validity of this relation in γ-Fe2O3 NPs for sizes D from 15 nm to 2.5 nm. The samples include oleic acid-coated NPs with D = 2.5, 3.4, 6.3, and 7.0 nm investigated here, with results on 14 other sizes taken from literature. Keff is determined from the analysis of the frequency dependence of the blocking temperature TB after considering the effects of interparticle interactions on TB. For the γ-Fe2O3 NPs with D < 5 nm, an unusual enhancement of Keff with decreasing D, well above the magnitudes predicted by the above equation, is observed. Instead the variation of Keff vs. D is best described by an extension of the above equation by including Ksh term from spins in a shell of thickness d. Based on this core-shell-surface layer model, the data are fit to the equation Keff = Kb + (6KS/D) + Ksh{[1-(2d/D)]-3-1} with Kb = 1.9 × 105 ergs/cm3, KS = 0.035 ergs/cm2, and Ksh = 1.057 × 104 ergs/cm3 as the contribution of spins in the shell of thickness d = 1.1 nm. Significance of this result is discussed.

  7. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.

    PubMed

    Bai, Shuming; Song, Kai; Shi, Qiang

    2015-05-21

    Observations of oscillatory features in the 2D spectra of several photosynthetic complexes have led to diverged opinions on their origins, including electronic coherence, vibrational coherence, and vibronic coherence. In this work, effects of these different types of quantum coherence on ultrafast pump-probe polarization anisotropy are investigated and distinguished. We first simulate the isotropic pump-probe signal and anisotropy decay of the Fenna-Matthews-Olson (FMO) complex using a model with only electronic coherence at low temperature and obtain the same coherence time as in the previous experiment. Then, three model dimer systems with different prespecified quantum coherence are simulated, and the results show that their different spectral characteristics can be used to determine the type of coherence during the spectral process. Finally, we simulate model systems with different electronic-vibrational couplings and reveal the condition in which long time vibronic coherence can be observed in systems like the FMO complex.

  8. Crustal anisotropy along the North Anatolian Fault Zone from receiver functions

    NASA Astrophysics Data System (ADS)

    Licciardi, Andrea; Eken, Tuna; Taymaz, Tuncay; Piana Agostinetti, Nicola; Yolsal-Çevikbilen, Seda; Tilmann, Frederik

    2016-04-01

    The North Anatolian Fault Zone (NAFZ) that is considered to be one of the largest plate-bounding transform faults separates the Anatolian Plate to the south from the Eurasian Plate to the north. A proper estimation of the crustal anisotropy in the area is a key point to understand the present and past tectonic processes associated with the plate boundary as well as for assessing its strength and stability. In this work we used data from the North Anatolian Fault (NAF) passive seismic experiment in order to retrieve the anisotropic properties of the crust by means of the receiver function (RF) method. This approach provides robust constraints on the location at depth of anisotropic bodies compared to other seismological tools like S-waves splitting observations where anisotropic parameters are obtained through a path-integrated measurement process over depth. We computed RFs from teleseismic events, for 39 stations with a recording period of nearly 2 years, providing an excellent azimuthal coverage. The observed azimuthal variations in amplitudes and delay times on the Radial and Transverse RF indicate the presence of anisotropy in the crust. Isotropic and anisotropic effects on the RFs are analyzed separately after harmonic decomposition of the RF dataset (Bianchi et al. 2010). Pseudo 2D profiles are built to observe both the seismic isotropic structure and the depth-dependent lateral variations of crustal anisotropy in the area, including orientation of the symmetry axis. Preliminary results show that the isotropic structure is characterized by a complex crustal setting above a nearly flat Moho at a depth of ~40 km in the central portion of the studied area. Strong anisotropy is present in the upper crust along some portions of the NAFZ and the Ezinepazari-Sungurlu Fault (ESF), with a strong correlation between the orientation of the symmetry axis of anisotropy and the strike of the main geological structures. More complex patterns of anisotropy are present in the

  9. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    NASA Astrophysics Data System (ADS)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  10. A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe

    NASA Astrophysics Data System (ADS)

    Davies, R. D.; Dickinson, C.; Banday, A. J.; Jaffe, T. R.; Górski, K. M.; Davis, R. J.

    2006-08-01

    Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here, we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three `standard' templates. The free-free emission of the diffuse ionized gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000 K. This is inconsistent with estimates from Galactic HII regions although a variation in the derived ratio of Hα to free-free intensity by a factor of ~2 is also found from region to region. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied. The anomalous emission correlates well with the Finkbeiner, Davis & Schlegel model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60 GHz, of β ~ -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8 × Tn. We find a preferred value n ~ 1.6, although there is a scatter from region to region. Nevertheless, the preferred index drops to zero at higher frequencies where the thermal dust emission dominates. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a

  11. Effect of Aerogel Anisotropy in Superfluid 3He-A

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. M.; Li, J. I. A.; Pollanen, J.; Collett, C. A.; Gannon, W. J.; Halperin, W. P.

    2014-03-01

    Two theories have been advanced to describe the effects of anisotropic impurity introduced by stretched silica aerogel on the orientation of the orbital angular momentum l& circ; in superfluid 3He-A. These theories disagree on whether the anisotropy will orient l& circ; perpendicular[2] or parallel[3] to the strain axis. In order to examine this question we have produced and characterized a homogeneous aerogel sample with uniaxial anisotropy introduced during growth, corresponding to stretching of the aerogel. These samples have been shown to stabilize two new chiral states;[4] the higher temperature state being the subject of the present study. Using pulsed NMR we have performed experiments on 3He-A imbibed in this sample in two orientations: strain parallel and perpendicular to the applied magnetic field. From the NMR frequency shifts as a function of tip angle and temperature, we find that the angular momentum l& circ; is oriented along the strain axis, providing evidence for the theory advanced by Sauls. This work was supported by the National Science Foundation, DMR-1103625.

  12. Interaction Between Downwelling Flow and the Laterally-Varying Thickness of the North American Lithosphere Inferred from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Behn, M. D.; Conrad, C. P.; Silver, P. G.

    2005-12-01

    Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere

  13. Crustal seismic anisotropy and structure from textural and seismic investigations in the Cycladic region, Greece

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard

    2016-04-01

    studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.

  14. Crustal anisotropy across northern Japan from receiver functions.

    PubMed

    Bianchi, I; Bokelmann, G; Shiomi, K

    2015-07-01

    Northern Japan is a tectonically active area, with the presence of several volcanoes, and with frequent earthquakes among which the destructive M w  = 8.9-9.0 Tohoku-oki occurred on 11 March 2011. Tectonic activity leaves an imprint on the crustal structures, on both the upper and the lower layers. To investigate the crust in northern Japan, we construct a receiver function data set using teleseismic events recorded at 58 seismic stations belonging to the Japanese National (Hi-net) network. We isolate the signals, in the receiver function wavelet, that witness the presence of anisotropic structures at depth, with the aim of mapping the variation of anisotropy across the northern part of the island. This study focuses on the relation among anisotropy detected in the crust, stresses induced by plate convergence across the subduction zone, and the intrinsic characteristics of the rocks. Our results show how a simple velocity model with two anisotropic layers reproduces the observed data at the stations. We observe a negligible or small amount of signal related to anisotropy in the eastern part of the study area (i.e., the outer arc) for both upper and lower crust. Distinct anisotropic features are observed at the stations on the western part of the study area (i.e., the inner arc) for both upper and lower crust. The symmetry axes are mostly E-W oriented. Deviation from the E-W orientation is observed close to the volcanic areas, where the higher geothermal gradient might influence the deformation processes.

  15. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  16. The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan

    2016-11-01

    In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship

  17. Influence of seismic anisotropy on the cross correlation tensor: numerical investigations

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J. P.; Roux, P.; Cupillard, P.; Durand, S.; Brenguier, F.

    2015-05-01

    Temporal changes in seismic anisotropy can be interpreted as variations in the orientation of cracks in seismogenic zones, and thus as variations in the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes, although they are still not well understood. In this study, we investigate the azimuthal polarization of surface waves in anisotropic media with respect to the orientation of anisotropy, from a numerical point of view. This technique is based on the observation of the signature of anisotropy on the nine-component cross-correlation tensor (CCT) computed from seismic ambient noise recorded on pairs of three-component sensors. If noise sources are spatially distributed in a homogeneous medium, the CCT allows the reconstruction of the surface wave Green's tensor between the station pairs. In homogeneous, isotropic medium, four off-diagonal terms of the surface wave Green's tensor are null, but not in anisotropic medium. This technique is applied to three-component synthetic seismograms computed in a transversely isotropic medium with a horizontal symmetry axis, using a spectral element code. The CCT is computed between each pair of stations and then rotated, to approximate the surface wave Green's tensor by minimizing the off-diagonal components. This procedure allows the calculation of the azimuthal variation of quasi-Rayleigh and quasi-Love waves. In an anisotropic medium, in some cases, the azimuth of seismic anisotropy can induce a large variation in the horizontal polarization of surface waves. This variation depends on the relative angle between a pair of stations and the direction of anisotropy, the amplitude of the anisotropy, the frequency band of the signal and the depth of the anisotropic layer.

  18. Elasticity, slowness, thermal conductivity and the anisotropies in the Mn3Cu1-xGexN compounds

    NASA Astrophysics Data System (ADS)

    Li, Guan-Nan; Chen, Zhi-Qian; Lu, Yu-Ming; Hu, Meng; Jiao, Li-Na; Zhao, Hao-Ting

    2018-03-01

    We perform the first-principles to systematically investigate the elastic properties, minimum thermal conductivity and anisotropy of the negative thermal expansion compounds Mn3Cu1-xGexN. The elastic constant, bulk modulus, shear modulus, Young’s modulus and Poisson ratio are calculated for all the compounds. The results of the elastic constant indicate that all the compounds are mechanically stable and the doped Ge can adjust the ductile character of the compounds. According to the values of the percent ratio of the elastic anisotropy AB, AE and AG, shear anisotropic factors A1, A2 and A3, all the Mn3Cu1-xGexN compounds are elastic anisotropy. The three-dimensional diagrams of elastic moduli in space also show that all the compounds are elastic anisotropy. In addition, the acoustic wave speed, slowness, minimum thermal conductivity and Debye temperature are also calculated. When the ratio of content for Cu and Ge arrived to 1:1, the compound has the lowest thermal conductivity and the highest Debye temperature.

  19. Equations of state and anisotropy of Fe-Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.

    2017-12-01

    Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a

  20. Seismic azimuthal anisotropy in crevasse fields

    NASA Astrophysics Data System (ADS)

    Lindner, F.; Laske, G.; Walter, F.

    2017-12-01

    Crevasses and englacial fracture networks route meltwater from a glacier's surface to the subglacial drainage system and thus strongly influence glacial hydraulics. However, rapid fracture growth may also lead to sudden (and potentially hazardous) structural failure of unstable glaciers and ice dams, rifting of ice shelves, or iceberg calving.Here, we use passive seismic recordings from Glacier de la Plaine Morte, Switzerland, to investigate the englacial fracture network. Glacier de la Plaine Morte is the largest plateau glacier in the European Alps and extremely vulnerable to climate change. The annual drainage of an ice-marginal lake gives rise to numerous icequakes, thereby demonstrating the interplay between hydraulics and fracturing. The majority of these naturally occurring events exhibits dispersed, high-frequency Rayleigh waves at about 10 Hz and higher. A wide distribution of events allows us to study azimuthal anisotropy of englacial seismic velocities in regions of preferentially oriented fractures.Results from beamforming applied to a 100m-aperture array show strong (up to 9%) azimuthal anisotropy of Rayleigh wave velocities. We find that the fast direction coincides with the observed surface strike of the fractures and that anisotropy is strongest for high-frequency (around 30 Hz) Rayleigh waves that are sensitive only to the uppermost (few tens of meters) part of the glacier. In addition to these results, we propose to study temporal variations in the anisotropy pattern that can potentially be related to growth, shrinkage, and changing water content of the fractures during the course of the lake drainage or other hydrological events.

  1. Thermal Conductivity Anisotropy of Metasedimentary and Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Chapman, D. S.; van Wagoner, T. M.; Armstrong, P. A.

    2005-12-01

    Thermal conductivity anisotropy was determined for two sets of rocks: a series of sandstones, mudstones, and limey shales of Cretaceous age from Price Canyon, Utah, and metasedimentary argillites and quartzites of Precambrian age from the Big Cottonwood Formation in north central Utah. Additional anisotropy measurements were made on granitic rocks from two Tertiary plutons in Little Cottonwood Canyon, north central Utah. Most conductivity measurements were made in transient mode with a half-space, line-source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kmax) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kmax and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady-state mode. Anisotropy is defined as kmax/kperp. The Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for the Price Canyon samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming (1994) that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  2. Evidence for {100}<011> slip in ferropericlase in Earth's lower mantle from high-pressure/high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Immoor, J.; Marquardt, H.; Miyagi, L.; Lin, F.; Speziale, S.; Merkel, S.; Buchen, J.; Kurnosov, A.; Liermann, H.-P.

    2018-05-01

    Seismic anisotropy in Earth's lowermost mantle, resulting from Crystallographic Preferred Orientation (CPO) of elastically anisotropic minerals, is among the most promising observables to map mantle flow patterns. A quantitative interpretation, however, is hampered by the limited understanding of CPO development in lower mantle minerals at simultaneously high pressures and temperatures. Here, we experimentally determine CPO formation in ferropericlase, one of the elastically most anisotropic deep mantle phases, at pressures of the lower mantle and temperatures of up to 1400 K using a novel experimental setup. Our data reveal a significant contribution of slip on {100} to ferropericlase CPO in the deep lower mantle, contradicting previous inferences based on experimental work at lower mantle pressures but room temperature. We use our results along with a geodynamic model to show that deformed ferropericlase produces strong shear wave anisotropy in the lowermost mantle, where horizontally polarized shear waves are faster than vertically polarized shear waves, consistent with seismic observations. We find that ferropericlase alone can produce the observed seismic shear wave splitting in D″ in regions of downwelling, which may be further enhanced by post-perovskite. Our model further shows that the interplay between ferropericlase (causing VSH > VSV) and bridgmanite (causing VSV > VSH) CPO can produce a more complex anisotropy patterns as observed in regions of upwelling at the margin of the African Large Low Shear Velocity Province.

  3. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  4. Anisotropy of the Seebeck and Nernst coefficients in parent compounds of the iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Matusiak, Marcin; Babij, Michał; Wolf, Thomas

    2018-03-01

    In-plane longitudinal and transverse thermoelectric phenomena in two parent compounds of iron-based superconductors are studied. Namely, the Seebeck (S ) and Nernst (ν) coefficients were measured in the temperature range 10-300 K for BaF e2A s2 and CaF e2A s2 single crystals that were detwinned in situ. The thermoelectric response shows sizable anisotropy in the spin density wave (SDW) state for both compounds, while some dissimilarities in the vicinity of the SDW transition can be attributed to the different nature of the phase change in BaF e2A s2 and CaF e2A s2 . Temperature dependences of S and ν can be described within a two-band model that contains a contribution from highly mobile, probably Dirac, electrons. The Dirac band seems to be rather isotropic, whereas most of the anisotropy in the transport phenomena could be attributed to "regular" holelike charge carriers. We also observe that the off-diagonal element of the Peltier tensor αx y is not the same for the a and b orthorhombic axes, which indicates that the widely used Mott formula is not applicable to the SDW state of iron-based superconductors.

  5. Characterization of the velocity anisotropy of accreted globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Sills, A.; Miholics, M.

    2017-10-01

    Galactic globular clusters (GCs) are believed to have formed in situ in the Galaxy as well as in dwarf galaxies later accreted on to the Milky Way. However, to date, there is no unambiguous signature to distinguish accreted GCs. Using specifically designed N-body simulations of GCs evolving in a variety of time-dependent tidal fields (describing the potential of a dwarf galaxy-Milky Way merger), we analyse the effects imprinted on the internal kinematics of an accreted GC. In particular, we look at the evolution of the velocity anisotropy. Our simulations show that at early phases, the velocity anisotropy is determined by the tidal field of the dwarf galaxy and subsequently the clusters will adapt to the new tidal environment, losing any signature of their original environment in a few relaxation times. At 10 Gyr, GCs exhibit a variety of velocity anisotropy profiles, namely, isotropic velocity distribution in the inner regions and either isotropy or radial/tangential anisotropy in the intermediate and outer regions. Independent of an accreted origin, the velocity anisotropy primarily depends on the strength of the tidal field cumulatively experienced by a cluster. Tangentially anisotropic clusters correspond to systems that have experienced stronger tidal fields and are characterized by higher tidal filling factor, r50/rj ≳ 0.17, higher mass-loss ≳ 60 per cent and relaxation times trel ≲ 109 Gyr. Interestingly, we demonstrate that the presence of tidal tails can significantly contaminate the measurements of velocity anisotropy when a cluster is observed in projection. Our characterization of the velocity anisotropy profiles in different tidal environments provides a theoretical benchmark for the interpretation of the unprecedented amount of three-dimensional kinematic data progressively available for Galactic GCs.

  6. Annealing temperature and thickness dependencies of structural and magnetic properties of Co2FeAl thin films

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Zighem, F.; Roussigné, Y.; Faurie, D.; Tiusan, C.

    2016-09-01

    Co2FeAl (CFA) thin films, of various thicknesses (3 nm≤t ≤50 nm ), have been grown by sputtering on (001) MgO single-crystal substrates and annealed at different temperatures (RT≤Ta≤600 ∘C , where RT is the room temperature). The influence of the CFA thickness (t ), as well as ex situ annealing temperature (Ta), on the magnetic and structural properties has been investigated by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed an epitaxial growth of the films with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B 2 phase to the A 2 phase when decreasing t or Ta. The deduced lattice parameters showed an in-plane tetragonal distortion and in-plane and out-plane strains that increase with Ta and 1 /t . For all Ta values, the variation of the effective magnetization, deduced from the fit of MS-FMR measurements, shows two different regimes separated by a critical thickness, which is Ta dependent. It decreases (increases) linearly with the inverse thickness (1 /t ) in the first (second) regime due to the contribution of the magnetoelastic anisotropy to surface (to volume) anisotropy. The observed behavior has been analyzed through a model allowing for the separation of the magnetocrystalline, magnetoelastic, and Néel-type interface anisotropy constants to the surface and the volume anisotropies. Similar behavior has been observed for the effective fourfold anisotropy field which governs the in-plane anisotropy present in all the samples. Finally, the MS-FMR data also allow one to conclude that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta.

  7. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.

    2014-05-01

    Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.

  8. Equatorial anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda

    NASA Astrophysics Data System (ADS)

    Wang, T.; Song, X.; Xia, H.

    2014-12-01

    The anisotropic structure of the inner core seems complex with significant depth and lateral variations. An innermost inner core has been suggested with a distinct form of anisotropy, but it has considerable uncertainties in its form, size, or even existence. All the previous inner-core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. In this study, we obtain inner-core phases, PKIIKP2 and PKIKP2 (the round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner-core boundary, respectively), from stackings of autocorrelations of earthquake coda at seismic station clusters around the world. The differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure, show fast arrivals at high latitudes. However, we also observed large variations of up to 10 s along equatorial paths. These observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The form of the anisotropy in the IIC is distinctly different from that in the OIC and the anisotropy amplitude in the IIC is about 70% stronger than in the OIC. The different forms of anisotropy may be explained by a two-phase system of iron in the inner core (hcp in the OIC and bcc in the IIC). These results may suggest a major shift of the tectonics of the inner core during its formation and growth.

  9. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  10. Azimuthal anisotropy measurements by STAR

    NASA Astrophysics Data System (ADS)

    Yi, Li

    2014-06-01

    The recent study of centrality and transverse momentum (pT) dependence of inclusive charged hardron elliptic anisotropy (v2) at midrapidity (|η|<1.0) in Au+Au collision at √{sNN}=7.7,11.5,19.6,27, and 39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v2 is mainly due to the average pT increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v3) measurements highly depend on measurement methods; v3 is strongly dependent on Δη. The difference between two- and four-particle cumulants v2{2} and v2{4} for Au+Au and Cu+Cu collision at √{sNN}=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v2{2} and v2{4}.

  11. Anisotropy beneath the Southern Pacific - real or apparent?

    NASA Astrophysics Data System (ADS)

    Prasse, Philipp; Thomas, Christine

    2016-04-01

    Anisotropy of the lowermost mantle beneath the South- to Central Pacific is investigated using US-Array receivers and events located near the Tonga-Fiji subduction zones. Differential splitting in three different distance ranges (65° -85° , 90° -110° and >110°) of S-ScS, SKS-S, SKS-Sdiff phases is used. By utilizing differential splitting technique, it was possible to correct for upper mantle, as well as source- and receiver side anisotropy and effectively quantify shear wave splitting originating in the lowermost mantle. Delay times of horizontal (SH) and vertical polarized (SV) shear waves show that predominantly the SH wave is delayed relative to the SV wave. Motivated by the discrepancy in previous Pacific studies investigating the lowermost mantle beneath the Pacific the possibility of isotropic structure producing the observed splitting is tested. Synthetic seismograms are computed, based on various isotropic models and the resulting synthetics are analysed in the same way as the real data. While simple layered models do not produce splitting and therefore apparent anisotropy, models in which the lowermost mantle is represented as a negative gradient in P- and S-wave velocity, produce clear apparent anisotropy. Thus, this study presents a possible alternative way of explaining the structure of the D" region.

  12. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    NASA Astrophysics Data System (ADS)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  13. Effects of Hall current and electron temperature anisotropy on proton fire-hose instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Wang, B.-J.

    The standard magnetohydrodynamic (MHD) theory predicts that the Alfvén wave may become fire-hose unstable for β{sub ∥}−β{sub ⊥}>2. In this study, we examine the proton fire-hose instability (FHI) based on the gyrotropic two-fluid model, which incorporates the ion inertial effects arising from the Hall current and electron temperature anisotropy but neglects the electron inertia in the generalized Ohm's law. The linear dispersion relation is derived and analyzed which in the long wavelength approximation, λ{sub i}k→0 or α{sub e}=μ{sub 0}(p{sub ∥,e}−p{sub ⊥,e})/B{sup 2}=1, recovers the ideal MHD model with separate temperature for ions and electrons. Here, λ{sub i} is the ionmore » inertial length and k is the wave number. For parallel propagation, both ion cyclotron and whistler waves become propagating and growing for β{sub ∥}−β{sub ⊥}>2+λ{sub i}{sup 2}k{sup 2}(α{sub e}−1){sup 2}/2. For oblique propagation, the necessary condition for FHI remains to be β{sub ∥}−β{sub ⊥}>2 and there exist one or two unstable fire-hose modes, which can be propagating and growing or purely growing. For large λ{sub i}k values, there exists no nearly parallel FHI leaving only oblique FHI and the effect of α{sub e}>1 may greatly enhance the growth rate of parallel and oblique FHI. The magnetic field polarization of FHI may be reversed due to the sign change associated with (α{sub e}−1) and the purely growing FHI may possess linear polarization while the propagating and growing FHI may possess right-handed or left-handed polarization.« less

  14. Compositional dependence of magnetic anisotropy in chemically synthesized Co3- x Fe x O4 (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Hayashi, Kensuke; Yamada, Keisuke; Shima, Mutsuhiro

    2018-01-01

    Magnetic anisotropy of Co3- x Fe x O4 (CFO, 0 ≤ x ≤ 2) thin-film and powder samples prepared by a sol-gel method has been investigated as a function of Fe composition x. Structural analyses by X-ray diffraction show that CFO powder samples exhibit diffraction peaks associated with the spinel structure when x < 2, while CFO thin-film samples with thickness of 130-510 nm yield the peaks when 0 ≤ x ≤ 2. CFO thin-film samples are highly (111)-oriented with the Lotgering factor greater than 0.9 when 0.6 ≤ x ≤ 1.3. The magnetic anisotropy constant K 1 of CFO powder samples estimated from their room-temperature hysteresis loops yields a minimum when x = 0.9. Relatively large in-plane magnetic anisotropy (K eff = 5.7 × 105 erg/cm3) is observed for the CFO thin-film sample when x = 1.3. With increasing x, the magnetic easy axis of the spinel CFO changes from 〈111〉 to 〈100〉 when x = 0.9.

  15. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  16. Gravitational decoupled anisotropies in compact stars

    NASA Astrophysics Data System (ADS)

    Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos

    2018-05-01

    Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.

  17. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    NASA Technical Reports Server (NTRS)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; hide

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < I < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  18. Spectral Photosensitization of Optical Anisotropy in Solid Poly(Vinyl Cinnamate) Films

    NASA Astrophysics Data System (ADS)

    Kozenkov, V. M.; Spakhov, A. A.; Belyaev, V. V.; Chausov, D. N.; Chigrinov, V. G.

    2018-04-01

    The possibility and features of formation of sensitized photoinduced optical anisotropy in amorphous films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) under the action of polarized light (including light that is not absorbed by polymer macromolecules themselves) have been investigated. It is found that the effect of induced optical anisotropy is based on the transfer of electron excitation energy from donor (sensitizer) molecules to acceptor molecules and is observed in the course of phototopochemical biomolecular cyclization reaction of cinnamate fragments in polymer macromolecules. The detected photoinduced anisotropy in solid films of poly(vinyl cinnamate) and its derivative poly(vinyl-4-metoxicinnamate) ensures sensitized photo-orientation of low-molecular thermotropic liquid crystals.

  19. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh

    2017-08-01

    This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.

  20. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  1. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  2. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy

  3. Magneto-ionic effect in CoFeB thin films with in-plane and perpendicular-to-plane magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.

    2017-01-01

    The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.

  4. Huge critical current density and tailored superconducting anisotropy in SmFeAsO₀.₈F₀.₁₅ by low-density columnar-defect incorporation.

    PubMed

    Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K

    2013-01-01

    Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.

  5. Perpendicular magnetic anisotropy of La0.67Sr0.33MnO3 thin films grown on CaMnO3 buffered SrTiO3

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hong; Cristiani, G.; Habermeier, H.-U.; Zhang, Zhen-Rong; Han, Bao-Shan

    2003-10-01

    La0.67Sr0.33MnO3(LSMO) thin films were grown onto CaMnO3(CMO) buffered SrTiO3(100) by pulsed laser deposition. Because of the in-plane compressive strain induced by the lattice mismatch between CMO and LSMO, a perpendicular magnetic anisotropy (PMA) was obtained in the overlayer LSMO. Using the magnetic force microscopy, stripe magnetic domains in association with the PMA were observed at room temperature. Furthermore, the magnetoresistance with in-plane magnetic field parallel and vertical to the measuring current was studied at 5 and 300 K, and its correlation with the magnetic anisotropy has been discussed.

  6. Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations

    NASA Technical Reports Server (NTRS)

    Vinas, A.F.; Gurgiolo, C.; Nieves-Chinchilla, T.; Gary, S. P.; Goldstein, M. L.

    2010-01-01

    Observed properties of the strahl using high resolution 3D electron velocity distribution data obtained from the Cluster/PEACE experiment are used to investigate its linear stability. An automated method to isolate the strahl is used to allow its moments to be computed independent of the solar wind core+halo. Results show that the strahl can have a high temperature anisotropy (T(perpindicular)/T(parallell) approximately > 2). This anisotropy is shown to be an important free energy source for the excitation of high frequency whistler waves. The analysis suggests that the resultant whistler waves are strong enough to regulate the electron velocity distributions in the solar wind through pitch-angle scattering

  7. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    NASA Astrophysics Data System (ADS)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  8. Solar wind helium ions - Observations of the Helios solar probes between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Schwenn, R.; Muehlhaeuser, K.-H.; Neubauer, F. M.

    1982-01-01

    A Helios solar probe survey of solar wind helium ion velocity distributions and derived parameters between 0.3 and 1 AU is presented. Distributions in high-speed wind are found to generally have small total anisotropies, with some indication that, in the core part, the temperatures are greater parallel rather than perpendicular to the magnetic field. The anisotropy tends to increase with heliocentric radial distance, and the average dependence of helium ion temperatures on radial distance from the sun is described by a power law. Differential ion speeds with values of more than 150 km/sec are observed near perihelion, or 0.3 AU. The role of Coulomb collisions in limiting differential ion speeds and the ion temperature ratio is investigated, and it is found that collisions play a distinct role in low-speed wind, by limiting both differential ion velocity and temperature.

  9. Isolating the anisotropy of the characteristic remanence-carrying hematite grains: a first multispecimen approach

    NASA Astrophysics Data System (ADS)

    Bilardello, Dario

    2015-08-01

    Separating the contribution of different hematite coercivity grains to the magnetic fabric is a standing problem in rock magnetism because of the common occurrence of thermochemical alterations when measuring the anisotropy of thermal remanence. A technique that eliminates this bias is presented, which is useful when there is a need to separate the fabric of detrital from pigmentary hematite, for example. The method is based on stepwise thermal demagnetization of saturation isothermal remanent magnetizations (IRMs) applied orthogonally on three sister specimens, allowing calculation of the anisotropy tensor from the three components of each demagnetized IRM vector, avoiding the necessity of having to apply IRMs to thermochemically altered specimens. Vector subtraction allows determining the anisotropy tensor for specific unblocking-temperature ranges. The anisotropies of the pigmentary, specular and total hematite of the Mauch Chunk Formation red beds of Pennsylvania have been measured from an oriented block sample and results are compared to previous anisotropy measurements performed using the high-field anisotropy of isothermal remanence technique (hf-AIR), which measures total undifferentiated hematite. Experiments were conducted using non-saturating 1 T and fully saturating 5.5 T fields: both experimental sets seem capable of measuring the orientation of the specularite anisotropy principal axes, but 5.5 T are needed to capture the orientation of the higher coercivity pigmentary grains. The magnitudes of the principal axes, instead, are only faithfully measured using 5.5 T fields and yield somewhat higher anisotropies than those measured by hf-AIR. The fundamental requirement for this technique is homogeneous material among the three sister specimens, which is a significant limitation; homogeneity tests allow assessment of applicability of the method and reliability of the results.

  10. Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal

    NASA Astrophysics Data System (ADS)

    Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla

    2018-05-01

    Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.

  11. Observation of high magnetocrystalline anisotropy on Co doping in rare earth free Fe2P magnetic material

    NASA Astrophysics Data System (ADS)

    Thakur, Jyoti; Singh, Om Pal; Tomar, Monika; Gupta, Vinay; Kashyap, Manish K.

    2018-04-01

    ab-initio investigation of magnetocrystalline anisotropy energy (MAE) for Fe2P and CoFeP using density functional theory based full-potential linear augmented plane wave (FPLAPW) is reported. CoFeP alloy exhibits large magnetic moment 13.28 µB and enhanced anisotropy energy reaching as high as 1326 µeV/f.u. This energy is nearly doubled as compared to its parent Fe2P alloy, making this system a promising candidate for a rare earth free permanent magnet. Substituitng Co at Fe-3f site in Fe2P helps in stabilizing the new structure and further improves the magnetic properties.

  12. Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in pp and p+Pb Collisions at the LHC.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rabady, D; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Stoykova, S; Sultanov, G; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Assran, Y; Mahmoud, M A; Mahrous, A; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominen, E; Tuominiemi, J; Tuovinen, E; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Verlage, T; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Roland, B; Savitskyi, M; Saxena, P; Shevchenko, R; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Freund, B; Friese, R; Giffels, M; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Csanad, M; Filipovic, N; Pasztor, G; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Robutti, E; Tosi, S; Benaglia, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chistov, R; Danilov, M; Parygin, P; Philippov, D; Polikarpov, S; Tarkovskii, E; Zhemchugov, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Stojanovic, M; Alcaraz Maestre, J; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; Albajar, C; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Dobson, M; Dorney, B; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Janot, P; Karacheban, O; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Grynyov, B; Levchuk, L; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Macneill, I; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bendavid, J; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Schulte, J F; Sun, J; Wang, F; Xie, W; Cheng, T; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Sturdy, J; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2018-03-02

    The azimuthal anisotropy Fourier coefficients (v_{n}) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v_{n} correlations are measured for the first time in pp and p+Pb collisions. The v_{2} and v_{4} coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v_{2} and v_{3} is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.

  13. Probing pre-inflationary anisotropy with directional variations in the gravitational wave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp

    We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.

  14. ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amenomori, M.; Bi, X. J.; Ding, L. K.

    2010-03-01

    We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solarmore » cycle.« less

  15. Thickness and angular dependent magnetic anisotropy of La0.67Sr0.33MnO3 thin films by Vectorial Magneto Optical Kerr Magnetometry

    NASA Astrophysics Data System (ADS)

    Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.

    2017-10-01

    We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.

  16. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGES

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; ...

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  17. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    PubMed

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  18. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈ 2×10 –8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstratemore » that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  19. Interfacial perpendicular magnetic anisotropy in CoFeB/MgO structure with various underlayers

    NASA Astrophysics Data System (ADS)

    Oh, Young-Wan; Lee, Kyeong-Dong; Jeong, Jong-Ryul; Park, Byong-Guk

    2014-05-01

    Interfacial perpendicular magnetic anisotropy (PMA) in CoFeB/MgO structures was investigated and found to be critically relied on underlayer material and annealing temperature. With Ta or Hf underlayer, clear PMA is observed in as-deposited samples while no PMA was shown in those with Pt or Pd. This may be attributed to smaller saturation magnetization of the films with Ta or Hf underlayer, which makes the PMA of CoFeB/MgO interface dominates over demagnetization field. On the contrary, samples with Pt or Pd demonstrate PMA only after annealing, which might be due to the CoPt (or CoPd) alloy formation that enhances PMA.

  20. Trajectory Design for the Microwave Anisotropy Probe (MAP)

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Rohrbaugh, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Microwave Anisotropy, Probe (MAP) is a Medium Class Explorers (MIDEX) Mission produced in partnership between Goddard Space Flight Center (GSFC) and Princeton University. The goal of the MAP mission is to produce an accurate fill-sky, map of the cosmic microwave background temperature fluctuations (anisotropy). The mission orbit is a Lissajous orbit about the L(sub 2) Sun-Earth Lagrange point. The trajectory design for MAP is complex, having many requirements that must be met including shadow avoidance, sun angle constraints, Lissqjous size and shape characteristics, and limited Delta-V budget. In order to find a trajectory that met the design requirements for the entire 4-year mission lifetime goal, GSFC Flight Dynamics engineers performed many analyses, the results of which are presented herein. The paper discusses the preliminary trade-offs to establish a baseline trajectory, analysis to establish the nominal daily trajectory, and the launch window determination to widen the opportunity from instantaneous to several minutes for each launch date.

  1. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  2. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  3. On the Relationship Between Scintillation Anisotropy and Crystal Structure in Pure Crystalline Organic Scintillator Materials

    DOE PAGES

    Schuster, Patricia; Feng, Patrick; Brubaker, Erik

    2018-05-03

    We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less

  4. Transient electronic anisotropy in overdoped NaF e1 -xC oxAs superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Shenghua; Zhang, Chunfeng; Deng, Qiang; Wen, Hai-hu; Li, Jian-xin; Chia, Elbert E. M.; Wang, Xiaoyong; Xiao, Min

    2018-01-01

    By combining polarized pump-probe spectroscopic and Laue x-ray diffraction measurements, we have observed nonequivalent transient optical responses with the probe beam polarized along the x and y axes in overdoped NaF e1 -xC oxAs superconductors. Such transient anisotropic behavior has been uncovered in the tetragonal phase with the doping level and temperature range far from the borders of static nematic phases. The measured transient anisotropy can be well explained as a result of nematic fluctuation driven by an orbital order with energy splitting of the dx z- and dy z-dominant bands. In addition, the doping level dependence and the pressure effect of the crossover temperature show significant differences between the transient nematic fluctuation and static nematic phase, implying spin and orbital orders may play different roles in static and transient nematic behaviors.

  5. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    NASA Astrophysics Data System (ADS)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  6. Constraints on Average Radial Anisotropy in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Trampert, J.; De Wit, R. W. L.; Kaeufl, P.; Valentine, A. P.

    2014-12-01

    Quantifying uncertainties in seismological models is challenging, yet ideally quality assessment is an integral part of the inverse method. We invert centre frequencies for spheroidal and toroidal modes for three parameters of average radial anisotropy, density and P- and S-wave velocities in the lower mantle. We adopt a Bayesian machine learning approach to extract the information on the earth model that is available in the normal mode data. The method is flexible and allows us to infer probability density functions (pdfs), which provide a quantitative description of our knowledge of the individual earth model parameters. The parameters describing shear- and P-wave anisotropy show little deviations from isotropy, but the intermediate parameter η carries robust information on negative anisotropy of ~1% below 1900 km depth. The mass density in the deep mantle (below 1900 km) shows clear positive deviations from existing models. Other parameters (P- and shear-wave velocities) are close to PREM. Our results require that the average mantle is about 150K colder than commonly assumed adiabats and consist of a mixture of about 60% perovskite and 40% ferropericlase containing 10-15% iron. The anisotropy favours a specific orientation of the two minerals. This observation has important consequences for the nature of mantle flow.

  7. Large-Angular-Scale Anisotropy in the Cosmic Background Radiation

    DOE R&D Accomplishments Database

    Gorenstein, M. V.; Smoot, G. F.

    1980-05-01

    We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1?}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

  8. Anisotropy induced anomalies in Dy 1$-$xTb xAl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M.; Miami Univ., Oxford, OH; Pathak, A. K.

    2017-01-02

    The Dy 1$-$xTb xAl 2 alloys have been investigated by X-ray powder diffraction, heat capacity, and magnetic measurements. All samples exhibit cubic Laves phase crystal structure at room temperature but at T C, DyAl2 and TbAl 2 show tetragonal and rhombohedral distortions, respectively. First order phase transitions are observed below T C (at the spin-reorientation transition, T SR) in the alloys with 0.15 ≤ x ≤ 0.35. These transitions are signified by sharp heat capacity peaks and corresponding anomalies in the magnetization and ac magnetic susceptibility data. The observations are interpreted by taking into consideration the differences in easy magnetizationmore » directions of DyAl 2 and TbAl 2. Due to the competing magnetic structures, the anisotropy-related instability and magnetic frustrations are prominent in the Dy 1$-$xTb xAl 2 alloys at certain concentrations resulting in the first order transitions.« less

  9. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  10. Ordered defects in Fe1-xS generate additional magnetic anisotropy symmetries

    NASA Astrophysics Data System (ADS)

    Koulialias, D.; Charilaou, M.; Schäublin, R.; Mensing, C.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.

    2018-01-01

    Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8), a ferrimagnetic monosulfide that has been intensively used as a remanence carrier to infer the magnetization of the Earth's crust and extraterrestrial materials, exhibits a characteristic low-temperature transition accompanied by complex modifications in anisotropy and magnetization. We demonstrate that the magnetic rotational symmetry of the 4C pyrrhotite is critically affected by the order of the defective Fe-sites, and this in turn is a key to decipher the physics behind the low-temperature transition. Our torque experiments and numerical simulations show an emergent four-fold rotational symmetry in the c-plane of the 4C pyrrhotite at T < 30 K. This symmetry breaking associated with the transition is caused by the competitive interaction of two inherently hexagonal systems generated by two groups of Fe-sites with different local anisotropy fields that stem from the vacancy arrangement in the 4C stacking sequence, and it is triggered by changes in the spin orbit coupling due to the overlap of Fe-Fe electron orbitals at low-temperature. This mechanism provides a new explanation for the magnetic transition in 4C pyrrhotite at low temperature and could also cast light on non-trivial magnetic phenomena in defective systems.

  11. The sidereal anisotropy of cosmic rays around 3 x 10 (15) eV observed at a middle north latitude

    NASA Technical Reports Server (NTRS)

    Murakami, K.; Kifune, T.; Hayashida, N.

    1985-01-01

    The sidereal time variation of cosmic rays (median primary energy : 3 10 to the 15th power eV) is investigated with air shower observations at Akeno, Japan (900 m a.s.l.) which started in September 1981. Air showers are detected by a coincidence requirement on several muon detectors. The result obtained for three years is suggestive of a big semi-diurnal variation (0.37 % in amplitude). On the other hand, the diurnal variation is rather small than the semi-diurnal one. The feature of the sidereal anisotropy supposed from the present result looks quite different from that below 10 to the 14th power eV.

  12. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere

    PubMed Central

    Qi, Chao; Warren, Jessica M.

    2016-01-01

    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485

  13. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.

    PubMed

    Hansen, Lars N; Qi, Chao; Warren, Jessica M

    2016-09-20

    Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  14. Finite driving rate and anisotropy effects in landslide modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piegari, E.; Cataudella, V.; Di Maio, R.

    2006-02-15

    In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non-power-law behaviors occurs. Finally, a systematic investigation of the model on varying its anisotropy factors is performed and the full diagram of its dynamical behaviors ismore » presented.« less

  15. Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy

    NASA Astrophysics Data System (ADS)

    Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara

    2016-04-01

    In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and

  16. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    DOE PAGES

    Lee, Sangwook; Yang, Fan; Suh, Joonki; ...

    2015-10-16

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phononmore » dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Lastly, our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.« less

  17. Energetic electron anisotropies in the magnetotail - Identification of open and closed field lines

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Stone, E. C.

    1976-01-01

    Unidirectional anisotropies in the energetic electron fluxes (E greater than or equal to about 200 keV) have been observed in the earth's magnetotail with the Caltech Electron/Isotope Spectrometer on IMP-8. The anisotropies occur during periods of enhanced fluxes and provide essential information on the topology (open or closed) of the magnetotail field lines which are associated with recently identified acceleration regions.

  18. Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Sakata, M.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Utsugi, T.; Wang, B. S.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.; Tibet Asγ Collaboration

    2005-06-01

    We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

  19. Precision ESR measurements of transverse anisotropy in the single-molecule magnet Ni4

    NASA Astrophysics Data System (ADS)

    Collett, Charles A.; Allão Cassaro, Rafael A.; Friedman, Jonathan R.

    2016-12-01

    We present a method for precisely measuring the tunnel splitting in single-molecule magnets (SMMs) using electron-spin resonance, and use these measurements to precisely and independently determine the underlying transverse anisotropy parameter, given a certain class of transitions. By diluting samples of the SMM Ni4 via cocrystallization in a diamagnetic isostructural analog we obtain markedly narrower resonance peaks than are observed in undiluted samples. Using custom loop-gap resonators we measure the transitions at several frequencies, allowing a precise determination of the tunnel splitting. Because the transition under investigation occurs at zero field, and arises due to a first-order perturbation from the transverse anisotropy, we can determine the magnitude of this anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with tunnel splittings arising from first-order transverse anisotropy perturbations.

  20. Microstructures and seismic anisotropy of blueschist and eclogite from Ring Mountain and Jenner in California

    NASA Astrophysics Data System (ADS)

    Ha, Yoonhae; Jung, Haemyeong; Raymond, Loren

    2016-04-01

    Seismic anisotropy has been observed in many subduction zones. During subduction of slab, the oceanic crust changes to blueschist and eclogite. Since minerals in blueschist are very anisotropic elastically, seismic properties in the subducting slab can be attributed to the lattice preferred orientation (LPO) of these minerals. We studied microstructures and seismic properties of blueschist and eclogite from Ring Mt. and Jenner in California. Blueschist samples are mainly composed of glaucophane, epidote and phengite. Eclogite samples are mostly composed of omphacite, glaucophane, epidote and garnet. We determined LPOs of minerals using SEM/EBSD and calculated seismic properties of minerals and whole rocks. LPOs of glaucophane showed [001] axes are aligned subparallel to lineation, and both (110) poles and [100] axes subnormal to foliation. Glaucophane in samples from Jenner, however, exhibited [001] axes forming a girdle subparallel to lineation. Seismic anisotropy of glaucophane was stronger in samples from Ring Mt. than those from Jenner. Epidote showed [001] axes are aligned subnormal to foliation and (110) and (010) poles subparallel to lineation. LPOs of phengite were characterized by a maximum of [001] axes normal to foliation, with (110) and (010) poles and [100] axes aligning in a girdle parallel to foliation. Phengite showed the strongest seismic anisotropy among major minerals. LPOs of omphacite showed [001] axes are aligned subparallel to lineation and [010] axes subnormal to foliation. Seismic anisotropy of omphacite were very weak. Blueschist from Ring Mt. showed stronger seismic anisotropy than those from Jenner. Especially, blueschist including abundant phengite showed very strong seismic anisotropy (AVP=30%, max.AVS=23%). Eclogite showed much weaker seismic anisotropy (AVP=7%, max.AVS=6%) than blueschist (AVP=12-30%, max.AVS=9-23%). Therefore, strong seismic anisotropy observed in subduction zone can be more affected by blueschist than eclogite.

  1. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe.

    PubMed Central

    Davenport, L; Targowski, P

    1996-01-01

    The use of the long-lived fluorescence probe coronene (mean value of tau(FL) approximately 200 ns) is described for investigating submicrosecond lipid dynamics in DPPC model bilayer systems occurring below the lipid phase transition. Time-resolved fluorescence emission anisotropy decay profiles, measures as a function of increasing temperature toward the lipid-phase transition temperature (T(C)), for coronene-labeled DPPC small unilamellar vesicles (SUVs), are best described in most cases by three rotational decay components (phi(i = 3)). We have interpreted these data using two dynamic lipid bilayer models. In the first, a compartmental model, the long correlation time (phi(N)) is assigned to immobilized coronene molecules located in "gel-like" or highly ordered lipid phases (S-->1) of the bilayer, whereas a second fast rotational time (phi(F) approximately 2-5 ns) is associated with probes residing in more "fluid-like" regions (with corresponding lower ordering, S-->0). Interests here have focused on the origins of an intermediate correlation time (50-100 ns), the associated amplitude (beta(G)) of which increases with increasing temperature. Such behavior suggests a changing rotational environment surrounding the coronene molecules, arising from fluidization of gel lipid. The observed effective correlation time (phi(EFF)) thus reflects a discrete gel-fluid lipid exchange rate (k(FG)). A refinement of the compartmental model invokes a distribution of gel-fluid exchange rates (d(S,T)) corresponding to a distribution of lipid order parameters and is based on an adapted Landau expression for describing "gated" packing fluctuations. A total of seven parameters (five thermodynamic quantities, defined by the free energy versus temperature expansion; one gating parameter (gamma) defining a cooperative "melting" requirement; one limiting diffusion rate (or frequency factor: d(infinity))) suffice to predict complete anisotropy decay curves measured for coronene at several

  2. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    NASA Astrophysics Data System (ADS)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  3. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation

    NASA Astrophysics Data System (ADS)

    Licciardi, A.; Eken, T.; Taymaz, T.; Piana Agostinetti, N.; Yolsal-Çevikbilen, S.

    2018-04-01

    We investigate the crustal seismic structure and anisotropy around the central portion of the North Anatolian Fault Zone, a major plate boundary, using receiver function analysis. The characterization of crustal seismic anisotropy plays a key role in our understanding of present and past deformation processes at plate boundaries. The development of seismic anisotropy in the crust arises from the response of the rocks to complicated deformation regimes induced by plate interaction. Through the analysis of azimuthally-varying signals of teleseismic receiver functions, we map the anisotropic properties of the crust as a function of depth, by employing the harmonic decomposition technique. Although the Moho is located at a depth of about 40 km, with no major offset across the area, our results show a clear asymmetric distribution of crustal properties between the northern and southern blocks, divided by the North Anatolian Fault Zone. Heterogeneous and strongly anisotropic crust is present in the southern block, where complex intra-crustal signals are the results of strong deformation. In the north, a simpler and weakly anisotropic crust is typically observed. The strongest anisotropic signal is located in the first 15 km of the crust and is widespread in the southern block. Stations located on top of the main active faults in the area indicate the highest amplitudes, together with fault-parallel strikes of the fast plane of anisotropy. We interpret the origin of this signal as due to structure-induced anisotropy, and roughly determine its depth extent up to 15-20 km for these stations. Away from the faults, we suggest the contribution of previously documented uplifted basement blocks to explain the observed anisotropy at upper and middle crustal depths. Finally, we interpret coherent NE-SW orientations below the Moho as a result of frozen-in anisotropy in the upper mantle, as suggested by previous studies.

  4. Seismic anisotropy in localized shear zones versus distributed tectonic fabrics: examples from geologic and seismic observations in western North America and the European Alps

    NASA Astrophysics Data System (ADS)

    Mahan, Kevin H.; Schulte-Pelkum, Vera; Condit, Cailey; Leydier, Thomas; Goncalves, Philippe; Raju, Anissha; Brownlee, Sarah; Orlandini, Omero F.

    2017-04-01

    amphibolite-facies (0.9-1.0 GPa, 700 °C) mafic metagabbro from Precambrian exposures in Montana (USA) and in greenschist-facies (0.7-0.8 GPa, 450-500 °C) metagranites from the External Crystalline Massifs of the European Central Alps. The shear zones are characterized by strain gradients from undeformed coarse-grained protoliths to very fine grained ultramylonite, and by microstructures dominated by CPO-producing deformation mechanisms in the protomylonite and CPO-weakening mechanisms such as dissolution-precipitation creep and grain boundary sliding in the ultramylonite. In the mafic mylonites, the result is a lower seismic anisotropy ( 2%) in the core of the shear zones despite a well-developed hornblende shape-preferred orientation. Preliminary observations of these examples suggest that marginal gradients may contribute as much or more to the bulk anisotropy signal compared to the higher strained cores of these structures. If true, a similar effect could explain some otherwise puzzling anisotropy studies of larger scale shear zones such as from the Himalaya where anisotropy tilt proximal to the Main Himalayan Thrust is notably steeper than expected. In conclusion, while some anisotropy studies of crustal scale deformation patterns are relatively straightforward, others will require careful consideration of the limitations and potential future improvements to seismic detection methods, including ground truthing based on samples and exposures as well as a better understanding of physical processes involved in deformation localization.

  5. Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N

    NASA Astrophysics Data System (ADS)

    Barclay, Andrew H.; Toomey, Douglas R.

    2003-08-01

    Shear wave splitting observed in microearthquake data at the axis of the Mid-Atlantic Ridge near 35°N has a fast polarization direction that is parallel to the trend of the axial valley. The time delays between fast and slow S wave arrivals range from 35 to 180 ms, with an average of 90 ms, and show no relationship with ray path length, source-to-receiver azimuth, or receiver location. The anisotropy is attributed to a shallow distribution of vertical, fluid-filled cracks, aligned parallel to the trend of the axial valley. Joint modeling of the shear wave anisotropy and coincident P wave anisotropy results, using recent theoretical models for the elasticity of a porous medium with aligned cracks, suggests that the crack distribution that causes the observed P wave anisotropy can account for at most 10 ms of the shear wave delay. Most of the shear wave delay thus likely accrues within the shallowmost 500 m (seismic layer 2A), and the percent S wave anisotropy within this highly fissured layer is 8-30%. Isolated, fluid-filled cracks at 500 m to 3 km depth that are too thin or too shallow to be detected by the P wave experiment may also contribute to the shear wave delays. The joint analysis of P and S wave anisotropy is an important approach for constraining the crack distributions in the upper oceanic crust and is especially suited for seismically active hydrothermal systems at slow and intermediate spreading mid-ocean ridges.

  6. Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work

  7. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  8. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  9. Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors.

    PubMed

    Wang, Jing; Zuo, Zhili; Huang, Liang; Warsi, Muhammad Asif; Xiao, John Q; Hu, Jun

    2018-06-21

    Fe-Co-Ni gradient-diameter magnetic nanowire arrays were fabricated via direct-current electrodeposition into a tapered anodic aluminium oxide template. In contrast to the magnetic behaviors of uniform-diameter nanowire arrays, these arrays exhibited tailorable magnetic anisotropy that can be used to switch magnetic nanowires easily and unconventional temperature-dependent coercivity with much better thermal stability.

  10. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting

  11. Magnetocrystalline anisotropy of cementite pseudo single crystal fabricated under a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Yamamoto, Sukeyoshi; Terai, Tomoyuki; Fukuda, Takashi; Sato, Kazunori; Kakeshita, Tomoyuki; Horii, Shigeru; Ito, Mikio; Yonemura, Mitsuharu

    2018-04-01

    We have fabricated a pseudo single crystal of cementite under a rotating magnetic field and investigated its easy and hard axes of magnetization, and determined its magnetocrystalline anisotropy energy. The obtained results are as follows: the hard and easy axes of cementite are the a- and c-axes of the orthorhombic structure with the space group Pnma, respectively. The hard axis observed experimentally was in good agreement with that obtained by an ab initio calculation; however, such consistency was not observed for the easy axis. The magnetocrystalline anisotropy energy was determined as 334 ± 20 kJ/m3 at 5 K.

  12. Lattice preferred orientation development in lower mantle minerals: Implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Miyagi, L. M.

    2011-12-01

    Seismic anisotropy in the deep earth likely results from deformation induced texturing (lattice preferred orientation) of polycrystalline rocks in the Earth's interior. Interpreting these anisotropies in terms of the dynamics and deformation structure of the deep earth requires an understanding of the mechanisms that lead to texturing. In high pressure experiments texture can develop during phase transformations, recrystallization, and deformation. Active deformation mechanisms can be constrained by modeling experimental deformation textures with polycrystal plasticity codes. Once the dominant deformation mechanisms are established for the relevant mineral phases, this information can be combined with geodynamic modeling to predict texture and anisotropy development in the Earth's interior. In (Mg,Fe)SiO3 perovskite (Pv), the major mineral phase of the lower mantle, diamond anvil cell deformation textures are consistent with dominant slip on (001) planes in [100], [010] and/or <110> direction (e.g. Wenk et al. 2006; Miyagi et al. 2010a). (Mg,Fe)O magnesiowüstite (Mw) the second most abundant phase in the lower mantle, produces textures consistent with slip on {110}<-110> (e.g. Merkel et al 2002; Long et al. 2009). Although these two phases develop significant texture during deformation experiments, interestingly, the bulk of the lower mantle exhibits very little anisotropy. This lack of anisotropy may be due to deformation by diffusion processes which do not produce texture (e.g. Karato et al. 1995), or to the fact that deformation textures in Pv and Mw produce opposite anisotropies which cancel each other, yielding a nearly isotropic aggregate (Wenk et al. 2006). In the D" region, (Mg,Fe)SiO3 post-perovskite (pPv) is thought to be the major mineral phase. High pressure deformation experiments on MgGeO3 pPv (Okada et al. 2010; Miyagi et al. 2011) and MgSiO3 pPv (Miyagi et al. 2010b) at ambient temperature, as well as MnGeO3 pPv at 2000 K (Hirose et al. 2010), all

  13. Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.

    2014-04-01

    Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.

  14. First Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Preliminary Maps and Basic Results

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N.; Tucker, G. S.

    2003-01-01

    We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58 less than f(sub NL) less than 134 (95% CL). The 2 less than or = l less than or = 900 anisotropy power spectrum is cosmic variance limited for l less than 354 with a signal-to-noise ratio greater than 1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is tau = 0.17 +/- 0.04, which implies a reionization epoch of t(sub r) = 180(sup +220, sub -80) Myr (95% CL) after the Big Bang at a redshift of z(sub r) = 20(sup +10, sub -9) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(sub 0) = 13.7 +/- 0.2 Gyr old. Decoupling was t(sub dec) = 379(sup +8, sub -7)kyr after the Big Bang at a redshift of z(sub dec) = 1089 +/- 1. The thickness of the decoupling surface was Delta(sub z(sub dec)) = 195 +/- 2. The matter density of the universe is Omega(sub m)h(sup 2) = 0.135(sup +0.008, sub -0.009) the baryon density is Omega(sub b)h(sup 2) = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega(sub tot) = 1.02 +/- 0.02. There is progressively less fluctuation power on smaller scales, from WMAP to fine scale CMB measurements to galaxies

  15. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K

    PubMed Central

    Lee, Sangwook; Yang, Fan; Suh, Joonki; Yang, Sijie; Lee, Yeonbae; Li, Guo; Sung Choe, Hwan; Suslu, Aslihan; Chen, Yabin; Ko, Changhyun; Park, Joonsuk; Liu, Kai; Li, Jingbo; Hippalgaonkar, Kedar; Urban, Jeffrey J.; Tongay, Sefaattin; Wu, Junqiao

    2015-01-01

    Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials. PMID:26472285

  16. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    NASA Astrophysics Data System (ADS)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical

  17. On the Anisotropy of the He+, C+, O+, and Ne+ Pickup Ion Velocity Distribution Function: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Taut, A.; Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2015-12-01

    PickUp Ions (PUIs) are typically characterized by (1) their almost exclusively single charge state, (2) a highly non-thermal and anisotropic Velocity Distribution Function (VDF) [Drews et al., 2015], and (3) an extended source population of neutral atoms somewhere between the observer and the Sun. The origin of pickup ions ranges from sources only several solar radii away from the Sun, the so-called inner-source of pickup ions, up to a distance of several hundreds of astronomical units, the local interstellar medium. Their continuous production inside the heliosphere and complex interactions with the magnetized solar wind plasma leads to the development of non-thermal, anisotropic features of both the solar wind and pickup ion velocity distribution functions. In this study, we present observations of the VDF of He+, C+, N+, O+ and Ne+ pickup ions with PLASTIC on STEREO A. We have found a PUI flux increase during perpendicular configurations of the local magnetic field that is generally linked to the existence of a so-called torus-distribution [Drews et al., 2015] which is attributed to the production of PUIs close to the observer. A comparison of the PUI VDF between radial and perpendicular configurations of the local magnetic field vector is used to quantify the anisotropy of the PUI VDF and thereby enables us to estimate the mean free path for pitch-angle scattering of He, C, N, O and Ne pickup ions without the necessity of an over-simplified heliospheric model to describe the PUI phase space transport. Our results show a clear signature of a C+ torus signature at 1 AU as well as significant differences between the anisotropies of the He+ and O+ VDF. We will discuss our results in the light of recent studies about the nature of the inner-source of PUIs [Berger et al., 2015] and observations of the 2D VDF of He+[Drews et al., 2015]. Figure Caption: Velocity space diagrams of a pickup ion torus distribution as a (vx-vy)-projection (top left panel) and in the vz = 0

  18. Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in p p and p + Pb Collisions at the LHC

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-02-26

    Here, the azimuthal anisotropy Fourier coefficients (v n) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v n correlations are measured for the first time in pp and p+Pb collisions. The v 2 and v 4 coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v 2 and v 3 is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The newmore » correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.« less

  19. Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in p p and p +Pb Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Mahmoud, M. A.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ã.-.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Stojanovic, M.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-03-01

    The azimuthal anisotropy Fourier coefficients (vn) in 8.16 TeV p +Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in p p and PbPb collisions. Using a four-particle cumulant technique, vn correlations are measured for the first time in p p and p +Pb collisions. The v2 and v4 coefficients are found to be positively correlated in all collision systems. For high-multiplicity p +Pb collisions, an anticorrelation of v2 and v3 is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in p +Pb and PbPb collisions in the measured multiplicity range.

  20. Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in p p and p + Pb Collisions at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, the azimuthal anisotropy Fourier coefficients (v n) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v n correlations are measured for the first time in pp and p+Pb collisions. The v 2 and v 4 coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v 2 and v 3 is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The newmore » correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.« less

  1. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  2. A revisit to the temperature dependence of electrical resistivity of α - Titanium at low temperatures

    NASA Astrophysics Data System (ADS)

    Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.

    2017-09-01

    The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.

  3. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  4. Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.

    2016-10-01

    The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and

  5. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  6. The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxel, M. A.; Ishak, Mustapha; Peel, Austin, E-mail: troxel@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: austin.peel@utdallas.edu

    2014-03-01

    The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observablesmore » like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1−κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus

  7. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  8. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  9. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Rongming, E-mail: rmliu@iphy.ac.cn, E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E

    2014-05-07

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tensmore » of nanometers, an average diameter of ∼1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.« less

  10. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    DOE PAGES

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-18

    Here, a ring-like proton velocity distribution with ∂f p(v ⊥)/∂v ⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernsteinmore » instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T ⊥/T || for a general ring-like proton distribution with a fixed ring speed of 2v A, where v A is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T ⊥/T ||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as inline image. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.« less

  11. Seismic Anisotropy Beneath Eastern North America: Results from Multi-Event Inversion

    NASA Astrophysics Data System (ADS)

    Li, Y.; Levin, V. L.; Chen, X.

    2017-12-01

    Seismic anisotropy observed from the split core-refracted shear phases reflects upper mantle deformation. To characterize anisotropic signatures beneath eastern North America, we collected observations along a 1300 km long array from James Bay to the Fundy Basin. The averaged splitting parameters of individual sites show uniform fast polarization orientation of 80° and delay times linearly decreasing from 1.0 s in the Appalachians to 0.5 s in the Superior Province. We also see directional variation of fast polarizations at most sites, which is a likely effect of vertical changes in anisotropic properties. For sites with 10 or more observations, we used a multi-event inversion technique to solve for the underlying anisotropic structure. The technique considers the NULL observations from single-event analysis that are excluded from the averaged splitting parameters. For models with a single 100 km thick anisotropic layer with a horizontal fast axis, we find up to 6% of anisotropy in the Appalachian Orogen, equivalent to a splitting delay time of 1.5 s. Anisotropy strength reduces to 1.8% in the Superior Province, equivalent to delay times under 0.5 s. The overall decrease in anisotropic strength is modified by local changes of up to 2%, suggesting small-scale local variations near the surface. Orientations of the fast axes change from 60° in the Appalachian Orogen to 90° in the Superior Province, and are also modulated by local deviations. In the Appalachian Orogen the fast axes are close to the absolute plate motion in a hot-spot reference frame, while those in the Superior Province differ from it by almost 30°. Average values of splitting delays agree well with results of inversions in the Superior Province, and diverge in the Appalachians. Conversely, averaged fast polarizations match inversion results in the Appalachians, and are systematically different in the Superior Province. For an set of sites with recording periods exceeding 5 years, we will test more

  12. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  13. Anisotropy Induced Switching Field Distribution in High-Density Patterned Media

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Mohanty, J.

    We present here micromagnetic study of variation of switching field distribution (SFD) in a high-density patterned media as a function of magnetic anisotropy of the system. We consider the manifold effect of magnetic anisotropy in terms of its magnitude, tilt in anisotropy axis and random arrangements of magnetic islands with random anisotropy values. Our calculation shows that reduction in anisotropy causes linear decrease in coercivity because the anisotropy energy tries to align the spins along a preferred crystallographic direction. Tilt in anisotropy axis results in decrease in squareness of the hysteresis loop and hence facilitates switching. Finally, the experimental challenges like lithographic distribution of magnetic islands, their orientation, creation of defects, etc. demanded the distribution of anisotropy to be random along with random repetitions. We have explained that the range of anisotropy values and the number of bits with different anisotropy play a key role over SFD, whereas the position of the bits and their repetitions do not show a considerable contribution.

  14. Inherited crustal deformation along the East Gondwana margin revealed by seismic anisotropy tomography

    NASA Astrophysics Data System (ADS)

    Pilia, S.; Arroucau, P.; Rawlinson, N.; Reading, A. M.; Cayley, R. A.

    2016-12-01

    The mechanisms of continental growth are a crucial part of plate tectonic theory, yet a clear understanding of the processes involved remains elusive. Here we determine seismic Rayleigh wave phase anisotropy variations in the crust beneath the southern Tasmanides of Australia, a Paleozoic accretionary margin. Our results reveal a complex, thick-skinned pervasive deformation that was driven by the tectonic interaction between the proto-Pacific Ocean and the ancient eastern margin of Gondwana. Stress-induced effects triggered by the collision and entrainment of a microcontinent into the active subduction zone are evident in the anisotropy signature. The paleofracturing trend of failed rifting between Australia and Antarctica is also recorded in the anisotropy pattern as well as a tightly curved feature in central Tasmania. The observed patterns of anisotropy correlate well with recent geodynamic and kinematic models of the Tasmanides and provide a platform from which the spatial extent of deformational domains can be refined.

  15. Controls and implications of anisotropy across a strain gradient within granodiorite, Serifos, Western Cyclades

    NASA Astrophysics Data System (ADS)

    Gaudreau, Élyse; Lagroix, France; Cossette, Élise; Schneider, David; Grasemann, Bernhard

    2016-04-01

    In order to evaluate the assumption that the crust behaves as an isotropic material in complex structural settings, we integrate crystallographic preferred orientation (CPO) and anisotropy of magnetic susceptibility (AMS) data across a strain gradient within a Miocene granodioritic intrusion on Serifos island, Western Cyclades. One of the consequences of anisotropic crust is the variation in seismic wave velocity with the direction of propagation, which is largely controlled by the CPO of anisotropic minerals such as micas. The magnetic fabric of variably deformed granodiorite is used to characterize weakly defined tectonic fabric and thus complements the CPO data. Granodiorite samples exhibit very low strain to mylonitic fabric across the crustal-scale shear zone, recording progressive deformation through the ductile to brittle transition. CPO data was collected using electron backscatter diffraction and seismic properties were calculated using Voigt-Reuss-Hill averaging of the single minerals' elastic stiffness tensor. Quartz CPO is very strong in the weakly deformed samples recording basal and prism {0001} slip. Furthermore, bulging recrystallization and undulose extinction in quartz as well as feldspar grains that exhibit brittle deformation structures are indicative of 300-400 °C temperatures. The mylonite has a very weak CPO for the quartz phase and exhibits prism {0001} slip. The higher strain samples also reveal dynamic recrystallization and grain size reduction of quartz, plagioclase, potassium feldspar and biotite, which are characteristic of 400-500 °C temperatures. Orthoclase and anorthite possess a weak CPO in all samples. The S-wave anisotropy calculated from the CPO data of the weakly deformed granodiorite is the highest of all samples (max: 8%), and the anisotropy of the mylonite is the weakest of all samples (max: <3%). AMS data yields mainly oblate fabrics and the magnetic foliations and lineations correlate with microscopic and

  16. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    NASA Astrophysics Data System (ADS)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  17. Strength of anisotropy in a granular material: Linear versus nonlinear contact model

    NASA Astrophysics Data System (ADS)

    La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina

    2016-12-01

    In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.

  18. Inner Core Anisotropy in Attenuation

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wen, L.

    2004-12-01

    It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation

  19. Effects of anisotropy on the two-dimensional inversion procedure

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Pous, Jaume

    2001-12-01

    In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.

  20. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    NASA Astrophysics Data System (ADS)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10

  1. Planck intermediate results. XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Lilje, P. B.; Lilley, M.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Soler, J. D.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.

  2. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2016-12-12

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectralmore » index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.« less

  3. Planck intermediate results: XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular powerspectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectralmore » index over the sky with reduced dispersion, especially at high Galactic latitudes above b = ±20°. We find that the dust temperature is T = (19.4 ± 1.3) K and the dust spectral index is β = 1.6 ± 0.1 averaged over the whole sky, while T = (19.4 ± 1.5) K and β = 1.6 ± 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes |b| > 20°. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.« less

  4. Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies

    NASA Astrophysics Data System (ADS)

    Pereira, J. R. V.; Tunes, T. M.; de Arruda, A. S.; Godoy, M.

    2018-06-01

    In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins SA = 1 in the sublattice A and SB = 3 / 2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, DiA and DjB , on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature Tc versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution.

  5. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  6. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  7. The Evolution of Cracks in Maluanshan Granite Subjected to Different Temperature Processing

    NASA Astrophysics Data System (ADS)

    Jiang, Guanghui; Zuo, Jianping; Li, Liyun; Ma, Teng; Wei, Xu

    2018-06-01

    The understanding of the change in the physical and mechanical properties of rock before and after heating is of great significance for the site selection of mattamore and the exploitation of geothermal resources. It is known that before and after heating, the changes in wave velocity, wave velocity anisotropy and permeability of rock are due to the evolution of cracks in the rock. In this study, the wave velocity and permeability of granite specimen from the Maluanshan tunnel in Shenzhen, China, were measured after high-temperature processing at atmospheric pressure. The effects of temperature on the properties of rock based on the acoustics and permeability were measured and analyzed. The evolution of the cracks in Maluanshan granite was inverted through the change rule of the cracks, wave velocity anisotropy and permeability with temperature. The main conclusions were as follows: (1) Both granite P and S wave velocities decreased with the increasing temperature, and the thermal cracking occurred in four stages: between 50 and 250 °C, the crack stabilization development stage was in effect; between 250 and 300 °C, an accelerated development stage of the cracks existed; between 300 and 350 °C, a shift stage for the cracks was entered; and finally, from 350 to 700 °C, the cracks continued into a further development stage; (2) The coefficient of variation could be used to reflect the structural feature change of the rocks in the study of the wave velocity anisotropy. The structures of cracks were observed to change before and after 300 °C. (3) The Maluanshan granite permeability increases with the increasing processing temperature. It was observed that the higher the processing temperature, the larger the increase in the permeability rate. A porosity function was used as a variable to analyze the relationship between the porosity function and permeability as follows: from 50 to 200 °C, the permeability was determined by the microcracks; 200-400 °C was the

  8. Element-resolved magnetism across the temperature- and pressure-induced spin reorientation in MnBi

    DOE PAGES

    Choi, Yongseong; Jiang, Xiujuan; Bi, Wenli; ...

    2016-11-01

    Rare-earth free permanent magnet MnBi (NiAs-type crystal structure) displays strong magnetic anisotropy above its 90 K spin reorientation transition (SRT). X-ray magnetic circular dichroism (XMCD) shows induced magnetism in Bi 5d band, which is strongly coupled to the magnetism of Mn. A clear increase in Bi orbital-to-spin moment ratio is observed above the SRT. Hydrostatic pressure mimics the e*ect of temperature on the SRT, and the pressure effect also leads to anisotropic lattice contraction, which is known to be induced by cooling. These results reveal that temperature and pressure can similarly induce the coupled structural and magnetic responses, suggesting themore » importance of the anisotropic lattice change and Mn-Bi hybridization to the magnetic anisotropy change across the SRT.« less

  9. Control of single-spin magnetic anisotropy by exchange coupling

    NASA Astrophysics Data System (ADS)

    Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.

    2014-01-01

    The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.

  10. Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system

    PubMed Central

    Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige

    2014-01-01

    Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693

  11. Crustal anisotropy across eastern Tibet and surroundings modeled as a depth-dependent tilted hexagonally symmetric medium

    NASA Astrophysics Data System (ADS)

    Xie, Jiayi; Ritzwoller, Michael H.; Shen, Weisen; Wang, Weitao

    2017-04-01

    Two types of surface wave anisotropy are observed regularly by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We show that a new data set of Love and Rayleigh wave isotropic phase speeds and Rayleigh wave azimuthal anisotropy observed within and surrounding eastern Tibet can be explained simultaneously by modeling the crust as a depth-dependent tilted hexagonally symmetric (THS) medium. We specify the THS medium with depth-dependent hexagonally symmetric elastic tensors tilted and rotated through dip and strike angles and estimate these quantities using a Bayesian Monte Carlo inversion to produce a 3-D model of the crust and uppermost mantle on a 0.5° × 0.5° spatial grid. In the interior of eastern Tibet and in the Yunnan-Guizhou plateau, we infer a steeply dipping THS upper crustal medium overlying a shallowly dipping THS medium in the middle-to-lower crust. Such vertical stratification of anisotropy may reflect a brittle to ductile transition in which shallow fractures and faults control upper crustal anisotropy and the crystal-preferred orientation of anisotropic (perhaps micaceous) minerals governs the anisotropy of the deeper crust. In contrast, near the periphery of the Tibetan Plateau the anisotropic medium is steeply dipping throughout the entire crust, which may be caused by the reorientation of the symmetry axes of deeper crustal anisotropic minerals as crustal flows are rotated near the borders of Tibet.

  12. Cosmic ray anisotropy along with interplanetary transients

    NASA Astrophysics Data System (ADS)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  13. Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates

    DOE PAGES

    Nizolek, Thomas; Beyerlein, Irene J.; Mara, Nathan A.; ...

    2016-02-01

    The flow stress, ductility, and in-plane anisotropy are evaluated for bulk accumulative roll bonded copper-niobium nanolaminates with layer thicknesses ranging from 1.8 μm to 15 nm. Uniaxial tensile tests conducted parallel to the rolling direction and transverse direction demonstrate that ductility generally decreases with decreasing layer thickness; however, at 30 nm, both high strengths (1200 MPa) and significant ductility (8%) are achieved. The yield strength increases monotonically with decreasing layer thickness, consistent with the Hall-Petch relationship, and significant in-plane flow stress anisotropy is observed. As a result, Taylor polycrystal modeling is used to demonstrate that crystallographic texture is responsible formore » the in-plane anisotropy and that the effects of texture dominate even at nanoscale layer thicknesses.« less

  14. Deciphering the Dipole Anisotropy of Galactic Cosmic Rays.

    PubMed

    Ahlers, Markus

    2016-10-07

    Recent measurements of the dipole anisotropy in the arrival directions of Galactic cosmic rays (CRs) indicate a strong energy dependence of the dipole amplitude and phase in the TeV-PeV range. We argue here that these observations can be well understood within standard diffusion theory as a combined effect of (i) one or more local sources at Galactic longitude 120°≲l≲300° dominating the CR gradient below 0.1-0.3 PeV, (ii) the presence of a strong ordered magnetic field in our local environment, (iii) the relative motion of the solar system, and (iv) the limited reconstruction capabilities of ground-based observatories. We show that an excellent candidate of the local CR source responsible for the dipole anisotropy at 1-100 TeV is the Vela supernova remnant.

  15. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  16. EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov

    2016-05-10

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  17. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    NASA Astrophysics Data System (ADS)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  18. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  19. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  20. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, J. L.; Odegard, N.; Hill, R. S.

    2011-02-01

    We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23-94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus, and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274, and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1{sigma} of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase (0.2% {+-} 0.4%), and limits (but no detections) on linear polarization. Observed temperatures for both Mars and Saturn vary significantly with viewing geometry.more » Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 {mu}m, reproduce WMAP seasonally averaged observations of Mars within {approx}2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61, and 94 GHz bands; the smallest uncertainty for Neptune is 8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at {approx}30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps and are tabulated for Stokes I, Q, and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency-independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A. We present WMAP polarization data with

  1. Seismic Anisotropy of Soft Sands, Offshore Western AUstralia

    NASA Astrophysics Data System (ADS)

    Urosevic, M.; Gurevich, B.

    2007-05-01

    Seismic anisotropy is commonly measured in sand shale environment. Intrinsic polar anisotropy of the shale and its effect on seismic data processing and analysis is well established and reasonably well understood. In sandstone, azimuthal anisotropy is often detected and is typically connected to an in situ stress regime and the brittleness of the rock. This type of anisotropy, commonly referred to as fractured induced anisotropy, has been widely and extensively studied as it directly affects both permeability and the strength of the rock. Hence fracture induced anisotropy is not only important for hydrocarbon exploration but also for geotechnical studies, underground mining, etc. Interestingly, in the last few years azimuthal anisotropy has also been detected in soft, poorly consolidated clean sands, mainly by cross-dipole sonic log measurements. This is somewhat surprising as in such soft, typically highly porous and permeable rocks stress induced fractures are unlikely to be abundant. In this study we analyse the anisotropy in such sand class using well-log measurements, three-component VSP data, as well as 2D and 3D surface seismic (reflection) data. High-quality cross-dipole sonic log measurements showed significant shear wave splitting over unconsolidated, highly porous and permeable sand interval. The shear wave anisotropy was computed to be around 10-15%. This is commonly seen as an indication that the rock is fractured and that the fractures are likely to be open. However, image log data over the same sand section suggested dilute most likely non-conductive fractures. Analysis of the shear wave splitting in VSP data also suggested low fracture density. The frequency content of the direct fast and slow shear waves on the VSP data was very similar, not supporting the presence of open fluid saturated fractures. Unfortunately, the evidence from the VSP data is not very compelling because the reservoir is thin compared to the wavelength and sampling interval of

  2. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    PubMed Central

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  3. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of Cosmic Microwave Background Polarization Maps

    NASA Astrophysics Data System (ADS)

    Dunkley, J.; Spergel, D. N.; Komatsu, E.; Hinshaw, G.; Larson, D.; Nolta, M. R.; Odegard, N.; Page, L.; Bennett, C. L.; Gold, B.; Hill, R. S.; Jarosik, N.; Weiland, J. L.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2009-08-01

    We describe a sampling method to estimate the polarized cosmic microwave background (CMB) signal from observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to estimate the polarized CMB map, containing Q and U Stokes parameters at each pixel, and its covariance matrix. These can be used as inputs for cosmological analyses. The polarized sky signal is parameterized as the sum of three components: CMB, synchrotron emission, and thermal dust emission. The polarized Galactic components are modeled with spatially varying power-law spectral indices for the synchrotron, and a fixed power law for the dust, and their component maps are estimated as by-products. We apply the method to simulated low-resolution maps with pixels of side 7.2 deg, using diagonal and full noise realizations drawn from the WMAP noise matrices. The CMB maps are recovered with goodness of fit consistent with errors. Computing the likelihood of the E-mode power in the maps as a function of optical depth to reionization, τ, for fixed temperature anisotropy power, we recover τ = 0.091 ± 0.019 for a simulation with input τ = 0.1, and mean τ = 0.098 averaged over 10 simulations. A "null" simulation with no polarized CMB signal has maximum likelihood consistent with τ = 0. The method is applied to the five-year WMAP data, using the K, Ka, Q, and V channels. We find τ = 0.090 ± 0.019, compared to τ = 0.086 ± 0.016 from the template-cleaned maps used in the primary WMAP analysis. The synchrotron spectral index, β, averaged over high signal-to-noise pixels with standard deviation σ(β) < 0.25, but excluding ~6% of the sky masked in the Galactic plane, is -3.03 ± 0.04. This estimate does not vary significantly with Galactic latitude, although includes an informative prior. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  4. Anisotropy of the galaxy cluster X-ray luminosity-temperature relation

    NASA Astrophysics Data System (ADS)

    Migkas, Konstantinos; Reiprich, Thomas H.

    2018-03-01

    We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX-T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l (-15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX-T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be 2.7σ for ACC and 3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX-T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to

  5. A mechanism for pressure anisotropy and mirror instability in the dayside magnetosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooker, N.U.; Siscoe, G.L.

    1977-01-01

    The plasma in the dayside magnetosheaht exhibits a persistent pressure anisotropy in the sense p/sub perpendicular/>p/sub parallel/. A likely source for this anisotropy is the effect of field compression and plasma depletion along field lines as magnetosheath plasma flows toward the magnetopause. The model of Zwan and Wolf describing this effect for the case of isotropic pressure is combined with the double-adiabatic fluid equations to predict the behavior of the anisotropic pressure. For a fluid element following a streamline inward from the bow shock, we find theoretical pressure anisotropies of magnitude large enough to trigger the mirror instability over mostmore » of the dayside magnetosheath. These findings are supported by the observations of Kaufmann et al. of large-amplitude hydromagnetic waves in the inner magnetosheath believed to be generated by the mirror instability. (AIP)« less

  6. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.

    2012-10-01

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical

  7. Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media

    NASA Astrophysics Data System (ADS)

    Przhonska, Olga V.; Hagan, David J.; Novikov, Evgueni; Lepkowicz, Richard; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2001-11-01

    Time-resolved excitation-probe polarization measurements are performed for polymethine and squarylium dyes in ethanol and an elastopolymer of polyurethane acrylate (PUA). These molecules exhibit strong excited-state absorption in the visible, which results in reverse saturable absorption (RSA). In pump-probe experiments, we observe a strong angular dependence of the RSA decay kinetics upon variation of the angle between pump and probe polarizations. The difference in absorption anisotropy kinetics in ethanol and PUA is detected and analyzed. Anisotropy decay curves in ethanol follow a single exponential decay leading to complete depolarization of the excited state. We also observe complete depolarization in PUA, in which case the anisotropy decay follows a double exponential behavior. Possible rotations in the PUA polymeric matrix are connected with the existence of local microcavities of free volume. We believe that the fast decay component is connected with the rotation of molecular fragments and the slower decay component is connected with the rotation of entire molecules in local microcavities, which is possible because of the elasticity of the polymeric material.

  8. Temperature-dependent elasticity of Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3

    NASA Astrophysics Data System (ADS)

    Tennakoon, Sumudu; Gladden, Joseph; Mookherjee, Mainak; Besara, Tiglet; Siegrist, Theo

    2017-10-01

    Relaxor ferroelectric materials, such as Pb [(Mg0.33Nb0.67 ) 1 -xT ix ] O3 (PMN-PT) with generic stoichiometry, undergo a ferroelectric-to-paraelectric phase transition as a function of temperature. The exact transition characterized by Curie temperature (Tc) varies as a function of chemistry (x ), i.e., the concentration of Ti. In this study, we investigated the structural phase transition by exploring the temperature dependence of the single-crystal elastic properties of Pb [(Mg0.33Nb0.67 ) 0.7T i0.3 ] O3 , i.e., x ≈0.3 . We used resonant ultrasound spectroscopy to determine the elasticity at elevated temperatures, from which Tc=398 ±5 K for PMN-PT (x ≈0.3 ) was determined. We report the full elastic constant tensor (Ci j={ C11,C12,C44 }), acoustic attenuation (Q-1), longitudinal (VP) and shear (VS) sound velocities, and elastic anisotropy of PMN-PT as a function of temperature for 400 Temperature trends of the elastic constants C11,C44 and bulk modulus indicate that at T >Tc the material first stiffens and reaches maxima in the vicinity of the Burns temperature (Tb˜673 K ), followed by a more typical gradual softening of the elastic constants. Similar temperature-dependent anomalies are also observed with anisotropy and Q-1, with minima in the vicinity of Tb. We used the temperature dependence of Ci j, Q-1, VP,VS , and anisotropy to infer the evolution of polar nanoregions as the material evolved from T >Tc .

  9. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.

    2015-01-01

    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.

  10. Synchrotron X-ray Applications Toward an Understanding of Elastic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, Waruntorn

    The contribution of this dissertation is to expand the current knowledge of factors and mechanisms that influence the development of preferred orientation of minerlas and pores in different materials, ranging from rocks in Earth's crust to minerals in the deep Earth. Preferred orientation--a main contributing component to elastic anisotropy--is however very challenging to quantify. The overall focus of this thesis thus aims to (1) apply the capabilities of synchrotron X-ray techniques to determine preferred orientations of hexagonal metals and shales under different conditions and (2) enhance our understanding of their relationships to the elastic properties. Lattice preferred orientation (LPO) or 'texture' of hexagonal close-packed iron (hcp- Fe) crystals during deformation has been suggested as the cause of the elastic anisotropy observed in Earth's inner core. However, relatively little is known about LPO of other hcp metals. An investigation of a wide range of hcp metals (Cd, Zn, Os, and Hf) as analogs to hcp-Fe was thus undertaken to better understand deformation mechanisms at high pressure and temperature in Chapter 2. Results show that all hcp metals preferentially align their c-axes near the compression axis during deformation but with considerable differences. The gradual texture evolution in Cd and Zn is mainly controlled by basal slip systems while a rapid texture development in Os and Hf at ambient temperature is due to a dominant role of tensile twinning, with some degree of basal slip. At elevated temperature, tensile twinning is suppressed and texturing is governed by combined basal and prismatic slip. Under all conditions, basal slip appears to be the main deformation mechanism in hcp metals at high pressure and temperature. These findings are similar to those of hcp-Fe and useful to better understand the deformation mechanisms of hcp metals and their implications for elastic anisotropy. In Chapter 3, a high-energy synchrotron X-ray diffraction

  11. Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing

    Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.

  12. Microstructure and seismic anisotropy of phyllite from Geumseongri Formation and Munjuri Formation in Korea

    NASA Astrophysics Data System (ADS)

    Han, S.; Jung, H.

    2016-12-01

    Mica is a mineral group that shows the strongest seismic anisotropy among the minerals comprising continental crust of the Earth. It is also noteworthy that alignment of mica can strongly affect magnitude and symmetry of seismic anisotropy if a seismic wave passes through a rock composed of mica more than 20-40%. Thus, it is highly necessary to analyze mica-rich rocks to investigate the origin of seismic anisotropy observed in continental crust. In this study, muscovite-quartz phyllites from Geumseongri and Munjuri Formation in Korea were analyzed using Electron Backscattered Diffraction (EBSD) to measure lattice preferred orientation (LPO) of minerals. The samples are mainly composed of muscovite, quartz, albite, chlorite, and biotite with minor calcite and rutile. The EBSD analysis showed that the muscovite [001] axis was strongly aligned normal to the foliation while both [100] and [010] axes were dispersed parallel to the foliation. Chlorite and biotite also exhibited similar LPO except for the chlorite [001] axis in the sample 2619, dispersed normal to the lineation. LPOs of quartz were weak in most samples. The albite (010) pole in the sample 2363M and (001) pole in the sample 2364Q were aligned normal to the foliation. Seismic anisotropy was calculated based on the LPO and modal composition of the specimens. The anisotropy of P-wave (Vp) for quartz was in the range of 4.3 - 9.3% and 3.3 - 6.7% for albite. The maximum shear wave anisotropy (AVs) was in the range of 5.3 - 11.2% for quartz and 3.9 - 5.4% for albite. The Vp anisotropy and maximum AVs anisotropy of mica were in the range of 19.3 - 53.4% and 11.6 - 62.9%, respectively, which are much larger than those of other minerals. As a result, The Vp and maximum AVs anisotropy for whole rock were in the range of 11.8 - 44% and 11.6 - 51.8%, respectively. These results show that modal composition and alignment of mica mainly control the magnitude and symmetry of seismic anisotropy.

  13. Seismic anisotropy and slab dynamics from SKS splitting recorded in Colombia

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Becker, Thorsten W.; Monsalve, Gaspar

    2014-12-01

    The Nazca, Caribbean, and South America plates meet in northwestern South America where the northern end of the Andean volcanic arc and Wadati-Benioff zone seismicity indicate ongoing subduction. However, the termination of Quaternary volcanism at ~5.5°N and eastward offset in seismicity underneath Colombia suggest the presence of complex slab geometry. To help link geometry to dynamics, we analyze SKS splitting for 38 broadband stations of the Colombian national network. Measurements of fast polarization axes in western Colombia close to the trench show dominantly trench-perpendicular orientations. Orientations measured at stations in the back arc, farther to the east, however, abruptly change to roughly trench parallel anisotropy. This may indicate along-arc mantle flow, possibly related to the suggested "Caldas" slab tear, or a lithospheric signature, but smaller-scale variations in anisotropy remain to be explained. Our observations are atypical globally and challenge our understanding of the complexities of subduction zone seismic anisotropy.

  14. Improved magnetic properties and growth anisotropy of chemically modified Sr ferrites

    NASA Astrophysics Data System (ADS)

    Lee, Jung W.; Cho, Yong S.; Amarakoon, Vasantha R. W.

    1999-04-01

    Magnetic properties and microstructural characteristics of SrOṡ5.9Fe2O3 chemically modified with Si and Ca were investigated by changing experimental parameters such as additive composition, the ratio of Ca/Si, and sintering condition. A novel particulate coating method utilizing sol-gel reactions was used to uniformly incorporate the additives of Si and Ca. This method was very successful in obtaining homogeneous grain growth and fine grains. A sample containing the gel additives of 0.6 wt % SiO2 and 0.7 wt % CaO and sintered at 1200 °C for 4 h was found to significantly suppress abnormal grain growth, resulting in submicron-sized grains and high density. A distinct grain boundary phase containing Si and Ca was observed by increasing the sintering temperature to 1250 °C. The resultant microstructural characteristics favorably affected magnetic properties. For example, the chemically modified sample exhibited a higher coercivity of 3530 Oe compared to a value of 2050 Oe obtained for the sample without the additives. On the other hand, an increase in the ratio of Ca/Si or in sintering temperature tended to induce a large anisotropy during grain growth.

  15. Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India

    NASA Astrophysics Data System (ADS)

    Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab

    2018-01-01

    Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.

  16. Symmetry classes of the anisotropy tensors of quasielastic materials and a generalized Kelvin approach

    NASA Astrophysics Data System (ADS)

    Ostrosablin, N. I.

    2017-05-01

    The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke's law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.

  17. Rotation and anisotropy of galaxies revisited

    NASA Astrophysics Data System (ADS)

    Binney, James

    2005-11-01

    The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.

  18. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  19. Theoretical Compton profile anisotropies in molecules and solids. IV. Parallel--perpendicular anisotropies in alkali fluoride molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matcha, R.L.; Pettitt, B.M.; Ramirez, B.I.

    1979-07-15

    Calculations of Compton profiles and parallel--perpendicular anisotropies in alkali fluorides are presented and analyzed in terms of molecular charge distributions and wave function character. It is found that the parallel profile associated with the valence pi orbital is the principal factor determining the relative shapes of the total profile anisotropies in the low momentum region.

  20. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  1. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  2. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  3. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    PubMed

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  4. Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in-situ high temperature 29Si and 17O NMR

    NASA Astrophysics Data System (ADS)

    Spearing, Dane R.; Farnan, Ian; Stebbins, Jonathan F.

    1992-12-01

    Relaxation times (T1) and lineshapes were examined as a function of temperature through the α-β transition for 29Si in a single crystal of amethyst, and for 29Si and 17O in cristobalite powders. For single crystal quartz, the three 29Si peaks observed at room temperature, representing each of the three differently oriented SiO4 tetrahedra in the unit cell, coalesce with increasing temperature such that at the α-β transition only one peak is observed. 29Si T1's decrease with increasing temperature up to the transition, above which they remain constant. Although these results are not uniquely interpretable, hopping between the Dauphiné twin related configurations, α1 and α2, may be the fluctuations responsible for both effects. This exchange becomes observable up to 150° C below the transition, and persists above the transition, resulting in β-quartz being a time and space average of α1 and α2. 29Si T1's for isotopically enriched powdered cristobalite show much the same behavior as observed for quartz. In addition, 17O T1's decrease slowly up to the α-β transition at which point there is an abrupt 1.5 order of magnitude drop. Fitting of static powder 17O spectra for cristobalite gives an asymmetry parameter (η) of 0.125 at room T, which decreases to <0.040 at the transition temperature. The electric field gradient (EFG) and chemical shift anisotropy (CSA), however, remain the same, suggesting that the decrease in η is caused by a dynamical rotation of the tetrahedra below the transition. Thus, the mechanisms of the α-β phase transitions in quartz and cristobalite are similar: there appears to be some fluctuation of the tetrahedra between twin-related orientations below the transition temperature, and the β-phase is characterized by a dynamical average of the twin domains on a unit cell scale.

  5. Azimuthal anisotropy layering and plate motion in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Romanowicz, B. A.

    2012-12-01

    We recently developed a three dimensional radially and azimuthally anisotropic model of the upper mantle in north America, using a combination of long-period 3-component surface and overtone waveforms, and SKS splitting measurements (Yuan and Romanowicz, 2010, Yuan et al., 2011). We showed that azimuthal anisotropy is a powerful tool to detect layering in the upper mantle, revealing two domains in the cratonic lithosphere, separated by a sharp laterally varying boundary in the depth range 100-150 km, which seems to coincide with the mid-lithospheric boundary (MLD) found in receiver function studies. Contrary to receiver functions, azimuthal anisotropy also detects the lithosphere-asthenosphere boundary (LAB) as manifested by a change in the fast axis direction, which becomes quasi-parallel to the absolute plate motion below ~250 km depth. A zone of stronger azimuthal anisotropy is found below the LAB both in the western US (peaking at depths of 100-150km) and in the craton (peaking at a depth of about 300 km). Here we show preliminary attempts at expanding our approach to the global scale, with a specific goal of determining whether such an anisotropic LAB can also be observed in the Pacific ocean. We started with our most recent global upper mantle radially anisotropic shear velocity model, determined using the Spectral Element Method (SEMum2; French et al., this meeting). We augment the corresponding global surface wave and overtone dataset (period range 60 to 400 s) with deep events and shorter period body waves, in order to ensure optimal deeper depth (>250km) anisotropy recovery due to the paucity of shear wave splitting measurements in the oceans. Our preliminary results, which do not yet incorporate SKS splitting measurements, look promising as they confirm the layering found previously in North America, using a different, global dataset and starting model. In the Pacific, our study confirms earlier azimuthal anisotropy results in the region (e.g. Smith et

  6. On OMC-1 temperatures determined from methyl cyanide observations

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  7. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  8. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less

  9. Anisotropy indices and the effects on the hydric behaviour of natural stone

    NASA Astrophysics Data System (ADS)

    Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel

    2010-05-01

    anisotropy are those with the highest capillarity coefficient. It can also be observed that for each petrological variety, this capillarity coefficient is higher in the specimens classified as a high level anisotropy class. At the same time, when capillary water is absorbed along the direction perpendicular to the anisotropic planes, the absorption capacity diminishes, no matter the anisotropy level of the stone is. On the contrary, capillary coefficients are higher when measurements are performed in a parallel direction to that of the greatest anisotropy of the stone specimen, where absorption tends to be faster with higher coefficients according to the porosity size and its geometry. These increments are more significant in the stone varieties in which anisotropy is mainly due to fissuring or schistosity planes, or related to stromatolitic planes or oriented minerals accumulation. The arrangement and placing of rocks used as building materials with a significant anisotropy will highly condition the durability and lifetime of a considered element. For that reason, is essential to determine anisotropy indices to obtain the best and most adequate arrangement of stone elements in building works, minimizing water entry and thus, the material decay. Acknowledgements: to both MATERNAS (0505/MAT/0094) and GEOMATERIALES (2009-1629) research programmes, funded by the Regional Government of Madrid; to the CONSOLIDER-INGENIO programme (CSD2007-0058), funded by the Spanish Ministry of Education and Science; and to the Spanish Geological and Mining Institute (IGME) for the specimens preparation and hydric behaviour measurements.

  10. On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Zhi; Runov, Andrei; Angelopoulos, Vassilis; Artemyev, Anton V.; Birn, Joachim

    2018-01-01

    Dipolarizing flux bundles (DFBs), earthward propagating structures with enhanced northward magnetic field Bz, are usually believed to carry a distinctly different plasma population from that in the ambient magnetotail plasma sheet. The ion distribution functions within the DFB, however, have been recently found to be largely controlled by the ion adiabaticity parameter κ in the ambient plasma sheet outside the DFB. According to these observations, the ambient κ values of 2-3 usually correspond to a strong perpendicular anisotropy of suprathermal ions within the DFB, whereas for lower κ values the DFB ions become more isotropic. Here we utilize a simple, test particle model to explore the nature of the anisotropy and its dependence on the ambient κ values. We find that the anisotropy originates from successive ion reflections and reentries to the DFB, during which the ions are consecutively accelerated in the perpendicular direction by the DFB-associated electric field. This consecutive acceleration may be interrupted, however, when magnetic field lines are highly curved in the ambient plasma sheet. In this case, the ion trajectories become stochastic outside the DFB, which makes the reflected ions less likely to return to the DFB for another cycle of acceleration; as a consequence, the perpendicular ion anisotropy does not appear. Given that the DFB ions are a free energy source for instabilities when they are injected toward Earth, our simple model (that reproduces most observational features on the anisotropic DFB ion distributions) may shed new lights on the coupling process between magnetotail and inner magnetosphere.

  11. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  12. Magnetic anisotropy and transport properties of 70 nm SrRuO3 films grown on different substrates

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Zhang, Y. Q.; Meng, H.; Wang, Z. J.; Li, D.; Zhang, Z. D.

    2011-04-01

    Magnetic and transport properties of 70 nm SrRuO3 films grown on (001) SrTiO3, (001) LaAlO3 and (001) MgO have been investigated. A perpendicular magnetic anisotropy is observed in compressive strained films grown on SrTiO3. A weaker perpendicular magnetic anisotropy and a weak in-plane magnetic anisotropy are found in strain-free films grown on MgO and LAO, respectively, possibly due to different growth mechanisms. In addition, metallic behavior is observed in all the as-grown films and the resistivity of the film grown on MgO is lowest (230 μΩ cm at 300 K), which is close to that of bulk single crystal SrRuO3 (about 195 μΩ cm). The relation between structure and properties indicates that the magnetic anisotropy, as well as the magnitude of resistivity of SrRuO3 films, can be effectively tailored by taking advantage of different strains and growth mechanisms induced by growth on different substrates.

  13. Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Gegout, P.; Biancale, R.; Soudarin, L.

    2011-10-01

    The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range

  14. Elastic Anisotropy of Basalt

    NASA Astrophysics Data System (ADS)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  15. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources

    NASA Astrophysics Data System (ADS)

    Weiland, J. L.; Odegard, N.; Hill, R. S.; Wollack, E.; Hinshaw, G.; Greason, M. R.; Jarosik, N.; Page, L.; Bennett, C. L.; Dunkley, J.; Gold, B.; Halpern, M.; Kogut, A.; Komatsu, E.; Larson, D.; Limon, M.; Meyer, S. S.; Nolta, M. R.; Smith, K. M.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2011-02-01

    We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23-94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus, and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274, and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1σ of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase (0.2% ± 0.4%), and limits (but no detections) on linear polarization. Observed temperatures for both Mars and Saturn vary significantly with viewing geometry. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 μm, reproduce WMAP seasonally averaged observations of Mars within ~2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61, and 94 GHz bands; the smallest uncertainty for Neptune is 8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at ~30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps and are tabulated for Stokes I, Q, and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency-independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A. We present WMAP polarization data with uncertainties of a few percent for Tau A

  16. Anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda in China Regional Seismic Networks

    NASA Astrophysics Data System (ADS)

    Xia, H.; Song, X.; Wang, T.

    2014-12-01

    The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.

  17. Changes in the anisotropy of oriented membrane dynamics induced by myelin basic protein

    NASA Astrophysics Data System (ADS)

    Natali, F.; Gliozzi, A.; Rolandi, R.; Relini, A.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.

    We report recent results showing the evidence of the effect induced by physiological amounts of myelin basic protein (MBP) on the dynamics of dimyristoyl L-a-phosphatidic acid (DMPA) membranes. Incoherent elastic neutron scattering scans, performed over a wide temperature range, have shown that the anisotropy of motions in oriented membranes is significantly enhanced by the presence of MBP.

  18. Synthesis, anisotropy, and superconducting properties of LiFeAs single crystal

    NASA Astrophysics Data System (ADS)

    Song, Yoo Jang; Ghim, Jin Soo; Min, Byeong Hun; Kwon, Yong Seung; Jung, Myung Hwa; Rhyee, Jong-Soo

    2010-05-01

    A LiFeAs single crystal with Tconset˜19.7 K was grown in a sealed tungsten crucible using the Bridgeman method. The electrical resistivity experiments revealed a ratio of room temperature to residual resistivity of approximately 46 and 18 for the in-plane and out-of plane directions, respectively. The estimated anisotropic resistivity, γρ=ρc/ρab, was approximately 3.3 at Tconset. The upper critical fields had large Hc2∥ab and Hc2∥c values of 83.4 T and 72.5 T, respectively, and an anisotropy ratio is γH=Hc2∥ab/Hc2∥c˜1.15. The high upper critical field value and small anisotropy highlight the potential use of LiFeAs in a variety of applications. The calculated critical current density (Jc) from the M-H loop is approximately 103 A/cm2

  19. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    NASA Astrophysics Data System (ADS)

    Hergt, Lukas; Amara, Adam; Brandenberger, Robert; Kacprzak, Tomasz; Réfrégier, Alexandre

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10-7.

  20. Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves

    NASA Astrophysics Data System (ADS)

    Singh, Arun; Eken, Tuna; Mohanty, Debasis D.; Saikia, Dipankar; Singh, Chandrani; Ravi Kumar, M.

    2016-01-01

    This study presents a total of 12008 shear wave splitting measurements obtained using the reference-station technique applied to direct S-waves from 106 earthquakes recorded at 143 seismic stations of the Hi-CLIMB seismic network. The results reveal significant anisotropy in regions of southern Tibet where null or negligible anisotropy has been hitherto reported from SK(K)S measurements. While the individual fast polarization direction (FPD) at each station are found to be consistent, the splitting time delays (TDs) exhibit deviations particularly at stations located south of the Indus-Tsangpo Suture Zone. The fast polarization directions (FPDs) are oriented (a) NE-SW to E-W to the south of the Indus-Tsangpo Suture Zone (b) NE-SW to ENE-SSW between Bangong-Nujiang Suture Zone and the Indus-Tsangpo Suture Zone (ITSZ) and (c) E-W to the extreme north of the profile. The splitting time delays (δt) vary between 0.45 and 1.3 s south of the ITSZ (<30°N latitude), while they range from 0.9 to 1.4 s north of it. The overall trends are similar to SKS/SKKS results. However, the differences may be due to the not so near vertical paths of direct S waves which may sample the anisotropy in a different way in comparison to SKS waves, or insufficient number of SKS observations. The significant anisotropy (∼ 0.8 s) observed beneath Himalaya reveals a complex deformation pattern in the region and can be best explained by the combined effects of deformation related to shear at the base of the lithosphere and subduction related flows with possible contributions from the crust. Additional measurements obtained using direct S-waves provide new constraints in regions with complex anisotropy.