Sample records for observed temperature profiles

  1. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  2. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  3. Interpreting seasonal convective mixing in Devils Hole, Death Valley National Park, from temperature profiles observed by fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.

    2012-05-01

    Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure vertical temperature profiles in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature profiles are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS observations make it possible to observe temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.

  4. The thermal structure of Titan’s upper atmosphere, I: Temperature profiles from Cassini INMS observations

    NASA Astrophysics Data System (ADS)

    Snowden, D.; Yelle, R. V.; Cui, J.; Wahlund, J.-E.; Edberg, N. J. T.; Ågren, K.

    2013-09-01

    We derive vertical temperature profiles from Ion Neutral Mass Spectrometer (INMS) N2 density measurements from 32 Cassini passes. We find that the average temperature of Titan’s thermosphere varies significantly from pass-to-pass between 112 and 175 K. The temperatures from individual temperature profiles also varies considerably, with many passes exhibiting wave-like temperature perturbations and large temperature gradients. Wave-like temperature perturbations have wavelengths between 150 and 420 km and amplitudes between 3% and 22% and vertical wave power spectra of the INMS data and HASI data have a slope between -2 and -3, which is consistent with vertically propagating atmospheric waves. The lack of a strong correlation between temperature and latitude, longitude, solar zenith angle, or local solar time indicates that the thermal structure of Titan’s thermosphere is not primarily determined by the absorption of solar EUV flux. At N2 densities greater than 108 cm-3, Titan’s thermosphere is colder when Titan is observed in Saturn’s magnetospheric lobes compared to Saturn’s plasma sheet as proposed by Westlake et al. (Westlake, J.H. et al. [2011]. J. Geophys. Res. 116, A03318. http://dx.doi.org/10.1029/2010JA016251). This apparent correlation suggests that magnetospheric particle precipitation causes the temperature variability in Titan’s thermosphere; however, at densities smaller than 108 cm-3 the lobe passes are hotter than the plasma sheet passes and we find no correlation between the temperature of Titan’s thermosphere and ionospheric signatures of enhanced particle precipitation, which suggests that the correlation is not indicative of a physical connection. The temperature of Titan’s thermosphere also may have decreased by ∼10 K around mid-2007. Finally, we classify the vertical temperature profiles to show which passes are hot and cold and which passes have the largest temperature variations. In a companion paper (Part II), we estimate

  5. The temperature profile in a forest

    Treesearch

    H.A. Fowells

    1948-01-01

    The temperature profile of a mature forest seldom has been observed. Temperatures at specific locations are of interest to the forester because they may help explain many phenomena, such as growth or death of seedlings and freezing of terminals and floral parts of trees. The opportunity to combine a vertical succession of such temperature measurements into a...

  6. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE PAGES

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...

    2017-07-05

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  7. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  8. BOREAS AFM-06 Mean Temperature Profile Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  10. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    NASA Astrophysics Data System (ADS)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  11. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  12. Finite Temperature Density Profile in SFDM

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Matos, T.

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.

  13. Temperature-profile detector

    DOEpatents

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  14. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  15. Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges

    NASA Astrophysics Data System (ADS)

    Löhnert, U.; Maier, O.

    2012-05-01

    The motivation of this study is to verify theoretical expectations placed on ground-based microwave radiometer (MWR) techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by the microwave profiler system HATPRO (Humidity And Temperature PROfiler) operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006-December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2107 quality-controlled all-season cases. In the evaluated time period, the MWR delivered reliable temperature profiles in 86% of all-weather conditions on a temporal resolution of 12-13 min. Random differences between MWR and radiosonde are down to 0.5 K in the lower boundary layer and increase to 1.7 K at 4 km height. The differences observed between MWR and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data

  16. Uncertainties in derived temperature-height profiles

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1974-01-01

    Nomographs were developed for relating uncertainty in temperature T to uncertainty in the observed height profiles of both pressure p and density rho. The relative uncertainty delta T/T is seen to depend not only upon the relative uncertainties delta P/P or delta rho/rho, and to a small extent upon the value of T or H, but primarily upon the sampling-height increment Delta h, the height increment between successive observations of p or delta. For a fixed value of delta p/p, the value of delta T/T varies inversely with Delta h. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperatures with unacceptably large uncertainties.

  17. 40 CFR 1066.950 - Fuel temperature profile.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel temperature profile. 1066.950 Section 1066.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Test Procedures for Motor Vehicles § 1066.950 Fuel temperature profile. Develop fuel temperature...

  18. Vertical temperature profile and mesospheric winds retrieval on Mars from CO ;millimeter observations. Comparison with general circulation model predictions

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Billebaud, F.; Encrenaz, T.; Dobrijevic, M.; Brillet, J.; Forget, F.; Lellouch, E.

    2008-10-01

    Aims: We have recorded high spectral resolution spectra and derived precise atmospheric temperature profiles and wind velocities in the atmosphere of Mars. We have compared observations of the planetary mean thermal profile and mesospheric wind velocities on the disk, obtained with our millimetric observations of CO rotational lines, to predictions from the Laboratoire de Météorologie Dynamique (LMD) Mars General Circulation Model, as provided through the Mars Climate Database (MCD) numerical tool. Methods: We observed the atmosphere of Mars at CO(1-0) and CO(2-1) wavelengths with the IRAM 30-m antenna in June 2001 and November 2005. We retrieved the mean thermal profile of the planet from high and low spectral resolution data with an inversion method detailed here. High spectral resolution spectra were used to derive mesospheric wind velocities on the planetary disk. We also report here the use of 13CO(2-1) line core shifts to measure wind velocities at 40 km. Results: Neither the Mars Year 24 (MY24) nor the Dust Storm scenario from the Mars Climate Database (MCD) provides satisfactory fits to the 2001 and 2005 data when retrieving the thermal profiles. The Warm scenario only provides good fits for altitudes lower than 30 km. The atmosphere is warmer than predicted up to 60 km and then becomes colder. Dust loading could be the reason for this mismatch. The MCD MY24 scenario predicts a thermal inversion layer between 40 and 60 km, which is not retrieved from the high spectral resolution data. Our results are generally in agreement with other observations from 10 to 40 km in altitude, but our results obtained from the high spectral resolution spectra differ in the 40-70 km layer, where the instruments are the most sensitive. The wind velocities we retrieve from our 12CO observations confirm MCD predictions for 2001 and 2005. Velocities obtained from 13CO observations are consistent with MCD predictions in 2001, but are lower than predicted in 2005.

  19. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.

    2017-10-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.

  20. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  1. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  2. Temperature profiles from Salt Valley, Utah

    NASA Astrophysics Data System (ADS)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  3. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  4. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  5. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  6. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  7. Determining coronal electron temperatures from observations with UVCS/SOHO

    NASA Technical Reports Server (NTRS)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  8. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    NASA Astrophysics Data System (ADS)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  9. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  10. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles

    NASA Astrophysics Data System (ADS)

    Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.

    2013-09-01

    Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.

  11. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  12. ALMA observation of Ceres' Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Titus, T. N.; Li, J. Y.; Sykes, M. V.; Ip, W. H.; Lai, I.; Moullet, A.

    2016-12-01

    Ceres, the largest object in the main asteroid belt, has been mapped by the Dawn spacecraft. The mapping includes measuring surface temperatures using the Visible and Infrared (VIR) spectrometer at high spatial resolution. However, the VIR instrument has a long wavelength cutoff at 5 μm, which prevents the accurate measurement of surface temperatures below 180 K. This restricts temperature determinations to low and mid-latitudes at mid-day. Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) [1], while having lower spatial resolution, are sensitive to the full range of surface temperatures that are expected at Ceres. Forty reconstructed images at 75 km/beam resolution were acquired of Ceres that were consistent with a low thermal inertia surface. The diurnal temperature profiles were compared to the KRC thermal model [2, 3], which has been extensively used for Mars [e.g. 4, 5]. Variations in temperature as a function of local time are observed and are compared to predictions from the KRC model. The model temperatures are converted to radiance (Jy/Steradian) and are corrected for near-surface thermal gradients and limb effects for comparison to observations. Initial analysis is consistent with the presence of near-surface water ice in the north polar region. The edge of the ice table is between 50° and 70° North Latitude, consistent with the enhanced detection of hydrogen by the Dawn GRaND instrument [6]. Further analysis will be presented. This work is supported by the NASA Solar System Observations Program. References: [1] Wootten A. et al. (2015) IAU General Assembly, Meeting #29, #2237199 [2] Kieffer, H. H., et al. (1977) JGR, 82, 4249-4291. [3] Kieffer, Hugh H., (2013) Journal of Geophysical Research: Planets, 118(3), 451-470. [4] Titus, T. N., H. H. Kieffer, and P. N. Christensen (2003) Science, 299, 1048-1051. [5] Fergason, R. L. et al. (2012) Space Sci. Rev, 170, 739-773[6] Prettyman, T. et al. (2016) LPSC 47, #2228.

  13. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  14. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  15. Temperature profiles of patient-applied eyelid warming therapies.

    PubMed

    Wang, Michael T M; Gokul, Akilesh; Craig, Jennifer P

    2015-12-01

    To compare temperature profile characteristics (on and off eye) of two patient-applied heat therapies for meibomian gland dysfunction (MGD): an eye mask containing disposable warming units (EyeGiene(®)) and a microwave-heated flaxseed eye bag(®) (MGDRx EyeBag(®)). In vitro evaluation: surface temperature profiles of activated eye masks and heated eye bags(®) (both n=10), were tracked every 10s until return to ambient temperature. Heat-transfer assessment: outer and inner eyelid temperature profiles throughout the eye mask and eye bag(®) treatment application period (10min) were investigated in triplicate. The devices were applied for 12 different time intervals in a randomised order, with a cool-down period in between to ensure ocular temperatures returned to baseline. Temperature measurements were taken before and immediately after each application. In vitro evaluation: on profile, the eye bag(®) surface temperature peaked earlier (0±0 s vs. 100±20 s, p<0.001), cooled more slowly and displayed less variability than the eye mask (all p<0.05). Heat-transfer assessment: the eye bag(®) effected higher peak inner eyelid temperatures (38.1±0.4°C vs. 37.4±0.2°C, p=0.04), as well as larger inner eyelid temperature increases over the first 2 min, and between 9 and 10 min (all p<0.05). The eye bag(®) surface temperature profile displayed greater uniformity and slower cooling than the eye mask, and was demonstrated to be significantly more effective in raising ocular temperatures than the eye mask, both statistically and clinically. This has implications for MGD treatment, where the melting points of meibomian secretions are likely to be higher with increasing disease severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    NASA Astrophysics Data System (ADS)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North

  17. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  18. Review of Nimbus-5 Microwave Spectrometer results. [atmospheric temperature profile measurement

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1974-01-01

    Nimbus-E Microwave Spectrometer (NEMS) data are analyzed, especially those obtained from the 53.65, 54.9, and 58.8 GHz channels, corresponding to sensing at 4, 11, and 18 km respectively. The observations permit highly precise horizontal temperature profiles to be established and are hardly affected by clouds. The sensings of the 54.9 GHz channel unambiguously delineate wave structure on the equator. Horizontal water vapor profiles are derived from the 22.235 and 31.4 GHz channel data.

  19. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  20. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  1. Developing a Data Record of Lower Troposphere Temperature Profiles for Diurnal Land-Atmosphere Coupling Investigations

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Li, D.

    2017-12-01

    The lower troposphere, including the planetary boundary layer, is strongly influenced by the land surface at diurnal scales. However, investigations of diurnal land-atmosphere coupling are significantly hindered by the lack of profile measurements that resolve the diurnal cycle. This study aims to bridge this gap by developing a decade-long (from 2007 to 2016) data record of diurnal temperature profiles in the lower troposphere (from the surface to about 4 km above the surface), which is based on the Aircrafts Communications Addressing and Reporting System (ACARS) meteorological observations. We first identify the number of profiles within an hour for each airport over the CONUS. At each airport, only data that passed at least level-1 quality check are retained. 40 airports out of 275 are then selected, which have data for more than 12 hours per day. These selected airports are mainly located along the east and west coasts, as expected. Because the data are recorded at irregular heights, we resample each profile in the lowest 4 km or so to pre-defined vertical coordinates. These temperature profiles are further bias-corrected by comparing to collocated radiosonde observations. This consistent data record of diurnal temperature profiles in the lower troposphere can be also used for regional climatology research, short-term weather forecasts, and numerical model evaluation.

  2. Stratospheric Temperature Trends Observed by TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  3. Real-time measurements of temperature, pressure and moisture profiles in High-Performance Concrete exposed to high temperatures during neutron radiography imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv; Riga Technical University, Institute of Materials and Structures, Riga; Lo Monte, F.

    2015-02-15

    High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressuremore » sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.« less

  4. Temperature profile retrievals with extended Kalman-Bucy filters

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  5. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  6. Temperature profile and equipartition law in a Langevin harmonic chain

    NASA Astrophysics Data System (ADS)

    Kim, Sangrak

    2017-09-01

    Temperature profile in a Langevin harmonic chain is explicitly derived and the validity of the equipartition law is checked. First, we point out that the temperature profile in previous studies does not agree with the equipartition law: In thermal equilibrium, the temperature profile deviates from the same temperature distribution against the equipartition law, particularly at the ends of the chain. The matrix connecting temperatures of the heat reservoirs and the temperatures of the harmonic oscillators turns out to be a probability matrix. By explicitly calculating the power spectrum of the probability matrix, we will show that the discrepancy comes from the neglect of the power spectrum in higher frequency ω, which is in decay mode, and related with the imaginary number of wave number q.

  7. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    NASA Astrophysics Data System (ADS)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full

  8. The Microwave Temperature Profiler (PERF)

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mahoney, Michael; Haggerty, Julie; Denning, Richard

    2013-01-01

    The JPL developed Microwave Temperature Profiler (MTP) has recently participated in GloPac, HIPPO (I to V) and TORERO, and the ongoing ATTREX campaigns. The MTP is now capable of supporting the NASA Global Hawk and a new canister version supports the NCAR G-V. The primary product from the MTP is remote measurements of the atmospheric temperature at, above and below the flight path, providing for the vertical state of the atmosphere. The NCAR-MTP has demonstrated unprecedented instrument performance and calibration with plus or minus 0.2 degrees Kelvin flight level temperature error. Derived products include curtain plots, isentropes, lapse rate, cold point height and tropopause height.

  9. Observation and modelling of the Fe XXI line profile observed by IRIS during the impulsive phase of flares

    NASA Astrophysics Data System (ADS)

    Polito, V.; Testa, P.; De Pontieu, B.; Allred, J. C.

    2017-12-01

    The observation of the high temperature (above 10 MK) Fe XXI 1354.1 A line with the Interface Region Imaging Spectrograph (IRIS) has provided significant insights into the chromospheric evaporation process in flares. In particular, the line is often observed to be completely blueshifted, in contrast to previous observations at lower spatial and spectral resolution, and in agreement with predictions from theoretical models. Interestingly, the line is also observed to be mostly symmetric and with a large excess above the thermal width. One popular interpretation for the excess broadening is given by assuming a superposition of flows from different loop strands. In this work, we perform a statistical analysis of Fe XXI line profiles observed by IRIS during the impulsive phase of flares and compare our results with hydrodynamic simulations of multi-thread flare loops performed with the 1D RADYN code. Our results indicate that the multi-thread models cannot easily reproduce the symmetry of the line and that some other physical process might need to be invoked in order to explain the observed profiles.

  10. Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Sandor, Brad J.; Wolff, Michael J.; Smith, Michael Doyle; Lefevre, Franck; Madeleine, Jean-Baptiste; Forget, Francois; Murchie, Scott L.; Seelos, Frank P.; Seelos, Kim D.; hide

    2012-01-01

    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Météorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefèvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995).

  11. Soil Temperature and Moisture Profile (STAMP) System Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David R.

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less

  12. Potential of collocated radiometer and wind profiler observations for monsoon studies

    NASA Astrophysics Data System (ADS)

    Balaji, B.; Prabha, Thara V.; Jaya Rao, Y.; Kiran, T.; Dinesh, G.; Chakravarty, Kaustav; Sonbawne, S. M.; Rajeevan, M.

    2017-09-01

    Collocated observations from microwave radiometer and wind profiler are used in a pilot study during the monsoon period to derive information on the thermodynamics and winds and association with rainfall characteristics. These instruments were operated throughout the monsoon season of 2015. Continuous vertical profiles of winds, temperature and humidity show significant promise for understanding the low-level jet, its periodicity and its association with moisture transport, clouds and precipitation embedded within the monsoon large-scale convection. Observations showed mutually beneficial in explaining variability that are part of the low frequency oscillations and the diurnal variability during monsoon. These observations highlight the importance of locally driven convective systems, in the presence of weak moisture transport over the area. The episodic moisture convergence showed a periodicity of 9 days which matches with the subsequent convection and precipitation and thermodynamic regimes. Inferences from the diurnal cycle of moisture transport and the convective activity, relationship with the low-level jet characteristics and thermodynamics are also illustrated.

  13. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  14. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  15. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  16. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  17. Comparison of GPS/SAC-C and MIPAS/ENVISAT temperature profiles and its implementation for EOS AURA-MLS observations

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Wang, Ding-Yi; Romans, Larry J.; Ao, Chi O.; Schwartz, Michael J.; Stiller, Gabriele P.; von Clarmann, Thomas; Lopez-Puertas, Manuel; Funke, Bernd; Gil-Lopez, Sergio; hide

    2003-01-01

    A new generation GPS flight receiver was launched on the Argentinian satellite SAC-C in 2001. It has demonstrated the potential applicability for the continuous monitoring of the earth's atmosphere with radio occultation technology, and providing high vertical resolution profiles of temperature and water vapour data complementary to other sounding techniques.

  18. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles

    NASA Astrophysics Data System (ADS)

    Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb

    1990-10-01

    Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter

  19. Critical Analysis of Different Methods to Retrieve Atmosphere Humidity Profiles from GNSS Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Vespe, Francesco; Benedetto, Catia

    2013-04-01

    The huge amount of GPS Radio Occultation (RO) observations currently available thanks to space mission like COSMIC, CHAMP, GRACE, TERRASAR-X etc., have greatly encouraged the research of new algorithms suitable to extract humidity, temperature and pressure profiles of the atmosphere in a more and more precise way. For what concern the humidity profiles in these last years two different approaches have been widely proved and applied: the "Simple" and the 1DVAR methods. The Simple methods essentially determine dry refractivity profiles from temperature analysis profiles and hydrostatic equation. Then the dry refractivity is subtracted from RO refractivity to achieve the wet component. Finally from the wet refractivity is achieved humidity. The 1DVAR approach combines RO observations with profiles given by the background models with both the terms weighted with the inverse of covariance matrix. The advantage of "Simple" methods is that they are not affected by bias due to the background models. We have proposed in the past the BPV approach to retrieve humidity. Our approach can be classified among the "Simple" methods. The BPV approach works with dry atmospheric CIRA-Q models which depend on latitude, DoY and height. The dry CIRA-Q refractivity profile is selected estimating the involved parameters in a non linear least square fashion achieved by fitting RO observed bending angles through the stratosphere. The BPV as well as all the other "Simple" methods, has as drawback the unphysical occurrence of negative "humidity". Thus we propose to apply a modulated weighting of the fit residuals just to minimize the effects of this inconvenient. After a proper tuning of the approach, we plan to present the results of the validation.

  20. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  1. Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 μm

    NASA Astrophysics Data System (ADS)

    Bermejo-Pantaleón, D.; Funke, B.; López-Puertas, M.; GarcíA-Comas, M.; Stiller, G. P.; von Clarmann, T.; Linden, A.; Grabowski, U.; HöPfner, M.; Kiefer, M.; Glatthor, N.; Kellmann, S.; Lu, G.

    2011-10-01

    We present vertically resolved thermospheric temperatures and NO abundances in terms of volume mixing ratio retrieved simultaneously from spectrally resolved 5.3 μm emissions recorded by the Michelson Interferometer for Passive Atmospheric Spectroscopy (MIPAS) in its upper atmospheric observation mode during 2005-2009. These measurements are unique since they represent the first global observations of temperature and NO for both day and night conditions taken from space. A retrieval scheme has been developed which accounts for vibrational, rotational and spin-orbit non-LTE distributions of NO. Retrieved polar temperature and NO profiles have a vertical resolution of 5-10 km for high Ap values, and degrade to 10-20 km for low Ap conditions. Though retrieved NO abundances depend strongly on the atomic oxygen profile used in the non-LTE modeling, observations can be compared to model results in a consistent manner by applying a simple correction. Apart from this, total retrieval errors are dominated by instrumental noise. The typical single measurement precision of temperature and NO abundances are 5-40 K and 10-30%, respectively, for high Ap values, increasing to 30-70 K for Tk and 20-50% for NO VMR for low Ap conditions. Temperature and NO profiles observed under auroral conditions are rather insensitive to smoothing errors related to the mapping of a priori profile shapes. However, for extra-polar and low Ap conditions, a potential systematic bias in the retrieved nighttime temperature and NO profiles related to smoothing errors has been identified from a comparison to Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulations. We have constructed a solar minimum monthly climatology of thermospheric temperature and NO from MIPAS observations taken during 2008-2009. MIPAS temperature distributions agree well, on average, with the Mass Spectrometer and Incoherent Scatter radar model (NRLMSISE-00), but some systematic

  2. High Spectral Resolution Lidar for atmospheric temperature profiling.

    NASA Astrophysics Data System (ADS)

    Razenkov, I.; Eloranta, E. W.

    2017-12-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.

  3. Numerical study of effects of atmosphere temperature profile on wildfire behavior

    Treesearch

    Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick

    2003-01-01

    The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...

  4. Tropospheric temperature climatology and trends observed over the Middle East

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Marpu, P. R.; Ouarda, T. B. M. J.

    2015-10-01

    In this study, we report for the first time, the upper air temperature climatology, and trends over the Middle East, which seem to be significantly affected by the changes associated with hot summer and low precipitation. Long term (1985-2012) radiosonde data from 12 stations are used to derive the mean temperature climatology and vertical trends. The study was performed by analyzing the data at different latitudes. The vertical profiles of air temperature show distinct behavior in terms of vertical and seasonal variability at different latitudes. The seasonal cycle of temperature at the 100 hPa, however, shows an opposite pattern compared to the 200 hPa levels. The temperature at 100 hPa shows a maximum during winter and minimum in summer. Spectral analysis shows that the annual cycle is dominant in comparison with the semiannual cycle. The time-series of temperature data was analyzed using the Bayesian change point analysis and cumulative sum method to investigate the changes in temperature trends. Temperature shows a clear change point during the year 1999 at all stations. Further, Modified Mann-Kendall test was applied to study the vertical trend, and analysis shows statistically significant lower tropospheric warming and cooling in upper troposphere after the year 1999. In general, the magnitude of the trend decreases with altitude in the troposphere. In all the latitude bands in lower troposphere, significant warming is observed, whereas at higher altitudes cooling is noticed based on 28 years temperature observations over the Middle East.

  5. OBSERVATIONS OF SIMILARITY THEORY STABILITY CORRECTION TERMS FOR MOMENTUM AND TEMPERATURE, OVER AGRICULTURAL FIELDS AND FORESTS.

    EPA Science Inventory

    Many observations of temperature and wind speed profiles have been taken over "ideal" terrain and analyzed to develop the stability correction terms which are commonly used in the application of similarity theory. Fewer observations have been taken and analyzed in this manner ov...

  6. Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-01

    The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less

  7. Effects of Temperature and Air Density Profiles on Ozone Lidar Retrievals

    NASA Astrophysics Data System (ADS)

    Kirgis, G.; Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II

    2017-12-01

    The recent reduction in the primary U.S. National Ambient Air Quality Standard (NAAQS) for ozone (O3) from 75 to 70 parts-per-billion by volume (ppbv) adds urgency to the need for better understanding of the processes that control ground-level concentrations in the United States. While ground-based in situ sensors are capable of measuring ozone levels, they don't give any insight into upper air transport and mixing. Differential absorption lidars such as the NOAA/ESRL Tunable Optical Profiler for Aerosol and oZone (TOPAZ) measure continuous vertical ozone profiles with high spatial and temporal resolution. However, the retrieved ozone mixing ratios depend on the temperature and air density profiles used in the analysis. This study analyzes the ozone concentrations for seven field campaigns from 2013 to 2016 to evaluate the impact of the assumed pressure and temperature profiles on the ozone mixing ratio retrieval. Pressure and temperature profiles from various spatial and temporal resolution models (Modern Era Retrospective-Analysis for Research and Applications, NCEP/NCAR Reanalysis, NCEP North American Regional Reanalysis, Rapid Refresh, and High-Resolution Rapid Refresh) are compared to reference ozone profiles created with pressure and temperature profiles from ozonesondes launched close to the TOPAZ measurement site. The results show significant biases with respect to time of day and season, altitude, and location of the model-extracted profiles. Limitations and advantages of all datasets used will also be discussed.

  8. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  9. Profiles of electron temperature and Bz along Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.

    2013-06-01

    We study the electron temperature distribution and the structure of the current sheet along the magnetotail using simultaneous observations from THEMIS spacecraft. We perform a statistical study of 40 crossings of the current sheet when the three spacecraft THB, THC, and THD were distributed along the tail in the vicinity of midnight with coordinates XB \\in [-30 RE, -20 RE], XC \\in [-20 RE, -15 RE], and XD ~ -10 RE. We obtain profiles of the average electron temperature \\mlab Te\\mrab and the average magnetic field \\mlab Bz\\mrab along the tail. Electron temperature and \\mlab Bz\\mrab increase towards the Earth with almost the same rates (i.e., ratio \\mlab Te\\mrab/\\mlab Bz\\mrab ≈ 2 keV/7 nT is approximately constant along the tail). We also use statistics of 102 crossings of the current sheet from THB and THC to estimate dependence of Te and Bz distributions on geomagnetic activity. The ratio \\mlab Te \\mrab/\\mlab Bz\\mrab depends on geomagnetic activity only slightly. Additionally we demonstrate that anisotropy of the electron temperature \\mlab T∥/T⊥\\mrab ≈ 1.1 is almost constant along the tail for X \\in [-30 RE, -10 RE].

  10. Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating

    NASA Technical Reports Server (NTRS)

    Ko, William I.

    2004-01-01

    This research investigates thermal buckling characteristics of rectangular panels subjected to different types of humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. 'Buckling temperature magnification factor of the first kind, eta' is established for the fixed panel edges to scale up the buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature profile loading cases. Also, 'buckling temperature magnification factor of the second kind, xi' is established for the free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.

  11. Differences between radiosonde and dropsonde temperature profiles over the Arctic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skony, S.M.; Kahl, J.D.W.; Zaitseva, N.A.

    1994-10-01

    The boundary layer structure measured by 402 pairs of approximately collocated radiosonde and dropsonde temperature profiles over the Arctic Ocean during the period 1957-1961 is examined. The radiosonde profiles were obtained at the Russian drifting ice camps `North Pole 7` and `North Pole 8,` and the dropsonde profiles were measured during the United States Air Force `Ptarmigan` series of weather reconnaissance flights. The boundary layer structure is characterized by the features of the low-level tropospheric temperature inversion. The results indicate that the dropsonde soundings, although containing relatively few measurement levels, contain sufficient vertical resolution to characterize the temperature inversion. Systematicmore » differences were noted in wintertime inversion features and near-surface temperatures as measured by dropsondes and radiosondes. These differences are attributed to contrasting temperature lag errors accompanying ascending and descending sensors.« less

  12. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  13. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  14. Temperature profile determination in an absorbing plasma.

    NASA Technical Reports Server (NTRS)

    Usher, J. L.; Campbell, H. D.

    1972-01-01

    A new method has been developed to determine the temperature profile of an optically-non-thin plasma. The technique is essentially an extension of the brightness-emissivity method to the case of a cylindrically-symmetric plasma.

  15. Water level sensor and temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  16. Water-level sensor and temperature-profile detector

    DOEpatents

    Not Available

    1981-01-29

    A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.

  17. Adaptive temperature profile control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1991-01-01

    An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

  18. Assimilation of temperature and salinity profile data in the Norwegian Climate Prediction Model

    NASA Astrophysics Data System (ADS)

    Wang, Yiguo; Counillon, Francois; Bertino, Laurent; Bethke, Ingo; Keenlyside, Noel

    2016-04-01

    Assimilating temperature and salinity profile data is promising to constrain the ocean component of Earth system models for the purpose of seasonal-to-dedacal climate predictions. However, assimilating temperature and salinity profiles that are measured in standard depth coordinate (z-coordinate) into isopycnic coordinate ocean models that are discretised by water densities is challenging. Prior studies (Thacker and Esenkov, 2002; Xie and Zhu, 2010) suggested that converting observations to the model coordinate (i.e. innovations in isopycnic coordinate) performs better than interpolating model state to observation coordinate (i.e. innovations in z-coordinate). This problem is revisited here with the Norwegian Climate Prediction Model, which applies the ensemble Kalman filter (EnKF) into the ocean isopycnic model (MICOM) of the Norwegian Earth System Model. We perform Observing System Simulation Experiments (OSSEs) to compare two schemes (the EnKF-z and EnKF-ρ). In OSSEs, the truth is set to the EN4 objective analyses and observations are perturbations of the truth with white noises. Unlike in previous studies, it is found that EnKF-z outperforms EnKF-ρ for different observed vertical resolution, inhomogeneous sampling (e.g. upper 1000 meter observations only), or lack of salinity measurements. That is mostly because the operator converting observations into isopycnic coordinate is strongly non-linear. We also study the horizontal localisation radius at certain arbitrary grid points. Finally, we perform the EnKF-z with the chosen localisation radius in a realistic framework with NorCPM over a 5-year analysis period. The analysis is validated by different independent datasets.

  19. Profile modifications in laser-driven temperature fronts using flux-limiters and delocalization models

    NASA Astrophysics Data System (ADS)

    Colombant, Denis; Manheimer, Wallace; Busquet, Michel

    2004-11-01

    A simple steady-state model using flux-limiters by Day et al [1] showed that temperature profiles could formally be double-valued. Stability of temperature profiles in laser-driven temperature fronts using delocalization models was also discussed by Prasad and Kershaw [2]. We have observed steepening of the front and flattening of the maximum temperature in laser-driven implosions [3]. Following the simple model first proposed in [1], we solve for a two-boundary value steady-state heat flow problem for various non-local heat transport models. For the more complicated models [4,5], we obtain the steady-state solution as the asymptotic limit of the time-dependent solution. Solutions will be shown and compared for these various models. 1.M.Day, B.Merriman, F.Najmabadi and R.W.Conn, Contrib. Plasma Phys. 36, 419 (1996) 2.M.K.Prasad and D.S.Kershaw, Phys. Fluids B3, 3087 (1991) 3.D.Colombant, W.Manheimer and M.Busquet, Bull. Amer. Phys. Soc. 48, 326 (2003) 4.E.M.Epperlein and R.W.Short, Phys. Fluids B3, 3092 (1991) 5.W.Manheimer and D.Colombant, Phys. Plasmas 11, 260 (2004)

  20. Three-Dimensional Temperature and Wind Profiles Obtained Using UAV-Based Acoustic Atmospheric Tomography

    NASA Astrophysics Data System (ADS)

    Finn, A.

    2017-12-01

    The natural sound generated by an unmanned aerial vehicle is used in conjunction with tomography to remotely sense atmospheric temperature and wind profiles simultaneously. Sound fields recorded onboard the aircraft and by an array of microphones on the ground are compared and converted to sound speed estimates for the ray paths intersecting the intervening medium. Tomographic inversion is then used to transform these sound speed values into vertical cross-sections and 3D volumes of virtual temperature and wind vectors, which enables the atmosphere to be visualised and monitored over time up to altitudes of 1,200m and over baselines of up to 600m. This paper reports on results from two short campaigns during which 2D and 3D profiles of wind and temperature obtained in this way were compared to: measurements taken by co-located mid-range Doppler SODAR and LIDAR; and temperature measurements made by instruments carried by unmanned aircraft flying through the intervening atmosphere. Large eddy simulation of daytime atmospheric boundary layers were also used to examine the anticipated performance of the instruments and the nature of any errors. The observations obtained using all systems are shown to correspond closely.

  1. Using Distributed Temperature Sensing for measuring vertical temperature profiles and air temperature variance in the roughness sublayer above a forest canopy

    NASA Astrophysics Data System (ADS)

    Schilperoort, B.; Coenders, M.; Savenije, H. H. G.

    2017-12-01

    In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.

  2. Eliminating the Cuspidal Temperature Profile of a Non-equilibrium Chain

    NASA Astrophysics Data System (ADS)

    Cândido, Michael M.; M. Morgado, Welles A.; Duarte Queirós, Sílvio M.

    2017-06-01

    In 1967, Z. Rieder, J. L. Lebowitz, and E. Lieb (RLL) introduced a model of heat conduction on a crystal that became a milestone problem of non-equilibrium statistical mechanics. Along with its inability to reproduce Fourier's law—which subsequent generalizations have been trying to amend—the RLL model is also characterized by awkward cusps at the ends of the non-equilibrium chain, an effect that has endured all these years without a satisfactory answer. In this paper, we first show that such trait stems from the insufficiency of pinning interactions between the chain and the substrate. Assuming the possibility of pinning the chain, the analysis of the temperature profile in the space of parameters reveals that for a proper combination of the border and bulk pinning values, the temperature profile may shift twice between the RLL cuspidal behavior and the expected monotonic local temperature evolution along the system, as a function of the pinning. At those inversions, the temperature profile along the chain is characterized by perfect plateaux: at the first threshold, the cumulants of the heat flux reach their maxima and the vanishing of the two-point velocity correlation function for all sites of the chain so that the system behaves similarly to a "phonon box." On the other hand, at the second change of the temperature profile, we still have the vanishing of the two-point correlation function but only for the bulk, which explains the emergence of the temperature plateau and thwarts the reaching of the maximal values of the cumulants of the heat flux.

  3. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  4. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  5. Effect of Temperature Profile on Reaction Violence in Heated, Self-Ignited, PBX-9501

    NASA Astrophysics Data System (ADS)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2001-06-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We have conducted instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which have shown that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities and reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  6. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  7. Evidence for a temperature rise in the outer layers of alpha Lyrae, from Copernicus observations of Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Praderie, F.; Simonneau, E.; Snow, T. P., Jr.

    1975-01-01

    Copernicus satellite observations of the Ly-alpha profiles in alpha Lyrae (Vega) are used to determine whether classical radiative-equilibrium LTE model atmospheres can fit the thermal structure in the outer layers of that star. Two plane-parallel LTE model photospheres of alpha Lyrae are considered: a line-blanketed radiative-equilibrium model with an effective temperature of 9650 K and log g of 4.05, and the same model with a temperature of 9500 K and log g of 4.0. The profiles of the Ly-alpha wings are computed, and it is found that classical LTE models are unable to predict either the observed violet wing or the red wing longwards of 1239 A, regardless of the line source function. It is concluded that the electron temperature must increase outwards over the surface value reached in radiative equilibrium.

  8. Comparison of potential temperature gradient estimates from various temperature profile data sources

    DOT National Transportation Integrated Search

    2017-01-22

    From July through September 2015, concurrent and collocated measurements of temperature profiles from two passive radiometers and a RADAR-RASS (Radio Acoustic Sounding System) were made at a site near the ocean just to the west of Los Angeles Interna...

  9. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  10. Recent climate variations in Chile: constraints from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Pickler, Carolyne; Gurza Fausto, Edmundo; Beltrami, Hugo; Mareschal, Jean-Claude; Suárez, Francisco; Chacon-Oecklers, Arlette; Blin, Nicole; Cortés Calderón, Maria Teresa; Montenegro, Alvaro; Harris, Rob; Tassara, Andres

    2018-04-01

    We have compiled, collected, and analyzed 31 temperature-depth profiles from boreholes in the Atacama Desert in central and northern Chile. After screening these profiles, we found that only nine profiles at four different sites were suitable to invert for ground temperature history. For all the sites, no surface temperature variations could be resolved for the period 1500-1800. In the northern coastal region of Chile, there is no perceptible temperature variation at all from 1500 to present. In the northern central Chile region, between 26 and 28° S, the data suggest a cooling from ≈ 1850 to ≈ 1980 followed by a 1.9 K warming starting ≈ 20-40 years BP. This result is consistent with the ground surface temperature histories for Peru and the semiarid regions of South America. The duration of the cooling trend is poorly resolved and it may coincide with a marked short cooling interval in the 1960s that is found in meteorological records. The total warming is greater than that inferred from proxy climate reconstructions for central Chile and southern South America, and by the PMIP3-CMIP5 surface temperature simulations for the north-central Chile grid points. The differences among different climate reconstructions, meteorological records, and models are likely due to differences in spatial and temporal resolution among the various data sets and the models.

  11. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    NASA Astrophysics Data System (ADS)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  12. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  13. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    NASA Astrophysics Data System (ADS)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  14. Advances in atmospheric temperature profile measurements using high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2018-04-01

    This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.

  15. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  16. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for themore » present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)« less

  17. Assessment of COSMIC radio occultation and AIRS hyperspectral IR sounder temperature products in the stratosphere using observed radiances

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Knuteson, R. O.; Revercomb, H. E.

    2017-08-01

    Upper air temperature is defined as an essential climate variable by the World Meteorological Organization. Two remote sensing technologies being promoted for monitoring stratospheric temperatures are GPS radio occultation (RO) and spectrally resolved IR radiances. This study assesses RO and hyperspectral IR sounder derived temperature products within the stratosphere by comparing IR spectra calculated from GPS RO and IR sounder products to coincident IR observed radiances, which are used as a reference standard. RO dry temperatures from the University Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission are compared to NASA Atmospheric Infrared Sounder (AIRS) retrievals using a previously developed profile-to-profile collocation method and vertical temperature averaging kernels. Brightness temperatures (BTs) are calculated for both COSMIC and AIRS temperature products and are then compared to coincident AIRS measurements. The COSMIC calculated minus AIRS measured BTs exceed the estimated 0.5 K measurement uncertainty for the winter time extratropics around 35 hPa. These differences are attributed to seasonal UCAR COSMIC biases. Unphysical vertical oscillations are seen in the AIRS L2 temperature product in austral winter Antarctic regions, and results imply a small AIRS tropical warm bias around 35 hPa in the middle stratosphere.

  18. Main-ion intrinsic toroidal rotation profile driven by residual stress torque from ion temperature gradient turbulence in the DIII-D tokamak

    DOE PAGES

    Grierson, B. A.; Wang, W. X.; Ethier, S.; ...

    2017-01-06

    Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. Finally, the prediction of the velocity profile by integrating the momentum balance equation produces amore » rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.« less

  19. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    PubMed

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  20. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    PubMed Central

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  1. Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.

    2012-09-01

    Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 < z < 0.9, having an average temperature in the range 5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study for the first time the temperature profiles of a sample of high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ < 0.6 as CC clusters and those with σ ≥ 0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latter exhibiting a slightly flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 < z < 0.9). A comparison of our high-z sample with intermediate clusters at 0.1 < z < 0.3 showed how the CC and NCC cluster temperature profiles have experienced some sort of evolution. This can happen because higher z clusters are at a less advanced stage of their formation and

  2. Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI).

    NASA Astrophysics Data System (ADS)

    Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.

    2003-05-01

    large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.

  3. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    PubMed

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  4. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by

  5. Automated system for measuring temperature profiles inside ITS-90 fixed-point cells

    NASA Astrophysics Data System (ADS)

    Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko

    2005-11-01

    The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.

  6. Effects of low central fuelling on density and ion temperature profiles in reversed shear plasmas on JT-60U

    NASA Astrophysics Data System (ADS)

    Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team

    2008-07-01

    Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.

  7. Fort Bliss Geothermal Area Data: Temperature profile, logs, schematic model and cross section

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.

  8. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  9. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  10. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  11. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    NASA Astrophysics Data System (ADS)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  12. Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin

    2015-08-01

    Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.

  13. Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, D.; Shine, R. A.

    1982-01-01

    Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.

  14. Producing a Climate-Quality Database of Global Upper Ocean Profile Temperatures - The IQuOD (International Quality-controlled Ocean Database) Project.

    NASA Astrophysics Data System (ADS)

    Sprintall, J.; Cowley, R.; Palmer, M. D.; Domingues, C. M.; Suzuki, T.; Ishii, M.; Boyer, T.; Goni, G. J.; Gouretski, V. V.; Macdonald, A. M.; Thresher, A.; Good, S. A.; Diggs, S. C.

    2016-02-01

    Historical ocean temperature profile observations provide a critical element for a host of ocean and climate research activities. These include providing initial conditions for seasonal-to-decadal prediction systems, evaluating past variations in sea level and Earth's energy imbalance, ocean state estimation for studying variability and change, and climate model evaluation and development. The International Quality controlled Ocean Database (IQuOD) initiative represents a community effort to create the most globally complete temperature profile dataset, with (intelligent) metadata and assigned uncertainties. With an internationally coordinated effort organized by oceanographers, with data and ocean instrumentation expertise, and in close consultation with end users (e.g., climate modelers), the IQuOD initiative will assess and maximize the potential of an irreplaceable collection of ocean temperature observations (tens of millions of profiles collected at a cost of tens of billions of dollars, since 1772) to fulfil the demand for a climate-quality global database that can be used with greater confidence in a vast range of climate change related research and services of societal benefit. Progress towards version 1 of the IQuOD database, ongoing and future work will be presented. More information on IQuOD is available at www.iquod.org.

  15. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  16. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  17. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  18. Improved VAS regression soundings of mesoscale temperature structure observed during the 1982 atmospheric variability experiment

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Keyser, Dennis A.; Larko, David E.; Uccellini, Louis W.

    1987-01-01

    An Atmospheric Variability Experiment (AVE) was conducted over the central U.S. in the spring of 1982, collecting radiosonde date to verify mesoscale soundings from the VISSR Atmospheric Sounder (VAS) on the GOES satellite. Previously published VAS/AVE comparisons for the 6 March 1982 case found that the satellite retrievals scarcely detected a low level temperature inversion or a mid-tropospheric cold pool over a special mesoscale radiosonde verification network in north central Texas. The previously published regression and physical retrieval algorithms did not fully utilize VAS' sensitivity to important subsynoptic thermal features. Therefore, the 6 March 1982 case was reprocessed adding two enhancements to the VAS regression retrieval algorithm: (1) the regression matrix was determined using AVE profile data obtained in the region at asynoptic times, and (2) more optimistic signal-to-noise statistical conditioning factors were applied to the VAS temperature sounding channels. The new VAS soundings resolve more of the low level temperature inversion and mid-level cold pool. Most of the improvements stems from the utilization of asynoptic radiosonde observations at NWS sites. This case suggests that VAS regression soundings may require a ground-based asynoptic profiler network to bridge the gap between the synoptic radiosonde network and the high resolution geosynchronous satellite observations during the day.

  19. Microwave brightness temperature features of lunar craters: observation from Chang'E-1 mission

    NASA Astrophysics Data System (ADS)

    Hu, Guo-Ping; Chen, Ke; Guo, Wei; Li, Qing-Xia; Su, Hong-Yan

    2013-01-01

    Topographic features of lunar craters have been found from the brightness temperature (TB) observed by the multichannel (3.0, 7.8, 19.35, and 37 GHz) microwave radiometer (MRM) aboard Chang'E-1 (CE-1) in a single track view. As the topographic effect is more obvious at 37 GHz, 37 GHz TB has been focused on in this work. The variation of 37 GHz daytime (nighttime) TB along the profile of a crater is found to show an oscillatory behavior. The amplitude of daytime TB is significantly affected by the observation time and the shape of the crater, whose diameter is bigger than the spatial resolution of MRM onboard CE-1. The large and typical diurnal TB difference (nighttime TB minus daytime TB) at 37 GHz over selected young craters due to the large rock abundance in craters, have been discussed and compared with the altitude profile.

  20. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  1. Observed changes in the vertical profile of stratopheric nitrous oxide at Thule, Greenland, February - March 1992

    NASA Technical Reports Server (NTRS)

    Emmons, Louisa K.; Reeves, John M.; Shindell, Drew T.; Dezafra, Robert L.

    1994-01-01

    Using a ground-based mm-wave spectrometer, we have observed stratospheric N2O over Thule, Greenland (76.3 N, 68.4 W) during late February and March, 1992. Vertical profiles of mixing ratio ranging from 16 to 50 km were recovered from molecular emission spectra. The profiles of early March show an abrupt increase in the lower-stratosphere N2O mixing ratio similar to the spring-to-summer change associated with the break up of the Antarctic polar vortex. This increase is correlated with changes in potential vorticity, air temperature, and ozone mixing ratio.

  2. Temperature Profile Measurements in a Newly Constructed 30-Stage 5 cm Centrifugal Contactor pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh

    2008-09-01

    An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows

  3. A unique airborne observation. [Martian atmospheric temperature and abundances from occultation of Epsilon Geminorum

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.; Church, C.

    1976-01-01

    The occultation of 3rd magnitude Epsilon Geminorum by Mars was observed using a 36-inch telescope equipped with a photoelectric photometer at the bent Cassegrain focus, carried aboard the Kuiper Airborne Observatory at altitudes up to 45,000 feet. Scintillation from the earth's atmosphere was greatly reduced in comparison with ground observations. The observations clearly show the central flash, caused by the symmetrical refraction of light by the atmosphere of Mars. The data are being analyzed to obtain temperature profiles and to assess the relative abundance of argon and carbon dioxide in the atmosphere of the planet.

  4. Effect of Fuel Temperature Profile on Eigenvalue Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C

    2008-01-01

    Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less

  5. Are anharmonicity corrections needed for temperature-profile calculations of interiors of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Anderson, O. L.

    1982-07-01

    The temperature profile of planetary interiors is an important item of information, because many thermodynamic or geodynamic investigations of a planet's interior require an estimate of the temperature profile. Modeling studies of the thermal history or convective processes focus in detail on the thermal profile of the planet. A description is presented of results which show how the present (or equilibrium) interior temperature profile is related to certain constraints placed on the planet, especially the physical properties of the mantle material. These properties depend upon a priori assumptions of chemical composition. The investigation is mainly concerned with experimental and theoretical data appropriate to mantle minerals, in order to justify the use of a simple equation-of-state for planet interiors. It is found that anharmonicity does not seem to be required for calculations of interior properties of the terrestrial planets.

  6. Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501

    NASA Astrophysics Data System (ADS)

    Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry

    2002-07-01

    Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We are conducting instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which are beginning to show that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities which can be considered a measure of reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.

  7. Correlation study of actual temperature profile and in-line metrology measurements for within-wafer uniformity improvement and wafer edge yield enhancement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou

    2018-03-01

    It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up

  8. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    NASA Astrophysics Data System (ADS)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  9. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E

    2012-12-01

    The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, W. R.

    1990-01-01

    Azulene-doped naphtalene was directionally solidified using the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection are determined as a function of the temperature profile in the furnace and the freezing rate. Convective velocities are two orders of magnitude lower when the temperature increases with height. The cross sectional variation in azulene concentration tends to be asymmetric. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions can produce greater inhomogeneities than on earth. Thus when low freezing rates are necessary in order to avoid constitutional supercooling, it may be necessary to combine microgravity and magnetic fields in order to achieve homogeneous crystals.

  11. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF

  12. Temperature profile around a basaltic sill intruded into wet sediments

    USGS Publications Warehouse

    Baker, Leslie; Bernard, Andrew; Rember, William C.; Milazzo, Moses; Dundas, Colin M.; Abramov, Oleg; Kestay, Laszlo P.

    2015-01-01

    The transfer of heat into wet sediments from magmatic intrusions or lava flows is not well constrained from field data. Such field constraints on numerical models of heat transfer could significantly improve our understanding of water–lava interactions. We use experimentally calibrated pollen darkening to measure the temperature profile around a basaltic sill emplaced into wet lakebed sediments. It is well known that, upon heating, initially transparent palynomorphs darken progressively through golden, brown, and black shades before being destroyed; however, this approach to measuring temperature has not been applied to volcanological questions. We collected sediment samples from established Miocene fossil localities at Clarkia, Idaho. Fossils in the sediments include pollen from numerous tree and shrub species. We experimentally calibrated changes in the color of Clarkia sediment pollen and used this calibration to determine sediment temperatures around a Miocene basaltic sill emplaced in the sediments. Results indicated a flat temperature profile above and below the sill, with T > 325 °C within 1 cm of the basalt-sediment contact, near 300 °C at 1–2 cm from the contact, and ~ 250 °C at 1 m from the sill contact. This profile suggests that heat transport in the sediments was hydrothermally rather than conductively controlled. This information will be used to test numerical models of heat transfer in wet sediments on Earth and Mars.

  13. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  14. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  15. A new method to derive middle atmospheric temperature profiles using a combination of Rayleigh lidar and O2 airglow temperatures measurements

    NASA Astrophysics Data System (ADS)

    Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.

    2012-01-01

    The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.

  16. Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Williams, B. A.

    1976-01-01

    Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.

  17. Long-term changes in ultraviolet P Cygni profiles observed with Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1977-01-01

    The incidence and nature of variability occurring on time scales of years in the ultraviolet P Cygni profiles of 15 O and B stars are investigated using spectrophotometric data obtained with the Copernicus satellite. It is found that some change in at least a few details of the P Cygni profiles is evident in almost every case, that the changes in a few stars appear to represent substantial variations in the column densities of the particular ions observed, and that the changes in other stars are minor in nature and do not result from significant alterations in the quantity of material in the stellar winds. Most of the narrow absorption features are shown to be invariant in velocity, although their strengths have apparently changed in certain cases. The nature of the changes observed in each of the program stars is briefly described, the time scale for variability in the stellar winds is considered, and two stars (Zeta Pup and Delta Ori A) are identified for which some alteration in the total amount of material in the stellar wind has taken place. It is suggested that the narrow absorption features probably represent temperature gradients or plateaus in the stellar-wind velocity fields or may be caused by flat regions in the height dependence of the wind velocity.

  18. Measurements of temperature profiles at the exit of small rockets.

    PubMed

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  19. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife.

    PubMed

    Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A

    2017-01-01

    Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i

  20. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife

    PubMed Central

    Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.

    2017-01-01

    Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i

  1. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  2. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  3. OBSERVATIONS AND SIMULATIONS OF THE Na i D{sub 1} LINE PROFILES IN AN M-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.

    2016-12-01

    We study the temporal evolution of the Na i D{sub 1} line profiles in the M3.9 flare SOL2014-06-11T21:03 UT, using observations at high spectral resolution obtained with the Interferometric Bidimensional Spectrometer instrument on the Dunn Solar Telescope combined with radiative hydrodynamic simulations. Our results show a significant increase in the intensities of the line core and wings during the flare. The analysis of the line profiles from the flare ribbons reveals that the Na i D{sub 1} line has a central reversal with excess emission in the blue wing (blue asymmetry). We combine RADYN and RH simulations to synthesize Na imore » D{sub 1} line profiles of the flaring atmosphere and find good agreement with the observations. Heating with a beam of electrons modifies the radiation field in the flaring atmosphere and excites electrons from the ground state 3s {sup 2}S to the first excited state 3p {sup 2}P, which in turn modifies the relative population of the two states. The change in temperature and the population density of the energy states make the sodium line profile revert from absorption into emission. Furthermore, the rapid changes in temperature break the pressure balance between the different layers of the lower atmosphere, generating upflow/downflow patterns. Analysis of the simulated spectra reveals that the asymmetries of the Na i D{sub 1} flare profile are produced by the velocity gradients in the lower solar atmosphere.« less

  4. Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles

    NASA Astrophysics Data System (ADS)

    Flynn, Clare Marie; Pickering, Kenneth E.; Crawford, James H.; Weinheimer, Andrew J.; Diskin, Glenn; Thornhill, K. Lee; Loughner, Christopher; Lee, Pius; Strode, Sarah A.

    2016-12-01

    To investigate the variability of in situ profile shapes under a variety of meteorological and pollution conditions, results are presented of an agglomerative hierarchical cluster analysis of the in situ O3 and NO2 profiles for each of the four campaigns of the NASA DISCOVER-AQ mission. Understanding the observed profile variability for these trace gases is useful for understanding the accuracy of the assumed profile shapes used in satellite retrieval algorithms as well as for understanding the correlation between satellite column observations and surface concentrations. The four campaigns of the DISCOVER-AQ mission took place in Maryland during July 2011, the San Joaquin Valley of California during January-February 2013, the Houston, Texas, metropolitan region during September 2013, and the Denver-Front Range region of Colorado during July-August 2014. Several distinct profile clusters emerged for the California, Texas, and Colorado campaigns for O3, indicating significant variability of O3 profile shapes, while the Maryland campaign presented only one distinct O3 cluster. In contrast, very few distinct profile clusters emerged for NO2 during any campaign for this particular clustering technique, indicating the NO2 profile behavior was relatively uniform throughout each campaign. However, changes in NO2 profile shape were evident as the boundary layer evolved through the day, but they were apparently not significant enough to yield more clusters. The degree of vertical mixing (as indicated by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the correlations between the associated column and surface data for each cluster for O3. The correlation analyses suggest satellites may have the best chance to relate to surface O3 under the conditions encountered during the Maryland campaign Clusters 1 and 2, which include deep, convective boundary layers and few

  5. Twilight and nighttime ionospheric temperatures from oxygen 6300- and 5577-A spectral-line profiles.

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi , M. A.

    1972-01-01

    Use of Fabry-Perot interferometer measurements of atomic-oxygen 6300- and 5577-A line profiles from twilight and nightglow to determine the neutral temperatures in the F2 and E regions of the earth's ionosphere. The exospheric temperatures determined from the 6300-A profiles are usually somewhat higher than the temperatures calculated from Jacchia's model, and differences as large as about 300 K are noted when the exospheric temperature equals 1500 to 1600 K. The postsunset and predawn rate of change of the exospheric temperature is often substantially larger than the Jacchia prediction. The 5577-A (E region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.

  6. Temperatures and aerosol opacities of the Mars atmosphere at aphelion: Validation and inter-comparison of limb sounding profiles from MRO/MCS and MGS/TES

    NASA Astrophysics Data System (ADS)

    Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.

    2015-05-01

    are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures ⩽ 1 Pa (altitudes ⩾ 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70°N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70°N during the aphelion season.

  7. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  8. Preliminary VHF radar and high-data-rate optical turbulence profile observations using a balloon-ring platform

    NASA Astrophysics Data System (ADS)

    Eaton, Frank D.; Nastrom, Gregory D.; Kyrazis, Demos T.; Black, Don G.; Black, Wiley T.; Black, R. Alastair

    2009-08-01

    A recent measurement campaign at Vandenberg Air Force Base, Calif. involved taking simultaneous observations with a VHF radar and high-data-rate (1-micron diameter) platinum wires to sense optical turbulence (from temperature fluctuations). The radar observations produce profiles of the refractive index structure parameter (C2n ), the turbulent kinetic energy (σ2t ), the eddy dissipation rate (ɛ), the inner scale (lo ), the outer scale (Lo ) of turbulence, and wind speed and direction to an altitude of 20 km AGL. The fine wire measurements were taken from the surface with several sensors mounted on a balloon-ring platform sampling in excess of 3 kHz to balloon burst altitudes (typically above 25 km AGL). The main objectives of this effort are to compare the two measurement techniques and to obtain observations that can address several fundamental turbulence issues of the real turbulent atmosphere related to laser beam propagation. To date, modeling and simulation of laser beam propagation through atmospheric turbulence have relied upon a traditional theoretical basis that assumes the existence of homogeneous, isotropic, stationary, and Kolmogorov turbulence. Results presented from the radar observations include C2n, σ2t, ɛ, lo, and the standard deviation of vertical velocity (σw). A comparison of the profiles of C2n obtained from the two measurement techniques is shown and discussed. A time series of temperature data obtained from a fine wire probe traversing one radar range gate is presented and discussed. Future measurement and analysis efforts are presented.

  9. Normal range and lateral symmetry in the skin temperature profile of pregnant women

    NASA Astrophysics Data System (ADS)

    Pereira, Tânia; Nogueira-Silva, Cristina; Simoes, Ricardo

    2016-09-01

    Body skin temperature is a useful parameter for diagnosing diseases and infrared thermography can be a powerful tool in providing important information to detect body temperature changes in a noninvasive way. The aim of this work was to study the pattern of skin temperature during pregnancy, to establish skin temperature reference values and to find correlations between these and the pregnant population characteristics. Sixty-one healthy pregnant women (mean age 30.6 ± 5.1 years) in the 8th-40th gestational week with normal pregnancies were examined in 31 regions of interest (ROI). The ROIs were defined all over the body in order to determine the most influenced by factors such as age or body mass index (BMI). The results obtained in this work highlight that in normal pregnant women the skin temperature is symmetrically distributed, with the symmetrical areas differing less than 0.5 °C , with a mean value of 0.25 ± 0.23 °C . This study identified a significant negative correlation between the BMI and temperature. Age has been shown to have great influence on the skin temperature, with a significant increase of temperature observed with age. This work explores a novel medical application of infrared thermography and provides a characterization of thermal skin profile in human pregnancy for a large set of ROIs while also evaluating the effects of age and BMI.

  10. Measuring temperature and field profiles in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Hohlfeld, J.; Zheng, X.; Benakli, M.

    2015-08-01

    We introduce a theoretical and experimental framework that enables quantitative measurements of the temperature and magnetic field profiles governing the thermo-magnetic write process in heat assisted magnetic recording. Since our approach allows the identification of the correct temperature dependence of the magneto-crystalline anisotropy field in the vicinity of the Curie point as well, it provides an unprecedented experimental foundation to assess our understanding of heat assisted magnetic recording.

  11. Temperature profile of graphite surface burning in a stream of oxygen

    NASA Technical Reports Server (NTRS)

    Kisch, D.

    1978-01-01

    Using methods for the objective measurement of the spectrum line reversal temperature in burning gases, the temperature profile at a graphite surface burning in a stream of oxygen was measured. From the behavior of the reversal temperature, it follows that particles in long-lived, high-energy states are present in the burning gas, and these bring about an overexcitation of the atomic species emitting the reversal line. Qualitative measurements show that a temperature maximum occurs at the expected distance of 1-2 mm from the graphite surface.

  12. LOFAR observations of the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.

    2018-06-01

    Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and

  13. The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2000-01-01

    Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press

  14. World Ocean Database and the Global Temperature and Salinity Profile Program Database: Synthesis of historical and near real-time ocean profile data

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.

    2016-02-01

    The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.

  15. Dynamic temperature and humidity environmental profiles: impact for future emergency and disaster preparedness and response.

    PubMed

    Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J

    2014-02-01

    During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days

  16. Analytical and Experimental Study of Flow Through an Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects.

  17. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  19. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  20. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  1. Interpretation of nitric oxide profile observed in January 1992 over Kiruna

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Kawa, S. R.; Lary, D.; Sugita, T.; Douglass, Anne R.; Lutman, E.; Koike, M.; Deshler, T.

    1996-05-01

    NO mixing ratios measured from Kiruna (68°N, 20°E), Sweden, on January 22, 1992, revealed values much smaller than those observed at midlatitude near equinox and had a sharper vertical gradient around 25 km. Location of the measurements was close to the terminator and near the edge of the polar vortex, which is highly distorted from concentric flow by strong planetary wave activities. These conditions necessitate accurate calculation, properly taking into account the transport and photochemical processes, in order to quantitatively explain the observed NO profile. A three-dimensional chemistry and transport model (CTM) and a trajectory model (TM) were used to interpret the profile observations within their larger spatial, temporal, and chemical context. The NOy profile calculated by the CTM is in good agreement with that observed on January 31, 1992. In addition, model NOy profiles show small variabilities depending on latitudes, and they change little between January 22 and 31. The TM uses the observed NOy values. The NO values calculated by the CTM and TM agree with observations up to 27 km. Between 20 and 27 km the NO values calculated by the trajectory model including only gas phase chemistry are much larger than those including heterogeneous chemistry, indicating that NO mixing ratios were reduced significantly by heterogeneous chemistry on sulfuric acid aerosols. Very little sunlight to generate NOx from HNO3 was available, also causing the very low NO values. The good agreement between the observed and modeled NO profiles indicates that models can reproduce the photochemical and transport processes in the region where NO values have a sharp horizontal gradient. Moreover, CTM and TM model results show that even when the NOy gradients are weak, the model NO depends upon accurate calculation of the transport and insolation for several days.

  2. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    NASA Astrophysics Data System (ADS)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  3. Effect of leaf incubation temperature profiles on Agrobacterium tumefaciens-mediated transient expression.

    PubMed

    Jung, Sang-Kyu; McDonald, Karen A; Dandekar, Abhaya M

    2015-01-01

    Agrobacterium tumefaciens-mediated transient expression is known to be highly dependent on incubation temperature. Compared with early studies that were conducted at constant temperature, we examined the effect of variable leaf incubation temperature on transient expression. As a model system, synthetic endoglucanase (E1) and endoxylanase (Xyn10A) genes were transiently expressed in detached whole sunflower leaves via vacuum infiltration for biofuel applications. We found that the kinetics of transient expression strongly depended on timing of the temperature change as well as leaf incubation temperature. Surprisingly, we found that high incubation temperature (27-30 °C) which is suboptimal for T-DNA transfer, significantly enhanced transient expression if the high temperature was applied during the late phase (Day 3-6) of leaf incubation whereas incubation temperature in a range of 20-25 °C for an early phase (Day 0-2) resulted in higher production. On the basis of these results, we propose that transient expression is governed by both T-DNA transfer and protein synthesis in plant cells that have different temperature dependent kinetics. Because the phases were separated in time and had different optimal temperatures, we were then able to develop a novel two phase optimization strategy for leaf incubation temperature. Applying the time-varying temperature profile, we were able to increase the protein accumulation by fivefold compared with the control at a constant temperature of 20 °C. From our knowledge, this is the first report illustrating the effect of variable temperature profiling for improved transient expression. © 2015 American Institute of Chemical Engineers.

  4. Simultaneous Measurements of CO2 Concentration and Temperature profiles using 1.6 μm DIAL in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Shibata, Y.; Nagasawa, C.; Abo, M.

    2016-12-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. The barometric formula can derive atmospheric pressure of each altitude using atmospheric pressure of ground level at the lidar site. Comparison of atmospheric pressure prlofiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan are consisted within 0.2 % below 3 km altitude. So, we have developed a 1.6 μm CO2 DIAL system for simultaneous measurements of the CO2 concentration and temperature profiles in the lower-atmosphere. Laser beams of three wavelengths around a CO2 absorption spectrum is transmitted alternately to the atmosphere. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration and temperature, which measured by these DIAL techniques. We have acheived vertical CO2 concentration and temperature profile from 0.5 to 2.0 km altitude by this DIAL system. In the next step, we will use this high accuracy CO2 concentration profile and back-trajectory analysis for the behavior analysis of the CO2 mass. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  5. An improvement of the retrieval of temperature and relative humidity profiles from a combination of active and passive remote sensing

    NASA Astrophysics Data System (ADS)

    Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru

    2018-03-01

    This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.

  6. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects. Previously announced in STAR as N83-27958

  7. A new temperature profiling probe for investigating groundwater-surface water interaction

    USGS Publications Warehouse

    Naranjo, Ramon C.; Robert Turcotte,

    2015-01-01

    Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.

  8. Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Takahashi, M.

    2008-02-01

    A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.

  9. The response of the SSM/I to the marine environment. I - An analytic model for the atmospheric component of observed brightness temperatures

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1992-01-01

    A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.

  10. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    NASA Technical Reports Server (NTRS)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  11. A Self-Powered Fast-Sampling Profiling Float in support of a Mesoscale Ocean Observing System in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.

    2012-12-01

    This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.

  12. Impacts of snow on soil temperature observed across the circumpolar north

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Sherstiukov, Artem B.; Qian, Budong; Kokelj, Steven V.; Lantz, Trevor C.

    2018-04-01

    Climate warming has significant impacts on permafrost, infrastructure and soil organic carbon at the northern high latitudes. These impacts are mainly driven by changes in soil temperature (TS). Snow insulation can cause significant differences between TS and air temperature (TA), and our understanding about this effect through space and time is currently limited. In this study, we compiled soil and air temperature observations (measured at about 0.2 m depth and 2 m height, respectively) at 588 sites from climate stations and boreholes across the northern high latitudes. Analysis of this circumpolar dataset demonstrates the large offset between mean TS and TA in the low arctic and northern boreal regions. The offset decreases both northward and southward due to changes in snow conditions. Correlation analysis shows that the coupling between annual TS and TA is weaker, and the response of annual TS to changes in TA is smaller in boreal regions than in the arctic and the northern temperate regions. Consequently, the inter-annual variation and the increasing trends of annual TS are smaller than that of TA in boreal regions. The systematic and significant differences in the relationship between TS and TA across the circumpolar north is important for understanding and assessing the impacts of climate change and for reconstruction of historical climate based on ground temperature profiles for the northern high latitudes.

  13. Profiles of second- to third-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with Rotational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2014-11-01

    The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second

  14. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  15. Experimental observation of the influence of furnace temperature profile on convection and segregation in the vertical Bridgman crystal growth technique

    NASA Technical Reports Server (NTRS)

    Neugebauer, G. T.; Wilcox, William R.

    1992-01-01

    Azulene-doped naphthalene was directionally solidified during the vertical Bridgman-Stockbarger technique. Doping homogeneity and convection were determined as a function of the temperature profile in the furnace and the freezing rate. Convection velocities were two orders of magnitude lower when the temperature increased with height. Rarely was the convection pattern axisymmetric, even though the temperature varied less than 0.1 K around the circumference of the growth ampoule. Correspondingly the cross sectional variation in azulene concentration tended to be asymmetric, especially when the temperature increased with height. This cross sectional variation changed dramatically along the ingot, reflecting changes in convection presumably due to the decreasing height of the melt. Although there was large scatter and irreproducibility in the cross sectional variation in doping, this variation tended to be least when the growth rate was low and the convection was vigorous. It is expected that compositional variations would also be small at high growth rates with weak convection and flat interfaces, although this was not investigated in the present experiments. Neither rotation of the ampoule nor deliberate introduction of thermal asymmetries during solidification had a significant influence on cross sectional variations in doping. It is predicted that slow directional solidification under microgravity conditions could produce greater inhomogeneities than on Earth. Combined use of microgravity and magnetic fields would be required to achieve homogeneity when it is necessary to freeze slowly in order to avoid constitutional supercooling.

  16. Retrieval of Atmospheric Water Vapor Profiles from the Special Sensor Microwave TEMPERATURE-2

    NASA Astrophysics Data System (ADS)

    Al-Khalaf, Abdulrahman Khal

    1995-01-01

    Radiometric measurements from the Special Sensor Microwave/Temperature-2 (SSM/T-2) instrument are used to retrieve atmospheric water vapor profiles over ocean, land, coast, and ice/snow backgrounds. These measurements are used to retrieve vertical distribution of integrated water vapor (IWV) and total integrated water vapor (TIWV) using a physical algorithm. The algorithm infers the presence of cloud at a given height from super-saturation of the retrieved humidity at that height then the algorithm estimate the cloud liquid water content. Retrievals of IWV over five different layers are validated against available ground truth such as global radiosondes and ECMWF analyses. Over ocean, the retrieved total integrated water vapor (TIWV) and IWV close to the surface compare quite well, with those from radiosonde observations and the European Center for Medium Range Weather Forecasts (ECMWF) analyses. However, comparisons to radiosonde results are better than (ECMWF) analyses. TIWV root mean square (RMS) difference was 5.95 mm and TWV RMS difference for the lowest layer (SFC-850 mb) was 2.8 mm for radiosonde comparisons. Water vapor retrieval over land is less accurate than over ocean due to the low contrast between the surface and the atmosphere near the surface; therefore, land retrievals are more reliable at layers above 700 mb. However, TIWV and IWV at all layers compare appropriately with ground truth. Over coastal areas the agreement between retrieved water vapor profiles and ground truth is quite good for both TIWV and IWV for the five layers. The natural variability and large variations in the surface emissivity over ice and snow fields leads toward poor results. Clouds degrade retrievals over land and coast, improve the retrievals a little over ocean, and improve dramatically over snow/ice. Examples of retrieved relative humidity profiles were shown to illustrate the algorithm performance for the actual profile retrieval. The overall features of the retrieved

  17. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishal Patel

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predictedmore » carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.« less

  18. Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate

    NASA Astrophysics Data System (ADS)

    Igono, M. O.; Bjotvedt, G.; Sanford-Crane, H. T.

    1992-06-01

    The environmental profile of central Arizona is quantitatively described using meteorological data between 1971 and 1986. Utilizing ambient temperature criteria of hours per day less than 21° C, between 21 and 27° C, and more than 27° C, the environmental profile of central Arizona consists of varying levels of thermoneutral and heat stress periods. Milk production data from two commercial dairy farms from March 1990 to February 1991 were used to evaluate the seasonal effects identified in the environmental profile. Overall, milk production is lower during heat stress compared to thermoneutral periods. During heat stress, the cool period of hours per day with temperature less than 21° C provides a margin of safety to reduce the effects of heat stress on decreased milk production. Using minimum, mean and maximum ambient temperatures, the upper critical temperatures for milk production are 21, 27 and 32° C, respectively. Using the temperature-humidity index as the thermal environment indicator, the critical values for minimum, mean and maximum THI are 64, 72 and 76, respectively.

  19. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    NASA Astrophysics Data System (ADS)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  20. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less

  1. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.

    2015-05-01

    The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of

  2. Peak Metamorphic Temperature Profile across Eastern Belt Franciscan, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schmidt, W. L.; Platt, J. P.

    2017-12-01

    Previous work done on metamorphic temperatures across the lawsonite-albite to blueschist facies rocks of the Eastern Belt of the Franciscan accretionary complex has relied on a combination of many methods, and suggests that temperature broadly increases from west to east. The Taliaferro Metamorphic Complex is an exception to this pattern and shows higher pressures, and possibly higher temperatures, than its surroundings. The exact location and nature of the faults separating accreted packets in the Eastern Belt is somewhat controversial. A recently calibrated low-temperature laser Raman geothermometer for use on carbonaceous material provides a uniform method of estimating peak metamorphic temperature across the eastern Franciscan and is here used to identify the position of major tectonic boundaries. Temperatures were obtained from exposures in Thomes Creek, Cottonwood Creek, Grindstone Creek, and the middle fork of the Eel River. Peak T in the South Fork Mountain Schist, the highest grade and easternmost unit in the Franciscan, is 310-375°C, whereas in immediately underlying lawsonite-albite facies rocks below the Log Springs thrust, peak T is 270 - 300°C. The Taliaferro Metamorphic Complex reached a peak temperature of 336°C, whereas the surrounding lawsonite-albite facies rocks yield peak temperatures as low as 232°C. Preliminary temperature profiles clearly allow the major faults bounding the Taliaferro Metamorphic Complex and the South Fork Mountain Schist to be located. Extension of the temperature profile has the potential to reveal further detail within these units and the lower grade rocks surrounding them.

  3. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  4. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  5. Assessment of NOAA NUCAPS upper air temperature profiles using COSMIC GPS radio occultation and ARM radiosondes

    NASA Astrophysics Data System (ADS)

    Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.

    2017-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.

  6. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions

    NASA Astrophysics Data System (ADS)

    Page, L.; Barnes, C.; Hinshaw, G.; Spergel, D. N.; Weiland, J. L.; Wollack, E.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.

    2003-09-01

    Knowledge of the beam profiles is of critical importance for interpreting data from cosmic microwave background experiments. In this paper, we present the characterization of the in-flight optical response of the WMAP satellite. The main-beam intensities have been mapped to <=-30 dB of their peak values by observing Jupiter with the satellite in the same observing mode as for CMB observations. The beam patterns closely follow the prelaunch expectations. The full width at half-maximum is a function of frequency and ranges from 0.82d at 23 GHz to 0.21d at 94 GHz; however, the beams are not Gaussian. We present (a) the beam patterns for all 10 differential radiometers, showing that the patterns are substantially independent of polarization in all but the 23 GHz channel; (b) the effective symmetrized beam patterns that result from WMAP's compound spin observing pattern; (c) the effective window functions for all radiometers and the formalism for propagating the window function uncertainty; and (d) the conversion factor from point-source flux to antenna temperature. A summary of the systematic uncertainties, which currently dominate our knowledge of the beams, is also presented. The constancy of Jupiter's temperature within a frequency band is an essential check of the optical system. The tests enable us to report a calibration of Jupiter to 1%-3% accuracy relative to the CMB dipole. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  7. Damping profile of standing kink oscillations observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-01-01

    Aims: Strongly damped standing and propagating kink oscillations are observed in the solar corona. This can be understood in terms of mode coupling, which causes the wave energy to be converted from the bulk transverse oscillation to localised, unresolved azimuthal motions. The damping rate can provide information about the loop structure, and theory predicts two possible damping profiles. Methods: We used the recently compiled catalogue of decaying standing kink oscillations of coronal loops to search for examples with high spatial and temporal resolution and sufficient signal quality to allow the damping profile to be examined. The location of the loop axis was tracked, detrended, and fitted with sinusoidal oscillations with Gaussian and exponential damping profiles. Results: Using the highest quality data currently available, we find that for the majority of our cases a Gaussian profile describes the damping behaviour at least as well as an exponential profile, which is consistent with the recently developed theory for the damping profile due to mode coupling.

  8. Integrated modeling of temperature and rotation profiles in JET ITER-like wall discharges

    NASA Astrophysics Data System (ADS)

    Rafiq, T.; Kritz, A. H.; Kim, Hyun-Tae; Schuster, E.; Weiland, J.

    2017-10-01

    Simulations of 78 JET ITER-like wall D-D discharges and 2 D-T reference discharges are carried out using the TRANSP predictive integrated modeling code. The time evolved temperature and rotation profiles are computed utilizing the Multi-Mode anomalous transport model. The discharges involve a broad range of conditions including scans over gyroradius, collisionality, and values of q95. The D-T reference discharges are selected in anticipation of the D-T experimental campaign planned at JET in 2019. The simulated temperature and rotation profiles are compared with the corresponding experimental profiles in the radial range from the magnetic axis to the ρ = 0.9 flux surface. The comparison is quantified by calculating the RMS deviations and Offsets. Overall, good agreement is found between the profiles produced in the simulations and the experimental data. It is planned that the simulations obtained using the Multi-Mode model will be compared with the simulations using the TGLF model. Research supported in part by the US, DoE, Office of Sciences.

  9. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  10. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii

    PubMed Central

    Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro

    2017-01-01

    Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975

  11. Effect of temperature on growth and paralytic toxin profiles in isolates of Gymnodinium catenatum (Dinophyceae) from the Pacific coast of Mexico.

    PubMed

    Band-Schmidt, Christine J; Bustillos-Guzmán, José J; Hernández-Sandoval, Francisco E; Núñez-Vázquez, Erick J; López-Cortés, David J

    2014-11-01

    The effects of temperature on growth, cell toxicity, toxin content, and profile of paralytic shellfish toxins was determined in eight isolates of Gymnodinium catenatum from several localities along the Pacific Coast of Mexico. The isolates were cultivated in modified f/2 media with Se (10(-8) M), and a reduced concentration of Cu (10(-8) M), under a 12 h:12 h day-night cycle with an irradiance of 150 μE m(-2) s(-1). Isolates were progressively adapted for three generations to each of the temperatures (16, 19, 22, 24, 27, 30, and 33 °C). The cultures were grown in 125 mL Erlenmeyer flasks with 60 mL of media and harvested by filtration in late exponential growth. Toxins were analyzed by HPLC with a post-column oxidation and fluorescent detection (FLD). G. catenatum isolates tolerate temperatures between 16 and 33 °C, with maximum growth rates of 0.32 and 0.39 div day(-1) at 21 °C and 24 °C, respectively; maximum cell densities of 4700 and 5500 cells mL(-1) were obtained at 27 and 21 °C, respectively. No effect of toxicity per cell with temperature was observed, varying between 10.10 and 28.19 pgSXTeq cell(-1). Ten saxitoxin analogues were detected in all isolates, observing changes in the toxin profile with temperature. C1/2 toxins decreased from 80% mol at 16 °C to 20% mol at 33 °C, B1/2 toxins increased from 19% mol at 16 °C to 42% mol at 33 °C, and decarbamoyl toxins were more abundant at 21 °C. These results show that G. catenatum isolates from different regions of the Pacific coast of Mexico have a similar response to temperature and that this parameter can modify growth rate, cell density, and toxin profile of the species, particularly the decarbamoyl and sulfocarbamoyl toxins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Temperature profiles of accretion discs around rapidly rotating strange stars in general relativity: A comparison with neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.

    2001-06-01

    We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

  13. An Analysis of Water Line Profiles in Star Formation Regions Observed by SWAS

    NASA Technical Reports Server (NTRS)

    Ashby, Matthew L. N.; Bergin, Edwin A.; Plume, Rene; Carpenter, John M.; Neufeld, David A.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, J. E.

    2000-01-01

    We present spectral line profiles for the 557 GHz 1(sub 1,0) yields 1(sub 0,1) ground-state rotational transition of ortho-H2(16)O for 18 galactic star formation regions observed by SWAS. 2 Water is unambiguously detected in every source. The line profiles exhibit a wide variety of shapes, including single-peaked spectra and self-reversed profiles. We interpret these profiles using a Monte Carlo code to model the radiative transport. The observed variations in the line profiles can be explained by variations in the relative strengths of the bulk flow and small-scale turbulent motions within the clouds. Bulk flow (infall, outflow) must be present in some cloud cores, and in certain cases this bulk flow dominates the turbulent motions.

  14. The Association Between Fog and Temperature Inversions from Ground and Radiosonde Observations in East Greenland

    NASA Astrophysics Data System (ADS)

    Gilson, G.; Jiskoot, H.

    2016-12-01

    Many Arctic glaciers terminate along coasts where temperature inversions and sea fog are frequent during summer. Both can influence glacier ablation, but the effects of fog may be complex. To understand fog's physical and radiative properties and its association to temperature inversions it is important to determine accurate Arctic coastal fog climatologies In previous research we determined that fog in East Greenland peaks in the melt season and can be spatially extensive over glacierized terrain. In this study we aim to understand which environmental factors influence fog occurrence in East Greenland; understand the association between fog and temperature inversions; and quantify fog height. We analyzed fog observations and other weather data from coastal synoptic weather stations, and extracted temperature inversions from the Integrated Global Radiosonde Archive radiosonde profiles. Fog height was calculated from radiosonde profiles, based on a method developed for radiation fog which we expanded to include advection and steam fog. Our results show that Arctic coastal fog requires sea ice breakup and a sea breeze with wind speed between 1-4 m/s. Fog is mostly advective, occurring under stable synoptic conditions characterized by deep and strong low-level temperature inversions. Steam fog may occur 5-30% of the time. Fog can occur under near-surface subsidence, with a subsaturated inversion base, or a saturated inversion base. We classified five types of fog based on their vertical sounding characteristics: only at the surface, below an inversion, capped by an inversion, inside a surface-based inversion, or inside a low-level inversion. Fog is commonly 100-400 m thick, often reaching the top of the boundary layer. Fog height is greater at northern stations, where daily fog duration is longer and relative humidity lower. Our results will be included in glacier energy-balance models to account for the influence of fog and temperature inversions on glacier melt.

  15. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    NASA Astrophysics Data System (ADS)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  16. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  17. Twilight and nighttime ionospheric temperatures from oxygen wavelengths 6300 and 5577 spectral line profiles

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi, M. A.

    1971-01-01

    Fabry-Perot interferometer measurements of atomic oxygen 6300 A and 5577 A line profiles from twilight and nightglow are used to determine the neutral temperatures in F2 and E regions of the earth's ionosphere. The exospheric temperatures T sub n (infinity) determined from the 6300 A profiles are usually somewhat higher than those calculated from Jacchia's model, with differences as large as approximately 300 K noted when T sub n (infinity) = 1500 to 1600 K. The post-sunset and pre-dawn rate of change of T sub n (infinity) is often substantially larger than the Jacchia prediction. The 5577 A (E-region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.

  18. Stream bed temperature profiles as indicators of percolation characteristics beneath arroyos in the middle Rio Grande Basin, USA

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1997-01-01

    Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate

  19. NIOZ high-resolution moored temperature observations: benefits and new challenges.

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; Gostiaux, Louis; Cyr, Frederic; van Haren, Hans

    2016-04-01

    The Royal Netherlands Institute for Sea Research has been developing for several years a family of temperature sensors (NIOZ1 to NIOZ5). In the latest iterations of this project, these instruments are precise (10-3 K or better), have a very low noise level (below 10-3 K), are relatively fast (sampling rate of 1Hz) and can measure for extended periods of time (several months). Being also compact and lightweight, several thermistors can be attached on a single line at a fine vertical spacing (20cm or more). When mounted on a cable, the instruments are all synchronised to a single clock, thus providing simultaneous measurements throughout the depth range of the mooring (usually in the order of 100m). Recently, the instruments have also been deployed in a group of 5 lines approximately 5m apart from each other, providing a unique view on the three-dimensional temperature field. After almost 10 years of successful deployments at sea, we try to draw some conclusions from this effort, from the scientific and technical point of view. This observational system provides temperature measurements with vertical spatial resolution comparable to that of microstructure profilers, but in comparison to ship-borne systems it offers some distinctive features: providing instantaneous measurements throughout the mooring, observations of waves and overturning structures are not influenced by the time delay between measurements at different depths; the very low noise level and high precision enables the study of the deep, weakly stratified ocean; by using a heavy ballast at the bottom and a high net buoyancy at the top of the mooring, Eulerian measurements are effectively obtained; continuous, high sampling rate Eulerian measurements enable to assess the intermittent, sporadic nature of turbulence and wave activity in the ocean; the large range of time scales included in the observations (100 - 106 s) allows to study a large portion of the turbulence inertial range, the full internal wave

  20. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.

    2011-12-01

    measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.

  1. Spatiotemporal Variability in Particulate Organic Carbon Export Observed Using Bio-Optical Profiling Floats

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.

    2016-02-01

    Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.

  2. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Alory, Gaël; Wijffels, Susan; Meyers, Gary

    2007-01-01

    The linear trends in oceanic temperature from 1960 to 1999 are estimated using the new Indian Ocean Thermal Archive (IOTA), a compilation of historical temperature profiles. Widespread surface warming is found, as in other data sets, and reproduced in IPCC climate model simulations for the 20th century. This warming is particularly large in the subtropics, and extends down to 800 m around 40-50°S. Models suggest the deep-reaching subtropical warming is related to a 0.5° southward shift of the subtropical gyre driven by a strengthening of the westerly winds, and associated with an upward trend in the Southern Annular Mode index. In the tropics, IOTA shows a subsurface cooling corresponding to a shoaling of the thermocline and increasing vertical stratification. Most models suggest this trend in the tropical Indian thermocline is likely associated with the observed weakening of the Pacific trade winds and transmitted to the Indian Ocean by the Indonesian throughflow.

  3. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  4. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  5. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  6. The High Accuracy Measurement of CO2 Mixing Ratio Profiles Using Ground Based 1.6 μm CO2-DIAL with Temperature Measurement Techniques in the Lower-Atmosphere

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2017-12-01

    We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere

  7. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  8. Community-level physiological profiles of bacteria and fungi: Plate type and incubation temperature influences on contrasting soils

    Treesearch

    Aimee T. Classen; Sarah I. Boyle; Kristin E. Haskins; Steven T. Overby; Stephen C. Hart

    2003-01-01

    Temperature sensitivity of community-level physiological profiles (CLPPs) was examined for two semiarid soils from the southwestern United States using five different C-substrate profile microtiter plates (Biolog GN2, GP2, ECO, SFN2, and SFP2) incubated at five different temperature regimes.The CLPPs produced from all plate types were relatively unaffected by these...

  9. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  10. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  11. Calculating clear-sky radiative heating rates using the Fu-Liou RTM with inputs from observed and reanalyzed profiles

    NASA Astrophysics Data System (ADS)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2015-12-01

    One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.

  12. K-band observations of boxy bulges - I. Morphology and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.

    2006-08-01

    In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself

  13. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  14. Model of flare lightcurve profile observed in soft X-rays

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Siarkowski, Marek; Gburek, Szymon; Podgorski, Piotr; Sylwester, Janusz; Kepa, Anna; Mrozek, Tomasz

    We propose a new model for description of solar flare lightcurve profile observed in soft X-rays. The method assumes that single-peaked `regular' flares seen in lightcurves can be fitted with the elementary time profile being a convolution of Gaussian and exponential functions. More complex, multi-peaked flares can be decomposed as a sum of elementary profiles. During flare lightcurve fitting process a linear background is determined as well. In our study we allow the background shape over the event to change linearly with time. Presented approach originally was dedicated to the soft X-ray small flares recorded by Polish spectrophotometer SphinX during the phase of very deep solar minimum of activity, between 23 rd and 24 th Solar Cycles. However, the method can and will be used to interpret the lightcurves as obtained by the other soft X-ray broad-band spectrometers at the time of both low and higher solar activity level. In the paper we introduce the model and present examples of fits to SphinX and GOES 1-8 Å channel observations as well.

  15. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  16. Improving Representations of Near-Surface Permafrost and Soil Temperature Profiles in the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Hamman, J.; Nijssen, B.

    2017-12-01

    Permafrost and seasonally frozen soils are a key characteristic of the terrestrial Arctic, and the fate of near-surface permafrost as a result of climate change is projected to have strong impacts on terrestrial biogeochemistry. The active layer thickness (ALT) is the layer of soil that freezes and thaws annually, and shifts in the depth of the ALT are projected to occur over large areas of the Arctic that are characterized by discontinuous permafrost. Faithful representation of permafrost in land models in climate models is a product of both soil dynamics and the coupling of air and soil temperatures. A common problem is a large bias in simulated ALT due to a model depth that is too shallow. Similarly, soil temperatures often show systematic biases, which lead to biases in air temperature due to poorly modeled air-soil temperature feedbacks in a coupled environment. In this study, we use the Regional Arctic System Model (RASM), a fully-coupled regional earth system model that is run at a 50-km land/atmosphere resolution over a pan-Arctic domain and uses the Variable Infiltration Capacity (VIC) model as its land model. To understand what modeling decisions are necessary to accurately represent near-surface permafrost and soil temperature profiles, we perform a large number of RASM simulations with prescribed atmospheric forcings (e.g. VIC in standalone mode in RASM) while varying the model soil depth, thickness of soil moisture layers, number of soil layers and the distribution of soil nodes. We compare modeled soil temperatures and ALT to observations from the Circumpolar Active Layer Monitoring (CALM) network. CALM observations include annual ALT observations as well as daily soil temperature measurements at three soil depths for three sites in Alaska. In the future, we will use our results to inform our modeling of permafrost dynamics in fully-coupled RASM simulations.

  17. Ensemble assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Barth, A.; Beckers, J. M.; Candille, G.; Brankart, J. M.; Brasseur, P.

    2015-07-01

    Sea surface height, sea surface temperature, and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. Sixty ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. An incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with independent/semiindependent observations. For deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations, in order to diagnose the ensemble distribution properties in a deterministic way. For probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centered random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analyzed jointly. The consistency and complementarity between both validations are highlighted.

  18. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    PubMed

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  20. Retrieval of ozone profiles from OMPS limb scattering observations

    NASA Astrophysics Data System (ADS)

    Arosio, Carlo; Rozanov, Alexei; Malinina, Elizaveta; Eichmann, Kai-Uwe; von Clarmann, Thomas; Burrows, John P.

    2018-04-01

    This study describes a retrieval algorithm developed at the University of Bremen to obtain vertical profiles of ozone from limb observations performed by the Ozone Mapper and Profiler Suite (OMPS). This algorithm is based on the technique originally developed for use with data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument. As both instruments make limb measurements of the scattered solar radiation in the ultraviolet (UV) and visible (Vis) spectral ranges, an underlying objective of the study is to obtain consolidated and consistent ozone profiles from the two satellites and to produce a combined data set. The retrieval algorithm uses radiances in the UV and Vis wavelength ranges normalized to the radiance at an upper tangent height to obtain ozone concentrations in the altitude range of 12-60 km. Measurements at altitudes contaminated by clouds in the instrument field of view are identified and filtered out. An independent aerosol retrieval is performed beforehand and its results are used to account for the stratospheric aerosol load in the ozone inversion. The typical vertical resolution of the retrieved profiles varies from ˜ 2.5 km at lower altitudes ( < 30 km) to ˜ 1.5 km (about 45 km) and becomes coarser at upper altitudes. The retrieval errors resulting from the measurement noise are estimated to be 1-4 % above 25 km, increasing to 10-30 % in the upper troposphere. OMPS data are processed for the whole of 2016. The results are compared with the NASA product and validated against profiles derived from passive satellite observations or measured in situ by balloon-borne sondes. Between 20 and 60 km, OMPS ozone profiles typically agree with data from the Microwave Limb Sounder (MLS) v4.2 within 5-10 %, whereas in the lower altitude range the bias becomes larger, especially in the tropics. The comparison of OMPS profiles with ozonesonde measurements shows differences within ±5 % between 13 and 30 km at

  1. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  2. On OMC-1 temperatures determined from methyl cyanide observations

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  3. Sea surface temperature: Observations from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Bates, John J.; Smith, William L.

    1985-11-01

    A procedure is developed for estimating sea surface temperatures (SST) from multispectral image data acquired from the VISSR atmospheric sounder (VAS) on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned by using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys from 1982. The empirical regression equations are then used to produce daily regional analyses of SST. The daily analyses are used to study the response of SST's to the passage of Hurricane Alicia (1983) and Hurricane Debbie (1982) and are also used as a first guess surface temperature in the retrieval of atmospheric temperature and moisture profiles over the oceanic regions. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the NASA/JPL SST intercomparison workshop series. Workshop results showed VAS SST's have a scatter of 0.8°-1.0°C and a slight warm bias with respect to the other measurements of SST. Subsequently, a second set of VAS/ buoy matches collected during 1983 and 1984 was used to produce a set of bias corrected regression relations for VAS.

  4. Observed Classroom Quality Profiles of Kindergarten Classrooms in Finland

    ERIC Educational Resources Information Center

    Salminen, Jenni; Lerkkanen, Marja-Kristiina; Poikkeus, Anna-Maija; Pakarinen, Eija; Siekkinen, Martti; Hannikainen, Maritta; Poikonen, Pirjo-Liisa; Rasku-Puttonen, Helena

    2012-01-01

    Research Findings: The aim of the present study was to examine classroom quality profiles of kindergarten classrooms using a person-centered approach and to analyze these patterns in regard to teacher and classroom characteristics. Observations of the domains of Emotional Support, Classroom Organization, and Instructional Support were conducted in…

  5. Tissue temperature profile in the human forearm during thermal stress at thermal stability.

    PubMed

    Ducharme, M B; VanHelder, W P; Radomski, M W

    1991-11-01

    The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  7. Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles

    NASA Astrophysics Data System (ADS)

    Noll, S.; Kausch, W.; Kimeswenger, S.; Unterguggenberger, S.; Jones, A. M.

    2015-11-01

    Rotational temperatures Trot derived from lines of the same OH band are an important method to study the dynamics and long-term trends in the mesopause region near 87 km. To measure realistic temperatures, a corresponding Boltzmann distribution of the rotational level populations has to be achieved. However, this might not be fulfilled, especially at high emission altitudes. In order to quantify possible non-local thermodynamic equilibrium (non-LTE) contributions to the OH Trot as a function of the upper vibrational level v', we studied a sample of 343 echelle spectra taken with the X-shooter spectrograph at the Very Large Telescope at Cerro Paranal in Chile. These data allowed us to analyse 25 OH bands in each spectrum. Moreover, we could measure lines of O2b(0-1), which peaks at about 94 to 95 km, and O2a(0-0) with an emission peak at about 90 km. The latter altitude is reached in the second half of the night after a rise of several km because of the decay of a daytime population of excited O2. Since the radiative lifetimes for the upper levels of the two O2 bands are relatively long, the derived Trot are not significantly affected by non-LTE contributions. These bands are well suited for a comparison with OH if the differences in the emission profiles are corrected. For different sample averages, we made these corrections by using OH emission, O2a(0-0) emission, and CO2-based temperature profile data from the multi-channel radiometer SABER on the TIMED satellite. The procedure relies on differences of profile-weighted SABER temperatures. For an O2a(0-0)-based reference profile at 90 km, we found a good agreement of the O2 with the SABER-related temperatures, whereas the OH temperatures, especially for the high and even v', showed significant excesses with a maximum of more than 10 K for v' = 8. The exact value depends on the selected lines and molecular parameters. We could also find a nocturnal trend towards higher non-LTE effects, particularly for high v'. The

  8. Thermodynamic and liquid profiling during the 2010 Winter Olympics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ware, R.; Cimini, D.; Campos, E.

    2013-10-01

    Tropospheric observations by a microwave profiling radiometer and six-hour radiosondes were obtained during the Alpine Venue of the 2010 Winter Olympic Games at Whistler, British Columbia, by Environment Canada. The radiometer provided continuous temperature, humidity and liquid (water) profiles during all weather conditions including rain, sleet and snow. Gridded analysis was provided by the U.S. National Oceanic and Atmospheric Administration. We compare more than two weeks of radiometer neural network and radiosonde temperature and humidity soundings including clear and precipitating conditions. Corresponding radiometer liquid and radiosonde wind soundings are shown. Close correlation is evident between radiometer and radiosonde temperature andmore » humidity profiles up to 10 km height and among southwest winds, liquid water and upper level thermodynamics, consistent with up-valley advection and condensation of moist maritime air. We compare brightness temperatures observed by the radiometer and forward-modeled from radiosonde and gridded analysis. Radiosonde-equivalent observation accuracy is demonstrated for radiometer neural network temperature and humidity retrievals up to 800 m height and for variational retrievals that combine radiometer and gridded analysis up to 10 km height« less

  9. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    NASA Astrophysics Data System (ADS)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  10. Atmospheric temperature changes over the 20th century at very high elevations in the European Alps from englacial temperatures

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Vincent, C.

    2013-05-01

    the paucity of observations, a great deal of uncertainty remains concerning temperature changes at very high altitudes over the last century. Englacial temperature measurements performed in boreholes provide a very good indicator of atmospheric temperatures for very high elevations although they are not directly related to air temperatures. Temperature profiles from seven deep boreholes drilled at three different sites between 4240 and 4300 m above sea level in the Mont Blanc area (French Alps) have been analyzed using a heat flow model and a Bayesian inverse modeling approach. Atmospheric temperature changes over the last century were estimated by simultaneous inversion of these temperature profiles. A mean warming rate of 0.14°C/decade between 1900 and 2004 was found. This is similar to the observed regional low altitude trend in the northwestern Alps, suggesting that air temperature trends are not altitude dependent.

  11. Observed and Projected Droughts Conditioned on Temperature Change

    NASA Astrophysics Data System (ADS)

    Chiang, F.; AghaKouchak, A.; Mazdiyasni, O.

    2016-12-01

    Droughts have had severe urban, agricultural and wildlife impacts in historical and recent years. In addition, during times of water scarcity, heat stress has been shown to produce compounding climatic and environmental effects. Understanding the overall conditions associated with drought intensities is important for mapping the anatomy of the climate in the changing world. For the study, we evaluated the relationship drought severity has exhibited with temperature shifts between observed periods and also between an ensemble of BCSD downscaled CMIP5 projected and historically modeled datasets. We compared temperatures during different categories of drought severity on a monthly scale, and mapped areas displaying an escalation of temperature with stricter definitions of drought. A historical shift of warmer temperatures in more severe droughts was observed most consistently in Southwestern and Eastern states between the later half of the 20th century and a reference period of the early half of the 20th century. Future projections from an ensemble of CMIP5 models also showed a shift to warmer temperatures during more intense drought events in similar states. Preliminary statistics show that in many areas future droughts will be warmer that the average projected climate. These observed and forecasted shifts in the heating intensity of severe drought events underscore the need to further research these patterns and relationships both spatially and temporally.

  12. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanikova, E.; Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm; Peterka, M.

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence onmore » the actual magnetic configuration.« less

  13. Observed Decrease of North American Winter Temperature Variability

    NASA Astrophysics Data System (ADS)

    Rhines, A. N.; Tingley, M.; McKinnon, K. A.; Huybers, P. J.

    2015-12-01

    There is considerable interest in determining whether temperature variability has changed in recent decades. Model ensembles project that extratropical land temperature variance will detectably decrease by 2070. We use quantile regression of station observations to show that decreasing variability is already robustly detectable for North American winter during 1979--2014. Pointwise trends from GHCND stations are mapped into a continuous spatial field using thin-plate spline regression, resolving small-scales while providing uncertainties accounting for spatial covariance and varying station density. We find that variability of daily temperatures, as measured by the difference between the 95th and 5th percentiles, has decreased markedly in winter for both daily minima and maxima. Composites indicate that the reduced spread of winter temperatures primarily results from Arctic amplification decreasing the meridional temperature gradient. Greater observed warming in the 5th relative to the 95th percentile stems from asymmetric effects of advection during cold versus warm days; cold air advection is generally from northerly regions that have experienced greater warming than western or southwestern regions that are generally sourced during warm days.

  14. Investigations in the ionosphere by means of Kosmos 378. N(h) profiles and the temperature of the F region according to ground-based and satellite measurements above Khabarovsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirmovich, E.G.; Shapiro, B.S.

    1975-01-01

    Simultaneous satellite measurements of electron density N/sub s/ and temperature (T/sub e/)/sub s/ at a height h/sub s/ above an observatory and ground-based observations are used to compute the total vertical electron density profiles N(h) and estimate the temperature of the ionospheric plasma. Four close time intervals after sunset were selected for analysis.

  15. An Object-Oriented Approach for Analyzing CALIPSO's Profile Observations

    NASA Astrophysics Data System (ADS)

    Trepte, C. R.

    2016-12-01

    The CALIPSO satellite mission is a pioneering international partnership between NASA and the French Space Agency, CNES. Since launch on 28 April 2006, CALIPSO has been acquiring near-continuous lidar profile observations of clouds and aerosols in the Earth's atmosphere. Many studies have profitably used these observations to advance our understanding of climate, weather and air quality. For the most part, however, these studies have considered CALIPSO profile measurements independent from one another and have not related each to neighboring or family observations within a cloud element or aerosol feature. In this presentation we describe an alternative approach that groups measurements into objects visually identified from CALIPSO browse images. The approach makes use of the Visualization of CALIPSO (VOCAL) software tool that enables a user to outline a region of interest and save coordinates into a database. The selected features or objects can then be analyzed to explore spatial correlations over the feature's domain and construct bulk statistical properties for each structure. This presentation will show examples that examine cirrus and dust layers and will describe how this object-oriented approach can provide added insight into physical processes beyond conventional statistical treatments. It will further show results with combined measurements from other A-Train sensors to highlight advantages of viewing features in this manner.

  16. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Su, Hui; Jiang, Jonathan H.; Livesey, Nathaniel J.; Santee, Michelle L.; Froidevaux, Lucien; Read, William G.; Anderson, John

    2017-04-01

    We assess the interactions between stratospheric water vapor (SWV) and surface temperature during the past two decades using satellite observations and the Community Earth System Model (CESM). From 1992 to 2013, to first order, the observed SWV exhibited three distinct piece-wise trends: a steady increase from 1992 to 2000, an abrupt drop from 2000 to 2004, and a gradual recovery after 2004, while the global-mean surface temperature experienced a strong increase until 2000 and a warming hiatus after 2000. The atmosphere-only CESM shows that the seasonal variation of tropical-mean (30°S-30°N) SWV is anticorrelated with that of the tropical-mean sea surface temperature (SST), while the correlation between the tropical SWV and SST anomalies on the interannual time scale is rather weak. By nudging the modeled SWV to prescribed profiles in coupled atmosphere-slab ocean experiments, we investigate the impact of SWV variations on surface temperature change. We find that a uniform 1 ppmv (0.5 ppmv) SWV increase (decrease) leads to an equilibrium global mean surface warming (cooling) of 0.12 ± 0.05 °C (-0.07 ± 0.05 °C). Sensitivity experiments show that the equilibrium response of global mean surface temperature to SWV perturbations over the extratropics is larger than that over the tropics. The observed sudden drop of SWV from 2000 to 2004 produces a global mean surface cooling of about -0.048 ± 0.041 °C, which suggests that a persistent change in SWV would make an imprint on long-term variations of global-mean surface temperature. A constant linear increase in SWV based on the satellite-observed rate of SWV change yields a global mean surface warming of 0.03 ± 0.01 °C/decade over a 50-year period, which accounts for about 19 % of the observed surface temperature increase prior to the warming hiatus. In the same experiment, trend analyses during different periods reveal a multi-year adjustment of surface temperature before the response to SWV forcing becomes

  17. Uniformity control of the deposition rate profile of a-Si:H film by gas velocity and temperature distributions in a capacitively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2018-03-01

    The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.

  18. Autonomous profiling float observations of the high biomass plume downstream of the Kerguelen plateau in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Grenier, M.; Della Penna, A.; Trull, T. W.

    2014-12-01

    Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll fluorescence (Chl a), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a

  19. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  20. Weather and climate needs for Lidar observations from space and concepts for their realization. [wind, temperature, moisture, and pressure data needs

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Korb, C. L.

    1980-01-01

    The spectrum of weather and climate needs for Lidar observations from space is discussed with emphasis on the requirements for wind, temperature, moisture, and pressure data. It is shown that winds are required to realistically depict all atmospheric scales in the tropics and the smaller scales at higher latitudes, where both temperature and wind profiles are necessary. The need for means to estimate air-sea exchanges of sensible and latent heat also is noted. A concept for achieving this through a combination of Lidar cloud top heights and IR cloud top temperatures of cloud streets formed during cold air outbreaks over the warmer ocean is outlined. Recent theoretical feasibility studies concerning the profiling of temperatures, pressure, and humidity by differential absorption Lidar (DIAL) from space and expected accuracies are reviewed. An alternative approach to Doppler Lidar wind measurements also is presented. The concept involves the measurement of the displacement of the aerosol backscatter pattern, at constant heights, between two successive scans of the same area, one ahead of the spacecraft and the other behind it a few minutes later. Finally, an integrated space Lidar system capable of measuring temperature, pressure, humidity, and winds which combines the DIAL methods with the aerosol pattern displacement concept is described.

  1. Stationary temperature profiles in a liquid nanochannel: Comparisons between molecular-dynamics simulation and classical hydrostatics

    NASA Astrophysics Data System (ADS)

    Okumura, Hisashi; Heyes, David M.

    2006-12-01

    We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from ∞ (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.

  2. Stationary temperature profiles in a liquid nanochannel: comparisons between molecular-dynamics simulation and classical hydrostatics.

    PubMed

    Okumura, Hisashi; Heyes, David M

    2006-12-01

    We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.

  3. Comparison of modeled and experimental PV array temperature profiles for accurate interpretation of module performance and degradation

    NASA Astrophysics Data System (ADS)

    Elwood, Teri; Simmons-Potter, Kelly

    2017-08-01

    Quantification of the effect of temperature on photovoltaic (PV) module efficiency is vital to the correct interpretation of PV module performance under varied environmental conditions. However, previous work has demonstrated that PV module arrays in the field are subject to significant location-based temperature variations associated with, for example, local heating/cooling and array edge effects. Such thermal non-uniformity can potentially lead to under-prediction or over-prediction of PV array performance due to an incorrect interpretation of individual module temperature de-rating. In the current work, a simulated method for modeling the thermal profile of an extended PV array has been investigated through extensive computational modeling utilizing ANSYS, a high-performance computational fluid dynamics (CFD) software tool. Using the local wind speed as an input, simulations were run to determine the velocity at particular points along modular strings corresponding to the locations of temperature sensors along strings in the field. The point velocities were utilized along with laminar flow theories in order to calculate Nusselt's number for each point. These calculations produced a heat flux profile which, when combined with local thermal and solar radiation profiles, were used as inputs in an ANSYS Thermal Transient model that generated a solar string operating temperature profile. A comparison of the data collected during field testing, and the data fabricated by ANSYS simulations, will be discussed in order to authenticate the accuracy of the model.

  4. An 'Observational Large Ensemble' to compare observed and modeled temperature trend uncertainty due to internal variability.

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.

    2017-12-01

    Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.

  5. Intrauterine temperature during intrapartum amnioinfusion: a prospective observational study.

    PubMed

    Tomlinson, T M; Schaecher, C; Sadovsky, Y; Gross, G

    2012-07-01

    To determine the influence of routine intrapartum amnioinfusion (AI) on intrauterine temperature. Prospective observational study. Maternity unit, Barnes Jewish Hospital, St Louis, MO, USA. Forty women with singleton gestations and an indication for intrapartum intrauterine pressure catheter placement. Using a temperature probe, we digitally recorded intrauterine temperature every 10 minutes during labour. Amnioinfusion was administered according to a standard protocol using saline equilibrated to the ambient temperature. Mean intrauterine temperature during labour. Participants were monitored for a mean of 280 minutes (range 20-820). A total of 164 intrauterine temperature readings in the AI cohort were compared with 797 control measurements. When compared with controls, we observed a lower intrauterine temperature in the AI cohort (36.4 versus 37.4°C, P<0.01). More measurements in the AI cohort were recorded in the presence of intrapartum fever (40% versus 30%). A subgroup analysis of measurements recorded in afebrile parturients revealed an even greater effect of AI (1.5°C decrease, 37.3 versus 35.8°C, P<0.01). Routine intrapartum AI using saline equilibrated to a mean ambient temperature of 25.0°C reduces intrauterine temperature and may thereby affect fetal core temperature. © 2012 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG.

  6. Non-Maxwellian Analysis of the Transition-region Line Profiles Observed by the Interface Region Imaging Spectrograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, Jaroslav; Dzifčáková, Elena; Polito, Vanessa

    2017-06-10

    We investigate the nature of the spectral line profiles for transition-region (TR) ions observed with the Interface Region Imaging Spectrograph (IRIS) . In this context, we analyzed an active-region observation performed by IRIS in its 1400 Å spectral window. The TR lines are found to exhibit significant wings in their spectral profiles, which can be well fitted with a non-Maxwellian κ distribution. The fit with a κ distribution can perform better than a double-Gaussian fit, especially for the strongest line, Si iv 1402.8 Å. Typical values of κ found are about 2, occurring in a majority of spatial pixels wheremore » the TR lines are symmetric, i.e., the fit can be performed. Furthermore, all five spectral lines studied (from Si iv, O iv, and S iv) appear to have the same full-width at half-maximum irrespective of whether the line is an allowed or an intercombination transition. A similar value of κ is obtained for the electron distribution by the fitting of the line intensities relative to Si iv 1402.8 Å, if photospheric abundances are assumed. The κ distributions, however, do not remove the presence of non-thermal broadening. Instead, they actually increase the non-thermal width. This is because, for κ distributions, TR ions are formed at lower temperatures. The large observed non-thermal width lowers the opacity of the Si iv line sufficiently enough for this line to become optically thin.« less

  7. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    NASA Astrophysics Data System (ADS)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  8. Observations and analysis of O(1D) and NH2 line profiles for the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Combi, Michael R.; Roesler, Fred L.; Scherb, Frank

    1995-01-01

    A set of high-resolution Fabry-Perot measurements of the coma of comet P/Halley was acquired in the (O I) 6300 A and NH2 6298.62 A emission lines. These high-resolution measurements provide the first optical observations capable of studying directly the photochemical kinetics and dynamic outflow of the coma. The observations were analyzed by a Monte Carlo Particle Trajectory Model. The agreement of the model and observed line profiles was excellent and verified the underlying dynamics, exothermic photodissociative chemistry, and collisional thermalization in the coma. The somewhat wider intrinsic line profile width for the O(1D) emission in 1986 January compared to 1986 May, is, for example, produced by the larger outflow speeds and gas temperatures nearer perihelion in January. The January O(1D) profile, which is wider than the January NH2 profile, is indicative of the photochemical kinetics in the dissociation of the parent molecules H2O and OH in the coma. The absolute calibration of the observations in 1986 January allowed the production rates for H2O and the NH2-parent molecules to be determined. The average daily water production rates derived from the O(1D) emission data for January 16 and 17 are presented. These very large water production rates are consistent with the extrapolated (and 7.6 day time variable) water production rates determined from the analysis of lower spectral resolution observations for O(1D) and H-alpha emissions that covered the time period up to January 13. The large production rates on January 16 and 17 establish that the maximum water production rate for comet Halley accurred pre-perihelion in January. Implications drawn from comparison with 18 cm radio emission data in January suggest that the peak water production rate was even larger. The average production rate for NH3 determined from the NH2 emission data for January 17 was (1.48 +/- 0.10) x 10(exp 28) molecules/s, yielding an NH3/H2O production rate ratio of 0.55%.

  9. Acousto-thermometric recovery of the deep temperature profile using heat conduction equations

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.

    2012-09-01

    In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.

  10. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  11. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    NASA Astrophysics Data System (ADS)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  12. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  13. Modelling and experimental study of temperature profiles in cw laser diode bars

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Gordeev, V. P.; Krokhin, O. N.; Mikaelyan, G. T.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2018-02-01

    Three-dimensional simulation is used to theoretically assess temperature profiles in proposed 10-mm-wide cw laser diode bars packaged in a standard heat spreader of the C - S mount type with the aim of raising their reliable cw output power. We obtain calculated temperature differences across the emitting aperture and along the cavity. Using experimental laser bar samples with up to 60 W of cw output power, the emission spectra of individual clusters are measured at different pump currents. We compare and discuss the simulation results and experimental data.

  14. Ensemble assimilation of ARGO temperature profile, sea surface temperature and Altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Barth, Alexander; Beckers, Jean-Marie; Candille, Guillem; Brankart, Jean-Michel; Brasseur, Pierre

    2015-04-01

    Sea surface height, sea surface temperature and temperature profiles at depth collected between January and December 2005 are assimilated into a realistic eddy permitting primitive equation model of the North Atlantic Ocean using the Ensemble Kalman Filter. 60 ensemble members are generated by adding realistic noise to the forcing parameters related to the temperature. The ensemble is diagnosed and validated by comparison between the ensemble spread and the model/observation difference, as well as by rank histogram before the assimilation experiments. Incremental analysis update scheme is applied in order to reduce spurious oscillations due to the model state correction. The results of the assimilation are assessed according to both deterministic and probabilistic metrics with observations used in the assimilation experiments and independent observations, which goes further than most previous studies and constitutes one of the original points of this paper. Regarding the deterministic validation, the ensemble means, together with the ensemble spreads are compared to the observations in order to diagnose the ensemble distribution properties in a deterministic way. Regarding the probabilistic validation, the continuous ranked probability score (CRPS) is used to evaluate the ensemble forecast system according to reliability and resolution. The reliability is further decomposed into bias and dispersion by the reduced centred random variable (RCRV) score in order to investigate the reliability properties of the ensemble forecast system. The improvement of the assimilation is demonstrated using these validation metrics. Finally, the deterministic validation and the probabilistic validation are analysed jointly. The consistency and complementarity between both validations are highlighted. High reliable situations, in which the RMS error and the CRPS give the same information, are identified for the first time in this paper.

  15. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Nazmi A.; Ali, Taha A., E-mail: Taha25@gmail.com; Aly, Moustafa H.

    2013-12-15

    In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSRmore » of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.« less

  16. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    NASA Astrophysics Data System (ADS)

    Mohammed, Nazmi A.; Ali, Taha A.; Aly, Moustafa H.

    2013-12-01

    In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A "New" apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of -45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of -60.1, very low SLav of -63.6 dB, and very high SLSR of -57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results.

  17. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  18. Adaptive super-twisting observer for estimation of random road excitation profile in automotive suspension systems.

    PubMed

    Rath, J J; Veluvolu, K C; Defoort, M

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system.

  19. Adaptive Super-Twisting Observer for Estimation of Random Road Excitation Profile in Automotive Suspension Systems

    PubMed Central

    Rath, J. J.; Veluvolu, K. C.; Defoort, M.

    2014-01-01

    The estimation of road excitation profile is important for evaluation of vehicle stability and vehicle suspension performance for autonomous vehicle control systems. In this work, the nonlinear dynamics of the active automotive system that is excited by the unknown road excitation profile are considered for modeling. To address the issue of estimation of road profile, we develop an adaptive supertwisting observer for state and unknown road profile estimation. Under Lipschitz conditions for the nonlinear functions, the convergence of the estimation error is proven. Simulation results with Ford Fiesta MK2 demonstrate the effectiveness of the proposed observer for state and unknown input estimation for nonlinear active suspension system. PMID:24683321

  20. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.

  1. Lau phase interferometer for the measurement of the temperature and temperature profile of a gaseous flame

    NASA Astrophysics Data System (ADS)

    Shakher, Chandra; Thakur, Madhuri

    2001-05-01

    In this paper we have investigated the utility of Lau phase interferometer with white light source and circular gratings to measure temperature and temperature profile of an axisymmetric flame. In Lau phase interferometer the two gratings are separated by infinite distance. The third grating is placed at a distance Z equals n.p2(lambda) , (where n is an integer, d is the pitch of the grating and (lambda) is the wavelength of the white light source). The sensitivity of the system is determined by the pitch 'p' of the grating and the distance Z between the gratings. If the distance Z between the two gratings is increased to enhance the sensitivity, the accuracy of measurement is reduced because of the reduction in the fringe contrast. In white light Lau phase interferometer the fringe contrast can be improved by optimizing the self-image plane and the pitch of the grating. From the recorded interferogram the angle of deflection ((phi) ) is measured and temperature at a different point of the flame is calculated. The temperature measured using Lau phase interferometer is in good agreement with the temperature measured by thermocouple and dataloger. Details of the theoretical analysis and experimental results are presented.

  2. Geocoronal Balmer α line profile observations and forward-model analysis

    NASA Astrophysics Data System (ADS)

    Mierkiewicz, E. J.; Bishop, J.; Roesler, F. L.; Nossal, S. M.

    2006-05-01

    High spectral resolution geocoronal Balmer α line profile observations from Pine Bluff Observatory (PBO) are presented in the context of forward-model analysis. Because Balmer series column emissions depend significantly on multiple scattering, retrieval of hydrogen parameters of general aeronomic interest from these observations (e.g., the hydrogen column abundance) currently requires a forward modeling approach. This capability is provided by the resonance radiative transfer code LYAO_RT. We have recently developed a parametric data-model comparison search procedure employing an extensive grid of radiative transport model input parameters (defining a 6-dimensional parameter space) to map-out bounds for feasible forward model retrieved atomic hydrogen density distributions. We applied this technique to same-night (March, 2000) ground-based Balmer α data from PBO and geocoronal Lyman β measurements from the Espectrógrafo Ultravioleta extremo para la Radiación Difusa (EURD) instrument on the Spanish satellite MINISAT-1 (provided by J.F. Gómez and C. Morales of the Laboratorio de Astrofisica Espacial y Física Fundamental, INTA, Madrid, Spain) in order to investigate the modeling constraints imposed by two sets of independent geocoronal intensity measurements, both of which rely on astronomical calibration methods. In this poster we explore extending this analysis to the line profile information also contained in the March 2000 PBO Balmer α data set. In general, a decrease in the Doppler width of the Balmer α emission with shadow altitude is a persistent feature in every night of PBO observations in which a wide range of shadow altitudes are observed. Preliminary applications of the LYAO_RT code, which includes the ability to output Doppler line profiles for both the singly and multiply scattered contributions to the Balmer α emission line, displays good qualitative agreement with regard to geocoronal Doppler width trends observed from PBO. Model-data Balmer

  3. Applications of Land Surface Temperature from Microwave Observations

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  4. Radial Profiles of PKS 0745-191 Galaxy Cluster with XMM-Newton X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Tumer, A.; Ezer, C.; Ercan, E.

    2017-10-01

    Since clusters of galaxies are the largest comprehensive samples of the universe, they provide essential information on from the most basic to the most complex physical mechanisms such as nucleosynthesis and supernovae events. Some of these information are provided by the X-ray emission data from Intra Cluster Medium (ICM) which contains hot dilute gas. Recent archieved observation of the X-Ray spectrum of the cool core galaxy cluster PKS 0745-191 provided by XMM-Newton is subjected to data analysis using ESAS package. Followed by spectra analysis utilizing Xspec spectral fitting software, we present the radial profiles of temperature and abundance from the core to 0.5R_500 of brightest distant cluster (z ˜ 0.102) PKS 0745-191. Using the deprojected spectra, the radial distribution of pressure and entropy in the aforementioned region are also presented.

  5. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-03-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. The profiles obtained by the radiometer with different retrieval algorithms based on different climatologies, are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A really new and very promising method of improving the profile retrieval in a mountain region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountain tops.

  6. Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Sasi, M. N.; Ramkumar, G.; Nair, P. R.; Deepa, V.; Murthy, B. V. K.; Nayar, S. R. P.; Revathy, K.; Mrudula, G.; Satheesan, K.; Bhavanikumar, Y.; Sivakumar, V.; Raghunath, K.; Rajendraprasad, T.; Krishnaiah, M.

    2000-10-01

    Using ground-based techniques of MST radar and Lidar, temperature profiles in the entire height range of 4 to 75km are obtained for the first time at a tropical location. The temporal resolution of the profiles is ~1h in the lower altitudes and 12.5min in the higher altitudes and altitude resolution is ~300m. The errors involved in the derived values are presented. Preliminary analysis of temperature variations in a night revealed fluctuations with characteristics resembling those of large-scale gravity waves.

  7. Temperature profiles for laser-induced heating of nanocrystals embedded in glass matrices

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Promod K.; Nagpal, Swati

    2001-05-01

    Quantum confined nanostructures are very important because of their application towards optoelectronic devices. Commercial colored glass filters, which have large semiconductor particles, are being used to manufacture nanocrystals by suitable heat treatments. The progress in this area has been hampered by high size dispersion of these dots in the glass matrix which leads to reduction in higher order susceptibility thereby reducing non-linearity. In the present paper attempt has been made to theoretically model the temperature profiles of a laser irradiated CdS doped Borosilicate sample. Laser being used has a beam diameter of 1.5 mm and energy for 10 nsec pulse is 10 mJ. Two different particle radii of 5 nm and 10 nm have been considered. It is found that larger particles reach higher temperatures for the same pulse characteristics. This is because smaller particles have larger surface to volume ratio and hence dissipates out heat faster to the surrounding. Hence bigger particles will reach dissolution temperature faster than smaller particle and particle beyond a certain size should dissolve in the glass matrix when a sample is heat treated by laser. This could lead to a reduction in size dispersion of the nanocrystals. Also photodarkening effect found in semiconductor doped glasses is a big handicap for practical application of these materials in fast optical switching and non-linear optical devices. Photodarkening effect has been established to be a photochemical effect and it is important to study the temperature profiles around a particle since it will effect the impurity migration.

  8. Full Waveform Inversion of Reflection Seismic Data for Ocean Temperature Profiles

    DTIC Science & Technology

    2008-01-01

    ographic processes and properties, such as internal-wave spectra [Holbrook and Fer, 2005; Krahmann et al, 2006] and temperature contrasts [ Paramo and...contribute little to the reflectance in the Norwegian Sea data set used here [ Paramo and Holbrook, 2005], so we assume for this study that all...bathyther- mograph) profiles presented by Paramo and Holbrook [2005], displayed here in the intercept time-slowness (Tau-p) domain, rather than the

  9. Theory-based transport simulations of TFTR L-mode temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, G.

    1992-03-01

    The temperature profiles from a selection of Tokamak Fusion Test Reactor (TFTR) L-mode discharges (17{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Amsterdam, 1990 (EPS, Petit-Lancy, Switzerland, 1990, p. 114)) are simulated with the 1 (1)/(2) -D baldur transport code (Comput. Phys. Commun. {bold 49}, 275 (1988)) using a combination of theoretically derived transport models, called the Multi-Mode Model (Comments Plasma Phys. Controlled Fusion {bold 11}, 165 (1988)). The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{submore » {ital i}}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub {ital i}} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes.« less

  10. Qualitative comparison of air temperature trends based on ncar/ncep reanalysis, model simulations and aerological observations data

    NASA Astrophysics Data System (ADS)

    Rubinstein, K. G.; Khan, V. M.; Sterin, A. M.

    In the present study we discuss two points. The first one is related with applicability of reanalysis data to investigating long-term climate variability. We present results of comparison of long term air temperature trends for the troposphere and the low stratosphere calculated using monthly averaged NCAR/NCEP reanalysis data on one hand and direct rawinsond observations from 443 stations on the other. The trends and other statistical characteristics are calculated for two overlapping time periods, namely 1964 through 1998, and 1979 through 1998. These two intervals were chosen in order to examine the influence of satellite observations on the reanalysis data, given that most satellite data have appeared after 1979. Vertical profiles of air temperature trends are also analyzed using the two types of data for different seasons. A special criterion is applied to evaluate the degree of coincidence by sign between the air temperatures trends derived from the two types of data. Vertical sections of the linear trend averaged over the 10-degrees zones for the both hemispheres are analyzed. It is shown that the two types of data exhibit good coincidence in the terms of the trend sign for the low and middle troposphere and low stratosphere over the areas well covered by the rawinsond observation net. Significant differences of the air temperature trend values are observed near the land surface and in the tropopause layer. The absolute value of the cooling rate of the tropical low stratosphere based on the rawinsond data is larger then that based on the reanalysis data. The presence of a positive trend in the low troposphere in the belt from ˜ 40N to ˜ 70N is evident in the two data sets. A comparative analysis of the trends for the both periods of observation shows that introducing satellite information in the reanalysis data resulted in an increase of the number of stations where the signs of the trend derived from the two sets of data coincide, especially in the

  11. Temperature and humidity profiles in the atmosphere from spaceborne lasers: A feasibility study

    NASA Technical Reports Server (NTRS)

    Grassl, H.; Schluessel, P.

    1984-01-01

    Computer simulations of the differential absorption lidar technique in a space craft for the purpose of temperature and humidity profiling indicate: (1) Current technology applied to O2 and H2O lines in the .7 to .8 micrometers wavelength band gives sufficiently high signal-to-noise ratios (up to 50 for a single pulse pair) if backscattering by aerosol particles is high, i.e. profiling accurate to 2 K for temperature and 10% for humidity should be feasible within the turbid lower troposphere in 1 km layers and with an averaging over approximately 100 pulses. (2) The impact of short term fluctuations in aerosol particle concentration is too big for a one laser system. Only a two laser system firing at a time lag of about 1 millisecond can surmount these difficulties. (3) The finite width of the laser line and the quasi-random shift of this line introduce tolerable, partly systematic errors.

  12. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn S.; Fletcher, Leigh N.; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphel; Encrenaz, Therese; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Cavalie, Thibault; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy K.; Hofstadter, Mark; Sandell, Goran H.; Dowell, C. Darren; Pantin, Eric; Fujiyoshi, Takuya

    2014-11-01

    Photometric and spectroscopic observations of Uranus in the thermal infrared were combined to create self-consistent models of its global-mean temperature profile and vertical distribution of gases. These were derived from a suite of observations from Spitzer and Herschel, together with ground-based observations from UKIRT, CSO, Gemini, VLT and Subaru. Observations of the collision-induced absorption and quadrupoles of H2 have constrained the temperature structure for pressures of nearly 2 bars down to 0.1 millibars. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in such a way to be consistent with the mixing ratios of hydrocarbons. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the homopause is at much higher atmospheric pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 30 µbar being H2O and CO2. The ratio of the oxygen-bearing molecules is consistent with exogenic origins in KBOs or comets. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. This model is of ‘programmatic’ interest because it serves as a standard calibration source; the cross-comparison of its spectrum with model spectra for Mars and Neptune shows consistency to within 3%. Near equinox, the IRS spectra at different longitudes showed rotationally variable stratospheric emission that is consistent with a temperature anomaly ≤10 K near ~0.1-0.2 mbar. Spatial variability of tropospheric temperatures observed in ground-based observations from 2006 to 2011 is generally consistent with Voyager infrared (IRIS) results.

  13. AROTAL Ozone and Temperature Vertical Profile Measurements from the NASA DC-8 during the SOLVE II Campaign

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Twigg, Laurence; Sumnicht, Grant; Hoegy, Walter; Burris, John; Silbert, Donald; Heaps, William; Neuber, R.; Trepte, C. R.

    2004-01-01

    The AROTAL instrument (Airborne Raman Ozone Temperature and Aerosol Lidar) - a collaboration between scientists at NASA Goddard Space Flight Center, and Langley Research Center - was flown on the NASA DC-8 during the SOLVE II Campaign during January and February, 2003. The flights were flown from the Arena Arctica in Kiruna, Sweden. We report measurements of temperature and ozone profiles showing approximately a 600 ppbv loss in ozone near 17.5 km, over the time frame of the aircraft campaign. Comparisons of ozone profiles from AROTAL are made with the SAGE III instrument.

  14. Measurements of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2012-10-01

    ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.

  15. Characterization of Electron Temperature and Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.

    2011-10-01

    Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.

  16. Temperature profiles measurements in turbulent Rayleigh-Bénard convection by optical fibre system at the Barrel of II-menau

    NASA Astrophysics Data System (ADS)

    Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel

    2018-06-01

    Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.

  17. Phenobarbital and temperature profile during hypothermia for hypoxic-ischemic encephalopathy

    PubMed Central

    Sant’Anna, Guilherme; Laptook, Abbot R.; Shankaran, Seetha; Bara, Rebecca; McDonald, Scott A.; Higgins, Rosemary D.; Tyson, Jon E.; Ehrenkranz, Richard A.; Das, Abhik; Goldberg, Ronald N.; Walsh, Michele C.

    2012-01-01

    Data from the whole body hypothermia trial was analyzed to examine the effects of phenobarbital administration prior to cooling (+PB) on the esophageal temperature (Te) profile, during the induction phase of hypothermia. A total of 98 infants were analyzed. At enrollment, +PB infants had a higher rate of severe HIE and clinical seizures and lower Te and cord pH than infants that have not received PB (−PB). There was a significant effect of PB itself and an interaction between PB and time in the Te profile. Mean Te in the +PB group was lower than in the −PB group and the differences decreased over time. In +PB infants the time to surpass target Te of 33.5°C and to reach the minimum Te during overshoot were shorter. In conclusion, the administration of PB prior to cooling was associated with changes that may reflect a reduced thermogenic response associated with barbiturates. PMID:21960671

  18. Validation of ionospheric electron density profiles inferred from GPS occultation observations of the GPS/MET experiment

    NASA Astrophysics Data System (ADS)

    Kawakami, Todd Mori

    In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of

  19. The New Weather Radar for America's Space Program in Florida: A Temperature Profile Adaptive Scan Strategy

    NASA Technical Reports Server (NTRS)

    Carey, L. D.; Petersen, W. A.; Deierling, W.; Roeder, W. P.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar replaces the modified WSR-74C at Patrick AFB that has been in use since 1984. The new radar is a Radtec TDR 43-250, which has Doppler and dual polarization capability. A new fixed scan strategy was designed to best support the space program. The fixed scan strategy represents a complex compromise between many competing factors and relies on climatological heights of various temperatures that are important for improved lightning forecasting and evaluation of Lightning Launch Commit Criteria (LCC), which are the weather rules to avoid lightning strikes to in-flight rockets. The 0 C to -20 C layer is vital since most generation of electric charge occurs within it and so it is critical in evaluating Lightning LCC and in forecasting lightning. These are two of the most important duties of 45 WS. While the fixed scan strategy that covers most of the climatological variation of the 0 C to -20 C levels with high resolution ensures that these critical temperatures are well covered most of the time, it also means that on any particular day the radar is spending precious time scanning at angles covering less important heights. The goal of this project is to develop a user-friendly, Interactive Data Language (IDL) computer program that will automatically generate optimized radar scan strategies that adapt to user input of the temperature profile and other important parameters. By using only the required scan angles output by the temperature profile adaptive scan strategy program, faster update times for volume scans and/or collection of more samples per gate for better data quality is possible, while maintaining high resolution at the critical temperature levels. The temperature profile adaptive technique will also take into account earth curvature and refraction

  20. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    NASA Astrophysics Data System (ADS)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  1. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    NASA Technical Reports Server (NTRS)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  2. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-08-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. In order to assess its performance in a deep alpine valley, the profiles obtained by the radiometer with different retrieval algorithms based on different climatologies are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower-level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper-level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A novel and very promising method of improving the profile retrieval in a mountainous region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountaintops.

  3. High temperature plasma in beta Lyrae, observed from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.

    1975-01-01

    High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.

  4. Quantifying Observed Temperature Extremes in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Sura, P.; Stefanova, L. B.; Griffin, M.; Worsnop, R.

    2011-12-01

    There is broad consensus that the most hazardous effects of climate change are related to a potential increase (in frequency and/or intensity) of extreme weather and climate events. In particular, the statistics of regional daily temperature extremes are of practical interest for the agricultural community and energy suppliers. This is notably true for the Southeastern United States where winter hard freezes are a relatively rare and potentially catastrophic event. Here we use a long record of quality-controlled observations collected from 272 National Weather Service (NWS) Cooperative Observing Network (COOP) stations throughout Florida, Georgia, Alabama, and South and North Carolina to provide a detailed climatology of temperature extremes in the Southeastern United States. We employ two complementary approaches. First, we analyze the effect of El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO) on the non-Gaussian (i.e. higher order) statistics of wintertime daily minimum and maximum temperatures. We find a significant and spatially varying impact of ENSO and AO on the non-Gaussian statistics of daily maximum and minimum temperatures throughout the domain. Second, the extremes of the temperature distributions are studied by calculating the 1st and 99th percentiles, and then analyzing the number of days with record low/high temperatures per season. This analysis of daily temperature extremes reveals oscillating, multi-decadal patterns with spatially varying centers of action.

  5. Seasonal radiative modeling of Titan's stratospheric temperatures at low latitudes

    NASA Astrophysics Data System (ADS)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard K.

    2018-03-01

    We have developed a seasonal radiative-dynamical model of Titan's stratosphere to investigate the temporal variation of temperatures in the 0.2-4 mbar range observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS and Huygens/DISR data to calculate the radiative heating and cooling rate profiles as a function of time and latitude. At 20°S in 2007, the heating rate is larger than the cooling rate at all altitudes, and more specifically by 20-35% in the 0.1-5 mbar range. A new calculation of the radiative relaxation time as a function of pressure level is presented, leading to time constants significantly lower than previous estimates. At 6°N around spring equinox, the radiative equilibrium profile is warmer than the observed one at all levels. Adding adiabatic cooling in the energy equation, with a vertical upward velocity profile approximately constant in pressure coordinates below the 0.02-mbar level (corresponding to 0.03-0.05 cm s-1 at 1 mbar), allows us to reproduce the observed profile quite well. The velocity profile above the ∼0.5-mbar level is however affected by uncertainties in the haze density profile. The model shows that the change in insolation due to Saturn's orbital eccentricity is large enough to explain the observed 4-K decrease in equatorial temperatures around 1 mbar between 2009 and 2016. At 30°N and S, the radiative model predicts seasonal variations of temperature much larger than observed. A seasonal modulation of adiabatic cooling/heating is needed to reproduce the temperature variations observed from 2005 to 2016 between 0.2 and 4 mbar. At 1 mbar, the derived vertical velocities vary in the range -0.05 (winter solstice) to 0.16 (summer solstice) cm s-1 at 30°S, -0.01 (winter solstice) to 0.14 (summer solstice) cm s-1 at 30°N, and 0.03-0.07 cm s-1 at the equator.

  6. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part I. Model validation

    USDA-ARS?s Scientific Manuscript database

    Process-based modeling provides detailed spatial and temporal information of the soil environment in the shallow seedling recruitment zone across field topography where measurements of soil temperature and water may not sufficiently describe the zone. Hourly temperature and water profiles within the...

  7. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    PubMed

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  8. Fiber Bragg grating based temperature profiling in ferromagnetic nanoparticles-enhanced radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele

    2018-07-01

    In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.

  9. Boron depth profiles and residual damage following rapid thermal annealing of low-temperature BSi molecular ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Wang, S. C.

    2007-08-01

    The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.

  10. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    PubMed

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  11. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  12. Lake Energy Budget and Temperature Profiles Under Future Greenhouse Gas Scenarios

    NASA Astrophysics Data System (ADS)

    Lofgren, B. M.; Xiao, C.

    2017-12-01

    Future climates under higher concentrations of greenhouse gases are expected to feature higher air and water temperatures, and shifts in surface heat fluxes. We investigate in greater detail the evolution of this in terms of the annual cycle of lake temperature profiles, stratification, and ice formation. Other work has found that, although shallower water promotes more rapid changes in surface water temperature within a season, change in surface water temperature across decades is more prominent in locations with greater water depth. Our simulations using the Weather Research and Forecasting (WRF) model and its lake module, WRF-Lake, show a trend toward longer periods of summer stratification, both through earlier onset in the spring and later decay of stratification in the fall. They also show a general increase in temperature throughout the water column, but most pronounced near the surface during the summer. Likewise, ice duration is much shorter and more restricted to shallow embayments. High latent and sensible heat flux during the fall and winter are less intense but longer lasting under the future scenario. Sources of uncertainty are cumulative—actual future greenhouse gas concentrations, global sensitivity of climate change, cloud feedbacks, the combined formulation of the regional climate model (WRF) and its global driving model, and more.

  13. Temperature structure in the Perseus cluster core observed with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furukawa, Maki; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Kato, Yuichi; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen

    2018-03-01

    The present paper explains the temperature structure of X-ray emitting plasma in the core of the Perseus cluster based on 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) on board the Hitomi Observatory. A series of four observations was carried out, with a total effective exposure time of 338 ks that covered a central region of ˜7΄ in diameter. SXS was operated with an energy resolution of ˜5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions, but also transitions from higher principal quantum numbers were clearly resolved from Si through Fe. That enabled us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single-temperature thermal plasma model in collisional ionization equilibrium, but detailed line-ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with the atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures could be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single-temperature approximation are due to the effects of projecting the known radial temperature gradient in the cluster core along the line of sight. A comparison with the Chandra/ACIS and the XMM-Newton/RGS results, on the other hand, suggests that additional lower-temperature components are present in the intracluster medium (ICM), but not detectable with Hitomi/SXS giving its 1.8-20 keV energy band.

  14. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.

    PubMed

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel J; Fernie, Alisdair R; Nikoloski, Zoran

    2016-10-01

    Understanding whether the functionality of a biological system can be characterized by measuring few selected components is key to targeted phenotyping techniques in systems biology. Methods from observability theory have proven useful in identifying sensor components that have to be measured to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state-of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Return glider radiosonde to measure temperature, humidity and radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kraeuchi, Andreas; Philipona, Rolf

    2015-04-01

    Very promising radiation profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a mechanism that allows to release the radiosonde at a preset altitude, and an autopilot allowing to fly the radiosonde back to the launch site and to land it savely with a parachute at a preset location. The return glider radiosonde technique as well as new measurement possibilities will be shown. First measurements show temperature, humidity and radiation profiles through the atmosphere up to 30 hPa (24 km) during different atmospheric conditions. Radiation profiles during different daytimes show possibilities with respect to temporal resolution of vertical radiation profiles trough the atmosphere.

  16. Temperature structure of the Uranian upper atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E.

    1979-01-01

    The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.

  17. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  18. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.

    2013-12-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  19. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  20. Retrievals of Sea Surface Emissivity and Skin Temperature from M-AERI Observations from the ACAPEX/CalWater2 Campaign

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Westphall, M.; Knuteson, R.; Knuteson, R. O.; Smith, W.

    2016-12-01

    The Atmospheric Emitted Radiance Interferometer (AERI) is a ground-based instrument developed at the University of Wisconsin-Madison that measures downwelling thermal infrared radiance from the atmosphere. Observations are made in the 520-3020 cm-1 (3.3-19 μm) spectral range with a resolution of 1 cm-1, with an accuracy better than 1% of ambient radiance. These observations can be used to obtain vertical profiles of tropospheric temperature and water vapor in the lowest 3 km of the troposphere, as well as measurements of the concentration of various trace gases and microphysical and optical properties of clouds and aerosols. The U.S Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program currently operates about ten AERIs at various fixed and mobile sites worldwide, addressing a diverse range of scientific goals from process studies to long-term climate observations. One of the instruments is a marine version (M-AERI) that has the capability to view scenes ±45° from the horizon, and can be used to observe sea surface properties such as skin temperature and emissivity. The M-AERI was deployed on the NOAA Ship Ronald Brown in 2015 as part of the ACAPEX/CalWater2 campaign to study atmospheric rivers in the Pacific Ocean. We present results from the M-AERI from this campaign of retrievals of skin temperature and sea surface emissivity as a function of view angle and wind speed, as well as comparisons to various models.

  1. Derivation of Cloud Heating Rate Profiles using observations of Mixed-Phase Arctic Clouds: Impacts of Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.

    2005-12-01

    Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.

  2. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF)

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin

    2005-11-01

    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  3. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  4. A Two-Temperature Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu

    1998-12-01

    We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.

  5. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    PubMed

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a

  6. XMM-Newton observation of the Coma Galaxy cluster. The temperature structure in the central region

    NASA Astrophysics Data System (ADS)

    Arnaud, M.; Aghanim, N.; Gastaud, R.; Neumann, D. M.; Lumb, D.; Briel, U.; Altieri, B.; Ghizzardi, S.; Mittaz, J.; Sasseen, T. P.; Vestrand, W. T.

    2001-01-01

    We present a temperature map and a temperature profile of the central part (r < 20' or 1/4 virial radius) of the Coma cluster. We combined 5 overlapping pointings made with XMM/EPIC/MOS and extracted spectra in boxes of 3.5'x3.5'. The temperature distribution around the two central galaxies is remarkably homogeneous (r<10'), contrary to previous ASCA results, suggesting that the core is actually in a relaxed state. At larger distance from the cluster center we do see evidence for recent matter accretion. We confirm the cool area in the direction of NGC 4921, probably due to gas stripped from an infalling group. We find indications of a hot front in the South West, in the direction of NGC 4839, probably due to an adiabatic compression. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). EPIC was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises the following Institutes: University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IAAP Tuebingen, MPE Garching, (Germany); IFC Milan, ITESRE Bologna, IAUP Palermo, Italy. EPIC is funded by: PPARC, CEA, CNES, DLR and ASI.

  7. Water temperature profiles for reaches of the Raging River during summer baseflow, King County, western Washington, July 2015

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Opatz, Chad C.

    2016-03-22

    Re-introducing wood into rivers where it was historically removed is one approach to improving habitat conditions in rivers of the Pacific Northwest. The Raging River drainage basin, which flows into the Snoqualmie River at Fall City, western Washington, was largely logged during the 20th century and wood was removed from its channel. To improve habitat conditions for several species of anadromous salmonids that spawn and rear in the Raging River, King County Department of Transportation placed untethered log jams in a 250-meter reach where wood was historically removed. The U.S. Geological Survey measured longitudinal profiles of near-streambed temperature during summer baseflow along 1,026 meters of channel upstream, downstream, and within the area of wood placements. These measurements were part of an effort by King County to monitor the geomorphic and biological responses to these wood placements. Near-streambed temperatures averaged over about 1-meter intervals were measured with a fiber‑optic distributed temperature sensor every 30 minutes for 7 days between July 7 and 13, 2015. Vertical temperature profiles were measured coincident with the longitudinal temperature profile at four locations at 0 centimeters (cm) (at the streambed), and 35 and 70 cm beneath the streambed to document thermal dynamics of the hyporheic zone and surface water in the study reach.

  8. The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.

    2016-12-01

    The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.

  9. Retrievability of atmospheric water vapour, temperature and vertical windspeed profiles from proposed sub-millimetre instrument ORTIS.

    NASA Astrophysics Data System (ADS)

    Hurley, Jane; Irwin, Patrick; Teanby, Nicholas; de Kok, Remco; Calcutt, Simon; Irshad, Ranah; Ellison, Brian

    2010-05-01

    The sub-millimetre range of the spectrum has been exploited in the field of Earth observation by many instruments over the years and has provided a plethora of information on atmospheric chemistry and dynamics - however, this spectral range has not been fully explored in planetary science. To this end, a sub-millimetre instrument, the Orbiter Terahertz Infrared Spectrometer (ORTIS), is jointly proposed by the University of Oxford and the Rutherford Appleton Laboratory, to meet the requirements of the European Space Agency's Cosmic Visions Europa Jupiter System Mission (EJSM). ORTIS will consist of an infrared and a sub-millimetre component; however in this study only the sub-millimetre component will be explored. The sub-millimetre component of ORTIS is projected to measure a narrow band of frequencies centred at approximately 2.2 THz, with a spectral resolution varying between approximately 1 kHz and 1 MHz, and having an expected noise magnitude of 2 nW/cm2 sr cm-1. In this spectral region, there are strong water and methane emission lines at most altitudes on Jupiter. The sub-millimetre component of ORTIS is designed to measure the abundance of atmospheric water vapour and atmospheric temperature, as well as vertical windspeed profiles from Doppler-shifted emission lines, measured at high spectral resolution. This study will test to see if, in practice, these science objectives may be met from the planned design, as applied to Jupiter. In order to test the retrievability of atmospheric water vapour, temperature and windspeed with the proposed ORTIS design, it is necessary to have a set of "measurements' for which the input parameters (such as species' concentrations, atmospheric temperature, pressure - and windspeed) are known. This is accomplished by generating a set of radiative transfer simulations using radiative transfer model RadTrans in the spectral range sampled by ORTIS, whereby the atmospheric data pertaining to Jupiter have provided by Cassini

  10. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila

    2017-09-01

    The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences

  11. On the meaning of peak temperature profiles in inverted metamorphic sequences

    NASA Astrophysics Data System (ADS)

    Duprat-Oualid, Sylvia; Yamato, Philippe

    2017-07-01

    Inverted metamorphic sequences (IMS) are common features of main thrust systems on Earth. They exhibit an upwards continuous increase in peak temperature conditions and thereby constitute evidence of the close relationship between the thermal field evolution and tectonic processes. Heat advection and shear heating are known to allow the formation of such metamorphic signatures. Heat diffusion also plays an important role in temperature distribution on both sides of the thrust. Other advection processes such as erosion or accretion may also cause a local peak temperature inversion. Each one of these processes therefore affects the thermal field around the thrust. However, despite the crucial importance of all these processes for the interpretation of the inverted peak temperature signatures, their respective influences have never been quantified and compared all together. To address this issue, we propose an innovative coupled approach. (i) We use two-dimensional numerical models that simulate various thrust systems, allowing for a wide diversity of setups. To illustrate this study, we focus on intracontinental thrust systems for which all processes listed are likely to play a key role in the thermal evolution. We perform a parametric study including kinematic settings (i.e. convergence, erosion and accretion), thermal properties, mechanical strength and heat sources. (ii) Dimensionless numbers based on parameters are used to quantify the relative contributions of each process to the thermal budget evolution. Hence, the three thermal processes (i.e. heat diffusion, heat advection and shear heating) are compared with each other via three dimensionless combinations of the Peclet and Brinkman numbers: RDif, RAdv and RPro, respectively. Erosion and accretion are compared separately, based on a fourth dimensionless number Rea. (iii) We analytically examine the inverted peak temperature recorded along profiles that are perpendicular to the thrust zone defined in our

  12. Mean state densities, temperatures and winds during the MAC/SINE and MAC/EPSILON campaigns

    NASA Technical Reports Server (NTRS)

    Luebken, F.-J.; Von Zahn, U.; Manson, A.; Meek, C.; Hoppe, U.-P.; Schmidlin, F. J.

    1990-01-01

    Two field campaigns were conducted, primarily in northern Norway, in the summer and late autumn of 1987; these yielded a total of 41 in situ temperature profiles and 67 in situ wind profiles. Simultaneously, ground-based measurements were conducted of OH temperatures and sodium lidar temperatures for 85 and 104 hours, respectively. The summer campaign's mean temperature profile exhibited major deviations from the CIRA (1986) reference atmosphere; the differences between this model and the observations are less pronounced in the autumn. Both the summer and autumn mean wind profiles were in general agreement with the CIRA model.

  13. Effect of Acute Administration of Recombinant Human Leptin during the Neonatal Period on Body Temperature and Endocrine Profile of the Piglet.

    PubMed

    Litten, J C; Mostyn, A; Laws, J; Corson, A M; Symonds, M E; Clarke, L

    2008-01-01

    Leptin is produced predominantly by white adipocytes; in adults it regulates appetite and energy expenditure but its role in the neonate remains to be fully established. To examine the effects of acute administration of recombinant human leptin on the endocrine profile and thermoregulation of neonatal pigs. 24 pairs of siblings (n = 48) were administered with either a single dose (4 microg ml(-1) kg(-1) body weight) of leptin (L: n = 24) or a placebo (P: n = 24) on day 6 of neonatal life. Rectal temperature was recorded, and tissue samples were taken at 1 (n = 12), 2 (n = 12), 4 (n = 12) or 6 (n = 12) hours post-administration. Plasma concentrations of hormones and metabolites were determined in conjunction with messenger RNA (mRNA) for leptin and uncoupling protein-2. Plasma leptin increased following leptin administration, and differences in concentrations of insulin, thyroxine and non-esterified fatty acids were observed between the two groups. Initially, rectal temperature decreased in L pigs but returned to start values by 1.5 h. This decline in rectal temperature was delayed in placebo animals, resulting in differences between treatments at 1.5 and 2 h. Acute leptin administration alters the endocrine profile of pigs and influences the thermoregulatory ability of the neonate. Copyright (c) 2007 S. Karger AG, Basel.

  14. Effect of long term chilled (up to 5weeks) then frozen (up to 12months) storage at two different sub-zero holding temperatures on beef: 2. Lipid oxidation and fatty acid profiles.

    PubMed

    Holman, Benjamin W B; Coombs, Cassius E O; Morris, Stephen; Bailes, Kristy; Hopkins, David L

    2018-02-01

    Lipid oxidation and fatty acid (FA) profiles were evaluated for beef M. longissimus lumborum (LL) stored under different chilled-then-frozen storage combinations (up to 5 and 52weeks, respectively) and two frozen holding temperatures (-12°C and -18°C). FA profile variation was observed, with increasing frozen storage periods resulting in unsaturated FA levels declining as saturated FA levels increased. Polyunsaturated and health claimable FA levels also tended to decline with increasing chilled storage period, albeit insignificant within the constraints of the experimental design. Peroxidase activity, TBARS and oxidation-reduction potential analyses reflected these FA changes. These, when compared against existing consumer thresholds, suggest a perceptible detraction from LL held under long-term frozen storage durations that are less evident earlier as dependent on the preceding chilled storage period. Negligible impact of frozen storage holding temperatures was observed on measured traits. These results suggest long-term chilled-then-frozen storage can influence beef lipid stability, healthy FA profile and therefore the healthiness of beef. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express

    NASA Astrophysics Data System (ADS)

    Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; López Valverde, M. A.; López Puertas, M.; Funke, B.; Bertaux, J. L.

    2015-08-01

    SOIR is a powerful infrared spectrometer flying on board the Venus Express spacecraft since mid-2006. It sounds the Venus atmosphere above the cloud layer using the solar occultation technique. In the recorded spectra, absorption structures from many species are observed, among them carbon dioxide, the main constituent of the Venus atmosphere. Previously, temperature vertical profiles were derived from the carbon dioxide density retrieved from the SOIR spectra by assuming hydrostatic equilibrium. These profiles show a permanent cold layer at 125 km with temperatures of ~100 K, surrounded by two warmer layers at 90 and 140 km, reaching temperatures of ~200 K and 250-300 K, respectively. In this work, temperature profiles are derived from the SOIR spectra using another technique based on the ro-vibrational structure of carbon dioxide observed in the spectra. The error budget is extensively investigated. Temperature profiles obtained by both techniques are comparable within their respective uncertainties and they confirm the vertical structure previously determined from SOIR spectra.

  16. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  17. Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Newman, Paul A.

    1988-01-01

    A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).

  18. A New Quality Control Method base on IRMCD for Wind Profiler Observation towards Future Assimilation Application

    NASA Astrophysics Data System (ADS)

    Chen, Min; Zhang, Yu

    2017-04-01

    A wind profiler network with a total of 65 profiling radars was operated by the MOC/CMA in China until July 2015. In this study, a quality control procedure is constructed to incorporate the profiler data from the wind-profiling network into the local data assimilation and forecasting system (BJRUC). The procedure applies a blacklisting check that removes stations with gross errors and an outlier check that rejects data with large deviations from the background. Instead of the bi-weighting method, which has been commonly implemented in outlier elimination for one-dimensional scalar observations, an outlier elimination method is developed based on the iterated reweighted minimum covariance determinant (IRMCD) for multi-variate observations such as wind profiler data. A quality control experiment is separately performed for subsets containing profiler data tagged in parallel with/without rain flags at every 00UTC/12UTC from 20 June to 30 Sep 2015. From the results, we find that with the quality control, the frequency distributions of the differences between the observations and model background become more Gaussian-like and meet the requirements of a Gaussian distribution for data assimilation. Further intensive assessment for each quality control step reveals that the stations rejected by blacklisting contain poor data quality, and the IRMCD rejects outliers in a robust and physically reasonable manner.

  19. Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2014-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.

  20. Lipid content and fatty acid profile during lake whitefish embryonic development at different incubation temperatures.

    PubMed

    Mueller, Casey A; Doyle, Liam; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2017-01-01

    Lipids serve as energy sources, structural components, and signaling molecules during fish embryonic development, and utilization of lipids may vary with temperature. Embryonic energy utilization under different temperatures is an important area of research in light of the changing global climate. Therefore, we examined percent lipid content and fatty acid profiles of lake whitefish (Coregonus clupeaformis) throughout embryonic development at three incubation temperatures. We sampled fertilized eggs and embryos at gastrulation, eyed and fin flutter stages following chronic incubation at temperatures of 1.8, 4.9 and 8.0°C. Hatchlings were also sampled following incubation at temperatures of 3.3, 4.9 and 8.0°C. Fertilized eggs had an initial high percentage of dry mass composed of lipid (percent lipid content; ~29%) consisting of ~20% saturated fatty acids (SFA), ~32% monounsaturated fatty acids (MUFA), ~44% polyunsaturated fatty acids (PUFA), and 4% unidentified. The most abundant fatty acids were 16:0, 16:1, 18:1(n-9c), 20:4(n-6), 20:5(n-3) and 22:6(n-3). This lipid profile matches that of other cold-water fish species. Percent lipid content increased during embryonic development, suggesting protein or other yolk components were preferentially used for energy. Total percentage of MUFA decreased during development, which indicated MUFA were the primary lipid catabolized for energy during embryonic development. Total percentage of PUFA increased during development, driven largely by an increase in 22:6(n-3). Temperature did not influence percent lipid content or percent MUFA at any development stage, and had inconsistent effects on percent SFA and percent PUFA during development. Thus, lake whitefish embryos appear to be highly adapted to low temperatures, and do not alter lipids in response to temperature within their natural incubation conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; Rose, T.

    2012-04-01

    The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75°06'S, 123°21'E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H2O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for temperature and 25-50 m for H2O. A strong diurnal cycle in temperature and H2O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H2O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H2O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD

  2. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  3. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  4. N2 Temperature of Vibration instrument for sounding rocket observation in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Kurihara, J.; Iwagami, N.; Oyama, K.-I.

    2013-11-01

    The N2 Temperature of Vibration (NTV) instrument was developed to study energetics and structure of the lower thermosphere, applying the Electron Beam Fluorescence (EBF) technique to measurements of vibrational temperature, rotational temperature and number density of atmospheric N2. The sounding rocket experiments using this instrument have been conducted four times, including one failure of the electron gun. Aerodynamic effects on the measurement caused by the supersonic motion of the rocket were analyzed quantitatively using three-dimensional simulation of Direct Simulation Monte Carlo (DSMC) method, and the absolute density profile was obtained through the correction of the spin modulation.

  5. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  6. Tropospheric temperature measurements using a rotational raman lidar

    NASA Astrophysics Data System (ADS)

    Lee, Robert Benjamin, III

    Using the Hampton University (HU) Mie and Raman lidar, tropospheric temperature profiles were inferred from lidar measurements of anti-Stokes rotational Raman (RR) backscattered laser light from atmospheric nitrogen and oxygen molecules. The molecules were excited by 354.7 nanometer (nm) laser light emitted by the HU lidar. Averaged over 60-minute intervals, RR backscattered signals were detected in narrow 353.35 nm and 354.20 nm spectral bands with full-widths-at-half-maxima (FWHM) of 0.3 nm. During the special April 19-30, 2012, Ground-Based Remote Atmospheric Sounding Program (GRASP) campaign, the lidar temperature calibration coefficients were empirically derived using linear least squares and second order polynomial analyses of the lidar backscattered RR signals and of reference temperature profiles, obtained from radiosondes. The GRASP radiosondes were launched within 400 meters of the HU lidar site. Lidar derived temperature profiles were obtained at altitudes from the surface to over 18 kilometers (km) at night, and up to 5 km during the day. Using coefficients generated from least squares analyses, nighttime profiles were found to agree with profiles from reference radiosonde measurements within 3 K, at altitudes between 4 km and 9 km. Coefficients generated from the second order analyses yielded profiles which agreed with the reference profiles within 1 K uncertainty level in the 4 km to 10 km altitude region. Using profiles from GRASP radiosondes, the spatial and temporal homogeneities of the atmosphere, over HU, were estimated at the 1.5 K level within a 10 km radius of HU, and for observational periods approaching 3 hours. Theoretical calibration coefficients were derived from the optical and physical properties of the HU RR lidar and from the spectroscopic properties of atmospheric molecular nitrogen and oxygen. The theoretical coefficients along with lidar measurements of sky background radiances were used to evaluate the temporal stability of the

  7. Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.; Denning, Richard F.; Fox, Jack

    2009-01-01

    Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 5-in. (.10 13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.

  8. Impacts of temperature and lunar day on gene expression profiles during a monthly reproductive cycle in the brooding coral Pocillopora damicornis.

    PubMed

    Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M

    2017-08-01

    Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.

  9. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.

  10. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast.

    PubMed

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  11. Understanding observed and simulated historical temperature trends in California

    NASA Astrophysics Data System (ADS)

    Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.

    2006-12-01

    In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the

  12. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange

    USGS Publications Warehouse

    Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.

  13. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Performance of a high-work low aspect ration turbine tested with a realistic inlet radial temperature profile

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases.

  15. Global distribution of vertical wavenumber spectra in the lower stratosphere observed using high-vertical-resolution temperature profiles from COSMIC GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, T.

    2016-02-01

    We retrieved temperature (T) profiles with a high vertical resolution using the full spectrum inversion (FSI) method from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation (GPS-RO) data from January 2007 to December 2009. We studied the characteristics of temperature perturbations in the stratosphere at 20-27 km altitude. This height range does not include a sharp jump in the background Brunt-Väisälä frequency squared (N2) near the tropopause, and it was reasonably stable regardless of season and latitude. We analyzed the vertical wavenumber spectra of gravity waves (GWs) with vertical wavelengths ranging from 0.5 to 3.5 km, and we integrated the (total) potential energy EpT. Another integration of the spectra from 0.5 to 1.75 km was defined as EpS for short vertical wavelength GWs, which was not studied with the conventional geometrical optics (GO) retrievals. We also estimated the logarithmic spectral slope (p) for the saturated portion of spectra with a linear regression fitting from 0.5 to 1.75 km.Latitude and time variations in the spectral parameters were investigated in two longitudinal regions: (a) 90-150° E, where the topography was more complicated, and (b) 170-230° E, which is dominated by oceans. We compared EpT, EpS, and p, with the mean zonal winds (U) and outgoing longwave radiation (OLR). We also show a ratio of EpS to EpT and discuss the generation source of EpS. EpT and p clearly showed an annual cycle, with their maximum values in winter at 30-50° N in region (a), and 50-70° N in region (b), which was related to the topography. At 30-50° N in region (b), EpT and p exhibited some irregular variations in addition to an annual cycle. In the Southern Hemisphere, we also found an annual oscillation in EpT and p, but it showed a time lag of about 2 months relative to U. Characteristics of EpTand p in the tropical region seem to be related to convective activity. The ratio of EpT to the

  16. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variation but there is little or no year-to-year variation; we do not see the episodic variability reported by ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere is about 1200 K, much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  17. Transport temperatures observed during the commercial transportation of animals.

    PubMed

    Fiore, Gianluca; Hofherr, Johann; Natale, Fabrizio; Mainetti, Sergio; Ruotolo, Espedito

    2012-01-01

    Current temperature standards and those proposed by the European Food Safety Authority (EFSA) were compared with the actual practices of commercial transport in the European Union. Temperature and humidity records recorded for a year on 21 vehicles over 905 journeys were analysed. Differences in temperature and humidity recorded by sensors at four different positions in the vehicles exceeded 10°C between the highest and lowest temperatures in nearly 7% of cases. The number and position of temperature sensors are important to ensure the correct representation of temperature conditions in the different parts of a vehicle. For all journeys and all animal categories, a relatively high percentage of beyond threshold temperatures can be observed in relation to the temperature limits of 30°C and 5°C. Most recorded temperature values lie within the accepted tolerance of ±5°C stipulated in European Community Regulation (EC) 1/2005. The temperature thresholds proposed by EFSA would result in a higher percentage of non-compliant conditions which are more pronounced at the lower threshold, compared to the thresholds laid down in Regulation (EC) 1/2005. With respect to the different animal categories, the non-compliant temperature occurrences were more frequent in pigs and sheep, in particular with regard to the thresholds proposed by EFSA.

  18. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE PAGES

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    2017-07-20

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  19. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  20. Electron temperatures and densities in the venus ionosphere: pioneer venus orbiter electron temperature probe results.

    PubMed

    Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A

    1979-02-23

    Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.

  1. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  2. Validation of microwave radiometry for measuring the internal temperature profile of human tissue

    NASA Astrophysics Data System (ADS)

    Levick, A.; Land, D.; Hand, J.

    2011-06-01

    A phantom target with a known linear temperature gradient has been developed for validating microwave radiometry for measuring internal temperature profiles within human tissue. The purpose of the phantom target is to simulate the temperature gradient found within the surface layers of a baby's brain during hypothermal neuroprotection therapy, in which the outer surface of the phantom represents the skin surface and the inner surface the brain core. The target comprises a volume of phantom tissue material with similar dielectric properties to high water-content human tissue, contained between two copper plates at known temperatures. The antenna of a microwave radiometer is in contact with one surface of the phantom material. We have measured the microwave temperature of the phantom with microwave radiometry in a frequency band of 3.0-3.5 GHz. Our microwave temperature measurements have small 0.05 °C (type A) uncertainties associated with random effects and provide temperatures consistent with values determined using theoretical models of the antenna-target system within uncertainties. The measurements are in good agreement with the major signal contribution being formed over a near plane-wave response within the material with a much smaller contribution from close to the antenna face.

  3. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurementmore » revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.« less

  4. Impact of water temperature on the growth and fatty acid profiles of juvenile sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Zhang, Cheng; Gao, Qinfeng; Dong, Shuanglin; Ye, Zhi; Tian, Xiangli

    2016-08-01

    The present study determined the changes in the fatty acid (FA) profiles of juvenile sea cucumber Apostichopus japonicus in response to the varied water temperature. Sea cucumbers with similar size (4.02±0.11g) were cultured for 8 weeks at 14°C, 18°C, 22°C and 26°C, respectively. At the end of the experiment, the specific growth rate (SGR) and the profiles of FAs in neutral lipids and phospholipids of the juvenile sea cucumbers cultured at different temperatures were determined. The SGRs of the sea cucumbers cultured at 26°C significantly decreased 46.3% compared to thos cultured at 18°C. Regression analysis showed that the SGR-temperature (T) relationship can be expressed as SGR=-0.0073T(2)+0.255T -1.0231 (R(2)=0.9936) and the highest SGR was predicted at 17.5°C. For the neutral lipids, the sum of saturated FAs (SFAs), monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) of the sea cucumbers that were cultured at the water temperature from 18°C-26°C did not change significantly, indicating the insensitivity of FA profiles for the neutral lipids of sea cucumbers in response to increasing water temperature. For phospholipids, the sum of PUFAs in the sea cucumbers dramatically decreased with the gradually increased water temperature. The sum of SFAs and MUFAs of sea cucumbers, however, increased with the gradually elevated water temperature. In particular, the contents of highly unsaturated fatty acids (HUFAs), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA), in the phospholipids of the sea cucumbers decreased 37.2% and 26.1%, respectively, when the water temperature increased from 14°C to 26°C. In summary, the sea cucumbers A. japonicus can regulate the FA compositions, especially the contents of EPA and DHA, in the phospholipids so as to adapt to varied water temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Variability of temperature properties over Kenya based on observed and reanalyzed datasets

    NASA Astrophysics Data System (ADS)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie; Sagero, Phillip Obaigwa

    2017-08-01

    Updated information on trends of climate extremes is central in the assessment of climate change impacts. This work examines the trends in mean, diurnal temperature range (DTR), maximum and minimum temperatures, 1951-2012 and the recent (1981-2010) extreme temperature events over Kenya. The study utilized daily observed and reanalyzed monthly mean, minimum, and maximum temperature datasets. The analysis was carried out based on a set of nine indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The trend of the mean and the extreme temperature was determined using Mann-Kendall rank test, linear regression analysis, and Sen's slope estimator. December-February (DJF) season records high temperature while June-August (JJA) experiences the least temperature. The observed rate of warming is + 0.15 °C/decade. However, DTR does not show notable annual trend. Both seasons show an overall warming trend since the early 1970s with abrupt and significant changes happening around the early 1990s. The warming is more significant in the highland regions as compared to their lowland counterparts. There is increase variance in temperature. The percentage of warm days and warm nights is observed to increase, a further affirmation of warming. This work is a synoptic scale study that exemplifies how seasonal and decadal analyses, together with the annual assessments, are important in the understanding of the temperature variability which is vital in vulnerability and adaptation studies at a local/regional scale. However, following the quality of observed data used herein, there remains need for further studies on the subject using longer and more data to avoid generalizations made in this study.

  6. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    NASA Technical Reports Server (NTRS)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  7. High Resolution Asteroid Profile by Multi Chord Occultation Observations

    NASA Astrophysics Data System (ADS)

    Degenhardt, Scott

    2009-05-01

    For millennia man has observed celestial objects occulting other bodies and distant stars. We have used these celestial synchronicities to measure the properties of objects. On January 1, 1801 Italian astronomer Giusappe Piazzi discovered the first asteroid that would soon be named Ceres. To date 190,000 of these objects have been catalogued, but only a fraction of these have accurate measurements of their true size and shape. The International Occultation Timing Association (IOTA) currently facilitates the prediction and reduction of asteroidal occultations. By measuring the shadow cast on the earth by an asteroid during a stellar occultation one can directly measure the physical size, shape, and position in space of this body to accuracies orders of magnitudes better than the best ground based adaptive optics telescope and can provide verification to 3D inverted reflective lightcurve prediction models. Recent novel methods developed by IOTA involving an individual making multiple observations through unattended remote observing stations have made way for numerous chords of occultation measurement through a single body yielding high resolution profiles of asteroid bodies. Methodology of how observing stations are deployed will be demonstrated, results of some of these observations are presented as comparisons to their inverted lightcurve are shown.

  8. Observation of laser beam profile progression inside an extended laser cavity

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.; Farrell, Thomas C.

    2013-03-01

    This report presents the result of the laser beam profile progression in target-in-the-loop (TIL) system. This simulation experiment is to verify whether it is possible to form a tight hot spot similar to a single transversal mode in an extended laser cavity. Therefore, it is very important to observe the progression of the laser profile at a laser cavity mirror when a seeded high energy laser pulse is injected into the TIL system. The extended laser cavity is formed with a high reflectivity mirror on one end and an optical phase conjugated mirror as the second mirror, with potential disturbance media inside. The laser oscillation occurs only when it is triggered with a single frequency high energy laser pulse to overcome the threshold condition. With a laser cavity length of around 11 meters and a seeded laser pulse of 10 ns, we have been able to acquire and distinguish the laser beam profiles of each round-trip. Inserting a scattering media and other distortion elements can simulate atmospheric effects.

  9. Characterizing Temperatures of FOXSI-2 Microflares Using RHESSI and AIA Observations

    NASA Astrophysics Data System (ADS)

    Han, R.; Glesener, L.; Buitrago Casas, J. C.; Lopez, A.; Badman, S.; Krucker, S.

    2015-12-01

    The second flight of the Focusing Optics X-ray Solar Imager sounding rocket payload (FOXSI-2) was successfully completed on December 11, 2014. FOXSI's direct imaging technology allows it to measure hard X-ray (HXR) emissions from the Sun with superior dynamic range and sensitivity relative to indirect HXR observations. During the December FOXSI-2 flight, several microflares were observed. We wish to characterize the temperature distributions of these microflares using supporting measurements in order to validate the FOXSI spectral response. The temperature distribution of solar plasma is best described by the differential emission measure (DEM), a physical quantity that characterizes the amount of material present in the corona in each temperature range. To determine the DEM, we employ multi-wavelength extreme ultraviolet observations by the Atmospheric Imaging Assembly (SDO/AIA) using a regularization method. We also perform isothermal fitting of thermal X-ray spectra from the Reuven Ramaty Solar Spectroscopic Imager (RHESSI). This poster will show the temperature distribution for each of the December 11 microflares and compare these results with those obtained from FOXSI-2.

  10. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  11. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, James; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  12. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases. Previously announced in STAR as N84-24589

  13. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    NASA Technical Reports Server (NTRS)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  14. A data set for validation of models of laser-induced incandescence from soot: temporal profiles of LII signal and particle temperature

    NASA Astrophysics Data System (ADS)

    Goulay, Fabien; Schrader, Paul E.; López-Yglesias, Xerxes; Michelsen, Hope A.

    2013-09-01

    We measured spectrally and temporally resolved laser-induced incandescence signals from flame-generated soot at laser fluences of 0.01-3.5 J/cm2 and laser wavelengths of 532 and 1,064 nm. We recorded LII temporal profiles at 681.8 nm using a fast-gated detector and a spatially homogeneous and temporally smooth laser profile. Time-resolved emission spectra were used to identify and avoid spectral interferences and to infer soot temperatures. Soot temperatures reach a maximum of 4,415 ± 65 K at fluences ≥0.2 J/cm2 at 532 nm and 4,424 ± 80 K at fluences ≥0.3 J/cm2 at 1,064 nm. These temperatures are consistent with the sublimation temperature of C2 of 4,456.59 K. At fluences above 0.5 J/cm2 at 532 nm, the measured spectra yield an apparent higher temperature after the soot has fully vaporized but well within the laser pulse. This apparent temperature elevation at high fluence is explained by fluorescence interferences from molecules present in the flame. We also measured 3-color LII temporal profiles at detection wavelengths of 451.5, 681.8, and 854.8 nm. The temperatures inferred from these measurements agree well with those measured using spectrally resolved LII. The data discussed in this manuscript are archived as electronic supplementary material.

  15. The temperature-ballast hypothesis explains carbon export efficiency observations in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Britten, Gregory L.; Wakamatsu, Lael; Primeau, François W.

    2017-02-01

    Carbon export from the Southern Ocean exerts a strong control on the ocean carbon sink, yet recent observations from the region demonstrate poorly understood relationships in which carbon export efficiency is weakly related to temperature. These observations conflict with traditional theory where export efficiency increases in colder waters. A recently proposed "temperature-ballast hypothesis" suggests an explanatory mechanism where the effect of temperature-dependent respiration is masked by variation in particle-ballast as upwelling waters move northward from Antarctica. We use observations and statistical models to test this mechanism and find positive support for the hypothesized temperature-ballast interactions. Best fitting models indicate a significant relation between export efficiency and silica-ballast while simultaneously revealing the expected inverse effect of temperature once ballast is accounted for. These findings reconcile model predictions, metabolic theory, and carbon export observations in the Southern Ocean and have consequences for how the ocean carbon sink responds to climate change.

  16. STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T., E-mail: avestruz@uchicago.edu

    Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the usemore » of galaxy clusters as cosmological probes.« less

  17. Stirred, Not Clumped: Evolution of Temperature Profiles in the Outskirts of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.

    2016-12-01

    Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the use of galaxy clusters as cosmological probes.

  18. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  19. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  20. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  1. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    PubMed

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  3. Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the

  4. An Examination of Intertidal Temperatures Through Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.

    2010-12-01

    MODIS Aqua and Terra satellites produce both land surface temperatures and sea surface temperatures using calibrated algorithms. In this study, the land surface temperatures were retrieved during clear-sky (non-cloudy) conditions at a 1 km2 resolution (overpass time at 10:30 am) whereas the sea surface temperatures are also retrieved during clear-sky conditions at approximately 4 km resolution (overpass time at 1:30 pm). The purpose of this research was to examine remotely sensed sea surface (SST), intertidal (IST), and land surface temperatures (LST), in conjunction with observed in situ mussel body temperatures, as well as associated weather and tidal data. In Strawberry Hill, Oregon, it was determined that intertidal surface temperatures are similar to but distinctly different from land surface temperatures although influenced by sea surface temperatures. The air temperature and differential heating throughout the day, as well as location in relation to the shore, can greatly influence the remotely sensed surface temperatures. Therefore, remotely sensed satellite data is a very useful tool in examining intertidal temperatures for regional climatic changes over long time periods and may eventually help researchers forecast expected climate changes and help determine associated biological implications.

  5. Soil moisture sensing with aircraft observations of the diurnal range of surface temperature

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Blanchard, B.; Anderson, A.; Wang, V.

    1977-01-01

    Aircraft observations of the surface temperature were made by measurements of the thermal emission in the 8-14 micrometers band over agricultural fields around Phoenix, Arizona. The diurnal range of these surface temperature measurements were well correlated with the ground measurement of soil moisture in the 0-2 cm layer. The surface temperature observations for vegetated fields were found to be within 1 or 2 C of the ambient air temperature indicating no moisture stress. These results indicate that for clear atmospheric conditions remotely sensed surface temperatures are a reliable indicator of soil moisture conditions and crop status.

  6. The ion temperature gradient: An intrinsic property of Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.

    2017-08-01

    Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.

  7. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  8. Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.

  9. Untargeted LC-MS/MS Profiling of Cell Culture Media Formulations for Evaluation of High Temperature Short Time Treatment Effects.

    PubMed

    Floris, Patrick; McGillicuddy, Nicola; Albrecht, Simone; Morrissey, Brian; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan

    2017-09-19

    An untargeted LC-MS/MS platform was implemented for monitoring variations in CHO cell culture media upon exposure to high temperature short time (HTST) treatment, a commonly used viral clearance upstream strategy. Chemically defined (CD) and hydrolysate-supplemented media formulations were not visibly altered by the treatment. The absence of solute precipitation effects during media treatment and very modest shifts in pH values observed indicated sufficient compatibility of the formulations evaluated with the HTST-processing conditions. Unsupervised chemometric analysis of LC-MS/MS data, however, revealed clear separation of HTST-treated samples from untreated counterparts as observed from analysis of principal components and hierarchical clustering sample grouping. An increased presence of Maillard products in HTST-treated formulations contributed to the observed differences which included organic acids, observed particularly in chemically defined formulations, and furans, pyridines, pyrazines, and pyrrolidines which were determined in hydrolysate-supplemented formulations. The presence of Maillard products in media did not affect cell culture performance with similar growth and viability profiles observed for CHO-K1 and CHO-DP12 cells when cultured using both HTST-treated and untreated media formulations.

  10. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  11. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  12. Beyond the average marital communication: Latent profiles of the observed interactions among Chinese newlywed couples.

    PubMed

    Cao, Hongjian; Fang, Xiaoyi; Fine, Mark A; Ju, Xiaoyan; Lan, Jing; Liu, Xuanwen

    2015-12-01

    Employing a multicontext observational design, using a person-centered approach, and treating the marital dyad as the unit of analysis, this study examined the within-couple communication patterning of 144 Chinese newlywed couples and its association with relationship satisfaction. Latent profile analysis consistently revealed 3 profiles of spouses' interactive behaviors across contexts differing in both topic nature (i.e., problem-solving vs. social support) and initiator (i.e., husbands vs. wives): (a) traditionally undemonstrative profile, (b) emotionally quarrelling profile, and (c) warmly supportive profile. The prevalence of communication profiles changed markedly with the nature of the discussion topic and the topic initiator. Further, using latent class analysis, we classified couples into subgroups based on their identified profile memberships across contexts (i.e., consistency of interaction mode across contexts). Three classes were identified: (a) consistently quarrelling class, (b) consistently supportive class, and (c) modestly traditional class. Both the consistently supportive class and the modestly traditional class reported significantly higher levels of marital satisfaction than did the consistently quarrelling class. (c) 2015 APA, all rights reserved).

  13. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean

    NASA Astrophysics Data System (ADS)

    Rudolf, Andreas; Walther, Thomas

    2014-05-01

    We report on the successful laboratory demonstration of a real-time lidar system to remotely measure temperature profiles in water. In the near future, it is intended to be operated from a mobile platform, e.g., a helicopter or vessel, in order to precisely determine the temperature of the surface mixed layer of the ocean with high spatial resolution. The working principle relies on the active generation and detection of spontaneous Brillouin scattering. The light source consists of a frequency-doubled fiber-amplified external cavity diode laser and provides high-energy, Fourier transform-limited laser pulses in the green spectral range. The detector is based on an atomic edge filter and allows the challenging extraction of the temperature information from the Brillouin scattered light. In the lab environment, depending on the amount of averaging, water temperatures were resolved with a mean accuracy of up to 0.07°C and a spatial resolution of 1 m, proving the feasibility and the large potential of the overall system.

  14. Reduced model prediction of electron temperature profiles in microtearing-dominated NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Kaye, S. M.; Guttenfelder, W.; Bell, R.; Gerhardt, S.; Leblanc, B.; Maingi, R.

    2014-10-01

    A representative H-mode discharge from the National Spherical Torus Experiment (NSTX) is studied in detail as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, νe*, the MHD α parameter and the gradient scale lengths of Te, Ti and ne were examined prior to performing linear gyrokinetic calculations to determine the fastest growing microinstability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe* were relatively low, ballooning parity modes were dominant. As both βe and νe* increased with time, microtearing became the dominant low-kθmode, especially in the outer half of the plasma. There are instances in time and radius where other modes, at higher-kθ, may be important for driving electron transport. The Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. This work has been supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.

  15. Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1995-01-01

    New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.

  16. Body temperature, activity and melatonin profiles in adults with attention-deficit/hyperactivity disorder and delayed sleep: a case-control study.

    PubMed

    Bijlenga, Denise; Van Someren, Eus J W; Gruber, Reut; Bron, Tannetje I; Kruithof, I Femke; Spanbroek, Elise C A; Kooij, J J Sandra

    2013-12-01

    Irregular sleep-wake patterns and delayed sleep times are common in adults with attention-deficit/hyperactivity disorder, but mechanisms underlying these problems are unknown. The present case-control study examined whether circadian abnormalities underlie these sleep problems in a naturalistic home setting. We included 12 medication-naïve patients with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome, and 12 matched healthy controls. We examined associations between sleep/wake rhythm in attention-deficit/hyperactivity disorder and circadian parameters (i.e. salivary melatonin concentrations, core and skin temperatures, and activity patterns) of the patients and controls during five consecutive days and nights. Daily bedtimes were more variable within patients compared with controls (F = 8.19, P < 0.001), but melatonin profiles were equally stable within individuals. Dim-light melatonin onset was about 1.5 h later in the patient group (U = 771, Z = -4.63, P < 0.001). Patients slept about 1 h less on nights before work days compared with controls (F = 11.21, P = 0.002). The interval between dim-light melatonin onset and sleep onset was on average 1 h longer in patients compared with controls (U = 1117, Z = -2.62, P = 0.009). This interval was even longer in patients with extremely late chronotype. Melatonin, activity and body temperatures were delayed to comparable degrees in patients. Overall temperatures were lower in patients than controls. Sleep-onset difficulties correlated with greater distal-proximal temperature gradient (DPG; i.e. colder hands, r(2)  = -0.32, P = 0.028) in patients. Observed day-to-day bedtime variability of individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome were not reflected in their melatonin profiles. Irregular sleep-wake patterns and delayed sleep in individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome are

  17. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  18. Robust/optimal temperature profile control of a high-speed aerospace vehicle using neural networks.

    PubMed

    Yadav, Vivek; Padhi, Radhakant; Balakrishnan, S N

    2007-07-01

    An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A 1-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

  19. MESSENGER Orbital Observations of Mercury's Hydrogen Exosphere

    NASA Astrophysics Data System (ADS)

    Vervack, R. J.; Hurley, D. M.; Pryor, W.; Killen, R. M.

    2018-05-01

    We present a complete analysis of the MESSENGER H Lyman alpha altitude profiles. These data confirm the two-temperature nature of the Mariner 10 observations of H and address long-outstanding questions on the origin of Mercury's H exosphere.

  20. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Feuchtgruber, Helmut; Lellouch, Emmanuel; Moreno, Raphael; Hartogh, Paul; Jarchow, Christopher; Swinyard, Bruce; Moses, Julianne; Burgdorf, Martin; Hammel, Heidi; Line, Michael; Mainzer, Amy; Hofstadter, Mark; Sandell, Goran; Dowell, Charles

    2014-05-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. The Spitzer IRS data, in concert with photochemical models, show that the atmosphere the homopause is much higher pressures than for the other outer planets, with the predominant trace constituents for pressures lower than 10 μbar being H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of 'programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  1. CLASH-X: A Comparison of Lensing and X-Ray Techniques for Measuring the Mass Profiles of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Donahue, Megan; Voit, G. Mark; Mahdavi, Andisheh; Umetsu, Keiichi; Ettori, Stefano; Merten, Julian; Postman, Marc; Hoffer, Aaron; Baldi, Alessandro; Coe, Dan; Czakon, Nicole; Bartelmann, Mattias; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Ford, Holland; Gastaldello, Fabio; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Koekemoer, Anton; Kelson, Daniel; Lahav, Ofer; Lemze, Doron; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Sayers, Jack; Seitz, Stella; Van der Wel, Arjen; Zheng, Wei; Zitrin, Adi

    2014-10-01

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another at ~100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is langbrang = 0.12 for the WL comparison and langbrang = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to langbrang >~ 0.3 at ~1 Mpc for the WL comparison and langbrang ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1

  2. Pioneer 10 and 11 radio occultations by Jupiter. [atmospheric temperature structure

    NASA Technical Reports Server (NTRS)

    Kliore, A. J.; Woiceshyn, P. M.; Hubbard, W. B.

    1977-01-01

    Results on the temperature structure of the Jovian atmosphere are reviewed which were obtained by applying an integral inversion technique combined with a model for the planet's shape based on gravity data to Pioneer 10 and 11 radio-occultation data. The technique applied to obtain temperature profiles from the Pioneer data consisted of defining a center of refraction based on a computation of the radius of curvature in the plane of refraction and the normal direction to the equipotential surface at the closest approach point of a ray. Observations performed during the Pioneer 10 entry and exit and the Pioneer 11 exit are analyzed, sources of uncertainty are identified, and representative pressure-temperature profiles are presented which clearly show a temperature inversion between 10 and 100 mb. Effects of zonal winds on the reliability of radio-occultation temperature profiles are briefly discussed.

  3. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.

    PubMed

    Voytek, Emily B; Drenkelfuss, Anja; Day-Lewis, Frederick D; Healy, Richard; Lane, John W; Werkema, Dale

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  4. Measuring electron temperature in the extended corona

    NASA Technical Reports Server (NTRS)

    Hassler, Donald M.; Gardner, L. D.; Kohl, John L.

    1992-01-01

    A technique for measuring electron temperature in the extended corona from the line profile of the electron scattered component of coronal H I Ly alpha produced by Thomson scattering of chromospheric Ly alpha emission is discussed. Because of the high thermal velocity of electrons at coronal temperatures (approximately 6800 km/s at T(sub e) = 1,500,000 K) the effect of nonthermal velocities and solar wind flows on the electron velocity distribution are negligible. However, the low electron mass which is responsible for the high thermal velocity also results in a very wide profile (approximately equal to 50 A). This wide profile, together with an intensity that is three orders of magnitude weaker than the resonantly scattered component of Ly alpha makes the direct measurement of T(sub e) a challenging observational problem. An evaluation of this technique based on simulated measurements is presented and the subsequent instrumental requirements necessary to make a meaningful determination of the electron temperature are discussed. Estimates of uncertainties in the measured electron temperature are related to critical instrument parameters such as grating stray light suppression.

  5. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  6. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate

  7. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  8. Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements.

    PubMed

    Liu, Zhi-Shen; Bi, De-Cang; Song, Xiao-Quan; Xia, Jin-Bao; Li, Rong-Zhong; Wang, Zhang-Jun; She, Chiao-Yao

    2009-09-15

    This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.

  9. Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study

    NASA Astrophysics Data System (ADS)

    Li, Z.; Chao, Y.; Farrara, J.; McWilliams, J. C.

    2012-12-01

    A set of data assimilation experiments, known as Observing System Experiments (OSEs), are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of three types: High Frequency (HF) radar surface velocities, vertical profiles of temperature/salinity (T/S) measured by ships, moorings, Autonomous Underwater Vehicles and gliders, and satellite sea surface temperatures (SSTs). The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill. It is suggested that a potentially promising observing network could be based on satellite SSHs and SSTs along with sparse T/S profiles, and future satellite SSHs with wide swath coverage and higher resolution may offer excellent data that will be of great use for predicting the circulation in the Sound.

  10. The covariance of temperature and ozone due to planetary-wave forcing

    NASA Technical Reports Server (NTRS)

    Fraser, G. J.

    1976-01-01

    The cross-spectra of temperature and ozone mass mixing ratio at 42 km and 28 km has been determined for spring (1971) and summer (1971-2) over Christchurch, New Zealand (44 S, 172 E). The sources of data are the SCR and BUV experiments on Nimbus 4. The observed covariances are compared with a model in which the temperature and ozone perturbations are forced by an upward propagating planetary wave. The agreement between the observations and the model is reasonable. It is suggested that this cross-spectral method permits an estimate of the meridional gradient of ozone mass mixing ratio from measurements of the vertical profile of ozone mass mixing ratio at one location, supported by temperature profiles from at least two locations.

  11. Observed Trends in West Coast Atmospheric River Temperatures

    NASA Astrophysics Data System (ADS)

    Gonzales, K. R.; Swain, D. L.; Barnes, E. A.; Diffenbaugh, N. S.

    2017-12-01

    Understanding the changing characteristics of atmospheric rivers (ARs) in a warming climate is critical in light of their importance in generating precipitation and creating the potential for flood and geophysical hazards. Numerous changes to the characteristics of ARs under the influence of a changing climate have been documented or hypothesized; one simple hypothesis is that AR precipitation will occur at increasingly warm temperatures, potentially altering the critical rain/snow balance in snowpack-dependent watersheds and causing precipitation at higher elevations to fall as rain rather than snow. Not only would warmer, primarily rain-producing ARs greatly affect snow accumulation, but they might also increase the intensity of runoff, the potential for flooding, and the occurrence of rain-on-snow events. Since the West Coast of North America relies heavily on ARs as a source of precipitation and snowpack accumulation, these regions may be profoundly affected by changes in AR temperatures and associated impacts. Using a catalog of ARs encompassing 1979-2014 and ERA-Interim reanalysis, we assess whether detectable trends exist in cool season AR temperatures over the Pacific Coast states of California, Oregon, and Washington. We define AR temperature by the mean temperature of the air mass between 1000 hPa and 750 hPa, and compare AR temperature trends to background temperature trends over the same period. We find overall AR warming over this period and particularly robust warming in March ARs coincident with an apparent poleward shift in March AR frequency. Further analysis suggests that warmer ARs have higher rates of warming than cooler ARs. AR temperature trends generally scale with background temperature trends, although some regions exhibit a near one-to-one relationship while others are largely uncorrelated. The observed warming of ARs making landfall on the West Coast may have potentially significant implications for rain vs. snow at higher elevations, the

  12. A Direct Detection 1.6μm DIAL with Three Wavelengths for Measurements of Vertical CO2 Concentration and Temperature Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.

    2012-12-01

    We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical

  13. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Temperature profiles of different cooling methods in porcine pancreas procurement.

    PubMed

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  15. Temperature Profiles of Different Cooling Methods in Porcine Pancreas Procurement

    PubMed Central

    Weegman, Brad P.; Suszynski, Thomas M.; Scott, William E.; Ferrer, Joana; Avgoustiniatos, Efstathios S.; Anazawa, Takayuki; O’Brien, Timothy D.; Rizzari, Michael D.; Karatzas, Theodore; Jie, Tun; Sutherland, David ER.; Hering, Bernhard J.; Papas, Klearchos K.

    2014-01-01

    Background Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. Methods This study examines the effect of 4 different cooling Methods on core porcine pancreas temperature (n=24) and histopathology (n=16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all 3 cooling Methods. Results Surface cooling alone (Method A) gradually decreased core pancreas temperature to < 10 °C after 30 minutes. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15–20 °C within the first 2 minutes of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (p=0.36). Histological scores were different between the cooling Methods (p=0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (p=0.02) and Methods A and D (p=0.02), but not between Methods C and D (p=0.95), which may highlight the importance of early cooling using an intraductal infusion. Conclusions In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature

  16. Temperature compensation analysis of liquid lens for variable-focus control

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jung; Tai, Tsai-Lin; Shen, Chih-Hsiung

    2006-01-01

    In this work, a fabrication and temperature compensation analysis and electrowetting for the liquid lenses is proposed. The unique capability of controlling the lens profile during the electrowetting fabrication processes is successfully demonstrated for different ambient temperature environment. For a lens fabricated on a hydrophobic Teflon layer, it is found that when the applied voltage is increased, the focal length increases, and the curvature decreases. One challenge for the liquid lens is operating temperature range. Due to the environment temperature change, the ability of controlling the lens profile is analyzed and measured. The description of change in contact angle corresponding to the variation of ambient temperature is derived. Based on this description, we firstly derive the control of voltage vs. temperature for a fixed dioptric power. The control of lens during a focusing action was studied by observation of the image formed by the light through the transparent bottom of ITO glass. Under several conditions of ambient temperature change, capability of controlling the lens profile for a fixed focus is successfully demonstrated by experiments.

  17. The upper atmosphere of Uranus - Mean temperature and temperature variations

    NASA Technical Reports Server (NTRS)

    Dunham, E.; Elliot, J. L.; Gierasch, P. J.

    1980-01-01

    The number-density, pressure, and temperature profiles of the Uranian atmosphere in the pressure interval from 0.3 to 30 dynes/sq cm are derived from observations of the occultation of SAO 158687 by Uranus on 1977 March 10, observations made from the Kuiper Airborne Observatory and the Cape Town station of the South African Astronomical Observatory. The mean temperature is found to be about 95 K, but peak-to-peak variations from 10 K to 20 K or more exist on a scale of 150 km or 3 scale heights. The existence of a thermal inversion is established, but the inversion is much weaker than the analogous inversion on Neptune. The mean temperature can be explained by solar heating in the 3.3 micron methane band with a methane mixing ratio of 4 x 10 to the -6th combined with the cooling effect of ethane with a mixing ratio of not greater than 4 x 10 to the -6th. The temperature variations are probably due to a photochemical process that has formed a Chapman layer.

  18. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center During Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Barbre, Robert; Huddleston, Lisa; Wilfong, Tim; Brauer, Tom

    2018-01-01

    The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 100 miles to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population. This paper will describe the characteristics of the tropospheric wind observations from the TDRWP during Irma, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and discuss lessons learned regarding dissemination of TDRWP data during the event.

  19. Flexible parameter-sparse global temperature time profiles that stabilise at 1.5 and 2.0 °C

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Yang, Hui; Harper, Anna; Cox, Peter M.; Gedney, Nicola; Burke, Eleanor J.; Lowe, Jason A.; Hayman, Garry; Collins, William J.; Smith, Stephen M.; Comyn-Platt, Edward

    2017-07-01

    The meeting of the United Nations Framework Convention on Climate Change (UNFCCC) in December 2015 committed parties at the convention to hold the rise in global average temperature to well below 2.0 °C above pre-industrial levels. It also committed the parties to pursue efforts to limit warming to 1.5 °C. This leads to two key questions. First, what extent of emissions reduction will achieve either target? Second, what is the benefit of the reduced climate impacts from keeping warming at or below 1.5 °C? To provide answers, climate model simulations need to follow trajectories consistent with these global temperature limits. It is useful to operate models in an inverse mode to make model-specific estimates of greenhouse gas (GHG) concentration pathways consistent with the prescribed temperature profiles. Further inversion derives related emissions pathways for these concentrations. For this to happen, and to enable climate research centres to compare GHG concentrations and emissions estimates, common temperature trajectory scenarios are required. Here we define algebraic curves that asymptote to a stabilised limit, while also matching the magnitude and gradient of recent warming levels. The curves are deliberately parameter-sparse, needing the prescription of just two parameters plus the final temperature. Yet despite this simplicity, they can allow for temperature overshoot and for generational changes, for which more effort to decelerate warming change needs to be made by future generations. The curves capture temperature profiles from the existing Representative Concentration Pathway (RCP2.6) scenario projections by a range of different Earth system models (ESMs), which have warming amounts towards the lower levels of those that society is discussing.

  20. Field measurements of temperature profile for floatovoltaic dryer in the tropics

    NASA Astrophysics Data System (ADS)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor

    2017-09-01

    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  1. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    NASA Astrophysics Data System (ADS)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  2. "Ring rain" on Saturn's ionosphere: densities and temperatures from 2011 observations and re-detection in 2013 observations

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-12-01

    In ground-based observations using the 10 meter W. M. Keck telescope in 2011, we discovered that the "ring rain" which falls on Saturn from the rings (along magnetic field lines) leaves an imprint on the upper-atmospheric H3+ ion. H3+ emissions were brightest where water products are expected to fall. Through subsequent modeling of the upper atmosphere, it became clear that an influx of water products (e.g. H2O+, O+, etc.) would act to soak up electrons - something that would otherwise destroy H3+ through recombination - and lead to a higher H3+ density and therefore emission. Here we present the first re-detections of the imprint of "ring rain" on Saturn's ionospheric H3+ from ground-based Keck telescope data from 2013. Observed intensities at low-latitudes decreased by an order of magnitude from 2011 to 2013, likely due to a decrease in upper atmospheric temperature by 100 K. A new analysis of 2011 observations revealed temperatures and densities as a function of latitude on Saturn for the first time. Where water influx is expected, H3+ column densities are high (as models predicted) and temperatures are low. While the latter was unexpected, the effect of ring rain on electron densities is stronger at lower altitudes. Therefore, as ring rain enhances density at lower altitudes where the temperature is lower, it should result in the emitting column of H3+ having a lower average temperature. These results come at a critical time as the Cassini spacecraft completes all orbits between planet and rings, with the opportunity to sample the forces and material fluxes related to ring rain.

  3. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  4. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  5. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    NASA Astrophysics Data System (ADS)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  6. Evaluation of reanalysis datasets against observational soil temperature data over China

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Jingyong

    2018-01-01

    Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.

  7. Using microwave observations to estimate land surface temperature during cloudy conditions

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...

  8. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  9. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.

    PubMed

    Hua, Dengxin; Uchida, Masaru; Kobayashi, Takao

    2005-03-01

    A UV Rayleigh-Mie scattering lidar has been developed for daytime measurement of temperature and aerosol optical properties in the troposphere. The transmitter is a narrowband, injection-seeded, pulsed, third-harmonic Nd:YAG laser at an eye-safe wavelength of 355 nm. Two Fabry-Perot etalons (FPEs) with a dual-pass optical layout filter the molecular Rayleigh scattering components spectrally for retrieval of the temperature and provide a high rejection rate for aerosol Mie scattering in excess of 43 dB. The Mie signal is filtered with a third FPE filter for direct profiling of aerosol optical properties. The Mie scattering component in the Rayleigh signals, which will have influence on temperature measurements, is corrected by using a measure of aerosol scattering because of the relative insufficiency of Mie rejection of Rayleigh filters in the presence of dense aerosols or clouds, and the Mie rejection capability of system is thus improved. A narrowband interference filter is incorporated with the FPEs to block solar radiation. Also, the small field of view (0.1 mrad) of the receiver and the UV wavelength used enhance the ability of the lidar to suppress the solar background signal in daytime measurement. The system is relatively compact, with a power-aperture product of 0.18 W m(-2), and has a high sensitivity to temperature change (0.62%/K). Lidar measurements taken under different weather conditions (winter and summer) are demonstrated. Good agreement between the lidar and the radiosonde measurements was obtained in terms of lapse rates and inversions. Statistical temperature errors of less than 1 K up to a height of 2 km are obtainable, with an averaging time of approximately 12 min for daytime measurements.

  10. CONSERVB: A numerical method to compute soil water content and temperature profiles under a bare surface

    NASA Technical Reports Server (NTRS)

    Vanbavel, C. H. M.; Lascano, R. J.

    1982-01-01

    A comprehensive, yet fairly simple model of water disposition in a bare soil profile under the sequential impact of rain storms and other atmospheric influences, as they occur from hour to hour is presented. This model is intended mostly to support field studies of soil moisture dynamics by our current team, to serve as a background for the microwave measurements, and, eventually, to serve as a point of departure for soil moisture predictions for estimates based in part upon airborne measurements. The main distinction of the current model is that it accounts not only for the moisture flow in the soil-atmosphere system, but also for the energy flow and, hence, calculates system temperatures. Also, the model is of a dynamic nature, capable of supporting any required degree of resolution in time and space. Much critical testing of the sample is needed before the complexities of the hydrology of a vegetated surface can be related meaningfully to microwave observations.

  11. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  12. A Review of In Situ Observations of Crystallization and Growth in High Temperature Oxide Melts

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sohn, Il

    2018-05-01

    This review summarizes the significant results of high-temperature confocal laser scanning microscopy (CLSM) and single hot thermocouple technology (SHTT) and its application in observing the crystallization and growth in high-temperature oxide melts from iron- and steel-making slags to continuous casting mold fluxes. Using in situ observations of CLSM and SHTT images of high-temperature molten oxides with time, temperature, and composition, the crystallization behavior, including crystal morphology, crystallization temperature, initial nucleation and growth rate, could be obtained. The broad range of applications using in situ observations during crystallization have provided a wealth of opportunities in pyrometallurgy and is provided in this review.

  13. Low-temperature transport in out-of-equilibrium XXZ chains

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Piroli, Lorenzo

    2018-03-01

    We study the low-temperature transport properties of out-of-equilibrium XXZ spin-1/2 chains. We consider the protocol where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. We focus on the qualitative and quantitative features of the profiles of local observables, which at large times t and distances x from the junction become functions of the ratio \\zeta=x/t . By means of the generalized hydrodynamic equations, we analyse the rich phenomenology arising by considering different regimes of the phase diagram. In the gapped phases, variations of the profiles are found to be exponentially small in the temperatures, but described by non-trivial functions of ζ. We provide analytical formulae for the latter, which give accurate results also for small but finite temperatures. In the gapless regime, we show how the three-step conformal predictions for the profiles of energy density and energy current are naturally recovered from the hydrodynamic equations. Moreover, we also recover the recent non-linear Luttinger liquid predictions for low-temperature transport: universal peaks of width \

  14. Observations in Nonurban Heat Islands.

    NASA Astrophysics Data System (ADS)

    Hogan, A. W.; Ferrick, M. G.

    1998-02-01

    The urban heat island is a well-known and well-described temperature anomaly, but other types of heat islands are also infrequently reported. A 10 km × 30 km data field containing more than 100 individual winter morning air temperature measurement points was examined for areas characteristically warmer than surrounding areas. The very small `downtown' of Hanover, New Hampshire, was found to be 1°-2°C warmer than nearby open areas at the same elevation. The same technique was applied to examine the morning air temperature within a nearby hamlet consisting of about 60 wooden buildings within an area less than 0.3 km2. The bulk of observations and observations stratified by snow and sky cover showed no systematic difference between hamlet air temperatures and those obtained in surrounding terrain. Morning air temperatures along a freezing river were measured and found to be systematically warmer than nearby air temperatures for several days, until a significant snowfall diminished the ice growth rate. A thorough examination of temperature profiles near the river showed that the increase in air temperature beneath the overnight inversion during this freezing period was proportional to the heat release resulting from river ice growth.

  15. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  16. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    NASA Astrophysics Data System (ADS)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  17. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Davy, Philippe

    2011-09-01

    SummaryTemperature profiles in the subsurface are known to be sensitive to groundwater flow. Here we show that they are also strongly related to vertical flow in the boreholes themselves. Based on a numerical model of flow and heat transfer at the borehole scale, we propose a method to invert temperature measurements to derive borehole flow velocities. This method is applied to an experimental site in fractured crystalline rocks. Vertical flow velocities deduced from the inversion of temperature measurements are compared with direct heat-pulse flowmeter measurements showing a good agreement over two orders of magnitudes. Applying this methodology under ambient, single and cross-borehole pumping conditions allows us to estimate fracture hydraulic head and local transmissivity, as well as inter-borehole fracture connectivity. Thus, these results provide new insights on how to include temperature profiles in inverse problems for estimating hydraulic fracture properties.

  18. Interstellar Gas Flow Vector and Temperature Determination over 5 Years of IBEX Observations

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Schwadron, N.; Sokół, J. M.; Wurz, P.

    2015-01-01

    The Interstellar Boundary Explorer (IBEX) observes the interstellar neutral gas flow trajectories at their perihelion in Earth's orbit every year from December through early April, when the Earth's orbital motion is into the oncoming flow. These observations have defined a narrow region of possible, but very tightly coupled interstellar neutral flow parameters, with inflow speed, latitude, and temperature as well-defined functions of inflow longitude. The best- fit flow vector is different by ≈ 3° and lower by ≈ 3 km/s than obtained previously with Ulysses GAS, but the temperature is comparable. The possible coupled parameter space reaches to the previous flow vector, but only for a substantially higher temperature (by ≈ 2000 K). Along with recent pickup ion observations and including historical observations of the interstellar gas, these findings have led to a discussion, whether the interstellar gas flow into the solar system has been stable or variable over time. These intriguing possibilities call for more detailed analysis and a longer database. IBEX has accumulated observations over six interstellar flow seasons. We review key observations and refinements in the analysis, in particular, towards narrowing the uncertainties in the temperature determination. We also address ongoing attempts to optimize the flow vector determination through varying the IBEX spacecraft pointing and discuss related implications for the local interstellar cloud and its interaction with the heliosphere.

  19. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  20. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  1. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    NASA Astrophysics Data System (ADS)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  2. Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Hole, Lars; Voss, Paul

    2017-04-01

    We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for

  3. CLASH-X: A comparison of lensing and X-ray techniques for measuring the mass profiles of galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, Megan; Voit, G. Mark; Hoffer, Aaron

    2014-10-20

    We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another atmore » ∼100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is (b) = 0.12 for the WL comparison and (b) = –0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to (b) ≳ 0.3 at ∼1 Mpc for the WL comparison and (b) ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times

  4. Observations and modelling of the boundary layer using remotely piloted aircraft

    NASA Astrophysics Data System (ADS)

    Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg

    2014-05-01

    Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher

  5. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli

    PubMed Central

    Meijer, M.; Houbraken, J.A.M.P.; Dalhuijsen, S.; Samson, R.A.; de Vries, R.P.

    2011-01-01

    Wild type Aspergillus niger isolates from different biotopes from all over the world were compared to each other and to the type strains of other black Aspergillus species with respect to growth and extracellular enzyme profiles. The origin of the A. niger isolate did not result in differences in growth profile with respect to monomeric or polymeric carbon sources. Differences were observed in the growth rate of the A. niger isolates, but these were observed on all carbon sources and not specific for a particular carbon source. In contrast, carbon source specific differences were observed between the different species. Aspergillus brasiliensis is the only species able to grow on D-galactose, and A. aculeatus had significantly better growth on Locus Bean gum than the other species. Only small differences were found in the extracellular enzyme profile of the A. niger isolates during growth on wheat bran, while large differences were observed in the profiles of the different black aspergilli. In addition, differences were observed in temperature profiles between the black Aspergillus species, but not between the A. niger isolates, demonstrating no isolate-specific adaptations to the environment. These data indicate that the local environment does not result in stable adaptations of A. niger with respect to growth profile or enzyme production, but that the potential is maintained irrespective of the environmental parameters. It also demonstrates that growth, extracellular protein and temperature profiles can be used for species identification within the group of black aspergilli. PMID:21892240

  6. Solar Wind Proton Temperature Anisotropy: Linear Theory and WIND/SWE Observations

    NASA Technical Reports Server (NTRS)

    Hellinger, P.; Travnicek, P.; Kasper, J. C.; Lazarus, A. J.

    2006-01-01

    We present a comparison between WIND/SWE observations (Kasper et al., 2006) of beta parallel to p and T perpendicular to p/T parallel to p (where beta parallel to p is the proton parallel beta and T perpendicular to p and T parallel to p are the perpendicular and parallel proton are the perpendicular and parallel proton temperatures, respectively; here parallel and perpendicular indicate directions with respect to the ambient magnetic field) and predictions of the Vlasov linear theory. In the slow solar wind, the observed proton temperature anisotropy seems to be constrained by oblique instabilities, by the mirror one and the oblique fire hose, contrary to the results of the linear theory which predicts a dominance of the proton cyclotron instability and the parallel fire hose. The fast solar wind core protons exhibit an anticorrelation between beta parallel to c and T perpendicular to c/T parallel to c (where beta parallel to c is the core proton parallel beta and T perpendicular to c and T parallel to c are the perpendicular and parallel core proton temperatures, respectively) similar to that observed in the HELIOS data (Marsch et al., 2004).

  7. Speckle measurements of density and temperature profiles in a model gas circuit breaker

    NASA Astrophysics Data System (ADS)

    Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.

    2015-01-01

    Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.

  8. A comparative study of single-temperature and two-temperature accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir

    2018-02-01

    We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.

  9. A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq

    2015-04-01

    The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.

  10. The Rotational Excitation Temperature of the 6614 DIB Carrier

    NASA Technical Reports Server (NTRS)

    Cami, J.; Salama, F.; Jimenez-Vicente, J.; Galazutdinov, G.; Krelowski, J.

    2004-01-01

    Analysis of high spectral resolution observations of the lambda6614 DIB line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations can only be understood in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is of the order 10-40 K - much lower than the gas kinetic temperature - indicating that for this particular DIB carrier angular momentum buildup is not very efficient. The rotational constant indicates that the carrier of this DIB is smaller than previously assumed:7-22 C atoms, depending on the geometry.

  11. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    NASA Astrophysics Data System (ADS)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  12. Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument

    NASA Astrophysics Data System (ADS)

    Evrard, Rebecca L.; Ding, Yifeng

    2018-01-01

    Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.

  13. Observation of high-temperature bubbles in an ECR plasma

    NASA Astrophysics Data System (ADS)

    Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.

    2018-05-01

    Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.

  14. A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.

    2014-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.

  15. High Temporal Resolution Tropospheric Wind Profile Observations at NASA Kennedy Space Center during Hurricane Irma

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km (approximately 6.6-62.3 kft) in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 160 km (87 nmi) to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population (Stein, 2017). This paper will provide an overview of the TDRWP system, describe the characteristics of the wind observations from the TDRWP during Irma passage, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and provide the location where TDRWP data is available to the meteorological community.

  16. Numerical determination of vertical water flux based on soil temperature profiles

    NASA Astrophysics Data System (ADS)

    Tabbagh, Alain; Cheviron, Bruno; Henine, Hocine; Guérin, Roger; Bechkit, Mohamed-Amine

    2017-07-01

    High sensitivity temperature sensors (0.001 K sensitivity Pt100 thermistors), positioned at intervals of a few centimetres along a vertical soil profile, allow temperature measurements to be made which are sensitive to water flux through the soil. The development of high data storage capabilities now makes it possible to carry out in situ temperature recordings over long periods of time. By directly applying numerical models of convective and conductive heat transfer to experimental data recorded as a function of depth and time, it is possible to calculate Darcy's velocity from the convection transfer term, thus allowing water infiltration/exfiltration through the soil to be determined as a function of time between fixed depths. In the present study we consider temperature data recorded at the Boissy-le-Châtel (Seine et Marne, France) experimental station between April 16th, 2009 and March 8th, 2010, at six different depths and 10-min time intervals. We make use of two numerical finite element models to solve the conduction/convection heat transfer equation and compare their merits. These two models allow us to calculate the corresponding convective flux rate every day using a group of three sensors. The comparison of the two series of calculated values centred at 24 cm shows reliable results for periods longer than 8 days. These results are transformed in infiltration/exfiltration value after determining the soil volumetric heat capacity. The comparison with the rainfall and evaporation data for periods of ten days shows a close accordance with the behaviour of the system governed by rainfall evaporation rate during winter and spring.

  17. A comparison between observed and analytical velocity dispersion profiles of 20 nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.

    2014-05-01

    We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.

  18. Processes of Equatorial Thermal Structure: An Analysis of Galileo Temperature Profile with 3-D Model

    NASA Technical Reports Server (NTRS)

    Majeed, T.; Waite, J. H., Jr.; Bougher, S. W.; Gladstone, G. R.

    2005-01-01

    The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter's thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approximately 2 kilometers per second and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy to equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (less than 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (greater than 0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.

  19. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    NASA Astrophysics Data System (ADS)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  20. Long-Term Observations of Ocean Biogeochemistry with Nitrate and Oxygen Sensors in Apex Profiling Floats

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Coletti, L.; Jannasch, H.; Martz, T.; Swift, D.; Riser, S.

    2008-12-01

    Long-term, autonomous observations of ocean biogeochemical cycles are now feasible with chemical sensors in profiling floats. These sensors will enable decadal-scale observations of trends in global ocean biogeochemical cycles. Here, we focus on measurements on nitrate and dissolved oxygen. The ISUS (In Situ Ultraviolet Spectrophotometer) optical nitrate sensor has been adapted to operate in a Webb Research, Apex profiling float. The Apex float is of the type used in the Argo array and is designed for multi-year, expendable deployments in the ocean. Floats park at 1000 m depth and make 60 nitrate and oxygen measurements at depth intervals ranging from 50 m below 400 m to 5 m in the upper 100 m as they profile to the surface. All data are transmitted to shore using the Iridium telemetry system and they are available on the Internet in near-real time. Floats equipped with ISUS and an Aanderaa oxygen sensor are capable of making 280 vertical profiles from 1000 m. At a 5 day cycle time, the floats should have nearly a four year endurance. Three floats have now been deployed at the Hawaii Ocean Time series station (HOT), Ocean Station Papa (OSP) in the Gulf of Alaska and at 50 South, 30 East in the Southern Ocean. Two additional floats are designated for deployment at the Bermuda Atlantic Time Series station (BATS) and in the Drake Passage. The HOT float has made 56 profiles over 260 days and should continue operating for 3 more years. Nitrate concentrations are in excellent agreement with the long-term mean observed at HOT. No significant long-term drift in sensor response has occurred. A variety of features have been observed in the HOT nitrate data that are linked to contemporaneous changes in oxygen production and mesoscale dynamics. The impacts of these features will be briefly described. The Southern Ocean float has operated for 200 days and is now observing reinjection of nitrate into surface waters as winter mixing occurs(surface nitrate > 24 micromolar). We

  1. Thermal regime of a continental permafrost associated gas hydrate occurrence a continuous temperature profile record after drilling

    NASA Astrophysics Data System (ADS)

    Henninges, J.; Huenges, E.; Mallik Working Group

    2003-04-01

    Both the size and the distribution of natural methane hydrate occurrences, as well as the release of gaseous methane through the dissociation of methane hydrate, are affected by the subsurface pressure and temperature conditions. During a field experiment, which was carried out in the Mackenzie Delta, NWT, Canada, within the framework of the Mallik 2002 Production Research Well Program*, the variation of temperature within three 40 m spaced, 1200 m deep wells was measured deploying the Distributed Temperature Sensing (DTS) technology. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions. A special feature is the placement of the fibre-optic sensor cable inside the cement annulus between the casing and the wall of the borehole. Temperature profiles were recorded with a sampling interval of 0.25 m and 5 min, and temperatures can be determined with a resolution of 0.3 °C. The observed variation of temperature over time shows the decay of the thermal disturbances caused by the drilling and construction of the wells. An excellent indicator for the location of the base of the ice-bonded permafrost layer, which stands out as a result of the latent heat of the frozen pore fluid, is a sharp rise in temperature at 604 m depth during the period of equilibration. A similar effect can be detected in the depth interval between 1105 m and 1110 m, which is interpreted as an indicator for the depth to the base of the methane hydrate stability zone. Nine months after the completion of the wells the measured borehole temperatures are close to equilibrium. The mean temperature gradient rises from 9.4 K/km inside the permafrost to 25.4 K/km in the ice-free sediment layers underneath. The zone of the gas hydrate occurrences between 900 m and 1100 m shows distinct variations of the geothermal gradient, which locally rises up to 40 K/km. At the lower

  2. Interpreting the Latitudinal Structure of Differences Between Modeled and Observed Temperature Trends (Invited)

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.

    2010-12-01

    We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily

  3. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  4. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.

    2012-12-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations - notable differences include large differences in multi-decadal variability between proxy reconstructions, and big uncertainties in the effect of volcanic eruptions. Because the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. By constraining key aspects of the reconstructions and simulations, instrumental observations, inevitably from a limited period, can reduce reconstruction uncertainty throughout the millennium. A considerable quantity of early instrumental observations are preserved in the world's archives. One organisation which systematically made observations and collected the results was the English East-India Company (EEIC), and 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure have been preserved in the British Library. Similar records from voyages of exploration and scientific investigation are preserved in published literature and the records in National Archives. Some of these records have been extracted and digitised, providing hundreds of thousands of new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809

  5. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  6. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  7. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  8. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature.

    PubMed

    Pan, Junting; Wang, Weidong; Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Chang, Pinpin; Wang, Yuhua

    2016-10-18

    Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log 2 Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low

  9. A Fully Conserved Minimal Adjustment Scheme with (T, S) Coherency for Stabilization of Hydrographic Profiles

    DTIC Science & Technology

    2012-12-01

    positive definite approximation of the Hessian is updated according to the modified Broyden–Fletcher–Goldfarb– Shanno method (Powell 1978). 3. Data Evident...averaged observational hydrographic data . This method adjusts the temperature and salinity profiles fDTk,DSk,k5 1, 2, . . . ,Kg simultaneously and...in data assimilations since it does not simply reject profiles with static instability. This method edits the profiles with the inequality constraint

  10. Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study

    NASA Astrophysics Data System (ADS)

    Li, Zhijin; Chao, Yi; Farrara, John D.; McWilliams, James C.

    2013-07-01

    A set of data assimilation experiments, known as Observing System Experiments (OSEs) are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of two types: High Frequency (HF) radar surface velocities and vertical profiles of temperature/salinity (T/S) measured by ships, moorings, an Autonomous Underwater Vehicle and a glider. The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill.

  11. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring.

    PubMed

    Marques, Rogério da Silva; Prado, Adilson Ribeiro; Antunes, Paulo Fernando da Costa; André, Paulo Sérgio de Brito; Ribeiro, Moisés R N; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-12-05

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile.

  12. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring

    PubMed Central

    da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-01-01

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166

  13. Damages detection in cylindrical metallic specimens by means of statistical baseline models and updated daily temperature profiles

    NASA Astrophysics Data System (ADS)

    Villamizar-Mejia, Rodolfo; Mujica-Delgado, Luis-Eduardo; Ruiz-Ordóñez, Magda-Liliana; Camacho-Navarro, Jhonatan; Moreno-Beltrán, Gustavo

    2017-05-01

    In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.

  14. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  15. Observations and model predictions of water skin temperatures at MTI core site lakes and reservoirs

    NASA Astrophysics Data System (ADS)

    Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Parker, Matthew J.; Pendergast, Malcolm M.; Villa-Aleman, Eliel; Pagnutti, Mary A.

    2001-08-01

    The Savannah River Technology Center (SRTC) measured water skin temperatures at four of the Multi-spectral Thermal Imager (MTI) core sites. The depression of the skin temperature relative to the bulk water temperature ((Delta) T) a few centimeters below the surface is a complex function of the weather conditions, turbulent mixing in the water and the bulk water temperature. Observed skin temperature depressions range from near zero to more than 1.0 degree(s)C. Skin temperature depressions tend to be larger when the bulk water temperature is high, but large depressions were also observed in cool bodies of water in calm conditions at night. We compared (Delta) T predictions from three models (SRTC, Schlussel and Wick) against measured (Delta) T's from 15 data sets taken at the MTI core sites. The SRTC and Wick models performed somewhat better than the Schlussel model, with RMSE and average absolute errors of about 0.2 degree(s)C, relative to 0.4 degree(s)C for the Schlussel model. The average observed (Delta) T for all 15 databases was -0.7 degree(s)C.

  16. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part II. Seedling emergence timing

    USDA-ARS?s Scientific Manuscript database

    Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...

  17. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling

  18. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    NASA Astrophysics Data System (ADS)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  19. A Climate Benchmark of Upper Air Temperature Observations from GNSS Radio Occultation

    NASA Astrophysics Data System (ADS)

    Ao, C. O.; Mannucci, A. J.; Leroy, S. S.; Verkhoglyadova, O. P.

    2017-12-01

    GPS (Global Positioning System), or more generally Global Navigation Satellite System (GNSS), radio occultation (RO) is a remote sensing technique that produces highly accurate temperature in the upper troposphere and lower stratosphere across the globe with fine vertical resolution. Its fundamental measurement is the time delay of the microwave signal as it travels from a GNSS satellite to the receiver in low Earth orbit. With a relatively simple physical retrieval, the uncertainty in the derived temperature can be traced rigorously through the retrieval chain back to the raw measurements. The high absolute accuracy of RO allows these observations to be assimilated without bias correction in numerical weather prediction models and provides an anchor for assimilating other types of observations. The high accuracy, coupled with long-term stability, makes RO valuable in detecting decadal temperature trends. In this presentation, we will summarize the current state of RO observations and show temperature trends derived from 15 years of RO data in the upper troposphere and lower stratosphere. We will discuss our recent efforts in developing retrieval algorithms that are more tailored towards climate applications. Despite the relatively robust "self-calibrating" nature of RO observations, disparity in receiver hardware and software may introduce subtle differences that need to be carefully addressed. While the historic RO data record came from relatively homogeneous hardware based largely on NASA/JPL design (e.g., CHAMP and COSMIC), the future data will likely be comprised of a diverse set of observations from Europe, China, and various commercial data providers. In addition, the use of non-GPS navigation systems will become more prevalent. We will discuss the challenges involved in establishing a long-term RO climate data record from a suite of research and operational weather satellites with changes in instrumentation and coverage.

  20. Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Salamatin, Andrey N.; Lipenkov, Vladimir Y.; Barkov, Nartsiss I.; Jouzel, Jean; Petit, Jean Robert; Raynaud, Dominique

    1998-04-01

    An interpretation of the deuterium profile measured along the Vostok (East Antarctica) ice core down to 2755 m has been attempted on the basis of the borehole temperature analysis. An inverse problem is solved to infer a local "geophysical metronome," the orbital signal in the surface temperature oscillations expressed as a sum of harmonics of Milankovich periods. By correlating the smoothed isotopic temperature record to the metronome, a chronostratigraphy of the Vostok ice core is derived with an accuracy of ±3.0-4.5 kyr. The developed timescale predicts an age of 241 kyr at a depth of 2760 m. The ratio δD/δTi between deuterium content and cloud temperature fluctuations (at the top of the inversion layer) is examined by fitting simulated and measured borehole temperature profiles. The conventional estimate of the deuterium-temperature slope corresponding to the present-day spatial ratio (9 per mil/°C) is confirmed in general. However, the mismatch between modeled and measured borehole temperatures decreases noticeably if we allow surface temperature, responsible for the thermal state of the ice sheet, to undergo more intensive precession oscillations than those of the inversion temperature traced by isotope record. With this assumption, we obtain the long-term temporal deuterium-temperature slope to be 5.8-6.5 per mil/°C which implies that the glacial-interglacial temperature increase over central Antarctica was about 15°C in the surface temperature and 10°C in the inversion temperature. Past variations of the accumulation rate and the corresponding changes in the ice-sheet surface elevation are simultaneously simulated.

  1. The effect of temperature mixing on the observable (T, β)-relation of interstellar dust clouds

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Ysard, N.

    2012-03-01

    Context. Detailed studies of the shape of dust emission spectra are possible thanks to the current instruments capable of simultaneous observations in several sub-millimetre bands (e.g., Herschel and Planck). The relationship between the observed spectra and the intrinsic dust grain properties is known to be affected by the noise and the line-of-sight temperature variations. However, some controversy remains even on the basic effects resulting from the mixing of temperatures along the line-of-sight or within the instrument beam. Aims: Regarding the effect of temperature variations, previous studies have suggested either a positive or a negative correlation between the colour temperature TC and the observed spectral index βObs. Our aim is to show that both cases are possible and to determine the principal factors leading to either behaviour. Methods: We start by studying the behaviour of the sum of two or three modified black bodies at different temperatures. Then, with radiative transfer models of spherical clouds, we examine the probability distributions of the dust mass as a function of the physical dust temperature. With these results as a guideline, we examine the (TC, βobs) relations for different sets of clouds. Results: Even in the simple case of models consisting of two blackbodies at temperatures T0 and T0 + ΔT0, the correlation between TC and βobs can be either positive or negative. If one compares models where the temperature difference ΔT0 between the two blackbodies is varied, the correlation is negative. If the models differ in their mean temperature T0 rather than in ΔT0, the correlation remains positive. Radiative transfer models show that externally heated clouds have different mean temperatures but the widths of their temperature distributions are rather similar. Thus, in observations of samples of such clouds the correlation between TC and βObs is expected to be positive. The same result applies to clouds illuminated by external radiation

  2. Temperature profiles in the earth of importance to deep electrical conductivity models

    NASA Astrophysics Data System (ADS)

    Čermák, Vladimír; Laštovičková, Marcela

    1987-03-01

    Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.

  3. A Test of Model Validation from Observed Temperature Trends

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2006-12-01

    How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm), based on best current information. As seen in Fig. 1.3F of the report, modeled surface temperature trends change little with latitude, except for a stronger warming in the Arctic. The observations, however, show a strong surface warming in the northern hemisphere but not in the southern hemisphere (see Fig. 3.5C and 3.6D). The Antarctic is found to be cooling and Arctic temperatures, while currently rising, were higher in the 1930s than today. Although the Executive Summary of the CCSP report claims "clear evidence" for anthropogenic warming, based on comparing tropospheric and surface temperature trends, the report itself does not confirm this. Greenhouse models indicate that the tropics should provide the most sensitive location for their validation; trends there should increase by 200-300 percent with altitude, peaking at around 10 kilometers. The observations, however, show the opposite: flat or even decreasing tropospheric trend values (see Fig. 3.7 and also Fig. 5.7E). This disparity is demonstrated most strikingly in Fig. 5.4G, which shows the difference between surface and troposphere trends for a collection of models (displayed as a histogram) and for balloon and satellite data. [The disparities are less apparent in the Summary, which displays model results in terms of "range" rather than as histograms.] There may be several possible reasons for the disparity: Instrumental and other effects that exaggerate or otherwise distort observed temperature trends. Or, more likely: Shortcomings in models that result

  4. Validation and statistical analysis of temperature, humidity profiles and Integrated Water Vapor (IWV) from microwave measurements over Granada (Spain)

    NASA Astrophysics Data System (ADS)

    Bedoya, Andres; Navas-Guzmán, Francisco; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2017-04-01

    Profiles of meteorological variables such as temperature, relative humidity and integrated water vapor derived from a ground-based microwave radiometer (MWR, RPG-HATPRO) are continuously monitored since 2012 at Granada station (Southeastern Spain). During this period up to 210 collocated meteorological balloons, equipped with a radiosonde DFM-09 (GRAWMET), were launched. This study is carried out with a twofold goal. On one hand, a validation of the MWR products such as temperature and water vapor mixing ratio profiles and the IWV from MWR is carried out comparing with radiosonde measurements. The behavior of MWR retrievals under clear and cloudy conditions and for special situations such as inversions has been analyzed. On the other hand, the whole period with continuous measurements is used for a statistical evaluation of the meteorological variables derived from MWR in order to thermodynamically characterize the atmosphere over Granada.

  5. Sodium D-line emission from Io - Comparison of observed and theoretical line profiles

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.

    1978-01-01

    High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.

  6. A new scaling law for temperature variance profile in the mixing zone of turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.

  7. Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Wang, Yin; He, Xiaozhou; Tong, Penger

    2016-11-01

    We report simultaneous measurements of the mean temperature profile θ (z) and temperature variance profile η (z) near the lower conducting plate of a specially designed quasi-two-dimensional cell for turbulent Rayleigh-Bénard convection. The measured θ (z) is found to have a universal scaling form θ (z / δ) with varying thermal boundary layer (BL) thickness δ, and its functional form agrees well with the recently derived BL equation by Shishkina et al. The measured η (z) , on the other hand, is found to have a scaling form η (z / δ) only in the near-wall region with z / δ < 2 . Based on the experimental findings, we derive a new BL equation for η (z / δ) , which is in good agreement with the experimental results. The new BL equations thus provide a common framework for understanding the effect of BL fluctuations. This work was supported by the Research Grants Council of Hong Kong SAR and by the China Thousand Young Talents Program.

  8. Voyager observations of solar wind proton temperature - 1-10 AU

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Lazarus, A. J.

    1982-01-01

    Simultaneous measurements are made of the solar wind proton temperatures by the Voyager 1 and 2 spacecraft, far from earth, and the IMP 8 spacecraft in earth orbit. This technique permits a separation of radial and temporal variations of solar wind parameters. The average value of the proton temperature between 1 and 9 AU is observed to decrease as r (the heliocentric radius) to the -(0.7 + or - 0.2). This is slower than would be expected for adiabatic expansion. A detailed examination of the solar wind stream structure shows that considerable heating occurs at the interface between high and low speed streams.

  9. Mesoscale kinematics derived from X-band Doppler radar observations of convective versus stratiform precipitation and comparison with GPS radiosonde profiles

    NASA Astrophysics Data System (ADS)

    Deshpande, Sachin M.; Dhangar, N.; Das, S. K.; Kalapureddy, M. C. R.; Chakravarty, K.; Sonbawne, S.; Konwar, M.

    2015-11-01

    Single Doppler analysis techniques known as velocity azimuth display (VAD) and volume velocity processing (VVP) are used to analyze kinematics of mesoscale flow such as horizontal wind and divergence using X-band Doppler weather radar observations, for selected cases of convective, stratiform, and shallow cloud systems near tropical Indian sites Pune (18.58°N, 73.92°E, above sea level (asl) 560 m) and Mandhardev (18.51°N, 73.85°E, asl 1297 m). The vertical profiles of horizontal wind estimated from radar VVP/VAD methods agree well with GPS radiosonde profiles, with the low-level jet at about 1.5 km during monsoon season well depicted in both. The vertical structure and temporal variability of divergence and reflectivity profiles are indicative of the dynamical and microphysical characteristics of shallow convective, deep convective, and stratiform cloud systems. In shallow convective systems, vertical development of reflectivity profiles is limited below 5 km. In deep convective systems, reflectivity values as large as 55 dBZ were observed above freezing level. The stratiform system shows the presence of a reflectivity bright band (~35 dBZ) near the melting level. The diagnosed vertical profiles of divergence in convective and stratiform systems are distinct. In shallow convective conditions, convergence was seen below 4 km with divergence above. Low-level convergence and upper level divergence are observed in deep convective profiles, while stratiform precipitation has midlevel convergence present between lower level and upper level divergence. The divergence profiles in stratiform precipitation exhibit intense shallow layers of "melting convergence" at 0°C level, near 4.5 km altitude, with a steep gradient on the both sides of the peak. The level of nondivergence in stratiform situations is lower than that in convective situations. These observed vertical structures of divergence are largely indicative of latent heating profiles in the atmosphere, an

  10. Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?

    NASA Astrophysics Data System (ADS)

    Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W.

    2018-06-01

    Retrieving molecular information by sputtering of organic systems has been concretized in the last years due to the introduction of sputtering by large gas clusters which drastically eliminated the compound degradation during the analysis and has led to strong improvements in depth resolution. Rapidly however, a limitation was observed for heterogeneous systems where inorganic layers or structures needed to be profiled concurrently. As opposed to organic material, erosion of the inorganic layer appears very difficult and prone to many artefacts. To shed some light on these problems we investigated a simple system consisting of aluminum delta layer(s) buried in a silicon matrix in order to define the most favorable beam conditions for practical analysis. We show that counterintuitive to the small energy/atom used and unlike monoatomic ion sputtering, the information depth obtained with large cluster ions is typically very large (∼10 nm) and that this can be caused both by a large roughness development at early stages of the sputtering process and by a large mixing zone. As a consequence, a large deformation of the Al intensity profile is observed. Using sample rotation during profiling significantly improves the depth resolution while sample temperature has no significant effect. The determining parameter for high depth resolution still remains the total energy of the cluster instead of the energy per atom in the cluster.

  11. Simulated sensitivity of the tropical cyclone eyewall replacement cycle to the ambient temperature profile

    NASA Astrophysics Data System (ADS)

    Ma, Xulin; He, Jie; Ge, Xuyang

    2017-09-01

    In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.

  12. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less

  13. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with

  14. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  15. Critical body temperature profile as indicator of heat stress vulnerability.

    PubMed

    Nag, P K; Dutta, Priya; Nag, Anjali

    2013-01-01

    Extreme climatic heat is a major health concern among workers in different occupational pursuits. People in the regions of western India confront frequent heat emergencies, with great risk of mortality and morbidity. Taking account of informal occupational groups (foundry and sheet metal, FSM, N=587; ceramic and pottery, CP, N=426; stone quarry, SQ, N=934) in different seasons, the study examined the body temperature profiling as indicator of vulnerability to environmental warmth. About 3/4th of 1947 workers had habitual exposure at 30.1-35.5°C WBGT and ~10% of them were exposed to 38.2-41.6°C WBGT. The responses of FSM, CP and SQ workers indicated prevailing high heat load during summer and post-monsoon months. Local skin temperatures (T(sk)) varied significantly in different seasons, with consistently high level in summer, followed by post-monsoon and winter months. The mean difference of T(cr) and T(sk) was ~5.2°C up to 26.7°C WBGT, and ~2.5°C beyond 30°C WBGT. Nearly 90% of the workers had T(cr) within 38°C, suggesting their self-adjustment strategy in pacing work and regulating T(cr). In extreme heat, the limit of peripheral adjustability (35-36°C T(sk)) and the narrowing down of the difference between T(cr) and T(sk) might indicate the limit of one's ability to withstand heat exposure.

  16. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles.

    PubMed

    Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2017-01-01

    Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.

  17. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  18. Empirical Temperature Measurement in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Weaver, Erik; Isella, Andrea; Boehler, Yann

    2018-02-01

    The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.

  19. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  20. Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Kolodner, Marc A.; Butler, Bryan J.; Suleiman, Shady H.; Steffes, Paul G.

    2002-08-01

    A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO 2) and sulfuric acid vapor (H 2SO 4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H 2SO 4(g), temperature, and to some degree SO 2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H 2SO 4(g) given an assumed sub-cloud abundance of SO 2. The results indicate a substantially higher abundance of H 2SO 4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO 2 abundance). For 150 ppm of SO 2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H 2SO 4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H 2SO 4(g) is observed, regardless of the assumed SO 2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ˜14 ppm near 47 km. Our results favor ≤100 ppm of SO 2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the

  1. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  2. Density and temperature structure over northern Europe

    NASA Technical Reports Server (NTRS)

    Philbrick, C. R.; Schmidlin, F. J.; Grossmann, K. U.; Lange, G.; Offermann, D.; Baker, K. D.; Krankowsky, D.; Von Zahn, U.

    1985-01-01

    During the Energy Budget Campaign, a number of profiles of the density and temperature were obtained to study the structure and variability of the atmosphere. The measurements were made using rocketborne instrumentation launched from Esrange, Sweden, and Andoya Rocket Range, Norway, during November and December 1980. The techniques included meteorological temperature sondes, passive falling sphere, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data covering the altitude range from 20 to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the wave features and variations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. However, the features in the profiles during one of the measurement periods are unusual and may be due to aurorally generated shock waves. The geomagnetic storm conditions caused temperature increases in the lower thermosphere which maximized in the 120-140 km region.

  3. Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection?

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 13 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages). as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of' each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7 C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818-1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8 deg. S), which previously, has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may, be linked, respectively, to the large, catacivsmic volcanic eruptions of Galunggung (Indonesia; 7 deg. S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64 deg. N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically b), SchAabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent level of

  4. Numerical simulation of transient temperature profiles for canned apple puree in semi-rigid aluminum based packaging during pasteurization.

    PubMed

    Shafiekhani, Soraya; Zamindar, Nafiseh; Hojatoleslami, Mohammad; Toghraie, Davood

    2016-06-01

    Pasteurization of canned apple puree was simulated for a 3-D geometry in a semi-rigid aluminum based container which was heated from all sides at 378 K. The computational fluid dynamics code Ansys Fluent 14.0 was used and the governing equations for energy, momentum, and continuity were computed using a finite volume method. The food model was assumed to have temperature-dependent properties. To validate the simulation, the apple puree was pasteurized in a water cascading retort. The effect of the mesh structures was studied for the temperature profiles during thermal processing. The experimental temperature in the slowest heating zone in the container was compared with the temperature predicted by the model and the difference was not significant. The study also investigated the impact of head space (water-vapor) on heat transfer.

  5. Dynamic Analysis of the Temperature and the Concentration Profiles of an Industrial Rotary Kiln Used in Clinker Production.

    PubMed

    Rodrigues, Diulia C Q; Soares, Atílio P; Costa, Esly F; Costa, Andréa O S

    2017-01-01

    Cement is one of the most used building materials in the world. The process of cement production involves numerous and complex reactions that occur under different temperatures. Thus, there is great interest in the optimization of cement manufacturing. Clinker production is one of the main steps of cement production and it occurs inside the kiln. In this paper, the dry process of clinker production is analysed in a rotary kiln that operates in counter flow. The main phenomena involved in clinker production is as follows: free residual water evaporation of raw material, decomposition of magnesium carbonate, decarbonation, formation of C3A and C4AF, formation of dicalcium silicate, and formation of tricalcium silicate. The main objective of this study was to propose a mathematical model that realistically describes the temperature profile and the concentration of clinker components in a real rotary kiln. In addition, the influence of different speeds of inlet gas and solids in the system was analysed. The mathematical model is composed of partial differential equations. The model was implemented in Mathcad (available at CCA/UFES) and solved using industrial input data. The proposal model is satisfactory to describe the temperature and concentration profiles of a real rotary kiln.

  6. Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.

    2016-09-01

    Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  7. Temperature and melt solid interface control during crystal growth

    NASA Technical Reports Server (NTRS)

    Batur, Celal

    1990-01-01

    Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.

  8. Correlations between wave activity and electron temperature in the Martian upper ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David

    2017-04-01

    Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.

  9. Thermospheric temperature, density, and composition: New models

    NASA Technical Reports Server (NTRS)

    Jacchia, L. G.

    1977-01-01

    The models essentially consist of two parts: the basic static models, which give temperature and density profiles for the relevant atmospheric constituents for any specified exospheric temperature, and a set of formulae to compute the exospheric temperature and the expected deviations from the static models as a result of all the recognized types of thermospheric variation. For the basic static models, tables are given for heights from 90 to 2,500 km and for exospheric temperatures from 500 to 2600 K. In the formulae for the variations, an attempt has been made to represent the changes in composition observed by mass spectrometers on the OGO 6 and ESRO 4 satellites.

  10. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    PubMed

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  11. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  12. In Situ Optical Observation of High-Temperature Geological Processes With the Moissanite Cell

    NASA Astrophysics Data System (ADS)

    Walte, N.; Keppler, H.

    2005-12-01

    A major drawback of existing techniques in experimental earth and material sciences is the inability to observe ongoing high-temperature processes in situ during an experiment. Examples for important time-dependent processes include the textural development of rocks and oxide systems during melting and crystallization, solid-state and melt-present recrystallization and Ostwald ripening, and bubble nucleation and growth during degassing of glasses and melts. The investigation of these processes by post-mortem analysis of a quenched microstructure is time consuming and often unsatisfactory. Here, we introduce the moissanite cell that allows optical in situ observation of long-term experiments at high temperatures. Moissanite is a transparent gem-quality type of SiC that is characterized by its hardness and superior chemical and thermal resistance. Two moissanite windows with a thickness and diameter of several millimeters are placed into sockets of fired pyrophyllite and fixed onto two opposite metal plates. The sockets are wrapped with heating wire and each window is connected to a thermocouple for temperature control. The sample is placed directly between the moissanite windows and the cell is assembled similarly to a large diamond anvil cell. In situ observation of the sample is done with a microscope through observation windows and movies are recorded with an attached digital camera. Our experiments with the new cell show that temperatures above 1200°C can be maintained and observed in a sample for several days without damaging the cell nor the windows. Time-lapse movies of melting and crystallizing natural and synthetic rocks and of degassing glasses and melts will be presented to show the potential of the new technique for experimental earth and material science.

  13. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2017-04-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % ( p ≤ 0.001). Two-way ANOVA revealed significant differences ( p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  14. Assessment of the Quality of the Version 1.07 Temperature-Versus-Pressure Profiles of the Middle Atmosphere from TIMED/SABER

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Marshall, B. T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G. S.; Martin-Torres, J.; Mlynczak, M. G.; Russell, J. M., III; Smith, A. K.; Zhao, Y.; hide

    2008-01-01

    The quality of the retrieved temperature-versus-pressure (or T(p)) profiles is described for the middle atmosphere for the publicly available Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) Version 1.07 (V1.07) data set. The primary sources of systematic error for the SABER results below about 70 km are (1) errors in the measured radiances, (2) biases in the forward model, and (3) uncertainties in the corrections for ozone and in the determination of the reference pressure for the retrieved profiles. Comparisons with other correlative data sets indicate that SABER T(p) is too high by 1-3 K in the lower stratosphere but then too low by 1 K near the stratopause and by 2 K in the middle mesosphere. There is little difference between the local thermodynamic equilibrium (LTE) algorithm results below about 70 km from V1.07 and V1.06, but there are substantial improvements/differences for the non-LTE results of V1.07 for the upper mesosphere and lower thermosphere (UMLT) region. In particular, the V1.07 algorithm uses monthly, diurnally averaged CO2 profiles versus latitude from the Whole Atmosphere Community Climate Model. This change has improved the consistency of the character of the tides in its kinetic temperature (T(sub k)). The T(sub k) profiles agree with UMLT values obtained from ground-based measurements of column-averaged OH and O2 emissions and of the Na lidar returns, at least within their mutual uncertainties. SABER T(sub k) values obtained near the mesopause with its daytime algorithm also agree well with the falling sphere climatology at high northern latitudes in summer. It is concluded that the SABER data set can be the basis for improved, diurnal-to-interannual-scale temperatures for the middle atmosphere and especially for its UMLT region.

  15. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Allan, R.; Freeman, E.; Wheeler, D.; Wilkinson, C.; Williamson, F.

    2012-05-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. One organisation which systematically made observations and collected the results was the English East-India Company (EEIC), and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C). This provides a powerful out-of-sample validation for the proxy reconstructions - supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this - such simulations are unlikely to be accurate in this respect.

  16. Constraining the temperature history of the past millennium using early instrumental observations

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Allan, R.; Freeman, E.; Wheeler, D.; Wilkinson, C.; Williamson, F.

    2012-10-01

    The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores, etc.) and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected. One organisation which systematically made observations and collected the results was the English East India Company (EEIC), and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries. The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C). This provides an out-of-sample validation for the proxy reconstructions - supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this - such simulations are unlikely to be accurate in this respect.

  17. The Seasonal Cycle of Carbon in the Southern Pacific Ocean Observed from Biogeochemical Profiling Floats

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Gray, A. R.; Johnson, K. S.; Carter, B.; Riser, S.; Talley, L. D.; Williams, N. L.

    2016-02-01

    The Southern Ocean is thought to play an important role in the ocean-atmosphere exchange of carbon dioxide and the uptake of anthropogenic carbon dioxide. However, the total number of observations of the carbonate system in this region is small and heavily biased towards the summer. Here we present 1.5 years of biogeochemical measurements, including pH, oxygen, and nitrate, collected by 11 autonomous profiling floats deployed in the Pacific sector of the Southern Ocean in April 2014. These floats sampled a variety of oceanographic regimes ranging from the seasonally ice-covered zone to the subtropical gyre. Using an algorithm trained with bottle measurements, alkalinity is estimated from salinity, temperature, and oxygen and then used together with the measured pH to calculate total carbon dioxide and pCO2 in the upper 1500 dbar. The seasonal cycle in the biogeochemical quantities is examined, and the factors governing pCO2 in the surface waters are analyzed. The mechanisms driving the seasonal cycle of carbon are further investigated by computing budgets of heat, carbon, and nitrogen in the mixed layer. Comparing the different regimes sampled by the floats demonstrates the complex and variable nature of the carbon cycle in the Southern Ocean.

  18. IUE observations of Si and C lines and comparison with non-LTE models

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1982-01-01

    Classical model atmosphere techniques are applied to analyze IUE spectra, and to determine abundances, effective temperatures and gravities. Measurements of the equivalent widths and other properties of the line profiles of 24 photospheric lines of Si II, Si III, Si IV, C II, C III and C IV are presented in the range of 1175-1725 A for seven B and two O stars. Observed line profiles are compared with theoretical profiles computed using non-LTE theory and models, and using line-blanketed model atmospheres. Agreement is reasonably good, although strong lines are calculated to be systematically stronger than those observed, while the reverse occurs for weak lines, and empirical profiles have smaller wings than theoretical profiles. It is concluded that the present theory of line formation when used with solar abundances, represents fairly well observed UV photospheric lines of silicon and carbon ions in the atmospheres of main sequence stars of types B5-O9.

  19. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less

  20. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.