Inhomogeneous primordial nucleosynthesis and new abundance constraints on {Omega}{sub b}h{sup 2}
Mathews, G.J. ||; Kajino, T.; Orito, M.
1995-07-20
We discuss the upper limit to the baryonic contribution to the closure density. We consider effects of new observational and theoretical uncertainties in the primordial light element abundances, and the effects of fluctuation geometry on the inhomogeneous nucleosynthesis yields. We also consider implications of the possible detection of a high D/H abundance in a Lyman-{alpha} absorption cloud at high redshift and the implied chemical evolution effects of a high deuterium abundance. We show that there exists a region of the parameter space for inhomogeneous models in which a somewhat higher baryonic contribution to the closure density is possible than that allowed in standard homogeneous models. This result is contrary to some other recent studies and is due to both geometry and recently revised uncertainties in primordial light-element abundances, particularly {sup 7}Li. We find that the presently adopted abundance constraints are consistent with a contribution of baryons to the closure density as high as {Omega}{sub b}h{sub 50}{sup 2} {le} 0.11 ({eta} {le} 7 {times} 10{sup {minus}10}). This corresponds to a 20% increase over the limit from standard homogeneous models ({Omega}{sub b}h{sub 50}{sup 2} {le} 0.08, {eta} {le} 5.8 {times} 10{sup {minus}10}). With a high deuterium abundance the upper limits for the inhomogeneous and homogeneous models would be {Omega}{sub b}h{sub 50}{sup 2} {le} 0.04 and 0.03 ({eta} {le} 2.6 {times} 10{sup {minus}10} and 1.9 {times} 10{sup {minus}10}), respectively. Even higher limits could be obtained by further relaxing the presently accepted primordial lithium abundance constraint as some have proposed.
Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.
2009-05-01
The authors report the observation of the bottom, doubly-strange baryon {Omega}{sub b}{sup -} through the decay chain {Omega}{sub b}{sup -} {yields} J/{psi}{Omega}{sup -}, where J/{psi} {yields} {mu}{sup +} {mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} p {pi}{sup -}, using 4.2 fb{sup -1} of data from p{bar p} collisions at {radical}s = 1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 x 10{sup -8}, or 5.5 Gaussian standard deviations. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}. The lifetime of the {Omega}{sub b}{sup -} baryon is measured to be 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. In addition, for the {Xi}{sub b}{sup -} baryon they measure a mass of 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and a lifetime of 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps.
Big Bang nucleosynthesis: Accelerator tests and can. cap omega. /sub B/ really be large
Schramm, D.N.
1987-10-01
The first collider tests of cosmological theory are now underway. The number of neutrino families in nature, N/sub nu/, plays a key role in elementary particle physics as well as in the synthesis of the light elements during the early evolution of the Universe. Standard Big Bang Nucleosynthesis argues for N/sub nu/ = 3 +- 1. Current limits on N/sub nu/ from the CERN anti pp collider and e/sup +/e/sup -/ colliders are presented and compared to the cosmological bound. Supernova SN 1987A is also shown to give a limit on N/sub nu/ comparable to current accelerator bounds. All numbers are found to be small thus verifying the Big Bang model at an earlier epoch than is possible by traditional astronomical observations. Future measurements at SLC and LEP will further tighten this argument. Another key prediction of the standard Big Bang Nucleosynthesis is that the baryon density must be small (..cap omega../sub B/ less than or equal to 0.1). Recent attempts to try to subvert this argument using homogeneities of various types are shown to run afoul of the /sup 7/Li abundance which has now become a rather firm constraint. 18 refs., 2 figs.
Baryon spectroscopy results at the Tevatron
Van Kooten, R.; /Indiana U.
2010-01-01
The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state {Lambda}{sub b}, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and D0 Collaborations are presented.
Baryon Spectroscopy Results at the Tevatron
Van Kooten, R.
2010-08-05
The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.
Klempt, Eberhard; Richard, Jean-Marc
2010-04-15
About 120 baryons and baryon resonances are known, from the abundant nucleon with u and d light-quark constituents up to the {Xi}{sub b}{sup -}=(bsd), which contains one quark of each generation and to the recently discovered {Omega}{sub b}{sup -}=(bss). In spite of this impressively large number of states, the underlying mechanisms leading to the excitation spectrum are not yet understood. Heavy-quark baryons suffer from a lack of known spin parities. In the light-quark sector, quark-model calculations have met with considerable success in explaining the low-mass excitations spectrum but some important aspects such as the mass degeneracy of positive-parity and negative-parity baryon excitations remain unclear. At high masses, above 1.8 GeV, quark models predict a very high density of resonances per mass interval which is not yet observed. In this review, issues are identified discriminating between different views of the resonance spectrum; prospects are discussed on how open questions in baryon spectroscopy may find answers from photoproduction and electroproduction experiments which are presently carried out in various laboratories.
Donati, S.; /Pisa U. /INFN, Pisa
2009-01-01
In this paper we review the most recent results concerning B Baryons at CDF, including the study of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)} observation and properties, and a new measurement of the {Lambda}{sub b}{sup 0} lifetime and the observation of new {Lambda}{sub b}{sup 0} decay modes. The {Omega}{sub b}{sup -} bayron is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup _0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. The four new states {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} have been observed in 1.1 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5807.8{sub -2.2}{sup +2.0}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.2 {+-} 1.0(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5829.0{sub -1.8-1.8}{sup +1.6+1.7}, and m{Sigma}*{sub b}{sup -} = 5836.4 {+-} 2.0(stat.){sub -1.7}{sup +1.8}(syst.). CDF has performed a new measurement of the {Lambda}{sub b}{sup 0} lifetime using 1.1 fb{sup -1} of data collected by the displaced vertex trigger 1.401 {+-} 0.046(stat.) {+-} 0.035(syst.), where the main systematic error is due to the uncertainty on the trigger model.
Observation of semileptonic decays of charmed baryons
Vella, E.; Trilling, G.H.; Abrams, G.S.; Alam, M.S.; Blocker, C.A.; Blondel, A.; Boyarski, A.M.; Breidenbach, M.; Burke, D.L.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Dorenbosch, J.; Dorfan, J.M.; Eaton, M.W.; Feldman, G.J.; Franklin, M.E.B.; Gidal, G.; Goldhaber, G.; Hanson, G.; Hayes, K.G.; Himel, T.; Hitlin, D.G.; Hollebeek, R.J.; Innes, W.R.; Jaros, J.A.; Jenni, P.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Larsen, R.R.; Lueth, V.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Perl, M.L.; Richter, B.; Roussarie, A.; Scharre, D.L.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Strait, J.; Taureg, H.; Tonutti, M.; Vidal, R.A.; Videau, I.; Weiss, J.M.; Zaccone, H.
1982-05-31
Direct electrons are observed in baryon events produced in e/sup +/e/sup -/ annihilation at center-of-mass energies above the ..lambda../sub c/Lambda-bar/sub c/ threshold. These events are attributed to charmed baryon pair production and subsequent ..lambda../sub c/ semileptonic decay. Various semileptonic branching ratios of the ..lambda../sub c/ are determined, including BR(..lambda../sub c/..-->..e/sup +/X) = (4.5 +- 1.7)%.
Ratoff, Peter Neil; /Lancaster U.
2009-01-01
The observation of the b baryons {Xi}{sub b}{sup -} and {Omega}{sub b}{sup -} in high energy proton-antiproton collisions in the D-Zero Detector at Fermilab's Tevatron Collider are presented, along with measurements of the masses and production rates of these states. Within the standard model a total of 15 b baryons are predicted (counting quark content only). Taking into consideration intrinsic angular momentum, there are 10 charmless b baryons in J=1/2 and J=3/2 muliplets. These states are unique to hadron colliders since the B factories operate at insufficient energy to produce them, and they are expected to be produced copiously at the Tevatron. There are interesting mass predictions for these states from various theoretical models but the experimental challenge to observe them is very substantial. At the start of Tevatron Run II ({approx}2003) only the {Lambda}{sub b} had been observed (first by the UA1 collaboration in 1991). However, in the past three years at the Tevatron, another four of the predicted J=1/2 states containing just one b quark have been observed. The {Sigma}{sub b}{sup +} (uub) and {Sigma}{sub b}{sup -} (ddb) were recorded by the CDF collaboration in the {Sigma}{sub b} {yields} {pi}{Lambda}{sub c} {pi} ({Lambda}{sub c} {pi}) channel while at D-Zero the {Xi}{sub b}{sup -} (bds) and {Omega}{sub b}{sup -} (bss) states were observed. The measurements leading to the identification of the latter two states are the subject of the remainder of this presentation.
Observational tests of Baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.
Observational tests of baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1983-01-01
Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of Pi(O)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the gamma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurements of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed. Previously announced in STAR as N83-10996
Massive black holes and light-element nucleosynthesis in a baryonic universe
NASA Technical Reports Server (NTRS)
Gnedin, Nickolay Y.; Ostriker, Jeremiah P.; Rees, Martin J.
1995-01-01
We reexamine the model proposed by Gnedin & Ostriker (1992) in which Jeans mass black holes (M(sub BH) approximately = 10(exp 6) solar mass) form shortly after decoupling. There is no nonbaryonic dark matter in this model, but we examine the possibility that Omega(sub b) is considerably larger than given by normal nucleosynthesis. Here we allow for the fact that much of the high baryon-to-photon ratio material will collapse leaving the universe of remaining material with light-element abundances more in accord with the residual baryonic density (approximately = 10(exp -2)) than with Omega(sub 0) and the initial baryonic density (approximately = 10(exp -1)). We find that no reasonable model can be made with random-phase density fluctuations, if the power on scales smaller than 10(exp 6) solar mass is as large as expected. However, phase-correlated models of the type that might occur in connection with topological singularities can be made with Omega(sub b) h(exp 2) = 0.013 +/- 0.001, 0.15 approximately less than Omega(sub 0) approximately less than 0.4, which are either flat (Omega(sub lambda) = 1 - Omega(sub 0)) or open (Omega(sub lambda) = 0) and which satisfy all the observational constraints which we apply, including the large baryon-to-total mass ratio found in the X-ray clusters. The remnant baryon density is thus close to that obtained in the standard picture (Omega(sub b) h(exp 2) = 0.0125 +/- 0.0025; Walker et al. 1991). The spectral index implied for fluctuations in the baryonic isocurvature scenario, -1 less than m less than 0, is in the range expected by other arguments based on large-scale structure and microwave fluctuation constraints. The dark matter in this picture is in the form of massive black holes. Accretion onto them at early epochs releases high-energy photons which significantly heat and reionize the universe. But photodissociation does not materially change light-element abundances. A typical model gives bar-y approximately = 1 x 10(exp -5
Physics of B0(s) Mesons and Bottom Baryons
Paulini, Manfred; /Carnegie Mellon U.
2009-06-01
We discuss the physics of B{sub s}{sup 0} mesons focusing on CP violation in B{sub s}{sup 0} {yields} J/{Psi}{phi} decays at the Tevatron. We summarize measurements of the properties of bottom baryons at the Tevatron including the {Sigma}{sub b} states and the {Xi}{sub b}{sup -} baryon. We also discuss the discovery of the {Omega}{sub b}{sup -} baryon.
First Observation of a Baryonic Bc+ Decay
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cojocariu, L.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration
2014-10-01
A baryonic decay of the Bc+ meson, Bc+→J/ψpp ¯π+, is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb-1 taken at center-of-mass energies of 7 and 8 TeV. With the Bc+→J/ψπ+ decay as the normalization channel, the ratio of branching fractions is measured to be B(Bc+→J/ψpp ¯π+)/B(Bc+→J/ψπ+)=0.143-0.034+0.039(stat)±0.013(syst). The mass of the Bc+ meson is determined as M(Bc+)=6274.0±1.8(stat)±0.4(syst) MeV/c2, using the Bc+→J/ψpp ¯π+ channel.
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel. PMID:25375705
First observation of a baryonic Bc+ decay.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2014-10-10
A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.
B baryon production and decays and B hadron lifetimes
Donati, S.; /Pisa U. /INFN, Pisa
2010-01-01
In this paper we review the most recent results concerning B Baryons at CDF and D0, including the observation and the study of the properties of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)}, the observation of new {Lambda}{sub b}{sup 0} decay modes, and a new measurement of the lifetime of the b hadrons in decays with a J/{Psi}. The {Omega}{sub b}{sup -} baryon is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. A new accurate measurement of the properties of the resonances {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} has been performed in 6 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5811.2{sub -0.8}{sup +0.9}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.5{sub -0.5}{sup +0.6}(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5832.0 {+-} 0.7(stat.) {+-} 1.8(syst.), and m({Sigma}*{sub b}{sup -}) = 5835.0 {+-} 0.6(stat.) {+-} 1.8(syst.). The {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and {Lambda}{sub b}{sup 0} {yields} {Sigma
nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction
Fujiwara, Y.; Fukukawa, K.
2010-05-12
We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.
Baryon Spectroscopy with Polarization Observables from CLAS
NASA Astrophysics Data System (ADS)
Strauch, Steffen
2016-06-01
The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer. These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.
Baryon Spectroscopy with Polarization Observables from CLAS
NASA Astrophysics Data System (ADS)
Strauch, Steffen
2016-10-01
The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer. These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results will be given.
Semileptonic Decays of Heavy Omega Baryons in a Quark Model
Muslema Pervin; Winston Roberts; Simon Capstick
2006-03-24
The semileptonic decays of {Omega}{sub c} and {Omega}{sub b} are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy {Lambda} baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For {Omega}{sub b} to {Omega}{sub c} the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured {Lambda}{sub c}{sup +} {yields} {Lambda}e{sup +}{nu} rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of {Omega}{sub b} to pairs of ground and excited {Omega}{sub c} states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of {Omega}{sub Q} vary minimally within the models we use. We obtain an average value of (84 {+-} 2%) for the fraction of {Omega}{sub c} {yields} {Xi}{sup (*)} decays to ground states, and 91% for the fraction of {Omega}{sub c} {yields} {Omega}{sup (*)} decays to the ground state {Omega}. The elastic fraction of {Omega}{sub b} {yields} {Omega}{sub c} ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models.
Observation of the Heavy Baryons Sigma b and Sigma b*.
Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-11-16
We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2.
Observation of a new Ξb baryon.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rahbaran, B; Rohringer, C; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Luyckx, S; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Staykova, Z; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Olbrechts, A; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Reis, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Cimmino, A; Costantini, S; Garcia, G; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ocampo Rios, A A; Ryckbosch, D; Strobbe, N; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Bruno, G; Castello, R; Ceard, L; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; De Jesus Damiao, D; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Custódio, A; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Matos Figueiredo, D; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Soares Jorge, L; Sznajder, A; Bernardes, C A; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vutova, M; Dimitrov, A; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, S; Guo, Y; Li, W; Liu, S; Mao, Y; Qian, S J; Teng, H; Wang, S; Zhu, B; Zou, W; Avila, C; Gomez, J P; Gomez Moreno, B; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Duric, S; Kadija, K; Luetic, J; Morovic, S; Attikis, A; Galanti, M; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Elgammal, S; Ellithi Kamel, A; Khalil, S; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Tiko, A; Azzolini, V; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Karjalainen, A; Korpela, A; Tuuva, T; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Millischer, L; Nayak, A; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Daci, N; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Juillot, P; Le Bihan, A-C; Van Hove, P; Fassi, F; Mercier, D; Beauceron, S; Beaupere, N; Bondu, O; Boudoul, G; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Viret, S; Tsamalaidze, Z; Anagnostou, G; Beranek, S; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Erdmann, M; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Kreuzer, P; Lingemann, J; Magass, C; Merschmeyer, M; Meyer, A; Olschewski, M; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Weber, M; Bontenackels, M; Cherepanov, V; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W
2012-06-22
The observation of a new b baryon via its strong decay into Ξ(b)(-) π(+) (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at sqrt[s] = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 fb(-1). The known Ξ(b)(-) baryon is reconstructed via the decay chain Ξ(b)(-) → J/ψΞ(-) → μ(+) μ(-) Λ(0) π(-), with Λ(0) → pπ(-). A peak is observed in the distribution of the difference between the mass of the Ξ(b)(-) π(+) system and the sum of the masses of the Ξ(b)(-) and π(+), with a significance exceeding 5 standard deviations. The mass difference of the peak is 14.84 ± 0.74(stat) ± 0.28(syst) MeV. The new state most likely corresponds to the J(P) = 3/2(+) companion of the Ξ(b). PMID:23004588
Observation of the doubly strange b baryon Omegab-.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cuplov, V; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; DeVaughan, K; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalk, J M; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Komissarov, E V; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Vilanova, D; Villeneuve-Seguier, F; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Williams, M; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2008-12-01
We report the observation of the doubly strange b baryon Omegab- in the decay channel Omegab(-)-->J/psiOmega-, with J/psi-->mu+mu(-) and Omega(-)-->LambdaK(-)-->(ppi-)K-, in pp collisions at sqrt[s]=1.96 TeV. Using approximately 1.3 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider, we observe 17.8+/-4.9(stat)+/-0.8(syst) Omegab- signal events at a mass of 6.165+/-0.010(stat)+/-0.013(syst) GeV. The significance of the observed signal is 5.4sigma, corresponding to a probability of 6.7 x 10(-8) of it arising from a background fluctuation. PMID:19113541
Observation of excited Λ(b)(0) baryons.
Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-10-26
Using pp collision data corresponding to 1.0 fb(-1) integrated luminosity collected by the LHCb detector, two narrow states are observed in the Λ(b)(0)π(+)π(-) spectrum with masses 5911.97±0.12(stat)±0.02(syst)±0.66(Λ(b)(0) mass) MeV/c(2) and 5919.77±0.08(stat)±0.02(syst)±0.66(Λ(b)(0) mass) MeV/c(2). The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally excited Λ(b)(0) baryons, Λ(b)(*0)(5912) and Λ(b)(*0)(5920). PMID:23215180
Observation of excited Λ(b)(0) baryons.
Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2012-10-26
Using pp collision data corresponding to 1.0 fb(-1) integrated luminosity collected by the LHCb detector, two narrow states are observed in the Λ(b)(0)π(+)π(-) spectrum with masses 5911.97±0.12(stat)±0.02(syst)±0.66(Λ(b)(0) mass) MeV/c(2) and 5919.77±0.08(stat)±0.02(syst)±0.66(Λ(b)(0) mass) MeV/c(2). The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally excited Λ(b)(0) baryons, Λ(b)(*0)(5912) and Λ(b)(*0)(5920).
Direct observation of the strange b baryon Xib-.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Panov, G; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2007-08-01
We report the first direct observation of the strange b baryon Xi(b)- (Xi(b)+). We reconstruct the decay Xi(b)- -->J/psiXi-, with J/psi-->mu+mu-, and Xi--->Lambdapi--->ppi-pi- in pp collisions at square root of s =1.96 TeV. Using 1.3 fb(-1) of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat)(-0.4)(+1.9)(syst) Xi(b)- candidates at a mass of 5.774 +/- 0.011(stat) +/- 0.015(syst) GeV. The significance of the observed signal is 5.5 sigma, equivalent to a probability of 3.3 x 10(-8) of it arising from a background fluctuation. Normalizing to the decay Lambda(b)-->J/psiLambda, we measure the relative rate sigma(Xi(b-) x B(Xi)b})- -->J/psiXi-)/sigma(Lambda(b)) x B(Lambda(b)-->J/psiLambda) = 0.28+/-0.09(stat)(-0.08)(+0.09)(syst). PMID:17930744
Observation of the $\\Xi_b^0$ Baryon
Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR
2011-07-01
The observation of the bottom, strange baryon {Xi}{sup 0}{sub b} through the decay chain {Xi}{sup 0}{sub b} {yields} {Xi}{sup +}{sub c} {pi}{sup -}, where {Xi}{sup +}{sub c} {yields} {Xi}{sup -} {pi}{sup +} {pi}{sup +}, {Xi}{sup -} {yields} {Lambda} {yields} p {pi}{sup -}, is reported using data corresponding to an integrated luminosity of 4.2 ft{sup -1} from p{anti p} collisions at {radical}{ovr s} = 1.96 TeV recorded with the Collider Detector at Fermilab. A signal of 25.3{sup +5.6}{sub -5.4} candidates is observed whose probability of arising from a background fluctuation is 3.6 x 10{sup -12}, corresponding to 6.8 Gaussian standard deviations. The {Xi}{sup 0}{sub b} mass is measured to be 5787.8 {+-} 5.0(stat) {+-} 1.3(syst) MeV/c{sup 2}. In addition, the {Xi}{sup -}{sub b} is observed through the process {Xi}{sup -}{sub b} {yields} {Xi}{sup 0}{sub c} {pi}{sup -}, where {Xi}{sup 0}{sub c} {yields} {Xi}{sup -} {pi}{sup +}, {Xi}{sup -} {yields} {Lambda} {pi}{sup -}, and {Lambda} {yields} p {pi}{sup -}.
Baryonic dark clusters in galactic halos and their observable consequences
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Salpeter, Edwin E.
1994-01-01
We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within
Observation of two new Ξ(b)(-) baryon resonances.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-02-13
Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006 MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06 MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08 MeV at 95% confidence level. Relative production rates of these states are also reported. PMID:25723210
Observation of two new Ξ(b)(-) baryon resonances.
Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casanova Mohr, R C M; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Domenico, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gastaldi, U; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viana Barbosa, J V V B; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L
2015-02-13
Two structures are observed close to the kinematic threshold in the Ξ(b)(0)π(-) mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity J(P)=(1/2)(+) and J(P)=(3/2)(+) states, denoted Ξ(b)('-) and Ξ(b)(*-). Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξ(b)('-))-m(Ξ(b)(0))-m(π(-))=3.653±0.018±0.006 MeV/c(2), m(Ξ(b)(*-))-m(Ξ(b)(0))-m(π(-))=23.96±0.12±0.06 MeV/c(2), Γ(Ξ(b)(*-))=1.65±0.31±0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξ(b)('-))<0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.
Charmed baryon decays observed in e/sup +/e/sup -/ annihilation at SPEAR
Vella, E.N.
1981-12-01
Various weak decays of the charmed baryon ..lambda../sub c/ are observed in the Mark II detector at the SLAC e/sup +/e/sup -/ storage ring SPEAR. Hadronic decays ..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/ and ..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/ and their conjugates are observed as peaks in invariant mass spectra at m(..lambda../sub c/) = (2286 +- 6) MeV/c/sup 2/. An estimate of the charmed baryon production cross section, sigma(..lambda../sub c/) + sigma (anti ..lambda../sub c/) = (1.7 +- 0.4) nb, derived from Mark II measurements of the inclusive baryon cross sections R/sub p/ and R/sub ..lambda../ as functions of center-of-mass energy, is used to calculate branching ratios for these hadronic decays: BR (..lambda../sub c//sup +/ ..-->.. p K/sup -/ ..pi../sup +/) = (2.0 +- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. p k/sub s//sup 0/)/BR (..lambda../sub c//sup +/ ..-->.. p K/sup -/ ..pi../sup +/) = (36 +- 16)%. An attempt is also made to observe higher mass charmed baryons by reconstructing cascade decays ..sigma../sub c/ ..-->.. ..lambda../sub c/..pi... Evidence for the observation of semileptonic decays of the charmed baryon is presented. Direct electrons are observed in events containing antiprotons, lambdas and antilambdas. The number of electrons per baryon event, after background subtraction and efficiency correction, is used, together with an estimate of the charmed baryon content of proton and lambda events, to calculate inclusive and semi-inclusive semileptonic branching ratios of the ..lambda../sub c/.
Are the exotic mesons and baryons, recently observed, a signature of quark-hadron duality ?
NASA Astrophysics Data System (ADS)
Tatischeff, Boris
2002-06-01
Narrow low mass exotic hadronic structures were recently observed in mesons, baryons and dibaryons. Narrow mesons, in the mass range 300less-than-or-equal]M[less-than-or-equal 750 MeV, were observed using the pp [right arrow] ppX reaction. Narrow baryons in the mass range 1000less-than-or-equal]M[less-than-or-equal 1400 MeV were observed using the pp [right arrow] ppi+X and dp [right arrow] ppX reactions. The statistical significances of these structures vary up to 4.6 standard deviations (S.D.) for mesons and up to 16.9 S.D. for baryons. These exotic states are associated with precursor quark deconfinement.
Observation of an Excited Charm Baryon Ωc* Decaying to Ωc0γ
NASA Astrophysics Data System (ADS)
Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Wenzel, W. A.; Del Amo Sanchez, P.; Barrett, M.; Ford, K. E.; Hart, A. J.; Harrison, T. J.; Hawkes, C. M.; Watson, A. T.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.; Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Kyberd, P.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Foulkes, S. D.; Gary, J. W.; Long, O.; Shen, B. C.; Wang, K.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Schalk, T.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Bard, D. J.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Davier, M.; Grosdidier, G.; Höcker, A.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Oyanguren, A.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, W. F.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, K. A.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Menges, W.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; Naisbit, M. T.; Williams, J. C.; Yi, J. I.; Chen, C.; Hulsbergen, W. D.; Jawahery, A.; Lae, C. K.; Roberts, D. A.; Simi, G.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Saremi, S.; Staengle, H.; Cowan, R.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Kim, H.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Losecco, J. M.; Allmendinger, T.; Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Jackson, P. D.; Kagan, H.; Kass, R.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Roos, L.; Therin, G.; Gladney, L.; Biasini, M.; Covarelli, R.; Angelini, C.; Batignani, G.; Bettarini, S.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Haire, M.; Judd, D.; Wagoner, D. E.; Biesiada, J.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Tehrani, F. Safai; Voena, C.; Ebert, M.; Schröder, H.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Cristinziani, M.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'Ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; van Bakel, N.; Weaver, M.; Weinstein, A. J. R.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Roat, C.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Ricca, G. Della; Dittongo, S.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Banerjee, Sw.; Bhuyan, B.; Brown, C. M.; Fortin, D.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Mellado, B.; Mihalyi, A.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.; Neal, H.
2006-12-01
We report the first observation of an excited singly charmed baryon Ωc* (css) in the radiative decay Ωc0γ, where the Ωc0 baryon is reconstructed in the decays to the final states Ω-π+, Ω-π+π0, Ω-π+π-π+, and Ξ-K-π+π+. This analysis is performed using a data set of 230.7fb-1 collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Ωc* and the Ωc0 baryons is measured to be 70.8±1.0(stat)±1.1(syst)MeV/c2. We also measure the ratio of inclusive production cross sections of Ωc* and Ωc0 in e+e- annihilation.
Observation of an excited charm baryon Omega c* decaying to Omega c0gamma.
Aubert, B; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Bard, D J; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-12-01
We report the first observation of an excited singly charmed baryon Omega c* (css) in the radiative decay Omega c0gamma, where the Omega c0 baryon is reconstructed in the decays to the final states Omega(-)pi+, Omega(-)pi+pi0, Omega(-)pi+pi(-)pi+, and Xi(-)K(-)pi+pi+. This analysis is performed using a data set of 230.7 fb(-1) collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Omega c* and the Omega c0 baryons is measured to be 70.8+/-1.0(stat)+/-1.1(syst) MeV/c2. We also measure the ratio of inclusive production cross sections of Omega c* and Omega c0 in e+e(-) annihilation. PMID:17280195
Charmed baryon decays observed in e/sup +/e/sup -/ annihilation at SPEAR
Vella, E.N.
1982-01-01
Various weak decays of the charmed baryon ..lambda../sub c/ are observed in the Mark II detector at the SLAC e/sup +/e/sup -/ storage ring SPEAR. Hadronic decays ..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/ and ..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/ and their charge conjugates are observed as peaks in invariant mass spectra at m(..lambda../sub c/) = (2286 +/- 6) MeV/c/sup 2/. An estimate of the charmed baryon production cross section, sigma(..lambda../sub c/) + sigma(..lambda..'/sub c/ = (1.7 +/- 0.4)nb, derived from Mark II measurements of the inclusive baryon cross sections R/sub p/ and R/sub ..lambda../ as functions of center-of-mass energy, is used to calculate branching ratios for these hadronic decays: BR (..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/) = (2.0 +/- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/)/BR (..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/) = (36 +/- 16)%. An attempt is also made to observe higher mass charmed baryons by reconstructing cascade decays ..sigma../sub c/ ..-->.. ..lambda../sub c/..pi... Evidence for the observation of semileptonic decays of the charmed baryon is presented. Direct electrons are observed in events containing antiprotons, lambdas and antilambdas. The number of electrons per baryon event, after background subtraction and efficiency correction, is used, together with an estimate of the charmed baryon content of proton and lambda events, to calculate inclusive and semi-inclusive semileptonic branching ratios of the ..lambda../sub c/: BR (..lambda../sub c//sup +/ ..-->.. e/sup +/X) = (4.5 +/- 1.8)%; BR (..lambda../sub c//sup +/ ..-->.. pe/sup +/X) = (1.9 +/- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. ..lambda../sup 0/e/sup +/X) = (1.2 +/- 0.6)%. The inclusive semileptonic branching ratio, combined with a theoretical calculation of the total semileptonic width, implies a lifetime tau(..lambda../sub c/) = (2.4 +/- 1.1) 10/sup -13/ sec, in good agreement with
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
Valery Kubarovsky; Lei Guo; Dennis Weygand; Paul Stoler; Marco Battaglieri; Raffaella De Vita; Gary Adams; Ji Li; Mina Nozar; Carlos Salgado; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; Gerard Audit; Thierry Auger; Harutyun AVAKIAN; Hovhannes Baghdasaryan; Jacques Ball; Steve Barrow
2004-01-01
The reaction {gamma}p {yields} {pi}{sup +} K{sup -} K{sup +}n was studied at Jefferson Lab using a tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state with strangeness S = +1 and mass M = 1555 {+-} 10 MeV/c{sup 2} was observed in the nK{sup +} invariant mass spectrum. The peak's width is consistent with the CLAS resolution (FWHM = 26 MeV/c{sup 2}), and its statistical significance is 7.8 {+-} 1.0 {sigma}. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by a chiral soliton model for the {Theta}{sup +} baryon. In addition, the pK{sup +} invariant mass distribution was analyzed in the reaction {gamma} p {yields} K{sup -} K{sup +}p with high statistics in search of doubly-charged exotic baryon states. No resonance structures were found in this spectrum.
Spin, masses and other baryonic observables in a chiral model of quark and gluon confinement
NASA Astrophysics Data System (ADS)
Stern, Jacqueline; Clément, Gérard
1989-11-01
The structure of non-strange baryons is investigated in a field-theoretical model which minimally incorporates soft confinement of quarks and gluons and approximate chiral symmetry. Baryonic states are recovered from the mean-field hedgehog solutions by the coherent cranking procedure, which generates mean chromomagnetic fields, modelling gluon exchange between quarks. The cranking method allows for a non-perturbative, self-consistent computation of gluonic effects on the nucleon and delta masses, corrected for spurious translational and rotational fluctuations, on the contribution Δu + Δd of the non-strange quark helicities to the proton spin, and on various other baryonic observables. For the physical values of the pion parameters mπ = 139.6 MeV, Fπ = 93 MeV, and the effective strong fine structure constant α s ⋍ 0.5 , the results which we obtain for these observables, including Δu + Δd ⋍ 0.26, are in good agreement with experiment.
Observation of a narrow baryon resonance with positive strangeness formed in K+Xe collisions
NASA Astrophysics Data System (ADS)
Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tarasov, V. V.; Tumanov, G. K.; Verebryusov, V. S.; Diana Collaboration
2014-04-01
The charge-exchange reaction K+Xe→K0pXe' is investigated using the data of the DIANA experiment. The distribution of the pK0 effective mass shows a prominent enhancement near 1538 MeV formed by nearly 80 events above the background, whose width is consistent with being entirely due to the experimental resolution. Under the selections based on a simulation of K+Xe collisions, the statistical significance of the signal reaches 5.5σ. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive strangeness, Θ+(uudds¯), in the charge-exchange reaction K+n→K0p on a bound neutron. The mass of the Θ+ baryon is measured as m (Θ+)=1538±2 MeV. Using the ratio between the numbers of resonant and nonresonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined as Γ (Θ+)=0.34±0.10 MeV.
New Heavy-Baryons and Hyperfine Mass-Splittings: Analysis from QCD Rum Rules
Albuquerque, R. M.; Nielsen, M.; Narison, S.
2010-11-12
We extract directly the charmed and bottom heavy-baryons (spin 1/2 and 3/2) masssplittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD. We deduce M{sub {Omega}{sub b}} = 6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4{sigma} with the one from D0. Predictions of the {Xi}{sub Q}' and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 1. Predictions of the hyperfine splittings {Omega}{sub Q}*-{Omega}{sub Q} and {Xi}{sub Q}*-{Xi}{sub Q} are also given in Table 2.
Spectroscopy of charmed baryons
Solovieva, E. I.
2015-12-15
Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.
Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables
NASA Astrophysics Data System (ADS)
Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun
2016-08-01
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.
NASA Astrophysics Data System (ADS)
Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo
2016-09-01
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 square degrees, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on baryon acoustic oscillation (BAO) scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
Observation of charmed-baryon production in e/sup +/e/sup -/ annihilation
Abrams, G.S.; Alam, M.S.; Blocker, C.A.; Boyarski, A.M.; Breidenbach, M.; Burke, D.L.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Dorenbosch, J.; Dorfan, J.M.; Eaton, M.W.; Feldman, G.J.; Franklin, M.E.B.; Gidal, G.; Goldhaber, G.; Hanson, G.; Hayes, K.G.; Himel, T.; Hitlin, D.G.; Hollebeek, R.J.; Innes, W.R.; Jaros, J.A.; Jenni, P.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Larsen, R.R.; Longo, M.J.; Lueth, V.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Perl, M.L.; Richter, B.; Roussarie, A.; Russell, J.J.; Scharre, D.L.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Strait, J.; Taureg, H.; Tonutti, M.; Trilling, G.H.; Vella, E.N.; Vidal, R.A.; Videau, I.; Weiss, J.M.; Zaccone, H.
1980-01-07
A peak in the pK/sup -/..pi../sup +/ and p-barK/sup +/..pi../sup -/ invariant-mass spectra at 2.285 +- 0.006 GeV/c/sup 2/ is observed, which is associated with the lowest-lying charmed baryon (..lambda../sub c/). A cross section times branching ratio of 0.037 +- 0.012 nb at E/sub c.m./=5.2 GeV is measured with a substantial fraction of the events produced with an equal recoiling mass. New measurements of inclusive p and ..lambda.. cross sections are also presented, allowing an estimate of the branching ratio B (..lambda../sub c/ ..-->.. pK/sup -/..pi../sup +/) =0.022 +- 0.010.
NASA Astrophysics Data System (ADS)
Richards, Emily E.; van Zee, L.; Barnes, K. L.; Staudaher, S.; Dale, D. A.; Braun, T. T.; Wavle, D. C.; Dalcanton, J. J.; Bullock, J. S.; Chandar, R.
2016-07-01
We present a combination of new and archival neutral hydrogen (H I) observations and new ionized gas spectroscopic observations for 16 galaxies in the statistically representative Extended Disk Galaxy Explore Science kinematic sample. H I rotation curves are derived from new and archival radio synthesis observations from the Very Large Array (VLA) as well as processed data products from the Westerbork Radio Synthesis Telescope (WSRT). The H I rotation curves are supplemented with optical spectroscopic integral field unit (IFU) observations using SparsePak on the WIYN 3.5 m telescope to constrain the central ionized gas kinematics in 12 galaxies. The full rotation curves of each galaxy are decomposed into baryonic and dark matter halo components using 3.6μm images from the Spitzer Space Telescope for the stellar content, the neutral hydrogen data for the atomic gas component, and, when available, CO data from the literature for the molecular gas component. Differences in the inferred distribution of mass are illustrated under fixed stellar mass-to-light ratio (M/L) and maximum disc/bulge assumptions in the rotation curve decomposition.
The cosmological density of baryons from observations of 3He+ in the Milky Way.
Bania, T M; Rood, Robert T; Balser, Dana S
2002-01-01
Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly. PMID:11780112
The cosmological density of baryons from observations of 3He+ in the Milky Way.
Bania, T M; Rood, Robert T; Balser, Dana S
2002-01-01
Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.
Observation of the baryonic decay B¯0→Λc+p ¯K-K+
NASA Astrophysics Data System (ADS)
Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Mandelkern, M.; Dey, B.; Gary, J. W.; Long, O.; Campagnari, C.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H. M.; Dauncey, P. D.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Bougher, J.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Sciolla, G.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Hess, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Vasseur, G.; Anulli, F.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.; BaBar Collaboration
2015-02-01
We report the observation of the baryonic decay B¯ 0→Λc+p ¯ K-K+ using a data sample of 471 ×1 06 B B ¯ pairs produced in e+e- annihilations at √{s }=10.58 GeV . This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B (B¯ 0→Λc+p ¯ K-K+ ) =(2.5 ±0. 4(stat)±0. 2(syst)±0. 6B (Λc+)) ×1 0-5 , where the uncertainties are statistical, systematic, and due to the uncertainty of the Λc+→p K-π+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B¯ 0→Λc+p ¯ ϕ , we determine the upper limit B (B¯ 0→Λc+p ¯ ϕ ) <1.2 ×1 0-5 at 90% confidence level.
NASA Astrophysics Data System (ADS)
Guo, Zong-Kuan; Zhu, Zong-Hong; Alcaniz, J. S.; Zhang, Yuan-Zhong
2006-07-01
Although there is mounting observational evidence that the expansion of our universe is undergoing a late-time acceleration, the mechanism for this acceleration is yet unknown. In the so-called Dvali-Gabadadze-Porrati (DGP) model this phenomenon is attributed to gravitational ``leakage'' into extra dimensions. In this work, we mainly focus our attention on the constraints on the model from the ``gold sample'' of Type Ia supernovae (SNe Ia), the first-year data from the Supernova Legacy Survey (SNLS), and the baryon acoustic oscillation (BAO) peak found in the Sloan Digital Sky Survey (SDSS). At 99.73% confidence level, the combination of the three databases provides Ωm=0.270+0.018-0.017 and Ωrc=0.216+0.012-0.013 (hence, a spatially closed universe with Ωk=-0.350+0.080-0.083), which seems to be in contradiction with the most recent WMAP results indicating a flat universe. Based on this result, we also estimated the transition redshift (at which the universe switches from deceleration to acceleration) to be 0.70
Observation of a Charmed Baryon Decaying to D;{0}p at a Mass Near 2.94 GeV/c;{2}.
Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Schafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yu Todyshev, K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gristan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blout, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hyrn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H
2007-01-01
A search for charmed baryons decaying to D(0)p reveals two states: the Lambdac(2880)+ baryon and a previously unobserved state at a mass of [2939.8+/-1.3(stat)+/-1.0(syst)] MeV/c2 and with an intrinsic width of [17.5+/-5.2(stat)+/-5.9(syst)] MeV. Consistent and significant signals are observed for the K(-)pi(+) and K(-)pi(+)pi(-)pi(+) decay modes of the D0 in 287 fb(-1) annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D+p spectrum of doubly charged partners. The mass and intrinsic width of the Lambdac(2880)+ baryon and relative yield of the two baryons are also measured.
Observation of an Exotic S = +1 Baryon in Exclusive Photoproduction from the Deuteron
Stepan Stepanyan; Kenneth Hicks; Daniel Carman; Evgueni Pasyuk; Reinhard Schumacher; Elton Smith; David Tedeschi; Luminita Todor
2003-12-19
In an exclusive measurement of the reaction {gamma}d {yields} K{sup +} K{sup -} p n, a narrow peak that can be attributed to an exotic baryon with strangeness S = +1 is seen in the K{sup +}n invariant mass spectrum. The peak is at 1542 {+-} 5 MeV/c{sup 2} with a measured width of 21 MeV/c{sup 2} FWHM, equivalent to the experimental invariant mass resolution. The statistical significance of the peak is 5.3 {+-} 0.5 {sigma} for a Gaussian peak shape on top of a smooth background.
Veres, Peter; Meszaros, Peter; Zhang, Bin-Bin
2013-02-10
We consider gamma-ray burst models where the radiation is dominated by a photospheric region providing the MeV Band spectrum, and an external shock region responsible for the GeV radiation via inverse Compton scattering. We parameterize the initial dynamics through an acceleration law {Gamma}{proportional_to}r {sup {mu}}, with {mu} between 1/3 and 1 to represent the range between an extreme magnetically dominated and a baryonically dominated regime, depending also on the magnetic field configuration. We compare these models to several bright Fermi-LAT bursts, and show that both the time-integrated and the time-resolved spectra, where available, can be well described by these models. We discuss the parameters which result from these fits, and discuss the relative merits and shortcomings of the two models.
Baryon content and dynamic state of galaxy clusters: XMM-Newton observations of A1095 and A1926
NASA Astrophysics Data System (ADS)
Ge, Chong; Wang, Q. Daniel; Tripp, Todd M.; Li, Zhiyuan; Gu, Qiusheng; Ji, Li
2016-06-01
We have initiated a program to study the baryon content and dynamic state of galaxy clusters. Here we present results primarily from XMM-Newton observations of two optically selected galaxy clusters, A1095 (z ≃ 0.210) and A1926 (z ≃ 0.136). We find that both of them are actually cluster pairs at similar redshifts. We characterize the temperatures of these individual clusters through X-ray spectral fits and then estimate their gravitational masses. We show a rich set of substructures, including large position offsets between the diffuse X-ray centroids and the brightest galaxies of the clusters, which suggests that they are dynamically young. For both A1095 and A1926, we find that the mass required for the cluster pairs to be bound is smaller than the total gravitational mass. Thus both cluster pairs appear to be ongoing major mergers. Incorporating Sloan Digital Sky Survey and NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm data, we further examine the large-scale structure environment and radio emission of the clusters to probe their origins, which also leads to the discovery of two additional X-ray-emitting clusters (z ≃ 0.097 and ≃0.147) in the field of A1926. We estimate the hot gas and stellar masses of each cluster, which compared with the expected cosmological baryonic mass fraction, leave ample room for warm gas.
First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λ_{c}^{+}→pK^{+}π^{-}.
Yang, S B; Tanida, K; Kim, B H; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Babu, V; Badhrees, I; Bakich, A M; Barberio, E; Bhardwaj, V; Bhuyan, B; Biswal, J; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Dash, N; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gabyshev, N; Garmash, A; Gaur, V; Gillard, R; Goh, Y M; Goldenzweig, P; Greenwald, D; Grygier, J; Haba, J; Hamer, P; Hara, T; Hayasaka, K; Hayashii, H; Hou, W-S; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Joo, K K; Julius, T; Kang, K H; Kato, E; Katrenko, P; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kim, S K; Kim, Y J; Kinoshita, K; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Moon, H K; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Nayak, M; Negishi, K; Niiyama, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Olsen, S L; Pakhlova, G; Pal, B; Park, C W; Park, H; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Ryu, S; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sohn, Y-S; Sokolov, A; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Takizawa, M; Tamponi, U; Teramoto, Y; Trabelsi, K; Trusov, V; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vossen, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yashchenko, S; Ye, H; Yelton, J; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2016-07-01
We report the first observation of the decay Λ_{c}^{+}→pK^{+}π^{-} using a 980 fb^{-1} data sample collected by the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B(Λ_{c}^{+}→pK^{+}π^{-})/B(Λ_{c}^{+}→pK^{-}π^{+})=(2.35±0.27±0.21)×10^{-3}, where the uncertainties are statistical and systematic, respectively. PMID:27419562
NASA Astrophysics Data System (ADS)
Bailey, Jon Andrew
The strong force binds protons and neutrons within nuclei and quarks within mesons and baryons. Calculations of the masses of the light-quark baryons from the theory of the strong force, quantum chromodynamics (QCD), require numerical methods in which continuous Minkowski spacetime is replaced by a discrete Euclidean spacetime lattice. Finite computational resources and theoretical constraints impose significant limitations on lattice calculations. The price of perhaps the fastest formulation of lattice QCD, rooted staggered QCD, includes quark degrees of freedom called tastes, associated discretization effects called taste violations, and the rooting conjecture for eliminating the tastes in the continuum limit. Empirically successful rooted staggered QCD calculations of the baryon spectrum would constitute numerical evidence for the rooting conjecture and further vindication of QCD as the theory of the strong force. With such calculations as the goal, I discuss expected features of the staggered baryon spectrum, examine the spectra of interpolating operators transforming irreducibly under the staggered lattice symmetry group, construct such a set of baryon operators, and show how they could allow for particularly clean calculations of the masses of the nucleon, Delta, Sigma*, Ξ*, and O-. To quantify taste violations in baryonic quantities, I develop staggered chiral perturbation theory for light-quark baryons by mapping the Symanzik action into heavy baryon chiral perturbation theory, calculate the masses of flavor-symmetric nucleons to third order in partially quenched and fully dynamical staggered chiral perturbation theory, and discuss in detail the pattern of taste symmetry breaking and the resulting baryon degeneracies and mixings. The resulting chiral forms could be used with interpolating operators already in use to study the restoration of taste symmetry in the continuum limit.
Observation of a Charmed Baryon Decaying to D0 p at a Mass Near 2.94 GeV/c2
Aubert, B.
2006-03-29
A search for charmed baryons decaying to D{sup 0}p reveals two states: the {Lambda}{sub c}(2880){sup +} baryon and a previously unobserved state at a mass of [2939.8 {+-} 1.3 (stat.) {+-} 1.0 (syst.)] MeV/c{sup 2} and with an intrinsic width of [17.5 {+-} 5.2 (stat.) {+-} 5.9 (syst.)] MeV. Consistent and significant signals are observed for the K{sup -}{pi}{sup +} and K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +} decay modes of the D{sup 0} in 287 fb{sup -1} annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D{sup +}p spectrum of doubly-charged partners. The mass and intrinsic width of the {Lambda}{sub c}(2880){sup +} baryon and relative yield of the two baryons are also measured.
Baryon Spectroscopy and Resonances
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense
Observation of the Baryonic B decay B0bar to Lambda_c^+ anti-Lambda K-
Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /INFN, Milan /Milan U. /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /Padua U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /INFN, Padua /INFN, Padua /Padua U. /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /Sassari U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-11-08
The authors report the observation of the baryonic B decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +} {bar {Lambda}}K{sup -} with a significance larger than 7 standard deviations based on 471 x 10{sup 6} B{bar B} pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. They measure the branching fraction for the decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +} {bar {Lambda}}K{sup -} to be (3.8 {+-} 0.8{sub stat} {+-} 0.2{sub sys} {+-} 1.0 {sub {Lambda}{sub c}{sup +}}) x 10{sup -5}. The uncertainties are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. They find that the {Lambda}{sub c}{sup +} K{sup -} invariant mass distribution shows an enhancement above 3.5 GeV/c{sup 2}.
Decays of B_s Mesons and b Baryons: A Review of Recent First Observations and Branching Fractions
Warburton, Andreas
2008-06-01
Recent rate measurements of B{sub s}{sup 0} mesons and {Lambda}{sub b}{sup 0} baryons produced in {radical}s = 1.96 TeV proton-antiproton and {Upsilon}(5S) electron-positron collisions are reviewed, including the first observations of six new decay modes: B{sub s}{sup 0} {yields} D{sub s}{sup +} K{sup -} (CDF), B{sub s}{sup 0} {yields} D{sub s}{sup -} D{sub s}{sup +} (CDF), B{sub s}{sup 0} {yields} D{sub s1}{sup -}(2536){mu}{sup +} {nu}{sub {mu}} X (DZero), B{sub s}{sup 0} {yields} {phi}{gamma} (Belle)< {Lambda}{sub b}{sup 0} {yields} p{pi}{sup -} (CDF), and {Lambda}{sub b}{sup 0} {yields} pK{sup -} (CDF). Also examined are branching-fraction measurements or limits for the B{sub s}{sup 0} {yields} D{sub s}{sup (*)} D{sub s}{sup (*)} modes (Belle, CDF, and DZero), the B{sub s}{sup 0} {yields} {gamma}{gamma} radiative penguin decay (Belle), and three two-body charmless B{sub s}{sup 0} meson decay channels (CDF). Implications for the phenomenology of electroweak and QCD physics, as well as searches for physics beyond the Standard Model, are identified where applicable.
Observation of the baryonic B-decay B¯0→Λc+p¯K-π+
NASA Astrophysics Data System (ADS)
Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Soffer, A.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2009-09-01
We report the observation of the baryonic B-decay B¯0→Λc+p¯K-π+, excluding contributions from the decay B¯0→Λc+Λ¯K-. Using a data sample of 467×106 BB¯ pairs collected with the BABAR detector at the PEP-II storage ring at SLAC, the measured branching fraction is (4.33±0.82stat±0.33syst±1.13Λc+)×10-5. In addition we find evidence for the resonant decay B¯0→Σc(2455)++p¯K- and determine its branching fraction to be (1.11±0.30stat±0.09syst±0.29Λc+)×10-5. The errors are statistical, systematic, and due to the uncertainty in the Λc+ branching fraction. For the resonant decay B¯0→Λc+p¯K¯*0 we obtain an upper limit of 2.42×10-5 at 90% confidence level.
Observation of the Baryonic Flavor-Changing Neutral Current Decay Λb0 → Λµ+µ-
Aaltonen, T.
2011-11-08
The authors report the first observation of the baryonic flavor-changing neutral current decay Λb0 → Λµ+µ- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses a pp¯ collisions data sample corresponding to 6.8 fb-1 at √s = 1.96 TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Λb0 → Λµ+µ- are measured. They find Β(Λb0 → Λµ+µ-) = [1.73 ± 0.42(stat) ± 0.55(syst)] x 10-6. They also report the first measurement of the differential branching ratio of Bs0→φµ+µ- using 49 signal events. In addition,more » they report branching ratios for B+→K+µ+µ-, B0→K0µ+µ- and Β→ K*(892)µ+µ- decays.« less
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
NASA Astrophysics Data System (ADS)
Toyouchi, Daisuke; Chiba, Masashi
2016-08-01
Gas inflow and outflow are the most important processes, which determine the structural and chemical evolution of a disk galaxy like the Milky Way. In order to get new insights into these baryonic processes in Milky Way like galaxies (MWLGs), we consider the data of distant star-forming galaxies and investigate the evolution of the radial density profile of their stellar components and the associated total amount of gaseous inflow and outflow. For this purpose, we analyze the redshift evolution of their stellar mass distribution, combined with the scaling relations between the mass of baryonic components, star formation rate and chemical abundance for both high- and low-z star-forming galaxies. As a result, we find the new relations between star formation rate and inflow/outflow rate as deduced from these distant galaxies, which will provide fundamental information for understanding the structural and chemical evolution of MWLGs.
First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λc+→p K+π-
NASA Astrophysics Data System (ADS)
Yang, S. B.; Tanida, K.; Kim, B. H.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gabyshev, N.; Garmash, A.; Gaur, V.; Gillard, R.; Goh, Y. M.; Goldenzweig, P.; Greenwald, D.; Grygier, J.; Haba, J.; Hamer, P.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Katrenko, P.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Kobayashi, N.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Masuda, M.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Nayak, M.; Negishi, K.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Olsen, S. L.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Rostomyan, A.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Seon, O.; Seong, I. S.; Sevior, M. E.; Shebalin, V.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Stanič, S.; Starič, M.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Teramoto, Y.; Trabelsi, K.; Trusov, V.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Vanhoefer, P.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yashchenko, S.; Ye, H.; Yelton, J.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration
2016-07-01
We report the first observation of the decay Λc+→p K+π- using a 980 fb-1 data sample collected by the Belle detector at the KEKB asymmetric-energy e+e- collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B (Λc+→p K+π-)/B (Λc+→p K-π+)=(2.35 ±0.27 ±0.21 )×10-3 , where the uncertainties are statistical and systematic, respectively.
Searching for the missing baryons in clusters
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-01-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229
B hadrons spectroscopy at the D0 experiment
De La Cruz Burelo, Eduard
2011-10-24
The latest results on B hadron spectroscopy from the DOe experiment at the Tevatron are presented. The mass measuremen of the B{sub c}{sup -} meson in the B{sub c}{sup -}{yields}J/{psi}{pi}{sup -} decay channel, the observation of excited B{sub s} mesons, the first direct observation of the {Xi}{sub b}{sup -} baryon, and the first observation of the {Omega}{sub b}{sup -} baryon.
NASA Astrophysics Data System (ADS)
Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob
2012-11-01
In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.
Progress towards understanding baryon resonances
Crede, Volker; Roberts, Winston
2013-07-01
The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.
Study of Charm Baryons with the BaBar Experiment
Petersen, Brian Aa.
2006-10-24
The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the {Xi}'{sub c}{sup 0/+}, {Xi}{sub c}(2980){sup +} and {Xi}{sub c}(3077){sup +} baryons, measure branching ratios for Cabibbo-suppressed {Lambda}{sub c}{sup +} decays and use baryon decays to study the properties of the light-quark baryons, {Omega}{sup -} and {Xi}(1690){sup 0}.
Baryon destruction by asymmetric dark matter
Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris
2011-11-01
We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.
Baryon destruction by asymmetric dark matter
Davoudiasl H.; Morrissey, D.; Sigurdson, K.; Tulin, S.
2011-11-10
We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10{sup 29}-10{sup 32} yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Birkinshaw, Mark; Liu, Guo-Chin; Wu, Jiun-Huei Proty; Medezinski, Elinor; Broadhurst, Tom; Lemze, Doron; Zitrin, Adi; Ho, Paul T. P.; Huang, Chih-Wei Locutus; Koch, Patrick M.; Liao, Yu-Wei; Lin, Kai-Yang; Molnar, Sandor M.; Nishioka, Hiroaki; Wang, Fu-Cheng; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek Y.; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick
2009-04-01
We present a multiwavelength analysis of a sample of four hot (TX > 8 keV) X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA Sunyaev-Zel'dovich effect (SZE) and Subaru weak-lensing observations, combined with published X-ray temperatures, to examine the distribution of mass and the intracluster medium (ICM) in massive cluster environments. Our observations show that A2261 is very similar to A1689 in terms of lensing properties. Many tangential arcs are visible around A2261, with an effective Einstein radius ~40'' (at z ~ 1.5), which when combined with our weak-lensing measurements implies a mass profile well fitted by a Navarro-Frenk-White model with a high concentration c vir ~ 10, similar to A1689 and to other massive clusters. The cluster A2142 shows complex mass substructure, and displays a shallower profile (c vir ~ 5), consistent with detailed X-ray observations which imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature associated with mass substructure lying ahead of the sharp northwest edge of the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain highly elliptical mass and ICM distributions at all radii, consistent with other X-ray and strong-lensing work. Our cluster gas fraction measurements, free from the hydrostatic equilibrium assumption, are overall in good agreement with published X-ray and SZE observations, with the sample-averaged gas fraction of langf gas(
Isospin Splittings of Doubly Heavy Baryons
Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.
2011-08-18
The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.
Exploring the simplest purely baryonic decay processes
NASA Astrophysics Data System (ADS)
Geng, C. Q.; Hsiao, Y. K.; Rodrigues, Eduardo
2016-07-01
Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. We propose to search for purely baryonic decay processes at the LHCb experiment. No such type of decay has ever been observed. In particular, we concentrate on the decay Λb0→p p ¯n , which is the simplest purely baryonic decay mode, with solely spin-1 /2 baryons involved. We predict its decay branching ratio to be B (Λb0→p p ¯ n )=(2. 0-0.2+0.3)×10-6 , which is sufficiently large to make the decay mode accessible to LHCb. Our study can be extended to other purely baryonic decays such as Λb0→p p ¯ Λ , Λb0→Λ p ¯ Λ , and Λb0→Λ Λ ¯Λ , as well as to similar decays of antitriplet b baryons such as Ξb0 ,-.
Cosmological baryon diffusion and nucleosynthesis
NASA Astrophysics Data System (ADS)
Applegate, James H.; Hogan, Craig J.; Scherrer, Robert J.
1987-02-01
The diffusion rate of baryons through the big-bang plasma is calculated. Fluctuations in baryon density in the early Universe lead to inhomogeneities in the neutron-proton ratio, due to the differential diffusion of these particles through the radiation plasma. For certain types of nonlinear fluctuations, some nucleosynthesis would occur in very neutron-rich regions. Nuclear products of homogeneous neutron-enriched regions are evaluated numerically using a standard reaction network and these results are used to estimate final abundances in an inhomogeneous universe. Net deuterium and lithium abundances tend to increase and the net helium abundance tends to decrease compared to an unperturbed standard model. It is suggested that pronounced nonlinear baryon-density fluctuations produced in QCD- or electroweak-epoch phase transitions could alter abundances sufficiently to make a closed baryonic universe consistent with current observations of these elements. In such a model the abundance of heavier elements (C,N,O, etc.) increases significantly and approaches observable levels. Abundances can be used to place constraints on extreme scenarios for phase transitions at these epochs.
Baryons in multicolor chromodynamics
NASA Astrophysics Data System (ADS)
Ioffe, B. L.; Shifman, M. A.
1982-07-01
Spin- {1}/{2} baryons built from massless quarks are considered in the limit of a large number of colors, N → ∞. We obtain a formula expressing the baryon mass mB in terms of the quark condensate <0∣ overlineqq∣0> . As was anticipated, mB ˜ N. We discuss also the behavior of the coupling constants gπNN and gA and some properties of baryonic and mesonic spectra.
Observation of the Baryonic Flavor-Changing Neutral Current Decay Λ_{b}^{0} → Λµ^{+}µ^{-}
Aaltonen, T.
2011-11-08
The authors report the first observation of the baryonic flavor-changing neutral current decay Λ_{b}^{0} → Λµ^{+}µ^{-} with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses a pp¯ collisions data sample corresponding to 6.8 fb^{-1} at √s = 1.96 TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Λ_{b}^{0} → Λµ^{+}µ^{-} are measured. They find Β(Λ_{b}^{0} → Λµ^{+}µ^{-}) = [1.73 ± 0.42(stat) ± 0.55(syst)] x 10^{-6}. They also report the first measurement of the differential branching ratio of B_{s}^{0}→φµ^{+}µ^{-} using 49 signal events. In addition, they report branching ratios for B^{+}→K^{+}µ^{+}µ^{-}, B^{0}→K^{0}µ^{+}µ^{-} and Β→ K*(892)µ^{+}µ^{-} decays.
First observation of γ γ →p p ¯K+K- and search for exotic baryons in p K systems
NASA Astrophysics Data System (ADS)
Shen, C. P.; Yuan, C. Z.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Behera, P.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, P.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Fang, W. X.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Glattauer, R.; Goldenzweig, P.; Grzymkowska, O.; Haba, J.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Jeon, H. B.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kiesling, C.; Kim, D. Y.; Kim, J. B.; Kim, K. T.; Kim, S. H.; Kim, Y. J.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Li, C. H.; Li, H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matsuda, T.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nishida, S.; Ogawa, S.; Olsen, S. L.; Ostrowicz, W.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C.-S.; Park, H.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Semmler, D.; Senyo, K.; Seong, I. S.; Sevior, M. E.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Strube, J. F.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Trabelsi, K.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yelton, J.; Yook, Y.; Yusa, Y.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration
2016-06-01
The process γ γ →p p ¯ K+K- and its intermediate processes are measured for the first time using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The production of p p ¯K+K- and a Λ (1520 )0 (Λ ¯ (1520 )0) signal in the p K- (p ¯K+) invariant mass spectrum are clearly observed. However, no evidence for an exotic baryon near 1540 MeV /c2 , denoted as Θ (1540 )0 (Θ ¯(1540 )0) or Θ (1540 )++ (Θ (1540 )--), is seen in the p K- (p ¯K+) or p K+ (p ¯K-) invariant mass spectra. Cross sections for γ γ →p p ¯K+K-, Λ (1520 )0p ¯ K++c .c . and the products σ (γ γ →Θ (1540 )0p ¯ K++c .c .)B (Θ (1540 )0→p K-) and σ (γ γ →Θ (1540 )++p ¯ K-+c .c .)B (Θ (1540 )++→p K+) are measured. We also determine upper limits on the products of the χc 0 and χc 2 two-photon decay widths and their branching fractions to p p ¯ K+K- at the 90% credibility level.
Tuan, S.F. )
1992-11-01
The recent tantalizing experimental support for an {eta}-baryon {ital J}{sup {ital P}}=1/2{sup {minus}} unmixed octet challenges conventional model wisdom. The establishment of the {Xi}(1868) member of the {eta} octet will give strong affirmation that the negative-parity baryon mass spectrum could be mixing-free.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Observation and study of the baryonic B-meson decays B→D(*)pp¯(π)(π)
NASA Astrophysics Data System (ADS)
del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Flanigan, J. M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2012-05-01
We present results for B-meson decay modes involving a charm meson, protons, and pions using 455×106 BB¯ pairs recorded by the BaBar detector at the SLAC PEP-II asymmetric-energy e+e- collider. The branching fractions are measured for the following ten decays: B¯0→D0pp¯, B¯0→D*0pp¯, B¯0→D+pp¯π-, B¯0→D*+pp¯π-, B-→D0pp¯π-, B-→D*0pp¯π-, B¯0→D0pp¯π-π+, B¯0→D*0pp¯π-π+, B-→D+pp¯π-π-, and B-→D*+pp¯π-π-. The four B- and the two five-body B¯0 modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(pp¯) and M(D(*)0p) invariant-mass distributions show enhancements near threshold values. In the four-body mode B¯0→D+pp¯π-, the M(pπ-) distribution shows a narrow structure of unknown origin near 1.5GeV/c2. The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.
Observation and study of the baryonic B-meson decays B→D(*)pp̄(π)(π)
del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; et al
2012-05-30
We present results for B-meson decay modes involving a charm meson, protons, and pions using 455×10⁶ BB¯¯¯ pairs recorded by the BaBar detector at the SLAC PEP-II asymmetric-energy e⁺e⁻ collider. The branching fractions are measured for the following ten decays: B¯¯¯⁰→D⁰pp̄, B¯¯¯⁰→D*⁰pp̄, B¯¯¯⁰→D⁺pp̄π⁻, B¯¯¯⁰→D*⁺pp̄π⁻, B⁻→D⁰pp̄π⁻, B⁻→D*⁰pp̄π⁻, B¯¯¯⁰→D⁰pp̄π⁻π⁺, B¯¯¯⁰→D*⁰pp̄π⁻π⁺, B⁻→D⁺pp̄π⁻π⁻, and B⁻→D*⁺pp̄π⁻π⁻. The four B⁻ and the two five-body B¯¯¯⁰ modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(pp̄) and M(D(*)⁰p) invariant-mass distributions show enhancements near threshold values. In the four-body mode B¯¯¯⁰→D⁺pp̄π⁻, themore » M(pπ⁻) distribution shows a narrow structure of unknown origin near 1.5 GeV/c². The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.« less
Observation and study of the baryonic B-meson decays B→D^{(*)}pp̄(π)(π)
del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Flanigan, J. M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O’Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va’vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.
2012-05-30
We present results for B-meson decay modes involving a charm meson, protons, and pions using 455×10⁶ BB¯¯¯ pairs recorded by the BaBar detector at the SLAC PEP-II asymmetric-energy e⁺e⁻ collider. The branching fractions are measured for the following ten decays: B¯¯¯⁰→D⁰pp̄, B¯¯¯⁰→D*⁰pp̄, B¯¯¯⁰→D⁺pp̄π⁻, B¯¯¯⁰→D*⁺pp̄π⁻, B⁻→D⁰pp̄π⁻, B⁻→D*⁰pp̄π⁻, B¯¯¯⁰→D⁰pp̄π⁻π⁺, B¯¯¯⁰→D*⁰pp̄π⁻π⁺, B⁻→D⁺pp̄π⁻π⁻, and B⁻→D*⁺pp̄π⁻π⁻. The four B⁻ and the two five-body B¯¯¯⁰ modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(pp̄) and M(D(*)⁰p) invariant-mass distributions show enhancements near threshold values. In the four-body mode B¯¯¯⁰→D⁺pp̄π⁻, the M(pπ⁻) distribution shows a narrow structure of unknown origin near 1.5 GeV/c². The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.
The baryonic mass function of galaxies.
Read, J I; Trentham, Neil
2005-12-15
In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade. PMID:16286285
Observation and Study of the Baryonic B-meson Decays B to D(*) p pbar (pi) (pi)
del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2012-02-15
We present results for B-meson decay modes involving a charm meson, protons, and pions using 455 x 10{sup 6} B{bar B} pairs recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider. The branching fractions are measured for the following ten decays: {bar B}{sup 0} {yields} D{sup 0}p{bar p}, {bar B}{sup 0} {yields} D*{sup 0}p{bar p}, {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, {bar B}{sup 0} {yields} D*{sup +}p{bar p}{pi}{sup -}, B{sup -} {yields} D{sup 0}p{bar p}{pi}{sup -}, B{sup -} {yields} D*{sup 0}pp{pi}{sup -}, {bar B}{sup 0} {yields} D{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, {bar B}{sup 0} {yields} D*{sup 0}p{bar p}{pi}{sup -}{pi}{sup +}, B{sup -} {yields} D{sup +}p{bar p}{pi}{sup -}{pi}{sup -}, and B{sup -} {yields} D*{sup +}p{bar p}{pi}{sup -}{pi}{sup -}. The four B{sup -} and the two five-body B{sup 0} modes are observed for the first time. The four-body modes are enhanced compared to the three- and the five-body modes. In the three-body modes, the M(p{bar p}) and M(D{sup (*)0}p) invariant mass distributions show enhancements near threshold values. In the four-body mode {bar B}{sup 0} {yields} D{sup +}p{bar p}{pi}{sup -}, the M(p{pi}{sup -}) distribution shows a narrow structure of unknown origin near 1.5GeV/c{sup 2}. The distributions for the five-body modes, in contrast to the others, are similar to the expectations from uniform phase-space predictions.
New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters
Mantz, A.; Allen, S.W.; Ebeling, H.; Rapetti, D.
2007-10-15
We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} and {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.
Precombination Cloud Collapse and Baryonic Dark Matter
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Spin-flavor composition of excited baryons
NASA Astrophysics Data System (ADS)
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Excited Baryons in Holographic QCD
de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
The status of pentaquark baryons
V.D. Burkert
2006-06-01
The status of the search for peritaquark baryon states is reviewed in light of new results from the first two dedicated experiments from CLAS at Jefferson Lab and of new analyses from several labs on the Theta^+(1540). Evidence for and against the heavier pentaquark states, the Xi(1862) and the Theta^0_c(3100) observed at CERN and at HERA, respectively, are also discussed. I conclude that the evidence against the latter two heavier pentaquark baryons is rapidly increasing making their existence highly questionable. I also conclude that the evidence for the Theta^+ state has significantly eroded with the recent CLAS results, and just leaves room for a possible state with an intrinsic width of Gamma < 0.5 MeV. Preliminary new evidence from various experiments will be discussed as well.
Page, P. R.
2002-01-01
The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation between the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.
Baryonic matter perturbations in decaying vacuum cosmology
Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br
2014-08-01
We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.
Big bang nucleosynthesis: The standard model and alternatives
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).
STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.
VIDEBAEK, F.
2005-02-05
In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.
NASA Astrophysics Data System (ADS)
Crede, Volker
2009-11-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited nucleon states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that these resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must eventually be treated in a multi-channel framework that permits separating resonance from background contributions. A long-standing question in hadron physics is whether the large number of so-called missing baryon resonances really exists, i.e. experimentally not established baryon states which are predicted by all quark models based on three constituent quark effective degrees of freedom. It is important to emphasize that nearly all existing data on non-strange production of baryon resonances result from Nπ scattering experiments. However, quark models predict strong couplings of these missing states to γp rendering the study of these resonances in photo-induced reactions a very promising approach. Several new states have in fact been proposed in recent experiments. Current and upcoming experiments at Jefferson Laboratory will determine polarization (or spin) observables for photoproduction processes involving baryon resonances. Differences between the predictions for these observables can be large, and so conversely they provide
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Charmed Bottom Baryon Spectroscopy
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Nathan Isgur
1997-03-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.
Problems in baryon spectroscopy
Capstick, S.
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Dark matter assimilation into the baryon asymmetry
D'Eramo, Francesco; Fei, Lin; Thaler, Jesse E-mail: lfei@mit.edu
2012-03-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.
NASA Astrophysics Data System (ADS)
Rajeev, Sarada Gangadharan
In this dissertation we study the soliton models of baryons originally proposed by Skyrme. Baryons are interpreted in the naive quark model as bound states of three quarks. Here, we interpret them as solitonic bound states of mesons. This is natural in Quantum Chromodynamics, the theory of strong interactions. The low energy properties of chromodynamics are well accounted for by the chiral model. The Wess-Zumino anomaly plays a crucial role in this model. A derivation within the canonical formulation of the Wess-Zumino is given. It is shown that the anomaly leads to a modification of the current algebra. An operator that creates solitonic states out of the vacuum is constructed. It is shown that this operator is fermionic if the number of colors is odd. The Wess -Zumino anomaly is shown to be responsible for this fact. The anomaly is studied in detail in the simpler context of a two dimensional theory. The operator creating solitons is constructed and its equations of motion are found. This model has an infinite number of conserved charges satisfying a Kac-Moody algebra. A derivation of the Wess-Zumino anomaly starting from Quantum Chromodynamics is given. Further the Skyrme constant is calculated, within certain approximations. This enables us to calculate the mass of the soliton and it agrees with the baryon mass to 20%. The constants D and F that couple the baryons to mesons are also computed. They also agree to about 20%. Thus the identification of baryons as solitons of the chiral model is established.
On the nature of the baryon asymmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1984-01-01
Whether the baryon asymmetry in the universe is a locally varying or universally fixed number is examined with focus on the existence of a possible matter antimatter domain structure in the universe arising from a GUT with spontaneous CP symmetry breaking. Theoretical considerations and observational data and astrophysical tests relating to this fundamental question are reviewed.
Baryogenesis from baryon-number-violating scalar interactions
NASA Astrophysics Data System (ADS)
Bowes, J. P.; Volkas, R. R.
1997-03-01
In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
CDM/baryon isocurvature perturbations in a sneutrino curvaton model
Harigaya, Keisuke; Kawasaki, Masahiro; Hayakawa, Taku; Yokoyama, Shuichiro E-mail: taku1215@icrr.u-tokyo.ac.jp E-mail: shuichiro@rikkyo.ac.jp
2014-10-01
Matter isocurvature perturbations are strictly constrained from cosmic microwave background observations. We study a sneutrino curvaton model where both cold dark matter (CDM)/baryon isocurvature perturbations are generated. In our model, total matter isocurvature perturbations are reduced since the CDM/baryon isocurvature perturbations compensate for each other. We show that this model can not only avoid the stringent observational constraints but also suppress temperature anisotropies on large scales, which leads to improved agreement with observations.
Charmed Bottom Baryon Spectroscopy
Zachary Brown, William Detmold, Stefan Meinel, Konstantinos Orginos
2012-09-01
The arena of doubly and triply heavy baryons remains experimentally unexplored to a large extent. This has led to a great deal of theoretical effort being put forth in the calculation of mass spectra in this sector. Although the detection of such heavy particle states may lie beyond the reach of experiments for some time, it is interesting to compare results between lattice QCD computations and continuum theoretical models. Several recent lattice QCD calculations exist for both doubly and triply charmed as well as doubly and triply bottom baryons. In this work we present preliminary results from the first lattice calculation of the mass spectrum of doubly and triply heavy baryons including both charm and bottom quarks. The wide range of quark masses in these systems require that the various flavors of quarks be treated with different lattice actions. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. The calculation of the ground state spectrum is presented and compared to recent models.
Recent results on baryon production at PETRA
Wu, S.L.
1982-01-01
One of the recent excitements at PETRA is the observation of the copious production of baryons. About a year ago, TASSO observed the inclusive production of protons and antiprotons. More recently JADE confirmed the inclusive antiproton spectrum to about 1 GeV/c and also observed the inclusive anti ..lambda.. spectrum to about 1.4 GeV/c, while TASSO obtained the ..lambda.. and anti-..lambda.. spectrum all the way up 10 GeV/c in momentum.
The baryonic self similarity of dark matter
Alard, C.
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l^{P}=0⁺] ground state and excited baryons, and the [56,2^{+}] and [70}},1^{-}] excited states are analyzed. The analyses are carried out to order O(1/N_{c}) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
Dark matter and the baryon asymmetry of the universe.
Farrar, Glennys R; Zaharijas, Gabrijela
2006-02-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih
Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism
Bamba, Kazuharu
2006-12-15
The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can be generated.
Galaxy and Group Baryonic Mass Functions for the RESOLVE Survey
NASA Astrophysics Data System (ADS)
Eckert, Kathleen D.; Kannappan, Sheila; Moffett, Amanda J.; Baker, Ashley; Stark, David; Berlind, Andreas A.; Storey-Fisher, Kate; Erickcek, Adrienne L.; Norris, Mark A.; Resolve Team
2015-01-01
We present a comparison of the galaxy and group baryonic mass functions for a subvolume of the RESOLVE (Resolved Spectroscopy Of a Local VolumE) survey. RESOLVE occupies A and B semester volumes totaling ~52,000 cubic Mpc, complete in baryonic mass to ~10^9.3 Msun and 10^9.0 Msun respectively, with galaxies and groups ranging in halo mass from 10^11-10^14 Msun. The A semester volume is surrounded by the larger ECO catalog, which lacks complete HI data but occupies ~561,000 cubic Mpc. We define the observed baryonic mass of a galaxy or group to be the sum of its stellar and cold atomic hydrogen components, with the latter inferred indirectly for much of ECO. For groups, we infer the total baryonic mass by summing the observed components of each constituent galaxy and add the likely hot halo gas based on prescriptions from observations and semi-analytic models. We perform subhalo/halo abundance matching between observed galaxies/groups and dark matter simulations, and we compare derived halo properties based on matching on luminosity vs. on observed baryonic mass (or on inferred total baryonic mass for groups). We also present a status update on the galaxy and group velocity functions for these surveys, which will allow for more direct comparison with dark matter simulations. This project was supported by NSF funding for the RESOLVE survey (AST-0955368).
Baryon and chiral symmetry breaking
Gorsky, A.; Krikun, A.
2014-07-23
We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.
Baryon stopping probes deconfinement
NASA Astrophysics Data System (ADS)
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
Constraining anisotropic baryon oscillations
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; White, Martin
2008-06-01
We present an analysis of anisotropic baryon acoustic oscillations and elucidate how a mis-estimation of the cosmology, which leads to incorrect values of the angular diameter distance, dA, and Hubble parameter, H, manifest themselves in changes to the monopole and quadrupole power spectrum of biased tracers of the density field. Previous work has focused on the monopole power spectrum, and shown that the isotropic dilation combination dA2H-1 is robustly constrained by an overall shift in the scale of the baryon feature. We extend this by demonstrating that the quadrupole power spectrum is sensitive to an anisotropic warping mode dAH, allowing one to break the degeneracy between dA and H. We describe a method for measuring this warping, explicitly marginalizing over the form of redshift-space distortions. We verify this method on N-body simulations and estimate that dAH can be measured with a fractional accuracy of ˜(3/V)% where the survey volume is estimated in h-3Gpc3.
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.; Cattaneo, Andrea E-mail: shan@astro.cornell.edu E-mail: haynes@astro.cornell.edu
2012-11-10
We use both an H I-selected and an optically selected galaxy sample to directly measure the abundance of galaxies as a function of their 'baryonic' mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey and atomic gas masses are calculated using atomic hydrogen (H I) emission line data from the Arecibo Legacy Fast ALFA survey. By using the technique of abundance matching, we combine the measured baryonic function of galaxies with the dark matter halo mass function in a {Lambda}CDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon fractions of low-mass halos cannot be explained by reionization heating alone, and that additional feedback mechanisms (e.g., supernova blowout) must be invoked. However, the outflow rates needed to reproduce our result are not easily accommodated in the standard picture of galaxy formation in a {Lambda}CDM universe.
Baryonic condensates on the conifold
NASA Astrophysics Data System (ADS)
Benna, Marcus K.; Dymarsky, Anatoly; Klebanov, Igor R.
2007-08-01
We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) × SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and Bbb R3,1. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on κ-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theory. We also derive and numerically evaluate an expression that describes the variation of the baryon expectation values along the supergravity dual of the baryonic branch.
Electromagnetic properties of baryons
Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.
2011-10-21
We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.
The electroweak axion, dark energy, inflation and baryonic matter
McLerran, L.
2015-03-15
In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.
Study of heavy-baryon transitions
NASA Astrophysics Data System (ADS)
Hassanabadi, H.; Rahmani, S.; Zarrinkamar, S.
2014-10-01
We solve the hyper-radial Schrödinger equation with Cornell interaction to find the baryonic wave function. Thereby, we investigate the baryonic Isgur-Wise function in hyperspherical coordinates. Using the obtained Isgur-Wise function, we find the decay width of heavy-baryon transitions. An analysis of masses of baryons and the differential decay width for some heavy baryons is also presented. Comparison with other model calculations is motivating.
Baryonic Operators for Lattice Simulations
R. Edwards; R. Fiebig; G. Fleming; U.M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace
2004-03-01
The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.
Excitations of strange bottom baryons
NASA Astrophysics Data System (ADS)
Woloshyn, R. M.
2016-09-01
The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Anomalous dimensions of conformal baryons
NASA Astrophysics Data System (ADS)
Pica, Claudio; Sannino, Francesco
2016-10-01
We determine the anomalous dimensions of baryon operators for the three-color theory as functions of the number of massless flavors within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the δ expansion, for a wide range of number of flavors. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Cosmological baryon number domain structure from symmetry-breaking in grand unified field theories
NASA Technical Reports Server (NTRS)
Brown, R. W.; Stecker, F. W.
1979-01-01
It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big-bang can lead more naturally to a baryon symmetric cosmology with a domain structure than to a totally baryon asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.
Cosmological baryon-number domain structure from symmetry breaking in grand unified field theories
NASA Technical Reports Server (NTRS)
Brown, R. W.; Stecker, F. W.
1979-01-01
It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big bang can lead more naturally to a baryon-symmetric cosmology with a domain structure than to a totally baryon-asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.
Experimentally testing the standard cosmological model
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
The Molecular Baryon Cycle of M82
NASA Astrophysics Data System (ADS)
Chisholm, John; Matsushita, Satoki
2016-10-01
Baryons cycle into galaxies from the intergalactic medium and are converted into stars; a fraction of the baryons are ejected out of galaxies by stellar feedback. Here we present new high-resolution (3.″9 68 pc) 12CO(2–1) and 12CO(3–2) images that probe these three stages of the baryon cycle in the nearby starburst M82. We combine these new observations with previous 12CO(1–0) and [Fe ii] images to study the physical conditions within the molecular gas. Using a Bayesian analysis and the radiative transfer code RADEX, we model temperatures and densities of molecular hydrogen, as well as column densities of CO. Besides the disk, we concentrate on two regions within the galaxy: an expanding super-bubble and the base of a molecular streamer. Shock diagnostics, kinematics, and optical extinction suggest that the streamer is an inflowing filament, with a mass inflow rate of molecular gas of 3.5 {M}ȯ yr‑1. We measure the mass outflow rate of molecular gas of the expanding super-bubble to be 17 {M}ȯ yr‑1, five times higher than the inferred inflow rate and 1.3 times the star formation rate of the galaxy. The high mass outflow rate and large star formation rate will deplete the galaxy of molecular gas within eight million years, unless there are additional sources of molecular gas.
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-19
In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J^{P} = 1/2^{+} and J^{P} = 3/2^{+}. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m_{Q} and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Case for exotic baryon-baryon states
Thomas, G.H.
1980-01-01
Three main points are presented. (1) Current theoretical prejudices are presented for why dibaryon states are interesting, and why they should be expected. (2) A review is given of some of the unsettled experimental issues which have emerged during this conference concerning dibaryons. (3) Phenomenological issues are raised which are critical to understanding whether dibaryon states are observable in the medium energy NN system.
Measurement of b-Baryons with the CDF II detector
Heuser, Joachim; /Karlsruhe U., EKP
2007-10-01
We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.
The Experimental Status of Baryon Resonances
NASA Astrophysics Data System (ADS)
Crede, Volker
2010-11-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited nucleon states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that these resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must eventually be treated in a multi-channel framework that permits separating resonance from background contributions. A long-standing question in hadron physics is whether the large number of so-called missing baryon resonances really exists, i.e. experimentally not established baryon states which are predicted by quark models based on three constituent quark effective degrees of freedom. It is important to emphasize that nearly all existing data on non-strange production of baryon resonances result from πN scattering experiments. However, quark models predict strong couplings of these missing states to γp rendering the study of these resonances in photo-induced reactions a very promising approach. Several new states have in fact been proposed in recent experiments. Current and upcoming experiments at Jefferson Laboratory will determine polarization (or spin) observables for photoproduction processes involving baryon resonances. Differences between the predictions for these observables can be large, and so conversely they provide
THE BARYON CONTENT OF COSMIC STRUCTURES
McGaugh, Stacy S.; Schombert, James M.; De Blok, W. J. G.; Zagursky, Matthew J. E-mail: jschombe@uoregon.edu E-mail: mzagursk@ifa.hawaii.edu
2010-01-01
We make an inventory of the baryonic and gravitating mass in structures ranging from the smallest galaxies to rich clusters of galaxies. We find that the fraction of baryons converted to stars reaches a maximum between M {sub 500} = 10{sup 12} and 10{sup 13} M {sub sun}, suggesting that star formation is most efficient in bright galaxies in groups. The fraction of baryons detected in all forms deviates monotonically from the cosmic baryon fraction as a function of mass. On the largest scales of clusters, most of the expected baryons are detected, while in the smallest dwarf galaxies, fewer than 1% are detected. Where these missing baryons reside is unclear.
DETECTING BARYON ACOUSTIC OSCILLATIONS
Labatie, A.; Starck, J. L.
2012-02-20
Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.
Decays of J/psi (3100) to baryon final states
Eaton, M.W.
1982-05-01
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.
NASA Astrophysics Data System (ADS)
Palni, Prabhakar
To discover and probe the properties of new particles, we need to collide highly energetic particles. The Tevatron at Fermilab has collided protons and anti-protons at very high energies. These collisions produce short lived and stable particles, some known and some previously unknown. The CDF detector is used to study the products of such collisions and discover new elementary particles. To study the interaction between high energy charged particles and the detector materials often requires development of new instruments. Thus this dissertation involves a measurement at a contemporary experiment and development of technologies for related future experiments that will build on the contemporary one. Using data from proton-antiproton collisions at sqrt(s) = 1.96TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Lambda_b. *0 is presented in its Lambda_b. 0 pi. + pi. - decay,followed by the Lambda_b. 0 -> Lambda_c. + pi. - and Lambda_c. + -> p K. - pi. +decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6 fb. -1 collected by an online event selection process basedon charged particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5sigma The mass of the observed state is found to be 5919.22 +/- 0.76 MeV/c 2 in agreement with similar findings in proton-proton collision experiments. To predict the radiation damage to the components of new particle tracking detectors, prototype devices are irradiated at test beam facilities that reproduce the radiation conditions expected. The profile of the test beam and the fluence applied per unit time must be known. We have developed a technique to monitor in real time the beam profile and fluence using an array of pin semiconductor diodes whose forward voltage is linear with fluence over the fluence regime relevant to, for example, silicon tracking detectors in the LHC upgrade era
Hyperon-hyperon interaction based on quark-model baryon-baryon interactions
NASA Astrophysics Data System (ADS)
Fukukawa, Kenji
2014-04-01
Energy-independent nonlocal Gaussian potential based on the quark-model baryon-baryon interaction is derived by using the Gauss-Legendre quadrature and the Bargmann algebra. The reliability of this potential is examined with respect to the NN, YN and YY phase shifts. This potential reproduces the phase shifts predicted by quark-model baryon-baryon interaction fss2.
Dilatons in Dense Baryonic Matter
NASA Astrophysics Data System (ADS)
Lee, Hyun Kyu; Rho, Mannque
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Charmed baryon spectroscopy from CLEO at CESR
Alam, M. Sajjad
1999-02-17
Charmed baryon spectroscopy has been unfolding since the discovery of the first charmed baryon in 1975. The Cornell Electron Storage Ring (CESR) has now established itself as a charmed particle factory. In this report, we present results on charmed baryon production at CESR using the CLEO detector.
CP violation and the development of cosmological baryon asymmetry
Senjanovic, G.
1980-01-01
A discussion of the origin of the observed matter-antimatter asymmetry of the universe is presented in the context of the standard cosmological model. Except in the case of the minimal SU(5) theory, it is possible that grand unified theories predict the right order of magnitude for the ratio of baryon to photon number. The question of CP violation is addressed in detail and it is shown that, tied up with symmetry nonrestoration at high temperature, the soft CP violation does remain at T approx. = 10/sup 15/ GeV as to lead to the creation of baryon asymmetry in the very early universe.
Why baryons matter: The kinematics of dwarf spheroidal satellites
Brooks, Alyson M.; Zolotov, Adi E-mail: zolotov@physics.huji.ac.il
2014-05-10
We use high-resolution cosmological simulations of Milky Way (MW) mass galaxies that include both baryons and dark matter (DM) to show that baryonic physics (energetic feedback from supernovae and subsequent tidal stripping) significantly reduces the DM mass in the central regions of luminous satellite galaxies. The reduced central masses of the simulated satellites reproduce the observed internal dynamics of MW and M31 satellites as a function of luminosity. We use these realistic satellites to update predictions for the observed velocity and luminosity functions of satellites around MW-mass galaxies when baryonic effects are accounted for. We also predict that field dwarf galaxies in the same luminosity range as the MW classical satellites should not exhibit velocities as low as the satellites because the field dwarfs do not experience tidal stripping. Additionally, the early formation times of the satellites compared to field galaxies at the same luminosity may be apparent in the star formation histories of the two populations. Including baryonic physics in cold dark matter (CDM) models naturally explains the observed low DM densities in the MWs dwarf spheroidal population. Our simulations therefore resolve the tension between kinematics predicted in CDM theory and observations of satellites, without invoking alternative forms of DM.
Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies
Arakelyan, G. H.; Merino, C. Pajares, C.; Shabelski, Yu. M.
2013-03-15
A significant asymmetry in baryon/antibaryon yields in the central region of high energy collisions is observed when the initial state has nonzero baryon charge. This asymmetry is connected with the possibility of baryon charge diffusion in rapidity space. Such a diffusion should decrease the baryon charge in the fragmentation region and translate into the corresponding decrease of the multiplicity of leading baryons. As a result, a new mechanism for Feynman scaling violation in the fragmentation region is obtained. Another numerically more significant reason for the Feynman scaling violation comes from the fact that the average number of cut Pomerons increases with initial energy. We present the quantitative predictions of the Quark-Gluon String Model for the Feynman scaling violation at LHC energies and at even higher energies that can be important for cosmic ray physics.
Baryon Interactions from Lattice QCD
Aoki, Sinya
2010-05-12
We report on new attempt to investigate baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon (NN) potentials in quenched QCD simulations, which reproduce qualitative features of modern NN potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon (YN) interactions, in both quenched and full QCD.
Transport coefficients of heavy baryons
NASA Astrophysics Data System (ADS)
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Moduli induced cogenesis of baryon asymmetry and dark matter
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Hati, Chandan; Sarkar, Utpal
2016-05-01
We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM) superfields. Assuming that the mass of the additional singlet fermions is O (GeV) and of the color triplet fermions is O (TeV), we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY) breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM) component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.
A Study in Blue: The Baryon Content of Isolated Low-mass Galaxies
NASA Astrophysics Data System (ADS)
Bradford, Jeremy D.; Geha, Marla C.; Blanton, Michael R.
2015-08-01
We study the baryon content of low-mass galaxies selected from the Sloan Digital Sky Survey (SDSS DR8), focusing on galaxies in isolated environments where the complicating physics of galaxy–galaxy interactions are minimized. We measure neutral hydrogen (HI) gas masses and line widths for 148 isolated galaxies with stellar mass between 107 and {10}9.5{M}ȯ . We compare isolated low-mass galaxies to more massive galaxies and galaxies in denser environments by remeasuring HI emission lines from the Arecibo Legacy Fast ALFA survey 40% data release. All isolated low-mass galaxies either have large atomic gas fractions or large atomic gas fractions cannot be ruled out via their upper limits. We measure a median atomic gas fraction of {f}{gas}=0.81+/- 0.13 for our isolated low-mass sample with no systems below 0.30. At all stellar masses, the correlations between galaxy radius, baryonic mass, and velocity width are not significantly affected by environment. Finally, we estimate a median baryon to total dynamical mass fraction of {f}{baryon,{disk}}=0.15+/- 0.17. We also estimate two different median baryon to halo mass fractions using the results of semi-analytic models ({f}{baryon,{halo}}=0.04+/- 0.06) and abundance matching ({f}{baryon,{halo}}=0.04+/- 0.02). Baryon fractions estimated directly using HI observations appear independent of environment and maximum circular velocity, while baryon fractions estimated using abundance matching show a significant depletion of baryons at low maximum circular velocities.
Hadronic molecules in the heavy baryon spectrum
NASA Astrophysics Data System (ADS)
Entem, D. R.; Ortega, P. G.; Fernández, F.
2016-01-01
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2- quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance.
Decay properties of double heavy baryons
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery; Ivanov, Mikhail A.; Koerner, Juergen G.
2010-08-05
We study the semileptonic decays of double heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.
Baryon asymmetry, inflation and squeezed states
Bambah, Bindu A. . E-mail: bbsp@uohyd.ernet.in; Chaitanya, K.V.S. Shiv; Mukku, C.
2007-04-15
We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry.
Nijmegen Baryon-Baryon Interactions for S = -1, -2 Systems
NASA Astrophysics Data System (ADS)
Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.
We present and discuss the most recent version of the extended-soft-core (ESC) interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SUF(3)-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges, and (v) quark-core effects. In the OBE-sector, a special feature is the importance of the axial-vector meson potentials, and the inclusion of a zero in the scalar- and axial- meson form-factors. Novelties are the inclusion of (a) odderon-exchange, and (b) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients, a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC). This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F + D)-ratio's as well. The NN, YN, and YY results for this model are rather promising. In particular, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide ample repulsion in the Σ+p(3S1,T = 3/2)- and ΣN(1S0,T = 1/2)-channels. The new version of the ESC-model reported here will be referred to as ESC07 henceforth.
Nijmegen Baryon-Baryon Interactions for S = -1, -2 Systems
NASA Astrophysics Data System (ADS)
Rijken, Th. A.; Nagels, M. M.; Yamamoto, Y.
2010-10-01
We present and discuss the most recent version of the extended-soft-core (ESC) interactions. The ESC-model describes the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY), in terms of meson-exchanges using (broken) SUF(3)-symmetry. In this approach to baryon-baryon (BB) the dynamics is derived from (i) one-boson-exchanges (OBE), (ii) two-meson-exchanges (TME), and (iii) meson-pair-exchanges (MPE), (iv) gluon-exchanges, and (v) quark-core effects. In the OBE-sector, a special feature is the importance of the axial-vector meson potentials, and the inclusion of a zero in the scalar- and axial- meson form-factors. Novelties are the inclusion of (a) odderon-exchange, and (b) special pronounced effects of the appearance of forbidden six-quark configurations. With these ingredients, a rather flexible dynamical framework is constructed. Namely, it appeared feasible to keep the parameters of the model in reasonable accordance with the predictions of the 3P0 quark-pair-creation model (QPC). This is the case for the meson- and meson-pair-baryon coupling constants and the F/(F + D)-ratio's as well. The NN, YN, and YY results for this model are rather promising. In particular, we improved the ΛN spin-orbit interaction greatly by the inclusion of (a) the Brown, Downs, and Iddings anti-symmetric spin-orbit potentials, and (b) new corrections to the MPE-potentials. Also, the special quark-core effects provide ample repulsion in the Σ+p(3S1, T = 3/2)- and ΣN(1S0,T = l/2)-channels. The new version of the ESC-model reported here will be referred to as ESC07 henceforth.
Photoproduction of the Λ c charmed baryon
NASA Astrophysics Data System (ADS)
Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; d'Almagne, B.; David, M.; DiCiaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.; NA14/2 Collaboration
1990-08-01
In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c( overlineΛ c) charmed-baryon and antibaryon decays in the pK-π + ( overlinepK +π -) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c2 and its lifetime 0.18±0.03±0.03 ps. The ratio of {Λ c}/{D} production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.
Shedding light on baryonic dark matter.
Silk, J
1991-02-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.
Shedding light on baryonic dark matter
NASA Technical Reports Server (NTRS)
Silk, Joseph
1991-01-01
Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.
BRYNTRN: A baryon transport model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.
1989-01-01
The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.
How sensitive are di-leptons from {rho} mesons to the high baryon density region?
Vogel, S.; Schmidt, K.; Santini, E.; Sturm, C.; Bleicher, M.; Petersen, H.; Aichelin, J.
2008-10-15
We show that the measurement of dileptons might provide only a restricted view into the most dense stages of heavy-ion reactions. Thus, possible studies of meson and baryon properties at high baryon densities, as, e.g., done at the GSI High Acceptance DiElectron Spectrometer (HADES) and envisioned for the Facility for Antiproton and Ion Research (FAIR) compressed baryonic matter experiments, might observe weaker effects than currently expected in certain approaches. We argue that the strong absorption of resonances in the high-baryon-density region of the heavy-ion collision masks information from the early hot and dense phase due to a strong increase of the total decay width because of collisional broadening. To obtain additional information, we also compare the currently used approaches to extract dileptons from transport simulations, i.e., shining, only vector mesons from final baryon resonance decays and instant emission of dileptons and find a strong sensitivity on the method employed in particular at FAIR and the CERN Super Proton Synchrotron energies. It is shown explicitly that a restriction to {rho} meson (and therefore dilepton) production only in final-state baryon resonance decays provide a strong bias toward rather low baryon densities. The results presented are obtained from ultrarelativistic quantum molecular dynamics v2.3 calculations using the standard setup.
Results and Frontiers in Lattice Baryon Spectroscopy
John Bulava; Robert Edwards; George Fleming; K.Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Baryon spectroscopy and the omega minus
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Baryon symmetric big bang cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
A Search for the Missing Baryons in Nearby Cosmic Filaments
NASA Astrophysics Data System (ADS)
Dupke, Renato
2003-07-01
Most of the baryons in the local universe are "missing" in that they are not in galaxies or in the previously detected gaseous phases. These missing baryons are predicted to be in a warm-hot low density phase, largely in the giant cosmic filaments that connect the denser virialized clusters and groups of galaxies. Models show that the highest covering fraction of such filaments occurs in superclusters and observations of two AGNs behind known superclusters showed multiple LyAlpha absorption systems at the supercluster redshift. These results are impressive considering that these AGNs were not even optimally located. Here we selected a several AGNs that lie close to the expected central axis of supercluster filaments. These HST observations will identify LyAlpha absorbing gas while a complementary FUSE program will search for OVI gas in the same systems.
Prospects for baryon instability search with long-lived isotopes
Efremenko, Yu.; Bugg, W.; Cohn, H.; Kamyshkov, Yu.; Parker, G.; Plasil, F.
1996-12-31
In this paper we consider the possibility of observation of baryon instability processes occurring inside nuclei by searching for the remnants of such processes that could have been accumulated in nature as mm long-lived isotopes. As an example, we discuss here the possible detection of traces of {sup 97}Tc, {sup 98}Tc, and {sup 99}Tc in deep-mined nonradioactive tin ores.
The riddle of high-energy baryon number violation
Mattis, M.P.
1991-09-01
The exciting possibility that anomalous baryon and lepton number violation might be observable at the next generation of supercolliders is suggested by an instanton calculation due to Ringwald and Espinosa. In these Lectures, the current controversial status of these claims is discussed, and several new technologies designed to analyze this question are reviewed. These technologies should contribute more generally to our understanding of weakly- coupled field theories in the nonperturbative regime where both energies and multiplicities are very large. 61 refs., 35 figs.
Baryons with Ginsparg-Wilson quarks in a staggered sea
Tiburzi, Brian C.
2005-11-01
We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.
Baryon-Derived Scaling Relations from CLASH
NASA Astrophysics Data System (ADS)
Czakon, Nicole G.; Donahue, M.; Medezinski, E.; CLASH; Bolocam
2014-01-01
The CLASH observing program has produced a unique data set which allows the accurate calibration of a large set of galaxy cluster masses. The cosmological and astrophysical implications of these measurements extend far beyond HST-only science. To capitalize on the astronomy community’s interest in the CLASH data products, our collaboration has assembled a team of experts across many different observational cluster probes, including: strong lensing, weak lensing, X-ray, and the Sunyaev-Zel’dovich Effect (SZE). By combining weak- and strong-lensing measurements, full cluster profiles can be constrained from the inner tens of kpc out to several Mpc. This has important implications in cross-probe analyses as different observational probes are sensitive to different regions of a cluster’s mass profile. Another goal of the CLASH program is to characterize the level of hydrostatic mass bias in X-ray measurements. This is important as hydrostatic mass estimates are commonly used to calibrate X-ray and SZE cluster studies. In my talk, I will report on the status of several cross-probe scaling relations comparing the CLASH lensing masses and various baryonic cluster mass probes, including: optical richness, X-ray, and SZE observations of the full CLASH cluster catalog. The results of these investigations will be interesting for both large-scale surveys and individual cluster studies, when high quality lensing data is unavailable.
Study of b-baryons at D0 in Run II of the Tevatron
De La Crus Burelo, Eduard; /Michigan U.
2008-04-01
The study of b-baryons is a unique opportunity at the Tevatron collider, which is the only running accelerator where these particles are expected to be produced. At the beginning of RunII of the Tevatron and after almost 30 years of the discovery of the b quark at Fermilab, the lack of statistics had restricted our knowledge on b-baryons to the observation of the lightest b-baryon, the {Lambda}{sub b}, and to its lifetime measured in decays which did not allow a fully reconstruction of this particle. I present results of the search for b-baryons in the D0 experiment. As part of this program, a precise measurement of the {Lambda}{sub b} lifetime was performed, and the discovery of the {Xi}{sub b}{sup -} resulted from an analysis of 1.3 fb{sup -1} of data collected with the D0 detector during 2002-2006.
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
NASA Astrophysics Data System (ADS)
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of
Latest Lattice Results for Baryon Spectroscopy
Richards, David
2010-09-01
Theoretical and computational advances have enabled not only the masses of the ground states, but also some of the low-lying excited states to be calculated using Lattice Gauge Theory. In this talk, I look at recent progress aimed at understanding the spectrum of baryon excited states, including both baryons composed of the light $u$ and $d$ quarks, and of the heavier quarks. I then describe recent work aimed at understanding the radiative transitions between baryons, and in particular the $N-{\\rm Roper}$ transition. I conclude with the prospects for future calculations.
Lattice QCD determination of patterns of excited baryon states
Basak, Subhasish; Edwards, R. G.; Richards, D. G.; Fleming, G. T.; Juge, K. J.; Lichtl, A.; Morningstar, C.; Sato, I.; Wallace, S. J.
2007-10-01
Energies for excited isospin I=(1/2) and I=(3/2) states that include the nucleon and {delta} families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G{sub 2} irreducible representations of the octahedral group. The decomposition of spin (5/2) or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin (5/2) or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.
Lattice QCD determination of patterns of excited baryon states
Subhasish Basak; Robert Edwards; George Fleming; Keisuke Juge; Adam Lichtl; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2007-10-01
Energies for excited isospin I = 1/2 and I = 3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.
Zeldovich and the Missing Baryons, Results from Gravitational Lensing
NASA Astrophysics Data System (ADS)
Schild, Rudolph E.
2016-10-01
Central to Zeldovich's attempts to understand the origin of cosmological structure was his exploration of the fluid dynamical effects in the primordial gas, and how the baryonic dark matter formed. Unfortunately microlensing searches for condensed objects in the foreground of the Magellanic Clouds were flawed by the assumption that the objects would be uniformly (Gaussian) distributed, and because the cadence of daily observations strongly disfavored detection of planet mass microlenses. But quasar microlensing showed them to exist at planetary mass at the same time that a hydro-gravitational theory predicted the planet-mass population as fossils of turbulence at the time of recombination (z = 1100; Gibson 1996, 2001). Where the population has now been detected from MACHO searches to the LMC (Sumi et al. 2011) we compare the quasar microlensing results to the recent determination of the mass distribution function measured for the planetary mass function, and show that the population can account for the baryonic dark matter.
Exodus: Hidden origin of dark matter and baryons
NASA Astrophysics Data System (ADS)
Unwin, James
2013-06-01
We propose a new framework for explaining the proximity of the baryon and dark matter relic densities ΩDM ≈ 5Ω B . The scenario assumes that the number density of the observed dark matter states is generated due to decays from a second hidden sector which simultaneously generates the baryon asymmetry. In contrast to asymmetric dark matter models, the dark matter can be a real scalar or Majorana fermion and thus presents distinct phenomenology. We discuss aspects of model building and general constraints in this framework. Moreover, we argue that this scenario circumvents several of the experimental bounds which significantly constrain typical models of asymmetric dark matter. We present a simple supersymmetric implementation of this mechanism and show that it can be used to obtain the correct dark matter relic density for a bino LSP.
CP violation in multibody decays of beauty baryons
NASA Astrophysics Data System (ADS)
Durieux, Gauthier
2016-10-01
Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ b → Λ φ → p π K + K - decay are expected to vanish identically.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan. PMID:26613433
Relativistic quark-diquark model of baryons
Ferretti, J.; Vassallo, A.; Santopinto, E.
2011-06-15
A relativistic quark-diquark mass operator with direct and exchange interaction has been constructed in the framework of point form dynamics. The nonstrange baryon spectrum has been calculated and compared with experimental data.
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-01
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web. PMID:26632589
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web
NASA Astrophysics Data System (ADS)
Eckert, Dominique; Jauzac, Mathilde; Shan, Huanyuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-01
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe’s total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 105-107 kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 107 kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster’s gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-12-01
Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
String junction as a baryonic constituent
NASA Astrophysics Data System (ADS)
Kalashnikova, Yu. S.; Nefediev, A. V.
1996-02-01
We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.
Meson and baryon spectroscopy on the lattice
David Richards
2010-12-01
Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Baryons in the Field Correlator Method
Kezerashvili, R. Ya.; Narodetskii, I. M.; Veselov, A. I.
2009-12-17
The ground and P-wave excited states of nnn, nns and ssn baryons are studied in the framework of the field correlator method using the running strong coupling constant in the Coulomb-like part of the three-quark potential. The string correction for the confinement potential of the orbitally excited baryons, which is the leading contribution of the proper inertia of the rotating strings, is estimated.
Cosmological implications of baryon acoustic oscillation measurements
NASA Astrophysics Data System (ADS)
Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brewington, Howard; Brinkmann, J.; Brownstein, Joel R.; Burden, Angela; Busca, Nicolás G.; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Croft, Rupert A. C.; Cuesta, Antonio J.; Dawson, Kyle S.; Delubac, Timothée; Eisenstein, Daniel J.; Font-Ribera, Andreu; Ge, Jian; Le Goff, J.-M.; Gontcho, Satya Gontcho A.; Gott, J. Richard; Gunn, James E.; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S.; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H.; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K.; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; Nuza, Sebastián E.; Olmstead, Matthew D.; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J.; Petitjean, Patrick; Pieri, Matthew M.; Prada, Francisco; Reid, Beth; Rich, James; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G.; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G.; Schlegel, David J.; Schneider, Donald P.; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A.; Slosar, Anže; Strauss, Michael A.; Thomas, Daniel; Tinker, Jeremy L.; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A.; Weaver, Benjamin A.; Weinberg, David H.; Wood-Vasey, W. M.; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo; BOSS Collaboration
2015-12-01
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H0=67.3 ±1.1 km s-1 Mpc-1 , with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ ), our BAO +SN +CMB combination yields matter density Ωm=0.301 ±0.008 and curvature Ωk=-0.003 ±0.003 . When we allow more general forms of evolving dark energy, the BAO +SN +CMB parameter constraints are always consistent with flat Λ CDM values at ≈1 σ . While the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2 - 2.5 σ ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑mν<0.56 eV (95% confidence), improving to ∑mν<0.25 eV if we include the
Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny; Gadotti, D. A.; Gil de Paz, A.; Hinz, J. L.; Menéndez-Delmestre, K.; Regan, M. W.; Seibert, M.; Athanassoula, E.; Bosma, A.; and others
2014-06-01
We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the
Is the cygnet the quintessential baryon?
Segal, I E
1991-01-01
The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation. PMID:11607152
Is the cygnet the quintessential baryon?
Segal, I E
1991-02-01
The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation.
Strangeness in the baryon ground states
NASA Astrophysics Data System (ADS)
Semke, A.; Lutz, M. F. M.
2012-10-01
We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Dark Galaxies and Lost Baryons (IAU S244)
NASA Astrophysics Data System (ADS)
Davies, Jonathan I.; Disney, Michael J.
2008-05-01
Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks
A Baryonic Solution to the Missing Satellites Problem
Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan
2013-03-01
It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem
A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM
Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan E-mail: mqk@astro.berkeley.edu E-mail: dhooper@fnal.gov
2013-03-01
It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.
Baryons as relativistic three-quark bound states
NASA Astrophysics Data System (ADS)
Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.
2016-11-01
We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.
Heavy-flavor-conserving hadronic weak decays of heavy baryons
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Cheung, Chi-Yee; Lin, Guey-Lin; Lin, Yeu-Chung; Yan, Tung-Mow; Yu, Hoi-Lai
2016-03-01
More than two decades ago, we studied heavy-flavor-conserving weak decays of heavy baryons within the framework that incorporates both heavy-quark and chiral symmetries. In view of the first observation of Ξ b - → Λ b 0 π - by LHCb recently, we have reexamined these decays and presented updated predictions. The predicted rates for Ξ b - → Λ b 0 π - in the MIT bag and diquark models are consistent with experiment. The major theoretical uncertainty stems from the evaluation of baryon matrix elements. The branching fraction of Ξ c → Λ c π is predicted to be of order 10-4. It is suppressed relative to {B}({Ξ}_bto {Λ}_bπ ) owing to the shorter lifetime of Ξ c relative to Ξ b and the destructive nonspectator W-exchange contribution. The kinematically accessible weak decays of the sextet heavy baryon Ω Q are Ω Q → Ξ Q π. Due to the absence of the {{B}}_6-{{B}}{_3-} transition in the heavy quark limit and the {{B}}_6-{{B}}_6 transition in the model calculations, Ω Q → Ξ Q π vanish in the heavy quark limit.
Locating the "Missing" Baryons with Extragalactic Dispersion Measure Estimates
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2014-01-01
Recently, Thornton and coworkers confirmed a class of millisecond radio bursts likely of extragalactic origin that is well-suited for estimating dispersion measures (DMs). We calculate the probability distribution of DM(z) in different models for how the cosmic baryons are distributed (both analytically and with cosmological simulations). We show that the distribution of DM is quite sensitive to whether the "missing" baryons lie around the virial radius of 1011-1013 M ⊙ halos or further out, which is not easily constrained with other observational techniques. The intrinsic contribution to DM from each source could complicate studies of the extragalactic contribution. This difficulty is avoided by stacking based on the impact parameter to foreground galaxies. We show that a stacking analysis using a sample of ~100 DM measurements from arcminute-localized, z >~ 0.5 sources would place interesting constraints at 0.2-2 halo virial radii on the baryonic mass profile surrounding different galaxy types. Conveniently for intergalactic studies, sightlines that intersect intervening galactic disks should be easily identified owing to scattering. A detectable level of scattering may also result from turbulence in the circumgalactic medium.
BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES
Zolotov, Adi; Dekel, Avishai; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Quinn, Tom; Pontzen, Andrew; Christensen, Charlotte; Wadsley, James
2012-12-10
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M{sub V} < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H{sub 2} formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M{sub vir} {>=} 10{sup 9} M{sub Sun }, M{sub *} {>=} 10{sup 7} M{sub Sun }) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations
Physical processes effecting the baryonic matter content of the Universe
NASA Astrophysics Data System (ADS)
Panayotova, Mariana
2015-01-01
We have discussed physical processes effecting the generation of the matter content of the Universe. First we have studied the processes effecting Big Bang Nucleosynthesis during which the chemical content of the baryonic component of the Universe was produced. We have provided detail numerical analysis of the BBN production of ^4He, Y_p, in the presence of ν_e ← ν_s neutrino oscillations, effective after electron neutrino decoupling. We have accounted for all known effects of neutrino oscillations on cosmological nucleosyntesis. We have obtained cosmological bounds corresponding to δ Y_p/Y_p= 5.2 % in correspondance with the recently found higher uncertainty in ^4He. Iso-helium contours for δ Y_p/Y_p > 5% and population of the ν_s state δ N_s = 0; 0.5; 0.7; 0.9, both for resonant and non-resonant oscillations have been calculated. Next we have studied the processes effecting the formation of the baryon content of the Universe. We have investigated a baryogenesis model based on Affleck and Dine baryogenesis scenario, Scalar Field Condensate (SFC) baryogenesis model. We have provided precise numerical analysis of the SFC baryogenesis model numerically accounting for the particle creation processes by the time varying scalar field. We have numerically obtained the dependence of the field and baryon charge evolution and their final values on the model's parameters, namely: the gauge coupling constant α, the Hubble constant during inflation H_I, the mass of the field m and the self coupling constants λ_i. We have found the range of the model parameters for which a baryon asymmetry value close to the observed one can be generated.
A NEW WAY OF DETECTING INTERGALACTIC BARYONS
Lieu, Richard; Duan Lingze
2013-02-01
For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales, it should be possible to determine the line-of-sight plasma column along the many directions and distances to the various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.
Heavy-Baryon Spectroscopy from Lattice QCD
Huey-Wen Lin, Saul D. Cohen, Liuming Liu, Nilmani Mathur, Konstantinos Orginos, Andre Walker-Loud
2011-01-01
We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $\\Xi_{cc}$, for which we found the isospin-averaged mass to be $\\Xi_{cc}$ to be $3665\\pm17\\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $\\Omega_{cc}$ to be $3763\\pm19\\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27) MeV.
The CLAS Excited Baryon Program at JLab
Crede, Volker
2007-10-26
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
The CLAS Excited Baryon Program at Jlab
Volker Crede
2007-10-01
Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.
Self Interacting Dark Matter and Baryons
NASA Astrophysics Data System (ADS)
Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.
2015-01-01
Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.
Big Bang Nucleosynthesis of Lithium-7 and the Baryon Density of the Universe
NASA Astrophysics Data System (ADS)
Vangioni-Flam, Elisabeth; Coc, Alain; Cassé, Michel
Thanks to recent nuclear physic compilations, we update Standard Big Bang Nucleosynthesis (SBBN) calculations. By a Monte-Carlo technique, we calculate the uncertainties on the light element yields related to nuclear reactions. The results are compared to astrophysical observations. The baryonic density obtained is confronted to other estimates deduced from recent independent approaches as the observations of the anisotropies of the Cosmic Microwave Background or the Lyα forest at high redshift. Lithium-7 could lead to more stringent constraints on the baryonic density of the universe than deuterium, because of a much higher observation statistics and an easier extrapolation to primordial values.
On the baryonic contents of low mass galaxies
Gnedin, Nickolay Y
2012-07-16
The baryonic Tully-Fisher relation is an important observational constraint on cosmological and galactic models. However, it is critical to keep in mind that in observations only stars, molecular, and atomic gas are counted, while the contribution of the ionized gas is almost universally missed. The ionized gas is, however, expected to be present in the gaseous disks of dwarf galaxies simply because they are exposed to the cosmic ionizing background and to the stellar radiation that manages to escape from the central regions of the galactic disks into their outer layers. Such an expectation is, indeed, born out both by cosmological numerical simulations and by simple analytical models.
ON THE BARYONIC CONTENTS OF LOW-MASS GALAXIES
Gnedin, Nickolay Y.
2012-08-01
The baryonic Tully-Fisher relation is an important observational constraint on cosmological and galactic models. However, it is critical to keep in mind that in observations only stars and molecular and atomic gas are counted, while the contribution of the ionized gas is almost universally missed. The ionized gas is, however, expected to be present in the gaseous disks of dwarf galaxies simply because they are exposed to the cosmic ionizing background and to the stellar radiation that manages to escape from the central regions of the galactic disks into their outer layers. Such an expectation is, indeed, born out both by cosmological numerical simulations and by simple analytical models.
Counts of galaxy clusters as cosmological probes: the impact of baryonic physics
Balaguera-Antolínez, Andrés; Porciani, Cristiano E-mail: porciani@astro.uni-bonn.de
2013-04-01
The halo mass function from N-body simulations of collisionless matter is generally used to retrieve cosmological parameters from observed counts of galaxy clusters. This neglects the observational fact that the baryonic mass fraction in clusters is a random variable that, on average, increases with the total mass (within an overdensity of 500). Considering a mock catalog that includes tens of thousands of galaxy clusters, as expected from the forthcoming generation of surveys, we show that the effect of a varying baryonic mass fraction will be observable with high statistical significance. The net effect is a change in the overall normalization of the cluster mass function and a milder modification of its shape. Our results indicate the necessity of taking into account baryonic corrections to the mass function if one wants to obtain unbiased estimates of the cosmological parameters from data of this quality. We introduce the formalism necessary to accomplish this goal. Our discussion is based on the conditional probability of finding a given value of the baryonic mass fraction for clusters of fixed total mass. Finally, we show that combining information from the cluster counts with measurements of the baryonic mass fraction in a small subsample of clusters (including only a few tens of objects) will nearly optimally constrain the cosmological parameters.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, such as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.
Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding
de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.
2015-02-27
We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; McClain, C. J.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.
2008-01-01
We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at {radical}s{sub NN} = 200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy {radical}s{sub NN} = 17.3 GeV. The previous observations are for the bulk production, while at intermediate p{sub T},1 < p{sub T} < 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.
Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.
Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2005-09-16
We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider. PMID:16197068
Study of B-Meson Decays to Final States with a Single Charm Baryon
Majewski, Stephanie A.
2007-08-01
A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-} and $\\bar{B}$^{0} → Λ^{+}_{c}$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-}, is favored over $\\bar{B}$^{0} → Λ^{+}_{c}$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ^{+}_{c}$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B^{-} → Λ^{+}_{c}$\\bar{p}$π^{-} system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B^{-} → Σc(2455) ^{0}$\\bar{p}$ and B^{-} → Σ_{c}(2800) ^{0}$\\bar{p}$. This is the first observation of the decay B^{-} → Σ_{c}(2800) ^{0}$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B^{-} → Σ_{c}(2455) ^{0}$\\bar{p}$ decays and measure the spin of the B^{-} → Σ_{c}(2455) ^{0}$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Production and decay of charmed baryons
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Heavy Baryons in a Quark Model
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
Systematic study of baryons in a three-body quark model
NASA Astrophysics Data System (ADS)
Aslanzadeh, M.; Rajabi, A. A.
2016-09-01
We investigated the structure of baryons within a three-body quark model based on hypercentral approach. We considered an SU(6)-invariant potential consisting of the well-known "Coulomb-plus-linear" potential plus some multipole interactions as V ( x) ∝ x - n with n > 2. Then, through an analytical solution, we obtained the energy eigenvalues and eigenfunctions of the three-body problem and evaluated some observables such as the mass spectrum of light baryons and both the electromagnetic elastic form factors, and the charge radii of nucleons. We compared our results with the experimental data and showed that the present model provides a good description of the observed resonances.
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Brown, R. W.
1979-01-01
Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.
Strong decays of excited baryons in Large Nc QCD
Goity, J. L.; Scoccola, N. N.
2007-02-12
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Strong decays of excited baryons in Large Nc QCD
Goity, Jose; Scoccola, Norberto
2007-02-01
We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Baryons, universe and everything in between
NASA Astrophysics Data System (ADS)
Ho, Shirley
2008-06-01
This thesis is a tour of topics in cosmology, unified by their diversity and pursuits in better understanding of our Universe. The first chapter measures the Integrated Sachs-Wolfe effect as a function of redshift utilizing a large range of large scale structure observations and the cosmic microwave background. We combine the ISW likelihood function with weak lensing of CMB (which is described in Chapter 2) and CMB powerspectrum to constrain the equation of state of dark energy and the curvature of the Universe. The second chapter investigates the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, and we find evidence for a positive cross-correlation at the 2.5s level. The third chapter explores the statistical properties of Luminous Red Galaxies in a sample of X-ray selected galaxy clusters, including the halo occupation distribution, how Poisson is the satellite distribution of LRGs and the radial profile of LRGs within clusters. The forth chapter explores the idea of using multiplicity of galaxies to understand their merging timescales. We find that (by using the multiplicity function of LRGs in Chapter 3) Massive halos (~ 10 14 M [Special characters omitted.] ) at low redshift have, for example, been bombarded by several ~ 10 13 M [Special characters omitted.] halos throughout their history and these accreted LRGs merge on relatively short timescales (~ 2 Gyr). The fifth chapter presents a new method for generating a template for the kinematic Sunyaev-Zel'dovich effect that can be used to detect the missing baryons. We assessed the feasibility of the method by investigating combinations of differeng galaxy surveys and CMB observations and find that we can detect the gas-momentum kSZ correlation, and thus the ionized gas, at significant signal-to-noise level.
Leonard, D.S.; Karwowski, H.J.; Brune, C.R.; Fisher, B.M.; Ludwig, E.J.
2006-04-15
Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe {omega}{sub b} with a precision of about 4%. With {omega}{sub b} tightly constrained, comparisons of Big Bang nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He total cross sections at lab energies from 110 to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2%{+-}1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, by using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used NACRE (nuclear astrophysics compilation of reaction rates) database. These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.
The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS
P.L. Cole
2007-10-01
We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.
The Need for Polarization for Extracting Baryon Resonances and the NSTAR Program at CLAS
Cole, Philip L.
2007-10-26
We report on the NSTAR program in Hall B of JLab on using polarization observables to extract parameters of baryon resonances. The scientific purpose of the program is to improve the understanding of the underlying quark degrees of freedom, especially in the higher resonance regions, where we expect to uncover many of missing baryon resonances that mainly decay through multi-meson channels. With the high-quality beam of circularly- and linearly-polarized photons onto unpolarized and polarized proton and deteurium targets, and coupled with the nearly complete solid angle coverage of CLAS, we will extract the differential cross sections and associated polarization observables obtained by the photoproduction of vector mesons and kaons at center of mass energies of 1.7 to 2.2 GeV. The paper will primarily present the photon beam aspects of the excited baryon program.
Exciting Baryons: now and in the future
Michael Pennington
2012-04-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Decuplet baryons in a hot medium
NASA Astrophysics Data System (ADS)
Azizi, K.; Bozkır, G.
2016-10-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the Δ , Σ ^{*}, Ξ ^{*}, and Ω baryons with respect to temperature are analyzed taking into account the additional operators appearing in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to T≃ 150 MeV but, beyond this point, they start to diminish considerably.
Exciting baryons: Now and in the future
NASA Astrophysics Data System (ADS)
Pennington, M. R.
2012-04-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Sterile neutrinos as the origin of dark and baryonic matter.
Canetti, Laurent; Drewes, Marco; Shaposhnikov, Mikhail
2013-02-01
We demonstrate for the first time that three sterile neutrinos alone can simultaneously explain neutrino oscillations, the observed dark matter, and the baryon asymmetry of the Universe without new physics above the Fermi scale. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, evading thus the constraints on sterile neutrino dark matter from structure formation and x-ray searches. We identify the range of sterile neutrino properties that is consistent with all known constraints. We find a domain of parameters where the new particles can be found with present day experimental techniques, using upgrades to existing experimental facilities.
Discovering Baryon-Number Violating Neutralino Decays at the LHC
Butterworth, Jonathan M.; Ellis, John R.; Raklev, Are R.; Salam, Gavin P.
2009-12-11
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks in models with baryonic violation of R parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
NASA Astrophysics Data System (ADS)
Liang, Wei-Hong; Xiao, C. W.; Oset, E.
2016-05-01
In this talk we review the results about the interaction of B ¯N , B ¯Δ, B ¯*N and B ¯*Δ states with beauty B = 1, together with their coupled channels, using the extended local hidden gauge approach. The Λb(5912) and Λb(5920) observed in the experiment are dynamically generated from the meson-baryon interaction, and they couple mostly to B ¯*N , which are degenerate with the Weinberg-Tomozawa interaction. In addition, three more states with I = 0 and eight more states with I = 1 are predicted.
C P -violating polarization asymmetry in charmless two-body decays of beauty baryons
NASA Astrophysics Data System (ADS)
He, Min; He, Xiao-Gang; Li, Guan-Nan
2015-08-01
Several baryons containing a heavy b-quark, the b-baryons, have been discovered. The charmless two-body decays of b-baryons can provide a new platform for C P violating studies in a similar way provided by charmless two-body decays of B-meson. There are new C P violating observables related to baryon polarization in b-baryon decays. We show that in the flavor S U (3 ) limit, there exists relations involving different combinations of the decay amplitudes compared with those in C P violating rate asymmetry. These new relations therefore provide interesting tests for the mechanism of C P violations in the standard model (SM) and flavor S U (3 ) symmetry. Such tests could complement the b-meson decay studies which hint at a better flavor S U (3 ) conservation in b-hadron decays than in kaon and hyperon decays. Future data from LHCb can provide new information about C P violation in the SM.
Missing baryonic resonances in the Hagedorn spectrum
NASA Astrophysics Data System (ADS)
Man Lo, Pok; Marczenko, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2016-08-01
The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.
Aspects of SU(3) baryon extrapolation
Young, R. D.
2009-12-17
We report on a recent chiral extrapolation, based on an SU(3) framework, of octet baryon masses calculated in 2+1-flavour lattice QCD. Here we further clarify the form of the extrapolation, the estimation of the infinite-volume limit, the extracted low-energy constants and the corrections in the strange-quark mass.
Weak radiative baryonic decays of B mesons
Kohara, Yoji
2004-11-01
Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.
Beauty baryon decays: a theoretical overview
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
Baryon spectroscopy - Recent results from the CBELSA/TAPS experiment
NASA Astrophysics Data System (ADS)
Hartmann, Jan
2016-05-01
One of the remaining challenges within the standard model is to gain a good understanding of QCD in the non-perturbative regime. One key step toward this aim is baryon spectroscopy, investigating the spectrum and the properties of baryon resonances. To get access to resonances with small πN partial width, photoproduction experiments provide essential information. In order to extract the contributing resonances, partial wave analyses need to be performed. Here, a complete experiment is required to unambiguously determine the contributing amplitudes. This involves the measurement of carefully chosen single and double polarization observables. The CBELSA/TAPS experiment with a longitudinally or transversely polarized target and an energy tagged, linearly or circularly polarized photon beam allows the measurement of a large set of polarization observables. Due to its good energy resolution, high detection effciency for photons, and the nearly complete solid angle coverage, it is ideally suited for the measurement of photoproduction of neutral mesons decaying into photons. Recent results for various double polarization observables in π0 and η photoproduction and their impact on the partial wave analysis are discussed.
Baryons, neutrinos, feedback and weak gravitational lensing
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic; Viola, Massimo; Heymans, Catherine
2015-06-01
The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OverWhelmingly Large hydrodynamical simulations. It is specifically calibrated for z < 1.5, where it models the simulations to an accuracy that is better than 2 per cent for scales k < 10 h Mpc-1 and better than 5 per cent for 10 < k < 100 h Mpc-1. Equipped with this precise tool, this paper presents the first constraint on baryonic feedback models using gravitational lensing data, from the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). In this analysis, we show that the effect of neutrino mass on the mass power spectrum is degenerate with the baryonic feedback at small angular scales and cannot be ignored. Assuming a cosmology precision fixed by WMAP9, we find that a universe with massless neutrinos is rejected by the CFHTLenS lensing data with 85-98 per cent confidence, depending on the baryon feedback model. Some combinations of feedback and non-zero neutrino masses are also disfavoured by the data, although it is not yet possible to isolate a unique neutrino mass and feedback model. Our study shows that ongoing weak gravitational lensing surveys (KiDS, HSC and DES) will offer a unique opportunity to probe the physics of baryons at galactic scales, in
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Applications of AdS/QCD and Light-Front Holography to Baryon Physics
Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.
2011-08-22
The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.
Big-bang nucleosynthesis and the baryon density of the universe.
Copi, C J; Schramm, D N; Turner, M S
1995-01-13
For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.
The baryon-dark matter ratio via moduli decay after Affleck-Dine baryogenesis
Kane, Gordon; Yu, Hai-Bo; Shao, Jing; Watson, Scott E-mail: jishao@syr.edu E-mail: haiboyu@gmail.com
2011-11-01
Low-scale supersymmetry breaking in string motivated theories implies the presence of O(100 TeV) scale moduli, which generically lead to a significant modification of the history of the universe prior to Big Bang Nucleosynthesis. Such an approach implies a non-thermal origin for dark matter resulting from scalar decay, where the lightest supersymmetric particle can account for the observed dark matter relic density. We study the further effect of the decay on the baryon asymmetry of the universe, and find that this can satisfactorily address the problem of the over-production of the baryon asymmetry by the Affleck-Dine mechanism in the MSSM. Remarkably, there is a natural connection between the baryon and dark matter abundances today, which leads to a solution of the 'Cosmic Coincidence Problem'.
Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies
Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; /New York City Coll. Tech.
2009-08-03
We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on
GAS-RICH MERGERS IN LCDM: DISK SURVIVABILITY AND THE BARYONIC ASSEMBLY OF GALAXIES
Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.
2009-09-01
We use N-body simulations and observationally normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M>0.3) experienced by the Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshifts. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed early-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11}-10{sup 13} M{sub sun}. These results lend support to the conjecture that mergers with high-baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Second, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas-poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is significant. Approximately {approx}20%-30% of the cold baryonic material in M{sub star} {approx} 10{sup 10.5} M{sub sun} (M{sub DM} {approx} 10{sup 12} M{sub sun}) galaxies is accreted as cold gas or stars via major mergers since z = 2, with most of this accretion in the form of cold gas. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub sun} (M {sub DM} {approx} 10{sup 13} M{sub sun}), the fraction of baryons amassed in mergers since z = 2 is even higher, {approx}40%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass
Baryon content and dynamic state of galaxy clusters
NASA Astrophysics Data System (ADS)
Wang, D.
2016-06-01
We are carrying out a panchromatic observing program to study the baryon content and dynamic state of galaxy clusters. In this talk, I will present results primarily from XMM-Newton observations of optically-selected clusters in the redshift range of 0.1-0.4. These clusters are selected because of their fortuitous alignment with background far-UV-bright QSOs, which thus allows for Ly-alpha and O VI absorption line spectroscopy with HST/COS, probing physical processes of the evolving intracluster medium, freshly accreted from the intergalactic medium and/or stripped out of individual galaxies, as well as the gaseous halos of individual cluster galaxies. Interestingly, such clusters tend to be dynamically young and often consist of merging subcluster pairs at similar redshifts. These subclusters themselves typically show substantial substructures, including strongly distorted radio lobes, as well as large position offsets between the diffuse X-ray centroids and the brightest galaxies. A comparison of the hot gas and stellar masses of each cluster with the expected cosmological baryonic mass fraction indicates a significant room for other gas components. I will also briefly examine the limitations of both optically and X-ray selected clusters, as well as how they may be used in a complementary fashion.
The Experimental Discovery of Double-Charm Baryons
NASA Astrophysics Data System (ADS)
Engelfried, Jürgen; Selex Collaboration
2005-04-01
In 2002, the SELEX [The SELEX (Fermilab E781) Collaboration: Ball State University, Bogazici University, Carnegie-Mellon University, Centro Brasileiro de Pesquisas Fisicas, Fermilab, Institute For High Energy Physics (Protvino), Institute of High Energy Physics (Beijing), Institute of Theoretical and Experimental Physics (Moscow), Max-Planck-Institute for Nuclear Physics, Moscow State University, Petersburg Nuclear Physics Institute, Tel Aviv University, Universidad Autónoma de San Luis Potosí, Universidade Federal da Paraíba, H. H. Wills Physics Laboratory, University of Bristol, University of Iowa, University of Michigan-Flint, University of Rochester, University of Rome La Sapienza and INFN, University of São Paulo, University of Trieste and INFN. http://www-selex.fnal.gov] Experiment (Fermilab E781) reported the first observation of a member of the family of doubly charmed baryons [SELEX Collaboration, M. Mattson et al.: First observation of the doubly charmed baryonΞcc+. Phys. Rev. Letters 89 (2002) 112001, [ arXiv:hep-ex/0208014
Complex Langevin simulation of chiral symmetry restoration at finite baryonic density
NASA Astrophysics Data System (ADS)
Ilgenfritz, Ernst-Michael
1986-12-01
A recently proposed effective SU(3) spin model with chiral order parameter is studied by means of the complex Langevin equation. A first-order chiral symmetry restoring and deconfining transition is observed at sufficiently low temperature at finite baryonic density. Permanent address: Sektion Physik, Karl-Marx Universität, DDR-7010 Leipzig, German Democratic Republic.
Forming supermassive black holes by accreting dark and baryon matter
NASA Astrophysics Data System (ADS)
Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan
2006-01-01
Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal
The XXL Survey. XIII. Baryon content of the bright cluster sample
NASA Astrophysics Data System (ADS)
Eckert, D.; Ettori, S.; Coupon, J.; Gastaldello, F.; Pierre, M.; Melin, J.-B.; Le Brun, A. M. C.; McCarthy, I. G.; Adami, C.; Chiappetti, L.; Faccioli, L.; Giles, P.; Lavoie, S.; Lefèvre, J. P.; Lieu, M.; Mantz, A.; Maughan, B.; McGee, S.; Pacaud, F.; Paltani, S.; Sadibekova, T.; Smith, G. P.; Ziparo, F.
2016-06-01
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction Ωb/ Ωm. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. Since it spans a wide range of mass (1013-1015 M⊙) and redshift (0.05-1.1) and benefits from a large set of multiwavelength data, the XXL-100-GC sample is ideal for measuring the global baryon budget of massive halos. We measure the gas masses of the detected halos and use a mass-temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads fgas,500 = 0.055-0.006+0.007(M500/1014 M⊙)0.21-0.10+0.11. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at r500,MT. Our measurements require a hydrostatic bias 1-b = MX/MWL = 0.72-0.07+0.08 to match the gas fraction obtained using lensing and hydrostatic equilibrium, which holds independently of the instrument considered. Comparing our gas fraction measurements with the expectations from numerical simulations, we find that our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. In light of these results, we note that a mass bias 1-b = 0.58 as required to reconcile Planck
Spin-3/2 baryons in lattice QCD
J.M. Zanotti; S. Choe; D.B. Leinweber; W. Melnitchouk; A.G. Williams; J.B. Zhang
2002-06-01
We present first results for masses of spin-3/2 baryons in lattice QCD, using a novel fat-link clover fermion action in which only the irrelevant operators are constructed using fat links. In the isospin-1/2 sector, we observe, after appropriate spin and parity projection, a strong signal for the J{sup P} = 3/2{sup -} state, and find good agreement between the 1/2{sup +} mass and earlier nucleon mass simulations with a spin-1/2 interpolating field. For the isospin-3/2 Delta states, clear mass splittings are observed between the various 1/2{sup +/-} and the 3/2{sup +/-} channels, with the calculated level orderings in good agreement with those observed empirically.
GYULASSY,M.; KHARZEEV,D.; XU,N.
2002-03-28
One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.
Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter
NASA Astrophysics Data System (ADS)
Dabringhausen, J.; Kroupa, P.; Famaey, B.; Fellhauer, M.
2016-08-01
Assuming virial equilibrium and Newtonian dynamics, low-mass early-type galaxies have larger velocity dispersions than expected from the amount of baryons they contain. The conventional interpretation of this finding is that their dynamics is dominated by non-baryonic matter. However, there is also strong evidence that many low-mass early-type galaxies formed as tidal dwarf galaxies, which would contain almost no dark matter. Using an extensive catalogue of early-type galaxies, we therefore discuss how the internal dynamics of early-type galaxies in general can be understood by replacing the assumption of non-baryonic dark matter with two alternative assumptions. The first assumption is that Milgromian dynamics (i.e., MOND) is valid, which changes the effective gravitational force in the weak-field limit. The second assumption is that binary stars affect the observed line-of-sight velocity dispersions. Some moderate discrepancies between observed and predicted velocity dispersions remain also when these effects are implemented. Nevertheless, the observed velocity dispersions in early-type galaxies can then easily be explained without invoking the presence of non-baryonic dark matter in them, but with already documented variations of the galaxy-wide stellar initial mass function and non-equilibrium dynamics in some of the low-mass early-type galaxies.
A Schwarzschild-like model for baryons
NASA Astrophysics Data System (ADS)
Singleton, D.; Yoshida, A.
2002-06-01
We present a toy model of baryons using singular solutions of the SU(2) Yang-Mill-Higgs (YMH) field equations, which bears some similarity to the Schwarzschild solution of general relativity. The SU (2) solutions are used as a background field into which a scalar, SU (2) test particle is placed. This can be compared to placing an electrically charged particle in a Coulomb background field, except the SU (2) YMH solutions are singular on a spherical membrane thus trapping (confining) the test particle inside the sphere in a manner similar to certain bag models of baryons. An interesting consequence of this model is that the composite system is a fermion even though the original Lagrangian contains only bosonic fields.
Effective Degrees of Freedom in Baryon Spectroscopy
NASA Astrophysics Data System (ADS)
Santopinto, E.; Ferretti, J.
2016-10-01
Three quark and quark-diquark models are characterized by several missing resonances, even if in the latter case the state space is a reduced one. Moreover, even quark-diquark models show some differences in their predictions for missing states. After several years of discussion, we still do not know whether baryons can be completely described in terms of three quark models or if diquark correlations have to be taken into account; another possibility, suggested in Santopinto (Phys Rev C 72:022201, 2005), Ferretti et al. (Phys Rev C 83:065204, 2011) and Galatà and Santopinto (Phys Rev C 86:045202, 2012), is that the previous pictures (three-quark and quark-diquark) represent the dominant descriptions of baryons at different energy scales. New experiments may be planned at Jlab (JLab12), Bes, Belle and LHCb in order to answer this fundamental open question.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
The Baryonic Tully-Fisher Relation.
McGaugh; Schombert; Bothun; de Blok WJ
2000-04-20
We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 less, similarVc less, similar300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc less, similar90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md=M*+Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md~V4c.
Compressed baryonic matter at FAIR: JINR participation
NASA Astrophysics Data System (ADS)
Kurilkin, P.; Ladygin, V.; Malakhov, A.; Senger, P.
2015-11-01
The scientific mission of the Compressed Baryonic Matter(CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. We present the results on JINR participation in the CBM experiment. JINR teams are responsible on the design, the coordination of superconducting(SC) magnet manufacture, its testing and installation in CBM cave. Together with Silicon Tracker System it will provide the momentum resolution better 1% for different configuration of CBM setup. The characteristics and technical aspects of the magnet are discussed. JINR plays also a significant role in the manufacture of two straw tracker station for the muon detection system. JINR team takes part in the development of new method for simulation, processing and analysis experimental data for different basic detectors of CBM.
Two Baryons with Twisted Boundary Conditions
Briceno, Raul; Davoudi, Zohreh; Luu, Thomas; Savage, Martin
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
An Unquenched Quark Model of Baryons
Bijker, Roelof; Santopinto, Elena
2007-10-26
We present the formalism for a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The present approach is an extension of the fiux-tube breaking model of Geiger and Isgur in which now the contribution of quark-antiquark pairs can be studied for any inital baryon, for any fiavor of the qq-bar pair (not only ss-bar but also uu-bar and dd-bar) and for arbitrary hadron wave functions. The method is illustrated with an application to the spin of the proton and the flavor asymmetry of the nucleon sea.
Stealth dark matter: Dark scalar baryons through the Higgs portal
NASA Astrophysics Data System (ADS)
Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X.-Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.; Lattice Strong Dynamics LSD Collaboration
2015-10-01
We present a new model of stealth dark matter: a composite baryonic scalar of an S U (ND) strongly coupled theory with even ND≥4 . All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to S U (4 ), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB≳300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation. PMID:27058069
Continuum-mediated dark matter-baryon scattering
NASA Astrophysics Data System (ADS)
Katz, Andrey; Reece, Matthew; Sajjad, Aqil
2016-06-01
Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator Oμν that mixes with the hypercharge field strength and couples to dark matter tensor currents, which has an interesting viable parameter space. We describe the effect of such mediators on the cross sections and recoil energy spectra that could be observed in direct detection.
Mission and instrumentation concept for the baryonic structure probe
NASA Astrophysics Data System (ADS)
Ebbets, Dennis; DeCino, James; Turner-Valle, Jennifer; Sembach, Kenneth
2006-06-01
There is a growing consensus that a substantial fraction of the matter in the universe, especially what we think of as normal baryonic matter, exists in a tenuous, hot filamentary intergalactic medium often referred to as the Cosmic Web. Improving our understanding of the web has been a high priority scientific goal in NASA's planning and roadmapping activities. NASA recently supported an Origins Probe study that explored the observable phenomenology of the web in detail and developed concepts for the instrumentation and mission. The Baryonic Structure Probe operates in the ultraviolet spectral region, using primarily O VI (λλ 1032, 1038 angstrom) and HI Ly α (λ 1216 angstrom) as tracers of the web. A productive investigation requires both moderate resolution (R = λ/Δλ ~ 30000) absorption line spectroscopy using faint background quasars as continuum sources, and imaging of the diffuse filaments in emission lines of the same ions. Spectroscopic sensitivity to quasars as faint as V ~ 19 will probe a large number of sight lines to derive physical diagnostics over the redshift range 0 < z < 1. Spectral imaging with a wide field of view and sensitivity to a redshift range 0 < z < 0.3 will map the filaments in a large volume of the universe after the web had evolved to near its modern structure. This paper summarizes the scientific goals, identifies the measurement requirements derived from them, and describes the instrument concepts and overall mission architecture developed by the BSP study team.
Precision measurement of the Λb(0) baryon lifetime.
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-09-01
The ratio of the Λb(0) baryon lifetime to that of the B(0) meson is measured using 1.0 fb(-1) of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λb(0) baryon is observed for the first time in the decay mode Λb(0)→J/ψpK-, while the B(0) meson decay used is the well known B(0)→J/ψπ+ K- mode, where the π+ K- mass is consistent with that of the K(*0)(892) meson. The ratio of lifetimes is measured to be 0.976±0.012±0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B(0) meson lifetime, the Λb(0) lifetime is found to be 1.482±0.018±0.012 ps. In both cases, the first uncertainty is statistical and the second systematic. PMID:25166658
Precision measurement of the Λb(0) baryon lifetime.
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-09-01
The ratio of the Λb(0) baryon lifetime to that of the B(0) meson is measured using 1.0 fb(-1) of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λb(0) baryon is observed for the first time in the decay mode Λb(0)→J/ψpK-, while the B(0) meson decay used is the well known B(0)→J/ψπ+ K- mode, where the π+ K- mass is consistent with that of the K(*0)(892) meson. The ratio of lifetimes is measured to be 0.976±0.012±0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B(0) meson lifetime, the Λb(0) lifetime is found to be 1.482±0.018±0.012 ps. In both cases, the first uncertainty is statistical and the second systematic.
Streaming Velocities and the Baryon Acoustic Oscillation Scale.
Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M
2016-03-25
At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.
Baryon operators and spectroscopy in lattice QCD
Subhasish Basak; Robert Edwards; Rudolf Fiebig; George Fleming; Urs Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2001-10-01
The construction of the operators and correlators required to determine the excited baryon spectrum is presented, with the aim of exploring the spatial and spin structure of the states while minimizing the number of propagator inversions. The method used to construct operators that transform irreducibly under the symmetries of the lattice is detailed, and the properties of example operators is studied using domain-wall fermion valence propagators computed on MILC asqtad dynamical lattices.
Understanding the baryon and meson spectra
Pennington, Michael R.
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Staggered heavy baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
NASA Astrophysics Data System (ADS)
Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.
2016-05-01
The decays Λ b 0 → ψ(2S)pK- and Λ b 0 → J/ ψπ + π -pK- are observed in a data sample corresponding to an integrated luminosity of 3 fb-1, collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies by the LHCb detector. The ψ(2S) mesons are reconstructed through the decay modes ψ(2S) → μ+μ- and ψ(2S) → J/ψ π + π -.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Precision cosmology and the density of baryons in the universe.
Kaplinghat, M; Turner, M S
2001-01-15
Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.
The different baryonic Tully-Fisher relations at low masses
NASA Astrophysics Data System (ADS)
Brook, Chris B.; Santos-Santos, Isabel; Stinson, Greg
2016-06-01
We compare the Baryonic Tully-Fisher relation (BTFR) of simulations and observations of galaxies ranging from dwarfs to spirals, using various measures of rotational velocity Vrot. We explore the BTFR when measuring Vrot at the flat part of the rotation curve, Vflat, at the extent of H I gas, Vlast, and using 20 per cent (W20) and 50 per cent (W50) of the width of H I line profiles. We also compare with the maximum circular velocity of the parent halo, V_max^DM, within dark matter only simulations. The different BTFRs increasingly diverge as galaxy mass decreases. Using Vlast one obtains a power law over four orders of magnitude in baryonic mass, with slope similar to the observed BTFR. Measuring Vflat gives similar results as Vlast when galaxies with rising rotation curves are excluded. However, higher rotation velocities would be found for low-mass galaxies if the cold gas extended far enough for Vrot to reach a maximum. W20 gives a similar slope as Vlast but with slightly lower values of Vrot for low-mass galaxies, although this may depend on the extent of the gas in your galaxy sample. W50 bends away from these other relations towards low velocities at low masses. By contrast, V_max^DM bends towards high velocities for low-mass galaxies, as cold gas does not extend out to the radius at which haloes reach V_max^DM. Our study highlights the need for careful comparisons between observations and models: one needs to be consistent about the particular method of measuring Vrot, and precise about the radius at which velocities are measured.
New Exotic Meson and Baryon Resonances from Doubly Heavy Hadronic Molecules.
Karliner, Marek; Rosner, Jonathan L
2015-09-18
We predict several new exotic doubly heavy hadronic resonances, inferring from the observed exotic bottomoniumlike and charmoniumlike narrow states X(3872), Z_{b}(10610), Z_{b}(10650), Z_{c}(3900), and Z_{c}(4020/4025). We interpret the binding mechanism as mostly molecularlike isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q=c,b and antiquark Q[over ¯]^{'}=c[over ¯],b[over ¯], namely, DD[over ¯]^{*}, D^{*}D[over ¯]^{*}, D^{*}B^{*}, B[over ¯]B^{*}, B[over ¯]^{*}B^{*}, Σ_{c}D[over ¯]^{*}, Σ_{c}B^{*}, Σ_{b}D[over ¯]^{*}, Σ_{b}B^{*}, Σ_{c}Σ[over ¯]_{c}, Σ_{c}Λ[over ¯]_{c}, Σ_{c}Λ[over ¯]_{b}, Σ_{b}Σ[over ¯]_{b}, Σ_{b}Λ[over ¯]_{b}, and Σ_{b}Λ[over ¯]_{c}, as well as corresponding S-wave states giving rise to QQ^{'} or Q[over ¯]Q[over ¯]^{'}. PMID:26430989
Gronau, M.
1987-09-01
We attempt an estimate of vertical bar V/sub ub//V/sub cb/vertical bar from the recent ARGUS observation of B/sup + -/ ..-->.. p anti p..pi../sup + -/ and B/sup 0/ ..-->.. p anti p..pi../sup +/..pi../sup -/ by studying general processes of the type B ..-->.. N anti N + n..pi.. (n greater than or equal to 0). The main ingredients of the analysis are the pion multiplicity distribution and a few models for the isospin structure of the final state. It is concluded quite generally that vertical bar V/sub ub//V/sub cb/vertical bar = 0.25 +- 0.10 and vertical bar V/sub ub//V/sub cb/vertical bar greater than or equal to 0.08. The ratio may become lower only in the event that both the relevant experimental and theoretical quantities obtain the extreme values considered in our study. We also discuss briefly a possible realization of a ..delta..I = 1/2 rule in these processes.
Correlated Leading Baryon-antibaryon Production in e+e- to ccbar to Lambda_c+ antiLambda_c- X
Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-08-22
We present a study of 649 {+-} 35 e{sup +}e{sup -} {yields} c{bar c} events produced at {radical}s {approx} 10.6 GeV containing both a {Lambda}{sub c}{sup +} baryon and a {bar {Lambda}}{sub c}{sup -} antibaryon. The number observed is roughly four times that expected if the leading charmed hadron types are uncorrelated, confirming an observation by the CLEO Collaboration. We find a 2-jet topology in these events but very few additional baryons, demonstrating that the primary c and {bar c} are predominantly contained in a correlated baryon-antibaryon system. In addition to the charmed baryons we observe on average 2.6 {+-} 0.2 charged intermediate mesons, predominantly pions, carrying 65% of the remaining energy.
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D. N.; Bennett, C. L.; Dunkley, J.; Nolta, M. R.; Halpern, M.; Hill, R. S.; Odegard, N.; Page, L.; Smith, K. L.; Weiland, J. L.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.
2013-01-01
We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter Lambda-CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities Omega(sub b)h(exp 2), Omega(sub c)h(exp 2)and Omega(sub Lambda), are each determined to a precision of approx. 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional Lambda-CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their Lambda-CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to Omega(sub kappa) = (0.0027 (sub +0.0039) (sup -0.0038;) the summed mass of neutrinos is limited to Sigma M(sub nu) < 0.44 eV (95% CL); and the number of relativistic species is found to lie within N(sub eff) = 3.84 +/- 0+/-40, when the full data are analyzed. The joint constraint on N(sub eff) and the primordial helium abundance, Y(sub He), agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
NASA Astrophysics Data System (ADS)
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William; CLAS Collaboration
2013-10-01
There is little known about the baryon antibaryon production mechanism. The following reactions were looked at, γp -->pp p , γp -->ppπ- n , and γp -->p p π+ n. For these reactions the photon energies that were selected were from 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with a luminosity of 68 pb-1. Features of the data such as invariant mass spectra, missing mass spectra, and angular distributions necessary for the analysis will be shown. In addition, a first observation of antineutrons in photoproduction in the missing mass spectra of γp -->ppπ- n will also be shown.
Cascade Baryon Spectrum from Lattice QCD
Mathur, Nilmani; Bulava, John; Edwards, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Morningstar, Colin; Richards, David; Wallace, Stephen
2008-12-01
A comprehensive study of the cascade baryon spectrum using lattice QCD affords the prospect of predicting the masses of states not yet discovered experimentally, and determining the spin and parity of those states for which the quantum numbers are not yet known. The study of the cascades, containing two strange quarks, is particularly attractive for lattice QCD in that the chiral effects are reduced compared to states composed only of u/d quarks, and the states are typically narrow. We report preliminary results for the cascade spectrum obtained by using anisotropic Nf = 2 Wilson lattices with temporal lattice spacing 5.56 GeV?1.
Baryon Properties from Continuum-QCD
Cloet, I. C.; Roberts, C. D.; Wilson, D. J.
2011-10-21
We provide an inkling of recent progress in hadron physics made using QCD's Dyson-Schwinger equations, reviewing: the notion of in-hadron condensates and a putative solution of a gross problem with the cosmological constant; a symmetry-preserving computation that simultaneously correlates the masses of meson and baryon ground- and excited-states, and contributes to a resolution of the conundrum of the Roper resonance; and a prediction for the Q{sup 2}-dependence of u-and d-quark Dirac and Pauli form factors in the proton, which exposes the critical role played by diquark correlations within the nucleon.
Non-baryonic dark matter in cosmology
NASA Astrophysics Data System (ADS)
Del Popolo, A.
2013-07-01
This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.
THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III
Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Eric; Bautista, Julian E.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Brandt, W. N.; and others
2013-01-01
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
High statistics analysis using anisotropic clover lattices: III. Baryon-baryon interactions
Beane, Silas R.; Detmold, William; Orginos, Kostas; Lin, Huey-Wen; Savage, Martin J.; Luu, Thomas C.; Torok, Aaron; Walker-Loud, Andre
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic-clover gauge-field configurations at a pion mass of m{sub {pi}{approx}3}90 MeV, a spatial volume of L{sup 3{approx}}(2.5 fm){sup 3}, and a spatial lattice spacing of b{approx}0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon, and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin independent, within the uncertainties of the calculation, consistent with the absence of one-pion exchange. The only channel for which a negative energy shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H dibaryon. The nucleon-nucleon (NN) scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN sector at this pion mass. This is consistent with our previous lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multibaryon systems.
Marriage à-la-MOND: Baryonic dark matter in galaxy clusters and the cooling flow puzzle
NASA Astrophysics Data System (ADS)
Milgrom, Mordehai
2008-05-01
I start with a brief introduction to MOND phenomenology and its possible roots in cosmology—a notion that may turn out to be the most far reaching aspect of MOND. Next I discuss the implications of MOND for the dark matter (DM) doctrine: MOND's successes imply that baryons determine everything. For DM this would mean that the puny tail of leftover baryons in galaxies wags the hefty DM dog. This has to occur in many intricate ways, and despite the haphazard construction history of galaxies—a very tall order. I then concentrate on galaxy clusters in light of MOND, which still requires some yet undetected cluster dark matter, presumably in some baryonic form (CBDM). This CBDM might contribute to the heating of the X-ray emitting gas and thus alleviate the cooling flow puzzle. MOND, qua theory of dynamics, does not directly enter the microphysics of the gas; however, it does force a new outlook on the role of DM in shaping the cluster gas dynamics: MOND tells us that the cluster DM is not cold dark matter, is not so abundant, and is not expected in galaxies; it is thus not subject to constraints on baryonic DM in galaxies. The mass in CBDM required in a whole cluster is, typically, similar to that in hot gas, but is rather more centrally concentrated, totally dominating the core. The CBDM contribution to the baryon budget in the universe is thus small. Its properties, deduced for isolated clusters, are consistent with the observations of the "bullet cluster". Its kinetic energy reservoir is much larger than that of the hot gas in the core, and would suffice to keep the gas hot for many cooling times. Heating can be effected in various ways depending on the exact nature of the CBDM, from very massive black holes to cool, compact gas clouds.
Probing the Cool Baryons at z~5
NASA Astrophysics Data System (ADS)
Stanway, Elizabeth; Feain, Ilana; Bremer, Malcolm; Birkinshaw, Mark; Lehnert, Matthew; Douglas, Laura; Davies, Luke
2009-04-01
Star-forming systems are now used to study the universe at z>5, but these galaxies represent <3% of the total baryonic mass. In a pilot programme, we detected CO(2-1) emission at z=5.1245+/-0.0001 (with no optical counterpart to R>28 and I>27) in a field hosting an overdensity of UV-luminous star-forming Lyman break galaxies (LBGs) at the same redshift. The emission line has a peak flux density of 0.94 mJy and FWHM of 110 km/s. Assuming standard conversion factors and that the line width represents a virialised system, this implies M(H_2)=2x10^{10} solar masses, more the total UV-bright stellar mass in the structure. This detection implies that CO lines may probe the bulk of the baryonic matter in z>=5 structures. We must now determine whether our initial detection was typical and intend to study the cool gas in a second field which contains the richest overdensity in our LBG survey. To this end, we will probe an additional three pointings in the CO(2-1) line, and also begin to constrain the temperature from CO(1-0) emission at the same locations.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES
Dai Xinyu; Bregman, Joel N.; Kochanek, Christopher S.; Rasia, Elena
2010-08-10
We present the baryon fractions of 2MASS groups and clusters as a function of cluster richness using total and gas masses measured from stacked ROSAT X-ray data and stellar masses estimated from the infrared galaxy catalogs. We detect X-ray emission even in the outskirts of clusters, beyond r {sub 200} for richness classes with X-ray temperatures above 1 keV. This enables us to more accurately determine the total gas mass in these groups and clusters. We find that the optically selected groups and clusters have flatter temperature profiles and higher stellar-to-gas mass ratios than the individually studied, X-ray bright clusters. We also find that the stellar mass in poor groups with temperatures below 1 keV is comparable to the gas mass in these systems. Combining these results with individual measurements for clusters, groups, and galaxies from the literature, we find a break in the baryon fraction at {approx}1 keV. Above this temperature, the baryon fraction scales with temperature as f{sub b} {proportional_to} T {sup 0.20{+-}0.03}. We see significantly smaller baryon fractions below this temperature and the baryon fraction of poor groups joins smoothly onto that of systems with still shallower potential wells such as normal and dwarf galaxies where the baryon fraction scales with the inferred velocity dispersion as f{sub b} {proportional_to} {sigma}{sup 1.6}. The small scatter in the baryon fraction at any given potential well depth favors a universal baryon loss mechanism and a preheating model for the baryon loss. The scatter is, however, larger for less massive systems. Finally, we note that although the broken power-law relation can be inferred from data points in the literature alone, the consistency between the baryon fractions for poor groups and massive galaxies inspires us to fit the two categories of objects (galaxies and clusters) with one relation.
Stealth Dark Matter: Dark scalar baryons through the Higgs portal
Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; et al
2015-10-23
We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements,more » basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less
Stealth Dark Matter: Dark scalar baryons through the Higgs portal
Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.
2015-10-23
We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(N_{D}) strongly coupled theory with even N_{D} ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass m_{B} ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.
Lei Weihua; Zhang Bing; Liang Enwei E-mail: zhang@physics.unlv.edu
2013-03-10
A hyperaccreting stellar-mass black hole has been long speculated as the best candidate for the central engine of gamma-ray bursts (GRBs). Recent rich observations of GRBs by space missions such as Swift and Fermi pose new constraints on GRB central engine models. In this paper, we study the baryon-loading processes of a GRB jet launched from a black hole central engine. We consider a relativistic jet powered by {nu} {nu}-bar -annihilation or by the Blandford-Znajek (BZ) mechanism. We consider baryon loading from a neutrino-driven wind launched from a neutrino-cooling-dominated accretion flow. For a magnetically dominated BZ jet, we consider neutron drifting from the magnetic wall surrounding the jet and subsequent positron capture and proton-neutron inelastic collisions. The minimum baryon loads in both types of jet are calculated. We find that in both cases a more luminous jet tends to be more baryon poor. A neutrino-driven ''fireball'' is typically ''dirtier'' than a magnetically dominated jet, while a magnetically dominated jet can be much cleaner. Both models have the right scaling to interpret the empirical {Gamma}-L{sub iso} relation discovered recently. Since some neutrino-driven jets have too much baryon loading as compared with the data, we suggest that at least a good fraction of GRBs should have a magnetically dominated central engine.
NASA Astrophysics Data System (ADS)
McDonald, John
1995-02-01
Recently it has been observed that the transport of conserved charges into the electroweak bubble wall alters the spontaneous baryogenesis scenario, by allowing the baryon asymmetry to be generated over a larger volume including the outside of the bubble. We give here a very simple analytic estimate of the change in the baryon number generated, by considering a simple toy model with a single particle and a single conserved change. Our results indicate that in general diffusion itself will produce at most a small enhancement of the baryon asymmetry as compared with the original spontaneous baryogenesis scenario; by no more than a factor of order 10. This suggests that any large enhancement of the baryon asymmetry due to diffusion effects in realistic multi-particle models can only be due to the elimination of cancellations between the contributions of the individual particles. Our discussion should be generally useful for making simple estimates of the baryon number generated including diffusion effects, given the asymmetry generated in the original spontaneous baryogenesis model.
Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L; Roberts, Luke F; Tytler, David; Fuller, George M; Lingerfelt, Eric J; Hix, William Raphael; Nesaraja, Caroline D
2008-01-01
We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint.
NASA Astrophysics Data System (ADS)
Kleefeld, F.
A new crossing symmetric unitarization scheme conveniently applied to meson-meson and meson-baryon scattering amplitudes is shortly proposed which can be not only used by theoreticians to unitarize arbitrary theoretical reaction amplitudes resulting from phenomenological Lagrangeans for mesons and baryons, yet also by experimentalists to generate realistic unitary fitting formulae for meson-meson and meson-baryon scattering observables sharing on one hand all the features of the underlying theoretical amplitudes, on the other hand allowing direct comparison to these amplitudes. The new unitarization scheme has been inspired by the Dalitz and Tuan representation, the basic ansatz of which is that "... the phases caused by different sources add ..." (using the words of B.S. Zou, D.V. Bugg, Phys. Rev. D 50 (1994) 591).
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Excited state baryon spectroscopy from lattice QCD
Edwards, Robert G.; Richards, David G.; Dudek, Jozef J.; Wallace, Stephen J.
2011-10-01
We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J=(7/2), of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) x O(3) representations and a counting of levels that is consistent with the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the 'missing resonance problem' and shows no signs of parity doubling of states.
Light baryon spectrum using improved interpolating operators
S. Basak, R. G. Edwards, G. T. Fleming, J. Juge, A. Lichtl, C. Morningstar D. G. Richards, I. Sato, S. J. Wallace
2006-06-26
Energies for excited light baryons are computed in quenched QCD with a pion mass of 490 MeV. Operators used in the simulations include local operators and the simplest nonlocal operators that have nontrivial orbital structures. All operators are designed with the use of Clebsch-Gordan coefficients of the octahedral group so that they transform irreducibly under the group rotations. Matrices of correlation functions are computed for each irreducible representation, and then the variational method is applied to separate mass eigenstates. We obtained 17 states for isospin 1/2 and 11 states for isospin 3/2 in various spin-parity channels including J{sup P}=5/2{sup {+-}}. The pattern of the lowest-lying energies from each irrep is discussed. We use anisotropic lattices of volume 24{sup 3} x 64 with temporal lattice spacing a{sub t}{sup -1}=6.05 GeV with renormalized anisotropy xi=3.0.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Search for the doubly charmed baryon
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorbounov, P.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2013-12-01
A search for the doubly charmed baryon in the decay mode is performed with a data sample, corresponding to an integrated luminosity of 0.65 fb-1, of pp collisions recorded at a centre-of-mass energy of 7 TeV. No significant signal is found in the mass range 3300-3800 MeV /c 2. Upper limits at the 95% confidence level on the ratio of the production cross-section times branching fraction to that of the , R, are given as a function of the mass and lifetime. The largest upper limits range from R < 1.5 × 10-2 for a lifetime of 100 fs to R < 3 .9 × 10-4 for a lifetime of 400 fs. [Figure not available: see fulltext.
Quantum Operator Design for Lattice Baryon Spectroscopy
Lichtl, Adam
2006-09-07
A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.
Cluster outskirts and the missing baryons
NASA Astrophysics Data System (ADS)
Eckert, D.
2016-06-01
Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.
Isocurvature modes and Baryon Acoustic Oscillations
Mangilli, Anna; Verde, Licia; Beltran, Maria E-mail: licia.verde@icc.ub.edu
2010-10-01
The measurement of Baryonic Acoustic Oscillations from galaxy surveys is well known to be a robust and powerful tool to constrain dark energy. This method relies on the knowledge of the size of the acoustic horizon at radiation drag derived from Cosmic Microwave Background Anisotropy measurements. In this paper we quantify the effect of non-standard initial conditions in the form of an isocurvature component on the determination of dark energy parameters from future BAO surveys. In particular, if there is an isocurvature component (at a level still allowed by present data) but it is ignored in the CMB analysis, the sound horizon and cosmological parameters determination is biased, and, as a consequence, future surveys may incorrectly suggest deviations from a cosmological constant. In order to recover an unbiased determination of the sound horizon and dark energy parameters, a component of isocurvature perturbations must be included in the model when analyzing CMB data. Fortunately, doing so does not increase parameter errors significantly.
Limits to the primordial helium abundance in the baryon-inhomogeneous big bang
NASA Technical Reports Server (NTRS)
Mathews, G. J.; Schramm, D. N.; Meyer, B. S.
1993-01-01
The parameter space for baryon inhomogeneous big bang models is explored with the goal of determining the minimum helium abundance obtainable in such models while still satisfying the other light-element constraints. We find that the constraint of (D + He-3)/H less than 10 exp -4 restricts the primordial helium mass fraction from baryon-inhomogeneous big bang models to be greater than 0.231 even for a scenario which optimizes the effects of the inhomogeneities and destroys the excess lithium production. Thus, this modification to the standard big bang as well as the standard homogeneous big bang model itself would be falsifiable by observation if the primordial He-4 abundance were observed to be less than 0.231. Furthermore, a present upper limit to the observed helium mass fraction of Y(obs)(p) less than 0.24 implies that the maximum baryon-to-photon ratio allowable in the inhomogeneous models corresponds to eta less than 2.3 x 10 exp -9 (omega(b) h-squared less than 0.088) even if all conditions are optimized.
Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.
Baryon stopping and hadronic spectra in Pb-Pb collisions at 158 GeV/nucleon
Cooper, Glenn E.
2000-04-12
Baryon stopping and particle production in Pb+Pb collisions at 158 GeV/nucleon are studied as a function of the collision centrality using new proton, antiproton, charged kaon and charged pion production data measured with the NA49 experiment at the CERN Super Proton Synchrotron (SPS). Stopping, which is measured by the shift in rapidity of net protons or baryons from the initial beam rapidity, increases in more central collisions. This is expected from a geometrical picture of the collisions. The stopping data are quantitatively compared to models incorporating various mechanisms for stopping. In general, microscopic transport calculations which incorporate current theoretical models of baryon stopping or use phenomenological extrapolations from simpler systems overestimate the dependence of stopping on centrality. Approximately, the yield of produced pions scales with the number of nucleons participating in the collision. A small increase in yield beyond this scaling, accompanied by a small suppression in the yield of the fastest pions, reflects the variation in stopping with centrality. Consistent with the observations from central collisions of light and heavy nuclei at the SPS, the transverse momentum distributions of all particles are observed to become harder with increasing centrality. This effect is most pronounced for the heaviest particles. This hardening is discussed in terms of multiple scattering of the incident nucleons of one colliding nucleus as they traverse the other nucleus and in terms of rescattering within the system of produced particles.
Baryonic Content in the Warm-Hot IGM at Low Redshift
NASA Technical Reports Server (NTRS)
Sonneborn, George; Shull, M.; Danforth, C.; Moos, W.
2007-01-01
Baryons are 4.5% of the universe's mass/energy density; only 10% of these are in stars, galaxies, and clusters. At low-redshift 90% of baryons are in the IGM, 30% in Ly-alpha forest, but most are in hot gas (10(exp 5-7) K) produced by shocks during structure formation. O VI 1032-38 A are the best tracers of this gas. The distribution of O VI absorbers observed by FUSE rises as N(sup -2+/-0.2, down to 10(exp 13)/sq cm. Integrated to logN=13, 7% of baryons reside in the O VI-bearing IGM at 10% solar metallicity, T approx. 10(exp 5.5) K. At redshift z<0.1 metals have been transported less than 800/h kpc from L* galaxies and 200/h kpc from 0.1 L* galaxies. The steepness of dN/dz means that low-N absorbers contribute an equal mass of hot IGM as higher N gas. The total mass of O VI-bearing gas in the IGM depends on determining the turnover in dN/dz at low N(O VI). Future observations by FUSE are needed to reach lower N and to reduce the uncertainty in the dN/dz power law.
High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems
Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Savage, M; Torok, A; Walker-Loud, A
2009-05-05
We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}} {approx} 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the {Xi}{sup 0}{Xi}{sup 0}n system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {Xi}{sup 0}{Xi}{sup 0}n} = 3877.9 {+-} 6.9 {+-} 9.2 {+-} 3.3 MeV corresponding to an energy-shift due to interactions of {delta}E{sub {Xi}{sup 0}{Xi}{sup 0}n} = E{sub {Xi}{sup 0}{Xi}{sup 0}n} - 2M{sub {Xi}{sup 0}} - M{sub n} = 4.6 {+-} 5.0 {+-} 7.9 {+-} 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
High Statistics Analysis using Anisotropic Clover Lattices: (II) Three-Baryon Systems
Andre Walker-Loud, Will Detmold, William Detmold, Aaron Torok, Konstantinos Orginos, Silas Beane, Tom Luu, Martin Savage, Assumpta Parreno
2009-10-01
We present the results of an exploratory Lattice QCD calculation of three-baryon systems through a high-statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m_\\pi ~ 390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating-operators with the quantum numbers of the $\\Xi^0\\Xi^0 n$ system, one of the least demanding three baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E_{\\Xi^0\\Xi^0n}= 3877.9\\pm 6.9\\pm 9.2\\pm3.3 MeV corresponding to an energy-shift due to interactions of \\delta E_{\\Xi^0\\Xi^0n}=E_{\\Xi^0\\Xi^0n}-2M_{\\Xi^0} -M_n=4.6\\pm 5.0\\pm 7.9\\pm 4.2 MeV. There are a significant number of time-slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating-operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multi-baryon systems, and shows that Lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
Dirac's Covariant Constraint Dynamics Applied to the Baryon Spectrum
NASA Astrophysics Data System (ADS)
Whitney, Joshua; Crater, Horace
2010-02-01
A baryon is a hadron containing three quarks in a combination of up, down, strange, charm, or bottom. For prediction of the baryon energy spectrum, a baryon is modeled as a three-body system with the interacting forces coming from a set of two-body potentials that depend on the distance between the quarks, the spin-spin and spin-orbit angular momentum coupling terms, and a tensor term. Techniques and equations are derived from Todorov's work on constraint dynamics and the quasi-potential equation together with Two Body Dirac equations developed by Crater and Van Alstine, and adapted to this specific problem by further use of Sazdjian's N-body constraints dynamics for general confined systems. Baryon spectroscopy results are presented and compared with experiment. Typically, a best fit method is used in the analyses that employ several different algorithms, including a gradient approach, Monte Carlo modeling, and simulated annealing methods. )
Heaviest bound baryons production at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Wu, Su-Zhi; Li, You-Wei; Rashidin, Reyima
2012-12-01
We calculate the hadronic production of three heaviest bound baryons Ωbbb, Ωbbc*, and Ωbbc at hadron colliders at tree level. We present the integrated cross section and differential cross section distributions in this paper.
Penguin diagram dominance in radiative weak decays of bottom baryons
Kohara, Yoji
2005-05-01
Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Schaye, Joop; Bower, Richard G.; Crain, Robert A.
2016-09-01
We use the Evolution and Assembly of GaLaxies and their Environments (EAGLE) galaxy formation simulation to study the effects of baryons on the power spectrum of the total matter and dark matter distributions and on the velocity fields of dark matter and galaxies. On scales k ≳ 4 h Mpc-1 the effect of baryons on the amplitude of the total matter power spectrum is greater than 1 per cent. The back-reaction of baryons affects the density field of the dark matter at the level of ˜3 per cent on scales of 1 ≤ k/( h Mpc-1) ≤ 5. The dark matter velocity divergence power spectrum at k ≲ 0.5 h Mpc-1 is changed by less than 1 per cent. The 2D redshift space power spectrum is affected at the level of ˜6 per cent at |k|≳ 1 h Mpc^{-1} (for μ > 0.5), but for |k|≤ 0.4 h Mpc^{-1} it differs by less than 1 per cent. We report vanishingly small baryonic velocity bias for haloes: the peculiar velocities of haloes with M200 > 3 × 1011 M⊙ (hosting galaxies with M* > 109 M⊙) are affected at the level of at most 1 km s-1, which is negligible for 1 per cent-precision cosmology. We caution that since EAGLE overestimates cluster gas fractions it may also underestimate the impact of baryons, particularly for the total matter power spectrum. Nevertheless, our findings suggest that for theoretical modelling of redshift space distortions and galaxy velocity-based statistics, baryons and their back-reaction can be safely ignored at the current level of observational accuracy. However, we confirm that the modelling of the total matter power spectrum in weak lensing studies needs to include realistic galaxy formation physics in order to achieve the accuracy required in the precision cosmology era.
Study of ψ(3770) decaying to baryon anti-baryon pairs
NASA Astrophysics Data System (ADS)
Xia, Li-Gang
2016-05-01
To study the decays of ψ (3770) going to baryon anti-baryon pairs (B B bar), all available experiments of measuring the cross sections of e+e- → B B bar at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3) flavor symmetry is used and the SU(3) breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE | = |GM |), a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ (3770) → B B bar is determined to be (2.4 ± 0.8 ± 0.3) ×10-5, (1.7 ± 0.6 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (2.0 ± 0.7 ± 0.1) ×10-5, and (2.0 ± 0.7 ± 0.1) ×10-5 for B = p , Λ ,Σ+ ,Σ0 ,Ξ- and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE | = |GM |. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J / ψ / ψ (3686) → B B bar .
Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD
Takahashi, Toru T.; Oka, Makoto
2010-02-01
Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).
Symmetry energy effects on the mixed hadron-quark phase at high baryon density
Di Toro, M.; Greco, V.; Plumari, S.; Liu, B.; Baran, V.; Colonna, M.
2011-01-15
The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,{rho}{sub B}) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.
Smallness of tree-dominated charmless two-body baryonic B decay rates
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang
2015-02-01
The long-awaited baryonic B decay B¯0→p p ¯ was recently observed by LHCb with a branching fraction of order 1 0-8. All the earlier model predictions are too large compared with experiment. In this work, we point out that for a given tree operator Oi, the contribution from its Fiertz transformed operator, an effect often missed in the literature, tends to cancel the internal W -emission amplitude induced from Oi. The wave function of low-lying baryons is symmetric in momenta and the quark flavor with the same chirality but antisymmetric in color indices. Using these symmetry properties and the chiral structure of weak interactions, we find that half of the Feynman diagrams responsible for internal W emission cancel. Since this feature holds in the charmless modes but not in the charmful ones, we advocate that the partial cancellation accounts for the smallness of the tree-dominated charmless two-body baryonic B decays. This also explains why most previous model calculations predicted too large rates as the above consideration was not taken into account. Finally, we emphasize that, contrary to the claim in the literature, the internal W -emission tree amplitude should be proportional to the Wilson coefficient c1+c2 rather than c1-c2.
Baryon-Strangeness Correlations from Hadron/String- and Quark-Dynamics
Haussler, Stephane; Scherer, Stefan; Bleicher, Marcus
2007-02-27
Baryon-strangeness correlations (CBS) are studied with a hadron/string transport approach (UrQMD) and a dynamical quark recombination model (quark molecular dynamics, qMD) for various energies from Elab = 4A GeV to {radical}(s{sub NN}) = 200 GeV. As expected, we find that the hadron/string dynamics shows correlations similar to a simple hadron gas. In case of the quark molecular dynamics, we find that initially the CBS correlation is that of a weakly interacting QGP but changes in the process of hadronization also to the value for a hadron gas. Therefore, we conclude that the hadronization process itself makes the initial baryon strangeness correlation unobservable. To make an experimental study of this observable more feasible, we also investigate how a restriction to only charged kaons and {lambda}'s (instead of all baryons and all strange particles) influences the theoretical result on CBS. We find that a good approximation of the full result can be obtained in this limit in the present simulation.
The impact of baryons on the direct detection of dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Savage, Christopher; Valluri, Monica; Freese, Katherine; Stinson, Gregory S.; Bailin, Jeremy
2016-08-01
The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation of the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.
Heavy to light baryon transition form factors
Guo, X. |; Huang, T. |; Li, Z.
1996-05-01
Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}
Quark interchange model of baryon interactions
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
BASE - The Baryon Antibaryon Symmetry Experiment
NASA Astrophysics Data System (ADS)
Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.
2015-11-01
The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.
The Angular Momentum of Baryons and Dark Matter Halos Revisited
NASA Technical Reports Server (NTRS)
Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan
2011-01-01
Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated
Instructive discussion of an effective block algorithm for baryon-baryon correlators
NASA Astrophysics Data System (ADS)
Nemura, Hidekatsu
2016-10-01
We describe an approach for the efficient calculation of a large number of four-point correlation functions for various baryon-baryon (BB) channels, which are the primary quantities for studying the nuclear and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation function of a proton- Λ system as a specific example, we discuss how an effective block algorithm significantly reduces the number of iterations. The effective block algorithm is applied to calculate 52 channels of the four-point correlation functions from nucleon-nucleon to Ξ- Ξ, in order to study the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical results are compared with the results obtained using the unified contraction algorithm for all computed sites of the 52 four-point correlators.
Strategies for detecting the missing hot baryons in the universe
NASA Astrophysics Data System (ADS)
Bregman, Joel N.; Alves, Guilherme Camargo; Miller, Matthew J.; Hodges-Kluck, Edmund
2015-10-01
About 30% to 50% of the baryons in the local universe are unaccounted for and are likely in a hot phase, 105.5 to 108 K. A hot halo (106.3 K) is detected around the Milky Way through the O VII and O VIII resonance absorption and emission lines in the soft x-ray band. Current instruments are not sensitive enough to detect this gas in absorption around other galaxies and galaxy groups, the two most likely sites. We show that resonant line absorption by this hot gas can be detected with current technology, with a collecting area exceeding ˜300 cm2 and a spectral resolution R>2000. For a few notional x-ray telescope configurations that could be constructed as Explorer or Probe missions, we calculate the differential number of O VII and O VIII absorbers as a function of equivalent width through redshift space, dN/dz. The hot halos of individual external galaxies produce absorption that should be detectable out to about their virial radii. For the Milky Way, one can determine the radial distribution of density, temperature, and metallicity after making optical depth corrections. Spectroscopic observations can determine the rotation of a hot gaseous halo.
Baryon asymmetry from leptogenesis with four zero neutrino Yukawa textures
Adhikary, Biswajit; Ghosal, Ambar; Roy, Probir E-mail: ambar.ghosal@saha.ac.in
2011-01-01
The generation of the right amount of baryon asymmetry η of the Universe from supersymmetric leptogenesis is studied within the type-I seesaw framework with three heavy singlet Majorana neutrinos N{sub i} (i = 1,2,3) and their superpartners. We assume the occurrence of four zeroes in the neutrino Yukawa coupling matrix Y{sub ν}, taken to be μτ symmetric, in the weak basis where N{sub i} (with real masses M{sub i} > 0) and the charged leptons l{sub α} (α = e,μ,τ) are mass diagonal. The quadrant of the single nontrivial phase, allowed in the corresponding light neutrino mass matrix m{sub ν}, gets fixed and additional constraints ensue from the requirement of matching η with its observed value. Special attention is paid to flavor effects in the washout of the lepton asymmetry. We also comment on the role of small departures from high scale μτ symmetry due to RG evolution.
Search for baryon number violation in top-quark decays
Chatrchyan, Serguei
2014-02-20
A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excess of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.
Search for baryon number violation in top-quark decays
Chatrchyan, Serguei
2014-02-20
A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less
A Giant Warm Baryonic Halo for the Coma Cluster
NASA Technical Reports Server (NTRS)
Bonamente, Max; Lieu, Richard; Joy, Marshall K.; Six, N. Frank (Technical Monitor)
2002-01-01
Several deep PSPC observations of the Coma cluster unveil a very large-scale halo of soft X-ray emission, substantially in excess of the well know radiation from the hot intra-cluster medium. The excess emission, previously reported in the central cluster regions through lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.5 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission at warm temperatures. The mass of this plasma is at least on par with that of the hot X-ray emitting plasma, and significantly more massive if the plasma resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict greater than 50 percent by mass of today's baryons reside in warm-hot filaments converging at clusters of galaxies.
A Massive Warm Baryonic Halo in the Coma Cluster
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard
2003-01-01
Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.
Doubly heavy baryon spectra guided by lattice QCD
NASA Astrophysics Data System (ADS)
Garcilazo, H.; Valcarce, A.; Vijande, J.
2016-10-01
This paper provides results for the ground state and excited spectra of three-flavored doubly heavy baryons, b c n and b c s . We take advantage of the spin-independent interaction recently obtained to reconcile the lattice SU(3) QCD static potential and the results of nonperturbative lattice QCD for the triply heavy baryon spectra. We show that the spin-dependent potential might be constrained on the basis of nonperturbative lattice QCD results for the spin splittings of three-flavored doubly heavy baryons. Our results may also represent a challenge for future lattice QCD work, because a smaller lattice error could help in distinguishing between different prescriptions for the spin-dependent part of the interaction. Thus, by comparing with the reported baryon spectra obtained with parameters estimated from lattice QCD, one can challenge the precision of lattice calculations. The present work supports a coherent description of singly, doubly and triply heavy baryons with the same Cornell-like interacting potential. The possible experimental measurement of these states at LHCb is an incentive for this study.
Finite volume effects in the chiral extrapolation of baryon masses
NASA Astrophysics Data System (ADS)
Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.
2014-09-01
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.
Spectroscopy of doubly charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Equilibrium model constraints on baryon cycling across cosmic time
NASA Astrophysics Data System (ADS)
Mitra, Sourav; Davé, Romeel; Finlator, Kristian
2015-09-01
Galaxies strongly self-regulate their growth via energetic feedback from stars, supernovae, and black holes, but these processes are among the least understood aspects of galaxy formation theory. We present an analytic galaxy evolution model that directly constrains such feedback processes from observed galaxy scaling relations. The equilibrium model, which is broadly valid for star-forming central galaxies that dominate cosmic star formation, is based on the ansatz that galaxies live in a slowly evolving equilibrium between inflows, outflows, and star formation. Using a Bayesian Monte Carlo Markov chain approach, we constrain our model to match observed galaxy scaling relations between stellar mass and halo mass, star formation rate, and metallicity from 0 < z < 2. A good fit (χ2 ≈ 1.6) is achieved with eight free parameters. We further show that constraining our model to any two of the three data sets also produces a fit to the third that is within reasonable systematic uncertainties. The resulting best-fitting parameters that describe baryon cycling suggest galactic outflow scalings intermediate between energy and momentum-driven winds, a weak dependence of wind recycling time on mass, and a quenching mass scale that evolves modestly upwards with redshift. This model further predicts a stellar mass-star formation rate relation that is in good agreement with observations to z ˜ 6. Our results suggest that this simple analytic framework captures the basic physical processes required to model the mean evolution of stars and metals in galaxies, despite not incorporating many canonical ingredients of galaxy formation models such as merging or disc formation.
del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Koch, H.; Schroeder, T.; /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /Milan U. /Milan U. /Milan U. /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-06-22
Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either {Lambda}{sub c} or {Lambda} and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2 - 520) x 10{sup -8} are set on the branching fractions at the 90% confidence level.
High statistics analysis using anisotropic clover lattices. II. Three-baryon systems
Beane, Silas R.; Torok, Aaron; Detmold, William; Orginos, Kostas; Luu, Thomas C.; Parreno, Assumpta; Savage, Martin J.; Walker-Loud, Andre
2009-10-01
We present the results of an exploratory lattice QCD calculation of three-baryon systems through a high statistics study of one ensemble of anisotropic clover gauge-field configurations with a pion mass of m{sub {pi}}{approx}390 MeV. Because of the computational cost of the necessary contractions, we focus on correlation functions generated by interpolating operators with the quantum numbers of the {xi}{sup 0}{xi}{sup 0}n system, one of the least demanding three-baryon systems in terms of the number of contractions. We find that the ground state of this system has an energy of E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=3877.9{+-}6.9{+-}9.2{+-}3.3 MeV corresponding to an energy shift due to interactions of {delta}E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}=E{sub {xi}{sup 0}}{sub {xi}{sup 0}}{sub n}-2M{sub {xi}{sup 0}}-M{sub n}=4.6{+-}5.0{+-}7.9{+-}4.2 MeV. There are a significant number of time slices in the three-baryon correlation function for which the signal-to-noise ratio is only slowly degrading with time. This is in contrast to the exponential degradation of the signal-to-noise ratio that is observed at larger times, and is due to the suppressed overlap of the source and sink interpolating operators that are associated with the variance of the three-baryon correlation function onto the lightest eigenstates in the lattice volume (mesonic systems). As one of the motivations for this area of exploration is the calculation of the structure and reactions of light nuclei, we also present initial results for a system with the quantum numbers of the triton (pnn). This present work establishes a path to multibaryon systems, and shows that lattice QCD calculations of the properties and interactions of systems containing four and five baryons are now within sight.
The connection between dark and baryonic matter in the process of galaxy formation
NASA Astrophysics Data System (ADS)
Trujillo, Sebastian
Current galaxy formation theory still struggles to explain many essential galaxy properties. This thesis addresses these problems in the context of the interplay between baryons and dark matter in the concordance cosmological model. In the first part, we investigate galaxy abundance and scaling relations using a compilation of observational data along with large-scale cosmological simulations of dark matter (DM). We find that the standard cosmological model, in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits all basic statistics of galaxies more massive than the Large Magellanic Cloud (LMC). This zero-parameter model predicts the observed luminosity-velocity relation of early-and late-type galaxies, as well as the clustering of bright galaxies and the observed abundance of galaxies as a function of circular velocity. However, we find that all DM halos more massive than the LMC are much more abundant than the galaxies they host. Motivated by the model's shortcomings, in the second part we study the effect of baryons on galaxy formation using numerical simulations that include gas physics. We implement a model of star formation (SF) and stellar feedback based directly on observations of star-forming regions, where stellar feedback from massive stars includes radiation pressure, photoheating, supernovae, and stellar winds. We find that stellar radiation has a strong effect at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component, and yielding rising SF histories that reproduce many observations. Stellar feedback produces bulgeless discs with rotation curves and baryon fractions in excellent agreement with data. Feedback-driven blowouts reduce the central DM density of a dwarf, relieving tension between ACDM and observations. Based on these results, we begin to characterize the baryon cycle of galaxies and its imprint on studies of the circumgalactic medium
Mapping chiral symmetry breaking in the excited baryon spectrum
NASA Astrophysics Data System (ADS)
Bicudo, Pedro; Cardoso, Marco; Llanes-Estrada, Felipe J.; Van Cauteren, Tim
2016-09-01
We study the conjectured "insensitivity to chiral symmetry breaking" in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states, and chiral symmetry, we adopt the truncated Coulomb-gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of I =1 /2 and I =3 /2 baryons, up to large spin J =13 /2 , and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Covariant calculation of strange decays of baryon resonances
Sengl, B.; Melde, T.; Plessas, W.
2007-09-01
We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtain covariant predictions of the Goldstone-boson-exchange and a variant of the one-gluon-exchange constituent quark models for all kaon decay widths of established baryon resonances. They are generally characterized by underestimating the available experimental data. In particular, the widths of kaon decays with decreasing strangeness in the baryon turn out to be extremely small. We also consider the nonrelativistic limit, leading to the familiar elementary emission model, and demonstrate the importance of relativistic effects. It is found that the nonrelativistic approach evidently misses sensible influences from Lorentz boosts and some essential spin-coupling terms.
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-05-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.
Magnetic moments of octet baryons and sea antiquark polarizations
Bartelski, Jan; Tatur, Stanislaw
2005-01-01
Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.
Proposal for the systematic naming of mesons and baryons
Porter, F.C.; Hernandez, J.J.; Montanet, L.; Roos, M.; Toernqvist, N.A.; Barnett, R.M.; Cahn, R.N.; Gidal, G.; Rittenberg, A.; Trippe, T.G.
1984-10-01
Twenty years ago, the Particle Data Group adopted a systematic naming convention for baryons: the symbols N, ..delta.., ..lambda.., ..sigma.., ..xi.., and ..cap omega.. were to identify the isospin and strangeness, The mesons, by contrast, have become an alphabet soup of uninformative names - theta, iota, xi, zeta, g/sub T/, g/sub s/, H, E, delta, h, g, r, kappa, etc. -, and in some cases identical names are used for mesons with different quantum numbers (A, B, and D). Furthermore, experimentalists are now discovering baryons that contain heavy quarks. It is therefore timely to consider systematic naming conventions both for mesons and for baryons with heavy quarks. The Particle Data Group is circulating this proposal in the hope of generating feedback, and we attach a sheet for responses. It should be emphasized that the Particle Tables would show both the old and new names for some time.
Sigma term and strangeness content of octet baryons
NASA Astrophysics Data System (ADS)
Dürr, S.; Fodor, Z.; Hemmert, T.; Hoelbling, C.; Frison, J.; Katz, S. D.; Krieg, S.; Kurth, T.; Lellouch, L.; Lippert, T.; Portelli, A.; Ramos, A.; Schäfer, A.; Szabó, K. K.
2012-01-01
By using lattice QCD computations we determine the sigma terms and strangeness content of all octet baryons by means of an application of the Hellmann-Feynman theorem. In addition to polynomial and rational expressions for the quark-mass dependence of octet members, we use SU(3) covariant baryon chiral perturbation theory to perform the extrapolation to the physical up and down quark masses. Our Nf=2+1 lattice ensembles include pion masses down to about 190 MeV in large volumes (MπL≳4), and three values of the lattice spacing. Our main results are the nucleon sigma term σπN=39(4)(-7+18) and the strangeness content yN=0.20(7)(-17+13). Under the assumption of validity of covariant baryon χPT in our range of masses one finds yN=0.276(77)(-62+90).
Decays of excited baryons in the large Nc expansion of QCD
Jose Goity; Norberto Scoccola
2006-05-06
We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.
Theory and Simulation of Neoclassical Transport Processes, with Local Trapping
Dubin, Daniel H. E.
2009-03-30
Neoclassical transport is studied using idealized simulations that follow guiding centers in given fields, neglecting collective effects on the plasma evolution, but including collisions at rate {nu}. For simplicity the magnetic field is assumed to be uniform; transport is due to asymmetries in applied electrostatic fields. Also, the Fokker-Planck equation describing the particle distribution is solved, and the predicted transport is found to agree with the simulations. Banana, plateau, and fluid regimes are identified and observed in the simulations. When separate trapped particle populations are created by application of an axisymmetric squeeze potential, enhanced transport regimes are observed, scaling as {radical}({nu}) when {nu}<{omega}{sub 0}<{omega}{sub b} and as 1/{nu} when {omega}{sub 0}<{nu}<{omega}{sub b} where {omega}{sub 0} and {omega}{sub b} are the rotation and axial bounce frequencies, respectively. These regimes are similar to those predicted for neoclassical transport in stellarators.
A QUANTITATIVE EXPLANATION OF THE OBSERVED POPULATION OF MILKY WAY SATELLITE GALAXIES
Koposov, Sergey E.; Rix, Hans-Walter; Maccio, Andrea V.; Yoo, Jaiyul; Weinberg, David H.; Escude, Jordi Miralda
2009-05-10
We revisit the well known discrepancy between the observed number of Milky Way (MW) dwarf satellite companions and the predicted population of cold dark matter (CDM) subhalos, in light of the dozen new low-luminosity satellites found in imaging data from the Sloan Digital Sky Survey (SDSS) and our recent calibration of the SDSS satellite detection efficiency, which implies a total satellite population far larger than these dozen discoveries. We combine a detailed dynamical model for the CDM subhalo population with simple, physically motivated prescriptions for assigning a stellar content to each subhalo, then apply observational selection effects and compare to the current observational census. Reconciling the observed satellite population with CDM predictions still requires strong mass-dependent suppression of star formation in low-mass subhalos: models in which the stellar mass is a constant fraction F {sub *}({omega} {sub b}/{omega} {sub m}) of the subhalo mass M {sub sat} at the time it becomes a satellite fail for any choice of F {sub *}. However, previously advocated models that invoke suppression of gas accretion after reionization in halos with circular velocity V {sub circ} {<=} V {sub crit} {approx} 35 km s{sup -1} can reproduce the observed satellite counts for -15 {<=} M{sub V} {<=} 0. Successful models require F {sub *} {approx} 10{sup -3} in halos with V {sub circ}>V {sub crit} and strong suppression of star formation before reionization in halos with V {sub circ} {approx}< 10 km s{sup -1}; models without pre-reionization suppression predict far too many satellites with -5 {<=} M{sub V} {<=} 0. In this successful model, the dominant fraction of stars formed after reionization at all luminosities. Models that match the satellite luminosity distribution also match the observed heliocentric radius distribution, and they reproduce the observed characteristic stellar velocity dispersion {sigma}{sub *} {approx} 5-10 km s{sup -1} of the SDSS dwarfs given the
Combining Quark and Link Smearing to Improve Extended Baryon Operators
Adam Lichtl; Subhasish Basak; Robert Edwards; George T. Fleming; Urs M. Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2005-09-29
The effects of Gaussian quark-field smearing and analytic stout-link smearing on the correlations of gauge-invariant extended baryon operators are studied. Gaussian quark-field smearing substantially reduces contributions from the short wavelength modes of the theory, while stout-link smearing significantly reduces the noise from the stochastic evaluations. The use of gauge-link smearing is shown to be crucial for baryon operators constructed of covariantly-displaced quark fields. Preferred smearing parameters are determined for a lattice spacing a_s ~ 0.1 fm.
Indication of divergent baryon-number susceptibility in QCD matter
Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.
2010-01-15
The baryon-number density formed in relativistic nuclear collisions versus the chemical potential of the freeze-out states is systematically studied on the basis of existing measurements. A remarkable power-law behavior of the baryon-number susceptibility is found at the CERN Super Proton Synchrotron, consistent with the existence of a QCD critical point at mu{sub B,c}approx =222 MeV, T{sub c}approx =155 MeV. The equation of state in different asymptotic regimes of the critical region is also examined and confronted with freeze-out states in these experiments.
Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory
Volker Crede
2011-12-01
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.
Baryon symmetric big-bang cosmology. [matter-antimatter symmetry
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1978-01-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Baryon-Number Transfer in High-Energy hp Collisions
Bopp, F.; Shabelski, Yu. M.
2005-12-01
The processes of baryon-number transfer due to string-junction propagation in rapidity is considered. It has a significant effect on the net baryon production in pp collisions at mid-rapidities and an even larger effect in the forward hemisphere in the cases of {pi}p and {gamma}p interactions. The results of numerical calculations in the framework of the quark-gluon string model are in reasonable agreement with the data with the same parameter values for different energies.
Triply heavy baryons and heavy quark spin symmetry
NASA Astrophysics Data System (ADS)
Flynn, J. M.; Hernández, E.; Nieves, J.
2012-01-01
We study the semileptonic b→c decays of the lowest-lying triply heavy baryons made from b and c quarks in the limit mb, mc≫ΛQCD and close to the zero-recoil point. The separate heavy-quark spin symmetries strongly constrain the matrix elements, leading to single form factors for ccb→ccc, bbc→ccb, and bbb→bbc baryon decays. We also study the effects on these systems of using a Y-shaped confinement potential, as suggested by lattice QCD results for the interaction between three static quarks.
Spectroscopy of triply charmed baryons from lattice QCD
Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael
2014-10-14
The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.
Production of the charmed strange baryon. xi. /sub c//sup +/ by neutrons
Not Available
1986-12-01
We report on the observation of a narrow resonance at a mass of 2450 MeV/c/sup 2/ in the final states ..lambda..K/sup -/..pi../sup +/..pi../sup +/ and ..sigma../sup 0/K/sup -/..pi../sup +/..pi../sup +/. The mass, width, lifetime, and decay modes support the interpretation of a hadronically produced charm-strange baryon, the ..xi../sub c//sup +/. We present our preliminary measurements of the lifetime, and the ..lambda.., x/sub feynman,/ and p/sub t/ dependence of the state.
The baryon halo of the milky way: A fossil record of its formation
Bland-Hawthorn; Freeman
2000-01-01
Astronomers believe that the baryon (stellar) halo of the Milky Way retains a fossil imprint of how it was formed. But a vast literature shows that the struggle to interpret the observations within a consistent framework continues. The evidence indicates that the halo has built up through a process of accretion and merging over billions of years, which is still going on at a low level. Future satellite missions to derive three-dimensional space motions and heavy element (metal) abundances for a billion stars will disentangle the existing web and elucidate how galaxies like our own came into existence.
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Jarosik, N.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L.
2010-01-01
We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the Wilkinson Microwave Anisotropy Probe (WMAP) sky survey. The new maps are consistent with previous maps and are more sensitive. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that W-band polarization data is not yet suitable for cosmological studies, but we suggest directions for further study. We do find that Ka-band data is suitable for use; in conjunction with the additional years of data, the addition of Ka band to the previously used Q- and V-band channels significantly reduces the uncertainty in the optical depth parameter, tau. Further scientific results from the five-year data analysis are presented in six companion papers and are summarized in Section 7 of this paper. With the five-year WMAP data, we detect no convincing deviations from the minimal six-parameter ACDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations in the galaxy distribution, we find (68% CL uncertainties): OMEGA(sub b)h(sup 2) = 0.02267(sup +0.00058)(sub -0.00059), OMEGA(sub c)h(sup 2) = 0.1131 plus or minus 0.0034, OMEGA(sub logical and) = 0.726 plus or minus 0.015, ns = .960 plus or minus 0.013, tau = 0.84 plus or minus 0.016, and DELTA(sup 2)(sub R) = (22.445 plus or minus 0.096) x 10(exp -9) at k = 0.002 Mpc(exp -1). From these we derive sigma(sub 8) = 0.812 plus or minus 0.026, H(sub 0) = 70.5 plus or minus 1.3 kilometers per second Mpc(exp -1), OMEGA(sub b) = 0.0456 plus or minus 0.0015, OMEGA(sub c) = .228 plus or minus
Effects of baryons on the dark matter distribution in cosmological hydrodynamical simulations
NASA Astrophysics Data System (ADS)
Schaller, Matthieu
2015-09-01
Simulations including solely dark matter performed over the last three decades have delivered an accurate and robust description of the cosmic web and dark matter structures. With the advent of more precise cosmological probes, planned and ongoing, and dark matter detection experiments, this numerical modelling has to be improved to incorporate the complex non-linear and energetic processes taking place during galaxy formation. We use the ``Evolution and Assembly of GaLaxies and their Environment'' (EAGLE) suite of cosmological simulations to investigate the effects of baryons and astrophysical processes on the underlying dark matter distribution. Many effects are expected and we investigate (i): the modification of the profile of halos from the Navarro-Frenk-White profile shape found in collisionless simulations, including the changes in the dark matter profiles themselves, (ii) the changes of the inner density profiles of rich clusters, where observations have suggested a deviation from the standard cold dark matter paradigm, (iii) the offset created by astrophysical process between the centre of galaxies and the centre of the dark matter halo in which they reside and, (iv) the changes in the shape of the dark matter profile due to baryons in the centre of Milky Way halos and the impact these changes have on the morphology of the annihilation signal that could be observed as an indirect proof of the existence of dark matter. In all cases we find that the baryons play a significant role and change the results found in collisionless simulations dramatically. This highlights the need for more simulations like EAGLE to better understand and analyse future cosmology surveys. We also conduct a thorough study of the hydrodynamics solver parameters used in these simulations, assess their impact on the simulated galaxy population and show how robust some of the EAGLE results are against such variations.
Understanding WIMP-baryon interactions with direct detection: a roadmap
Gluscevic, Vera; Peter, Annika H.G. E-mail: apeter@physics.osu.edu
2014-09-01
We study prospects of dark-matter direct-detection searches for probing non-relativistic effective theory for WIMP-baryon scattering. We simulate a large set of noisy recoil-energy spectra for different scattering scenarios (beyond the standard momentum-independent contact interaction), for Generation 2 and futuristic experiments. We analyze these simulations and quantify the probability of successfully identifying the operator governing the scattering, if a WIMP signal is observed. We find that the success rate depends on a combination of factors: the WIMP mass, the mediator mass, the type of interaction, and the experimental energy window. For example, for a 20 GeV WIMP, Generation 2 is only likely to identify the right operator if the interaction is Coulomb-like, and is unlikely to do so in any other case. For a WIMP with a mass of 200 GeV or higher, success is almost guaranteed. We also find that, regardless of the scattering model and the WIMP parameters, a single Generation 2 experiment is unlikely to successfully discern the momentum dependence of the underlying operator on its own, but prospects improve drastically when experiments with different target materials and energy windows are analyzed jointly. Furthermore, we examine the quality of parameter estimation and degeneracies in the multi-dimensional parameter space of the effective theory. We find in particular that the resulting WIMP mass estimates can be severely biased if data are analyzed assuming the standard (momentum-independent) operator while the actual operator has momentum-dependence. Finally, we evaluate the ultimate reach of direct detection, finding that the prospects for successful operator selection prior to reaching the irreducible backgrounds are excellent, if the signal is just below the current limits, but slim if Generation 2 does not report WIMP detection.
Measuring baryon acoustic oscillations from the clustering of voids
NASA Astrophysics Data System (ADS)
Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling
2016-07-01
We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif
1994-01-01
) cannot account for the baryon content of the universe at z approximately 3 observed in quasar absorption line gas unless Omega (sub B) significantly exceeds the maximum value allowed by big bang nucleocynthesis. (5) For a CDM model with bias parameter within the allowed range of (lower) values, the lower limit to Omega(sub B) imposed by big bang nucleosynthesis (Omega(sub B) h(sup 2) greater than or equal to 0.01) combines with our results to yield the minimum IGM density for the CDM fodel. For CDM with b = 1 (Cosmic Background Explorer (COBE) normalization), we find Omega(sub IGM)(sup min) (z approximately 4) approx. equal 0.02-0.03, and Omega(sub IGM)(sup min)(z approximately 0) approx. equal 0.005-0.03, depending upon the nature of the sources of IGM reionization. (6) In general, we find that self-consistent reionization of the IGM by the collapsed baryon fraction has a strong effect on the rate of collapse. (7) As a further example, we show that the feedback effect on the IGM of energy release by the collapsed baryon fraction may explain the slow evolution of the observed comoving QSO number density between z = 5 and z = 2, followed by the sharp decline after z = 2.
Baryon Asymmetry of the Universe (1/2)
None
2016-07-12
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Layers of deformed instantons in holographic baryonic matter
NASA Astrophysics Data System (ADS)
Preis, Florian; Schmitt, Andreas
2016-07-01
We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.
Baryon Asymmetry of the Universe (2/2)
None
2016-07-12
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
The Search for the Missing Baryons at Low Redshift
NASA Astrophysics Data System (ADS)
Bregman, Joel N.
2007-09-01
At low redshift, only about one-tenth of the known baryons lie in galaxies or the hot gas seen in galaxy clusters and groups. Models posit that these “missing baryons” are in gaseous form in overdense filaments that connect the much denser virialized groups and clusters. About 30% is cool (<105 K) and is detected in Lyα absorption studies, but about half is predicted to lie in the 105 107 K regime. Gas is detected in the 2 5 × 105 K range through OVI absorption studies (7% of the baryons) and possibly near 105 K from broad Lyα absorption (20% of the baryons). Hotter gas (0.5 2 × 106 K) is detected at zero redshift by OVII and OVIII Kα X-ray absorption, and the OVII line strengths seem to correlate with the Galactic soft X-ray background, so it is probably produced by Galactic halo gas, rather than a Local Group medium. There are no compelling detections of the intergalactic hot gas (0.5 10 × 106 K) either in absorption or emission and these upper limits are consistent with theoretical models. Claimed X-ray absorption lines are not confirmed, while most of the claims of soft emission are attributable to artifacts of background subtraction and field-flattening. The missing baryons should become detectable with moderate improvements in instrumental sensitivity.
Baryon Asymmetry of the Universe (2/2)
2010-05-26
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Baryon Asymmetry of the Universe (1/2)
2010-05-26
In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments
Study of decuplet baryon resonances from lattice QCD
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Negele, J. W.; Petschlies, M.; Pochinsky, A. V.; Syritsyn, S. N.
2016-06-01
A lattice QCD study of the strong decay width and coupling constant of decuplet baryons to an octet baryon-pion state is presented. The transfer matrix method is used to obtain the overlap of lattice states with decuplet baryon quantum numbers on the one hand and octet baryon-pion quantum numbers on the other as an approximation of the matrix element of the corresponding transition. By making use of leading-order effective field theory, the coupling constants as well as the widths for the various decay channels are determined. The transitions studied are Δ →π N , Σ*→Λ π , Σ*→Σ π and Ξ*→Ξ π . We obtain results for two ensembles of Nf=2 +1 dynamical fermion configurations: one using domain wall valence quarks on a staggered sea at a pion mass of 350 MeV and a box size of 3.4 fm and a second one using domain wall sea and valence quarks at pion mass 180 MeV and box size 4.5 fm.
Group-theoretical construction of extended baryon operators
S. Basak; R. Edwards; R. Fiebig; G. T. Fleming; U. M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace
2004-06-01
The design and implementation of large sets of spatially extended baryon operators for use in lattice simulations are described. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators.
Staggered baryon operators with flavor SU(3) quantum numbers
Bailey, Jon A.
2007-06-01
The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.
THE SLOPE OF THE BARYONIC TULLY-FISHER RELATION
Gurovich, Sebastian; Freeman, Kenneth; Jerjen, Helmut; Staveley-Smith, Lister; Puerari, Ivanio
2010-09-15
We present the results of a baryonic Tully-Fisher relation (BTFR) study for a local sample of relatively isolated disk galaxies. We derive a BTFR with a slope near 3 measured over about 4 dex in baryon mass for our combined H I and bright spiral disk samples. This BTFR is significantly flatter and has less scatter than the TFR (stellar mass only) with its slope near 4 reported for other samples and studies. A BTFR slope near 3 is in better agreement with the expected slope from simple {Lambda}CDM cosmological simulations that include both stellar and gas baryons. The scatter in the TFR/BTFR appears to depend on W{sub 20}: galaxies that rotate slower have more scatter. The atomic gas-to-stars ratio shows a break near W{sub 20} = 250 km s{sup -1} probably associated with a change in star formation efficiency. In contrast, the absence of such a break in the BTFR suggests that this relation was probably set at the main epoch of baryon dissipation rather than as a product of later galactic evolution.
Baryons:the Promise, the Problems, and the Prospects
Isgur, Nathan
1995-10-01
An idiosyncratic view of Baryons '95 that calls for a marriage between quark-based and hadronic models of QCD is presented.A treatment based on valence quark plus glue dominance of hadron structure, with the sea of qq{bar} pairs (in the form of virtual hadron pairs) as important corrections is advocated.
The status of the Excited Baryon Analysis Center
B. Julia-Diaz
2010-08-01
The Excited Baryon Analysis Center (EBAC), which is associated with the Theory Group at Jefferson Laboratory, was initiated in 2006. Its main goal is to extract and interpret properties of nucleon resonances (N*) from the world data of meson production reactions induced by pions, photons and electrons. We review the main accomplishments of the center since then and sketch its near future perspectives.
Kohri, Kazunori; Sahu, Narendra; Stephens, Philip; Mazumdar, Anupam
2009-09-15
We propose an unified model of dark matter and baryon asymmetry in a leptophilic world above the electroweak scale. We provide an example where the inflaton decay products subsequently generate a lepton asymmetry and a dark matter abundance with an unique coupling in the early Universe, while the present day decay of the dark matter through the same coupling gives rise the observed cosmic ray anomalies at PAMELA and Fermi Large Area Telescope.
Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology
NASA Technical Reports Server (NTRS)
Puget, J. L.
1973-01-01
An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.
McCracken, Michael E.
2015-10-09
We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π^{+}) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 – 200) x 10^{7} at the 90% confidence level.
McCracken, Michael E.
2015-10-09
We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π+) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 –more » 200) x 107 at the 90% confidence level.« less
NASA Astrophysics Data System (ADS)
Kamada, Ayuki; Kawasaki, Masahiro; Yamada, Masaki
2015-04-01
We show that the baryon-dark-matter coincidence problem can be solved in the constrained minimal supersymmetric model. Baryons and dark matter are generated simultaneously through the late-time decay of nontopological solitons, Q-balls, which are formed after the Affleck-Dine baryogenesis. A certain relation between the universal scalar mass m0 and the universal gaugino mass M1 /2 is required to solve the coincidence problem, marginally depending on the other parameters, and the result can be consistent with the observation of the 126-GeV Higgs boson. We also investigate the detectability in dark-matter direct-search experiments.
NASA Astrophysics Data System (ADS)
Guo, Lei
The reaction gammap → pi+ k-k+ n has been investigated at Jefferson Lab using a tagged photon beam with an energy range of 3--5.47 GeV. A narrow baryon state with strangeness S = +1 and mass m = 1555 +/- 7 +/- 10 MeV/c 2 was observed in the nk+ invariant mass spectrum. The width of peak is consistent with the CLAS resolution (FWHM = 26 MeV/c2), and its statistical significance is 7.8 +/- 1.0 sigma. A baryon with positive strangeness has necessarily exotic structure and cannot be described in the framework of the naive constituent quark model. The signal is consistent with that predicted by a chiral soliton model for a 5-quark baryon state. Partial Wave Analysis was performed for the three-body mesonic background with the energy range of 4.8--5.47 GeV. The analysis demonstrates that the observed signal is unlikely to arise from meson production in the same final state. Interesting features were also observed in the 2-, 1- and 1 + partial wave intensity distributions. Due to the low statistics, the resonant nature of these meson waves is not determined.
NASA Astrophysics Data System (ADS)
Haidenbauer, J.; Meißner, Ulf-G.; Petschauer, S.
2016-10-01
The strangeness S = - 2 baryon-baryon interaction is studied in chiral effective field theory up to next-to-leading order. The potential at this order consists of contributions from one- and two-pseudoscalar-meson exchange diagrams and from four-baryon contact terms without and with two derivatives. SU(3) flavor symmetry is imposed for constructing the interaction in the S = - 2 sector. Specifically, the couplings of the pseudoscalar mesons to the baryons are fixed by SU(3) symmetry and, in general, also the contact terms are related via SU(3) symmetry to those determined in a previous study of the S = - 1 hyperon-nucleon interaction. The explicit SU(3) symmetry breaking due to the physical masses of the pseudoscalar mesons (π, K, η) is taken into account. It is argued that the ΞN interaction has to be relatively weak to be in accordance with available experimental constraints. In particular, the published values and upper bounds for the Ξ- p elastic and inelastic cross sections apparently rule out a somewhat stronger attractive ΞN force and, specifically, disfavor any near-threshold deuteron-like bound states in that system.
Carbone, Carmelita; Mangilli, Anna; Verde, Licia E-mail: anna.mangilli@icc.ub.edu
2011-09-01
We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f{sub iso}, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f{sub iso}) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.
New particle observations in SELEX
Jun, Soon Yung; /Carnegie Mellon U.
2004-12-01
Particle observations in data from SELEX, the charm hadro-production experiment (E781) at Fermilab are reviewed. These include observations of the doubly charmed baryon {Xi}{sub cc}{sup +}(3520) and the charmed strange meson D{sub sJ}{sup +}(2632).
Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD
NASA Astrophysics Data System (ADS)
Liang, Jian; Sun, Wei; Chen, Ying; Qiu, Wei-Feng; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Zhang, Jian-Bo; CLQCD Collaboration
2016-04-01
The Ω baryons with J P = 3/2±, 1/2± are studied on the lattice in the quenched approximation. Their mass levels are ordered as M 3/2+ < M 3/2- ≈ M 1/2- < M 1/2+ , as is expected from the constituent quark model. The mass values are also close to those of the four Ω states observed in experiments. We calculate the Bethe-Salpeter amplitudes of Ω(3/2+) and Ω(1/2+) and find there is a radial node for the Ω(1/2+) Bethe-Salpeter amplitude, which may imply that Ω(1/2+) is an orbital excitation of Ω baryons as a member of the supermultiplet in the SU(6) ⊗ O(3) quark model description. Our results are helpful for identifying the quantum numbers of experimentally observed Ω states. The numerical calculations were carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin. Supported by National Science Foundation of China (NSFC) (11105153, 11335001, 11405053), Youth Innovation Promotion Association of CAS, NSFC (11261130311) (CRC 110 by DFG and NSFC)
The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model
NASA Astrophysics Data System (ADS)
Del Popolo, A.; Pace, F.
2016-05-01
In the present paper, we compare the predictions of two well known mechanisms considered able to solve the cusp/core problem (a. supernova feedback; b. baryonic clumps-DM interaction) by comparing their theoretical predictions to recent observations of the inner slopes of galaxies with masses ranging from dSphs to normal spirals. We compare the α-V_{rot} and the α-M_{ast} relationships, predicted by the two models with high resolution data coming from Adams et al. (Astrophys. J. 789, 63, 2014), Simon et al. (Astrophys. J. 621, 757, 2005), LITTLE THINGS (Oh et al. in Astron. J. 149, 180, 2015), THINGS dwarves (Oh et al. in Astron. J. 141, 193, 2011a; Oh et al. in Astron. J. 142, 224, 2011b), THINGS spirals (Oh et al. in Astron. J. 149, 180, 2015), Sculptor, Fornax and the Milky Way. The comparison of the theoretical predictions with the complete set of data shows that the two models perform similarly, while when we restrict the analysis to a smaller subsample of higher quality, we show that the method presented in this paper (baryonic clumps-DM interaction) performs better than the one based on supernova feedback. We also show that, contrarily to the first model prediction, dSphs of small mass could have cored profiles. This means that observations of cored inner profiles in dSphs having a stellar mass <106 M_{⊙} not necessarily imply problems for the ΛCDM model.
Spectrum and Bethe-Salpeter amplitudes of Ω baryons from lattice QCD
NASA Astrophysics Data System (ADS)
Liang, Jian; Sun, Wei; Chen, Ying; Qiu, Wei-Feng; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Zhang, Jian-Bo; CLQCD Collaboration
2016-04-01
The Ω baryons with J P = 3/2±, 1/2± are studied on the lattice in the quenched approximation. Their mass levels are ordered as M 3/2+ < M 3/2‑ ≈ M 1/2‑ < M 1/2+ , as is expected from the constituent quark model. The mass values are also close to those of the four Ω states observed in experiments. We calculate the Bethe-Salpeter amplitudes of Ω(3/2+) and Ω(1/2+) and find there is a radial node for the Ω(1/2+) Bethe-Salpeter amplitude, which may imply that Ω(1/2+) is an orbital excitation of Ω baryons as a member of the supermultiplet in the SU(6) ⊗ O(3) quark model description. Our results are helpful for identifying the quantum numbers of experimentally observed Ω states. The numerical calculations were carried out on Tianhe-1A at the National Supercomputer Center (NSCC) in Tianjin. Supported by National Science Foundation of China (NSFC) (11105153, 11335001, 11405053), Youth Innovation Promotion Association of CAS, NSFC (11261130311) (CRC 110 by DFG and NSFC)
Studies of beauty baryon decays to D0ph- and Λc+h- final states
NASA Astrophysics Data System (ADS)
Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dorosz, P.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Hafkenscheid, T. W.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Klaver, S.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration
2014-02-01
Decays of beauty baryons to the D0ph- and Λc+h- final states (where h indicates a pion or a kaon) are studied using a data sample of pp collisions, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb detector. The Cabibbo-suppressed decays Λb0→D0pK- and Λb0→Λc+K- are observed, and their branching fractions are measured with respect to the decays Λb0→D0pπ- and Λb0→Λc+π-. In addition, the first observation is reported of the decay of the neutral beauty-strange baryon Ξb0 to the D0pK- final state, and a measurement of the Ξb0 mass is performed. Evidence of the Ξb0→Λc+K- decay is also reported.
NASA Astrophysics Data System (ADS)
Kawasaki, Masahiro; Yamada, Masaki
2015-04-01
We investigate the Affleck-Dine baryogenesis after D -term inflation with a positive Hubble-induced mass term for a B -L flat direction. It stays at a large field value during D -term inflation, and just after inflation ends it starts to oscillate around the origin of the potential due to the positive Hubble-induced mass term. The phase direction is kicked by higher-dimensional Kähler potentials to generate the B -L asymmetry. The scenario predicts nonzero baryonic isocurvature perturbations, which would be detected by future observations of CMB fluctuations. We also provide a D -term inflation model which naturally explains the coincidence of the energy density of baryon and dark matter.
Missing baryons, bulk flows, and the E-mode polarization of the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Hernández-Monteagudo, C.; Sunyaev, R. A.
2008-10-01
Most of the missing baryons are found in slightly overdense structures like filaments and superclusters, but to date most of them have remained hidden to observation. At the same time, the linear cosmological perturbation theory predicts the existence of extended bulk flows seeded by the gravitational attraction of linear potential wells, but again these also remain undetected. If the peculiar motion of galaxy groups and clusters indeed resembles that of the surrounding baryons, then the kinetic Sunyaev-Zel'dovich (kSZ) pattern of those massive halos should be closely correlated to the kSZ pattern of all surrounding electrons. Likewise, it should also be correlated to the CMB E-mode polarization field generated via Thomson scattering after reionization. We explore the cross-correlation of the kSZ generated in groups and clusters to the all sky E-mode polarization in the context of future CMB experiments like Planck, ACT, SPT or APEX. We find that this cross-correlation effectively probes redshifts below z=3-4 (where most of the baryons cannot be seen), and that it arises on very large scales (l<10). The significance with which this cross-correlation can be measured depends on the Poissonian uncertainty associated with the number of halos where the kSZ is measured and on the accuracy of the kSZ estimations themselves. Assuming that Planck can provide a cosmic variance limited E-mode polarization map at l<20 and S/N ˜ 1 kSZ estimates can be gathered for all clusters more massive than 1014 ~M⊙, then this cross-correlation should be measured at the 2-3σ level. Further, if an all-sky ACT or SPT type CMB experiment provides similar kSZ measurements for all halos above 1013 ~M⊙, then the cross-correlation total signal to noise (S/N) ratio should be at the level of 4-5. A detection of this cross-correlation would provide direct and definite evidence of bulk flows and missing baryons simultaneously.
Hadronic interactions in large N_c QCD: Studies of excited baryon decays and scattering relations
NASA Astrophysics Data System (ADS)
Dakin, Daniel C.
Decays and scattering events are two of the principal ways to learn about particle physics. Decays, in which a particle spontaneously disintegrates and we examine the debris, are quantified by a decay width. The decay of a resonance state provides information about the structure of the state and the interaction between its components. In particular, we can learn about the dynamics of quarks and gluons by studying the decay of hadrons. Scattering, in which particles are directed towards each other and interact, are quantified by partial-wave amplitudes. These amplitudes give us information about the interaction between the scattered particles. In principle, all of hadronic physics follows from quantum chromodynamics (QCD), which describes the interactions of quarks and gluons. However, the techniques of perturbation theory are not applicable to QCD at low energy because the strong coupling constant (the natural choice for the expansion parameter) is large at the energy scale of hadronic physics. A powerful model-independent method is the 1/Nc expansion in which the number of quark color degrees of freedom (Nc) is treated as a large number. This thesis presents the application of the 1/ Nc expansion to the calculation of physical observables for excited baryons, pion-nucleon scattering, and pion photoproduction. The framework of the contracted SU(4) group that emerges in large Nc QCD is applied to the study of excited baryon decays. The Nc power scaling of the excited baryon's decay width depends on the symmetry of its spin-flavor wavefunction. The scaling with Nc for different symmetries is discussed in the context of a quark-shell model that permits mixing of different symmetry types. The subtle issues concerning the legitimacy of applying the contracted SU(4) group theory to excited baryons are discussed. The contracted SU(4) spin-flavor symmetry severely restricts the angular momentum and isospin dependence of partial-wave amplitudes. The consequences of this
HaloSat: A CubeSat to Map the Distribution of Baryonic Matter in the Galactic Halo
NASA Astrophysics Data System (ADS)
Miles, Drew M.
2016-04-01
Approximately half of predicted baryonic matter in the Milky Way remains unidentified. One possible explanation for the location of this missing matter is in an extended Galactic halo. HaloSat is a CubeSat that aims to constrain the mass and distribution of the halo’s baryonic matter by obtaining an all-sky map of O VII and O VIII emission in the hot gas associated with the halo of the Milky Way. HaloSat offers an improvement in the quality of measurements of oxygen line emission over existing X-ray observatories and an observation plan dedicated to mapping the hot gas in the Galactic halo. In addition to the missing baryon problem, HaloSat will assign a portion of its observations to the solar wind charge exchange (SWCX) in order to calibrate models of SCWX emission. We present here the current status of HaloSat and the progression of instrument development in anticipation of a 2018 launch.
NASA Astrophysics Data System (ADS)
Papastergis, E.; Shankar, F.
2016-06-01
Recent studies have established that extreme dwarf galaxies - whether satellites or field objects - suffer from the so called "too big to fail" (TBTF) problem. Put simply, the TBTF problem consists of the fact that it is difficult to explain both the measured kinematics of dwarfs and their observed number density within the lambda cold dark matter (ΛCDM) framework. The most popular proposed solutions to the problem involve baryonic feedback processes. For example, reionization and baryon depletion can decrease the abundance of halos that are expected to host dwarf galaxies. Moreover, feedback related to star formation can alter the dark matter density profile in the central regions of low-mass halos. In this article we assess the TBTF problem for field dwarfs, taking explicitly into account the baryonic effects mentioned above. We find that 1) reionization feedback cannot resolve the TBTF problem on its own, because the halos in question are too massive to be affected by it; and that 2) the degree to which profile modification can be invoked as a solution to the TBTF problem depends on the radius at which galactic kinematics are measured. Based on a literature sample of ~90 dwarfs with interferometric observations in the 21 cm line of atomic hydrogen (HI), we conclude that the TBTF problem persists despite baryonic effects. However, the preceding statement assumes that the sample under consideration is representative of the general population of field dwarfs. In addition, the unexplained excess of dwarf galaxies in ΛCDM could be as small as a factor of ≈ 1.8, given the current uncertainties in the measurement of the galactic velocity function. Both of these caveats highlight the importance of upcoming uniform surveys with HI interferometers for advancing our understanding of the issue.
Cascade ({xi}) Physics: a New Approach to Baryon Spectroscopy
Nefkens, B. M. K.
2006-11-17
Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and {delta}+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two ''massive'' strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and {delta}* resonances to make a conclusive search for the 'Unseen Resonances' of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?.
Determination of the quark coupling strength |Vub| using baryonic decays
NASA Astrophysics Data System (ADS)
LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Mohr, R. Casanova; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; de Bruyn, K.; de Capua, S.; de Cian, M.; de Miranda, J. M.; de Paula, L.; de Silva, W.; de Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; di Canto, A.; di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Pardiñas, J. García; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Rodrigues, B. Osorio; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; Dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza de Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Barbosa, J. V. Viana; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.
2015-09-01
In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, |Vub| and |Vcb|, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Λb0 baryon to decay into the p final state relative to the final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of |Vcb|, the first |Vub| measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of |Vub| using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.
Baryon effects on the location of QCD's critical end point
NASA Astrophysics Data System (ADS)
Eichmann, Gernot; Fischer, Christian S.; Welzbacher, Christian A.
2016-02-01
The location of the critical end point of QCD has been determined in previous studies of Nf=2 +1 and Nf=2 +1 +1 dynamical quark flavors using a (truncated) set of Dyson-Schwinger equations for the quark and gluon propagators of Landau-gauge QCD. A source for systematic errors in these calculations has been the omission of terms in the quark-gluon interaction that can be parametrized in terms of baryonic degrees of freedom. These have a potentially large dependence on chemical potential and therefore may affect the location of the critical end point. In this exploratory study we estimate the effects of these contributions, both in the vacuum and at finite temperature and chemical potential. We find only a small influence of baryonic contributions on the location of the critical end point. We estimate the robustness of this result by parameterizing further dependencies on chemical potential.
Net baryon fluctuations from a crossover equation of state
NASA Astrophysics Data System (ADS)
Kapusta, J.; Albright, M.; Young, C.
2016-08-01
We have constructed an equation of state which smoothly interpolates between an excluded-volume hadron resonance gas at low energy density to a plasma of quarks and gluons at high energy density. This crossover equation of state agrees very well with lattice calculations at both zero and nonzero baryon chemical potential. We use it to compute the variance, skewness, and kurtosis of fluctuations of baryon number, and compare to measurements of proton number fluctuations in central Au-Au collisions as measured by the STAR Collaboration in a beam energy scan at the Relativistic Heavy-Ion Collider. The crossover equation of state can reproduce the data if the fluctuations are frozen out at temperatures well below than the average chemical freeze-out.
Baryon number dissipation at finite temperature in the standard model
Mottola, E. ); Raby, S. . Dept. of Physics); Starkman, G. . Dept. of Astronomy)
1990-01-01
We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, {gamma} is given in terms of real time correlation functions of the operator E{center dot}B, and is directly proportional to the sphaleron transition rate, {Gamma}: {gamma} {preceq} n{sub f}{Gamma}/T{sup 3}. Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs.
Flavor violation in Higgs-boson couplings to baryons
Bagchi, B. ); Niyogi, S. )
1992-06-01
The 1/2{sup +} baryon mass spectrum is studied to determine the {ital {bar u}u}, {ital {bar d}d}, and {ital {bar s}s} contents in the nucleon. We find that higher-order symmetry-breaking terms in the mass operator are necessary to estimate {l angle}{ital p}{vert bar}{ital {bar u}u}{vert bar}{ital p}{r angle}, {l angle}{ital p}{vert bar}{ital {bar d}d}{vert bar}{ital p}{r angle}, and {l angle}{ital p}{vert bar}{ital {bar s}s}{vert bar}{ital p}{r angle} in a self-consistent way. We also assess the scalar (pseudoscalar) Higgs-boson couplings to baryons.
Search for exotic baryon states with the SPHINX detector
Kurshetsov, V.F.; Landsberg, L.G.
1994-11-01
A number of diffractive processes involving the production of baryon states are studied in a series of experiments using the SPHINX detector and the E{sub p} = 70 GeV proton beam of the IHEP accelerator. These include p + N {yields} [pK{sup +}K{sup {minus}}] + N, p + N {yields} [p{phi}] + N, p + N {yields} [{Lambda}(1520)K{sup +}] + N, p + N {yields} [{Sigma}(1385){sup 0}K{sup +}] + N, p + N {yields} [{Sigma}(1385){sup 0}K{sup +}] + N + (neutrals), p + N {yields} [{Sigma}{sup 0}K{sup +}] + N, and a number of other transitions. Searches for narrow heavy baryons, which are candidates for cryptoexotic hadron states with hidden strangeness, are reported. The first results on meson production in the deep fragmentation region are presented. 21 refs., 14 figs., 2 tabs.
Lattice study of the exotic s = +1 baryon.
Sasaki, Shoichi
2004-10-01
We propose S = +1 baryon interpolating operators, which are based on an exotic description of the antidecuplet baryon, like the diquark-diquark-antiquark structure. By using one of the new operators, the mass spectrum of the spin-1/2 pentaquark states is calculated in quenched lattice QCD at beta = 6/g(2) = 6.2 on a 32(3) x 48 lattice. It is found that the J(P) assignment of the lowest Theta(uudds) state is most likely (1/2)(-). We also calculate the mass of the charm analog of the Theta and find that the Theta(c)(uuddc) state lies much higher than the DN threshold, in contrast to several model predictions. PMID:15524864
The technological concept of the Compressed Baryonic Matter (CBM) experiment
NASA Astrophysics Data System (ADS)
Deveaux, M.; Cbm-Collaboration
2013-03-01
The Compressed Baryonic Matter (CBM) experiment is to explore the properties of strongly interacting matter in the regime of highest net baryon densities. It aims to find experimental evidence for numerous predicted effects like a first order phase transition between hadronic and partonic matter, the existence of a critical endpoint of this phase transition and the expected onset of chiral symmetry restoration. The 8-45 AGeV heavy ion beam needed to create the hot and dense matter in the fixed target experiment will be provided by the SIS100 and the SIS300 synchrotron of the future FAIR facility in Darmstadt, Germany. The paper provides an introduction into the measurement challenges and the technological concept of CBM-experiment from an instrumentalist's point of view.
The role of quark distances in baryon multiplet mass differences
Barakat, T.
1996-10-01
On the basis of solutions of the three-body Schroedinger equation with harmonic oscillators potential, the quark distances in baryons are expressed as mass dependent terms. The isomultiplet mass differences of octet and decuplet baryons are explained well when a dynamical isospin-breaking effect (m{sub u} {ne} m{sub d}) in the quark distances is introduced. In particular the author obtains R{sub dd} < R{sub uu}, a result which is in the right direction at least to reproduce {Sigma}{sub c}{sup ++} {minus} {Sigma}{sub c}{sup 0}= 2.5 MeV, in good agreement with the experimental findings 2.5 {+-} 1.0 MeV.
Tensor Charges, Quark Anomalous Magnetic Moments And Baryons
Mekhfi, M.
2007-06-13
We propose an 'ultimate' upgrade of the Karl- Sehgal (KS) formula which relates baryon magnetic moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks. We first argue that relativistic nature of quarks inside baryons requires introduction of two kinds of magnetisms, one axial and the other tensoriel. The first one is associated with integrated quark helicity distributions {delta}i - {delta}i-bar (standard ) and the second with integrated transversity distributions {delta}i - {delta}i-bar. The weight of each contribution is controlled by the combination of two parameters, xi the ratio of the quark mass to the average kinetic energy and ai the quark anomalous magnetic moment. The quark anomalous magnetic moment is thus shown to be correlated to transversity. The proposed formula confirms, with reasonable inputs that anomalous magnetic moments of quarks are unavoidable intrinsic properties.
Charmed and strange baryon production in 29 GeV electron positron annihilation
Klein, S.R.
1988-06-01
This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark III detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The ..xi../sup /minus// production rate is measured to be 0.017 +- 0.004 +- 0.004 per hadronic event, ..cap omega../sup /minus// production is measured to be 0.014 +- 0.006 +- 0.004 per hadronic event, and ..xi..*/sup 0/ production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryon production. In particular, the unexpectedly high rate of ..cap omega../sup /minus// production is difficult to explain in any diquark based model. Semileptonic ..lambda../sub c//sup +/ decays have also been observed. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results. However, they do indicate that the branching ratio for ..lambda../sub c//sup +/ ..-->.. ..lambda..l..nu.. may be higher than previous experimental measurements. 85 refs., 45 figs., 12 tabs.
Faddeev equation studies of SU{sub f}(3) baryons spectroscopy
Roberts, C.D.; Cahill, R.T.; Tandy, P.C.
1995-08-01
The spectroscopy of baryons composed of u, d and s quarks is being studied using a separable approximation to the quark-quark scattering kernel. As in the studies of mesons, the kernel is obtained by using a separable approximation to invert the DSE for the quark propagator. An initial focus of the study is to analyze the importance of diffuse diquark correlations in baryons and to determine accurately the effective mass and radius of these correlations. This Faddeev equation approach, which employs confined, dressed-quark quasi-particles, is a natural framework within which to calculate the {pi}-N {sigma}-term ({sigma}{sub N}) and preliminary results are in good agreement with the experimentally determined value. This indicates that {sigma}{sub N} is simply and directly related to the shift in the nucleon mass due to the nonzero bare quark masses. The approach also provides a straightforward, microscopic understanding of mass-splittings. The Faddeev amplitudes obtained will form the basis for the calculation of scattering observables such as electromagnetic form factors and Compton scattering.
Baryon states with hidden charm in the extended local hidden gauge approach
NASA Astrophysics Data System (ADS)
Uchino, T.; Liang, Wei-Hong; Oset, E.
2016-03-01
The s -wave interaction of bar{D}Λ_c , bar{D} Σ_c , bar{D}^{ast}Λ_c , bar{D}^{ast}Σ_c and bar{D}Σ_c^{ast} , bar{D}^{ast}Σ_c^{ast} , is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of bar{D}Σ_c-bar{D}^{ast}Σ_c with J = 1/2 , and two of bar{D}Σ_c^{ast} - bar{D}^{ast}Σ_c^{ast} with J = 3/2 . Moreover, we find a bar{D}^{ast}Σ_c resonance which couples to the bar{D}Λ_c channel and one spin degenerated bound state of bar{D}^{ast}Σ_c^{ast} with J = 1/2,5/2.
Baryons States with Hidden Charm in the Extended Local Hidden Gauge Approach
NASA Astrophysics Data System (ADS)
Uchino, Toshitaka; Liang, Wei-Hong; Oset, Eulogio
The s-wave interaction of bar{D}Λ c, bar{D}Σ c, {bar{D}}nolimits*Λ c, {bar{D}}nolimits*Σ c and bar{D}Σ c*, {bar{D}}nolimits*Σ c*, is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion-exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of bar{D}Σ c - {bar{D}}nolimits*Σ c with J = 1/2, and two of bar{D}Σ c* - {bar{D}}nolimits*Σ c* with J = 3/2. Moreover, we find a {bar{D}}nolimits*Σ c resonance which couples to the bar{D}Λ c channel and one spin degenerated bound state of {bar{D}}nolimits*Σ c* with J = 1/2,5/2.
Sharing but not caring: dark matter and the baryon asymmetry of the universe
NASA Astrophysics Data System (ADS)
Bernal, Nicolás; Fong, Chee Sheng; Fonseca, Nayara
2016-09-01
We consider scenarios where Dark Matter (DM) particles carry baryon and/or lepton numbers, which can be defined if there exist operators connecting the dark to the visible sector. As a result, the DM fields become intimately linked to the Standard Model (SM) ones and can be maximally asymmetric just like the ordinary matter. In particular, we discuss minimal scenarios where the DM is a complex scalar or a Dirac fermion coupled to operators with nonzero baryon and/or lepton numbers, and that consist of only SM fields. We consider an initial asymmetry stored in either the SM or the DM sector; the main role of these operators is to properly share the asymmetry between the two sectors, in accordance with observations. After the chemical decoupling, the DM and SM sectors do not care about each other as there is only an ineffective communication between them. Once the DM mass is specified, the Wilson coefficients of these operators are fixed by the requirement of the correct transfer of the asymmetry. We study the phenomenology of this framework at colliders, direct detection and indirect detection experiments. In particular, the LHC phenomenology is very rich and can be tested in different channels such as the two same-sign leptons with two jets, monojet and monojet with a monolepton.
Nuclear matter at high temperature and low net baryonic density
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-11-12
We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.
Search for Popcorn Mesons in Events with Two Charmed Baryons
Hartfiel, Brandon; /SLAC
2006-07-07
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Improved tests of relations for baryon isomultiplet splittings
NASA Astrophysics Data System (ADS)
Rosner, Jonathan L.
1998-04-01
The least well-known octet baryon mass is MΞ0=1314.9+/-0.6 MeV. The prospect of an improved measurement of its mass by the KTeV experimental program at Fermilab, and opportunities for improvements in charged and excited hyperon and Δ mass measurements, makes it timely to reexamine descriptions of isospin splittings in baryons containing light quarks. It is possible by examining such relations as the Coleman-Glashow relation Mn-Mp+MΞ--MΞ0=MΣ--MΣ+ to distinguish between those models making use of one- or two-body effects involving quarks and those involving genuine three-body effects. A hierarchy based on an expansion in 1/Nc, where Nc is the number of quark colors, is useful in this respect. The present status of other quark-model mass relations involving Λ-Σ0 mixing and the baryon decuplet is also noted, and the degree to which one can determine parameters such as quark mass differences and individual electromagnetic contributions to splittings is discussed.
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-02-15
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction obtained by a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction that is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Triton and hypertriton binding energies with SU{sub 6} quark-model baryon-baryon interactions
Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.
2008-04-29
Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction which is obtained by a resonating-group method for two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction which is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.
Hidden baryons: The physics of Compton composites
NASA Astrophysics Data System (ADS)
Mayer, Frederick J.
2016-06-01
A large fraction of the mass-energy of the Universe appears to be composed of Compton composites. How is it then that these composites are not frequently observed in experiments? This paper addresses this question, and others, by reviewing recent publications that: 1) introduced Compton composites, 2) showed how and where they are formed and 3) explained how they interact with other systems. Though ubiquitous in many physical situations, Compton composites are almost completely hidden in experiments due to their unique interaction characteristics. Still, their presence has been indirectly observed, though not interpreted as such until recently. Looking to the future, direct-detection experiments are proposed that could verify the composites' components. It is with deep sadness that I dedicate this paper to my mentor, collaborator, and friend, Dr. John R. Reitz, who passed away within days of the publication of our paper “Compton Composites Late in the Early Universe”.
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Page, L.; Spergel, D. N.; Tucker, G. S.
2003-01-01
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58 less than f(sub NL) less than 134 (95% CL). The 2 less than or = l less than or = 900 anisotropy power spectrum is cosmic variance limited for l less than 354 with a signal-to-noise ratio greater than 1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is tau = 0.17 +/- 0.04, which implies a reionization epoch of t(sub r) = 180(sup +220, sub -80) Myr (95% CL) after the Big Bang at a redshift of z(sub r) = 20(sup +10, sub -9) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(sub 0) = 13.7 +/- 0.2 Gyr old. Decoupling was t(sub dec) = 379(sup +8, sub -7)kyr after the Big Bang at a redshift of z(sub dec) = 1089 +/- 1. The thickness of the decoupling surface was Delta(sub z(sub dec)) = 195 +/- 2. The matter density of the universe is Omega(sub m)h(sup 2) = 0.135(sup +0.008, sub -0.009) the baryon density is Omega(sub b)h(sup 2) = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega(sub tot) = 1.02 +/- 0.02. There is progressively less fluctuation power on smaller scales, from WMAP to fine scale CMB measurements to galaxies
Mass formulas for {Xi}{sub c} and {Xi}{sub b} baryons
Aliev, T. M.; Zamiralov, V. S.; Ozpineci, A.
2010-10-15
The importance of taking into account the mixing of the heavy cascade baryons {Xi} and {Xi}' that have new quantum numbers in analyzing their properties is shown. The Ono quark model is considered by way of example. The masses of the new baryons and the {Xi}-{Xi}' mixing angles are obtained. The same approach is applied to the interpolating currents of these baryons within QCD sum rules.
Semileptonic decays of double heavy baryons in a relativistic constituent three-quark model
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.
2009-08-01
We study the semileptonic decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit, which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.
Semileptonic decay properties of Λb baryon in potential model
NASA Astrophysics Data System (ADS)
Rahmani, S.; Hassanabadi, H.
2016-08-01
Considering the hyperradial Schrödinger equation in the presence of a potential combination containing harmonic and Deng-Fan-type terms and choosing the harmonic term as parent, we obtain baryonic hyperradial wave function and masses of Lambda baryons. Then, we apply the differential decay width with the Isgur-Wise function to find rates for the semileptonic baryon decay Λb → Λc ℓ bar{ν}. Comparison with other published models is also included.
Ground state heavy baryon production in a relativistic quark-diquark model
NASA Astrophysics Data System (ADS)
Gomshi Nobary, M. A.; Sepahvand, R.
2007-12-01
We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2', and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly, and triply heavy baryons. We discuss the production of Ωbbc, Ωbcc, and Ωccc baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.
Ground state heavy baryon production in a relativistic quark-diquark model
Gomshi Nobary, M. A.; Sepahvand, R.
2007-12-01
We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2{sup '}, and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly, and triply heavy baryons. We discuss the production of {omega}{sub bbc}, {omega}{sub bcc}, and {omega}{sub ccc} baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.
Test baryon antibaryon oscillation in collider experiments
NASA Astrophysics Data System (ADS)
Liu, Yong-Feng; Kang, Xian-Wei
2016-08-01
Searching for the New Physics (NP) phenomenon beyond Standard Model (SM) is still a main focus in particle physics. Here we propose to search for Λ — ⊼ oscillation in the decay J/ψ → Λ⊼ AA using BES detector. With one-year luminosity at BESIII, we can put a constraint that the Λ — ⊼ oscillation mass is smaller than 10-15 MeV at 90% confidence level, corresponding to the oscillation time of 10-6 second around, in case of non-observation of any signals. These measurements should provide very precious informations besides the neutron oscillation experiment. Also it would be the first-time access by experiment for Λ — ⊼ oscillation.
Matrix model and holographic baryons in the D0-D4 background
NASA Astrophysics Data System (ADS)
Li, Si-wen; Jia, Tuo
2015-08-01
We study the spectrum and short-distance two-body force of holographic baryons by the matrix model, which is derived from the Sakai-Sugimoto model in the D0-D4 background (D0-D4/D8 system). The matrix model is derived by using the standard technique in string theory, and it can describe multibaryon systems. We rederive the action of the matrix model from open string theory on the baryon vertex, which is embedded in the D0-D4/D8 system. The matrix model offers a more systematic approach to the dynamics of the baryons at short distances. In our system, we find that the matrix model describes stable baryonic states only if ζ =UQ0 3/UKK 3<2 , where UQ0 3 is related to the number density of smeared D0-branes. This result in our paper is exactly the same as some previous results studied in this system, presented in [W. Cai, C. Wu, and Z. Xiao, Phys. Rev. D 90, 106001 (2014)]. We also compute the baryon spectrum (k =1 case) and short-distance two-body force of baryons (k =2 case). The baryon spectrum is modified and could be able to fit the experimental data if we choose a suitable value for ζ . And the short-distance two-body force of baryons is also modified by the appearance of smeared D0-branes from the original Sakai-Sugimoto model. If ζ >2 , we find that the baryon spectrum will be totally complex and an attractive force will appear in the short-distance interaction of baryons, which may consistently correspond to the existence of unstable baryonic states.
Search for popcorn mesons in events with two charmed baryons
NASA Astrophysics Data System (ADS)
Hartfiel, Brandon
The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
A cross-check for H0 from Lyman-α Forest and Baryon Acoustic Oscillations
NASA Astrophysics Data System (ADS)
Busti, V. C.; Guimarães, R. N.; Lima, J. A. S.
2016-04-01
A new method is proposed to infer the Hubble constant H0 through the observed mean transmitted flux from high-redshift quasars and the baryon acoustic oscillations (BAOs). A semi-analytical model for the cosmological-independent volume density distribution function was adopted; it allowed us to obtain constraints on the cosmological parameters once a moderate knowledge of the Inter Galactic Medium (IGM) parameters is assumed. Our analysis, based on two different samples of Lyman-α forest and the BAO measurement, restricts (h, Ωm) to the intervals 0.19 ≤ Ωm ≤ 0.23 and 0.53 ≤ h ≤ 0.82 (1σ). Although the constraints are weaker compared with other estimates, we point out that, with a bigger sample and a better knowledge of the IGM, this method could provide complementary results to measure the Hubble constant independently of the cosmic distance ladder.
NASA Astrophysics Data System (ADS)
Escala, Ivanna; Kirby, Evan N.; Wetzel, Andrew R.; Hopkins, Philip F.
2016-06-01
We examine the metallicity distribution functions (MDFs) of simulated, isolated dwarf galaxies (M_{star} = 4 × 10^{4} - 3 × 10^{8} M_{⊙}) from the Feedback in Realistic Environments (FIRE) project to quantify the impact of star formation history (SFH) and baryonic physics. These high-resolution cosmological simulations include realistic treatments of stellar evolution and complex gas dynamics and do not require the usual approximations (e.g., instantaneous recycling and instantaneous mixing) of analytic chemical evolution models. The evolution of the MDF with redshift informs which processes drive the dominant contributions to the distribution at z = 0, thus enabling a reconstruction of the SFH and gas loss/accretion history. We then compare the theoretical MDFs to the observed MDFs of Local Group dwarf galaxies to infer plausible SFHs for each matched galaxy.
Including the {delta}(1232) resonance in baryon chiral perturbation theory
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2005-11-01
Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.
Meson photoproduction and baryon resonances at MAMBO experiment
NASA Astrophysics Data System (ADS)
Romaniuk, Mariia
2013-03-01
Photoproduction of mesons within the framework of the MAMBO experiment (BGO-OD at Bonn plus MAMI at Mainz) was studied. The results on the operative work of the cryogenic H2/D2 target system during the last commissioning beam times at the March and June 2012 are shown. Investigation of the single charged pion photoproduction was provided using a polarized 3He target at the tagged photon facility of the MAMI accelerator. Unpolarized and helicity dependent cross sections are presented for channels γN → π±X in the Δ(1232) baryon resonance region.
Heavy-baryon quark model picture from lattice QCD
NASA Astrophysics Data System (ADS)
Vijande, J.; Valcarce, A.; Garcilazo, H.
2014-11-01
The ground state and excited spectra of baryons containing three identical heavy quarks, b or c , have been recently calculated in nonperturbative lattice QCD. The energy of positive and negative parity excitations has been determined with high precision. Lattice results constitute a unique opportunity to learn about the quark-confinement mechanism as well as elucidating our knowledge about the nature of the strong force. We analyze the nonperturbative lattice QCD results by means of heavy-quark static potentials derived using SU(3) lattice QCD. We make use of different numerical techniques for the three-body problem.
Baryon octet electromagnetic form factors in a confining NJL model
NASA Astrophysics Data System (ADS)
Carrillo-Serrano, Manuel E.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.
2016-08-01
Electromagnetic form factors of the baryon octet are studied using a Nambu-Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp < rEΣ+ and | rEn | < | rEΞ0 |, whereas the magnetic radii have a pattern largely consistent with a naive expectation based on the dressed quark masses.
Improving the ultraviolet behavior in baryon chiral perturbation theory
Djukanovic, D.; Schindler, M.R.; Scherer, S.; Gegelia, J.
2005-08-15
We introduce a new formulation of baryon chiral perturbation theory which improves the ultraviolet behavior of propagators and can be interpreted as a smooth cutoff regularization scheme. It is equivalent to the standard approach, preserves all symmetries, and therefore satisfies the Ward identities. Our formulation is equally well defined in the vacuum, one-nucleon, and few-nucleon sectors of the theory. The equations (Bethe-Salpeter, Lippmann-Schwinger, etc.) for the scattering amplitudes of the few-nucleon sector are free of divergences in the new approach. Unlike the usual cutoff regularization, our 'cutoffs' are parameters of the Lagrangian and do not have to be removed.
Group theoretical construction of extended baryon operators in lattice QCD
Subhasish Basak; Robert Edwards; George Fleming; Urs Heller; Colin Morningstar; David Richards; Ikuro Sato; Stephen Wallace
2005-06-01
The design and implementation of large sets of spatially-extended, gauge-invariant operators for use in determining the spectrum of baryons in lattice QCD computations are described. Group theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators. Issues related to the identification of the spin quantum numbers of the states in the continuum limit are addressed.
Light-Cone Sum Rule Approach for Baryon Form Factors
NASA Astrophysics Data System (ADS)
Offen, Nils
2016-10-01
We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.
Light-Cone Sum Rule Approach for Baryon Form Factors
NASA Astrophysics Data System (ADS)
Offen, Nils
2016-08-01
We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.
Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets
NASA Astrophysics Data System (ADS)
Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran
2010-02-01
We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.
Electroproduction of baryon-meson states and strangeness suppression
NASA Astrophysics Data System (ADS)
Santopinto, E.; García-Tecocoatzi, H.; Bijker, R.
2016-08-01
We describe the electroproduction ratios of baryon-meson states from nucleon, inferring from the sea quarks in the nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: ΛK+, Σ* K, ΣK, pπ0, and nπ+. These predictions are in agreement with the new JLab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial tests of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we compute the so called strangeness suppression factor, λs, that is the suppression of strange quark-antiquark pairs compared to nonstrange pairs, and we found that our finding with this simple extension of the quark model is in good agreement with the results of JLab and CERN experiments.
Tying dark matter to baryons with self-interactions.
Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo
2014-07-11
Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.
Delta. I =1/2 weak baryon decays
Karlsen, R.E.; Ryan, W.H.; Scadron, M.D. )
1991-01-01
First we extract phenomenological values for the reduced matrix elements {l angle}{ital B}{prime}{vert bar}{ital H}{sub {ital w}}{sup PC}{vert bar}{ital B}{r angle} and {l angle}{ital B}{vert bar}{ital H}{sub {ital w}}{sup PV}{vert bar}{ital D}{r angle} connected with octet-baryon {ital B}{r arrow}{ital B}{prime}{pi},{ital B}{prime}{gamma} weak decays and decuplet decays {ital D}{r arrow}{ital B}{pi}. Then we show at the quark level that the combination of {Delta}{ital I}=1/2 quark {ital W}-exchange and self-energy graphs explains {l angle}{ital B}{prime}{vert bar}{ital H}{sub {ital w}}{sup PC}{vert bar}{ital B}{r angle} transitions better than either separately. However, only the self-energy graph can contribute to {l angle}{Xi}{vert bar}{ital H}{sub {ital w}}{sup PV}{vert bar}{Omega}{r angle}. This overall picture gives an excellent fit to over ten nonleptonic weak baryon decays.
Semivariational approach to QCD at finite temperature and baryon density
Palumbo, Fabrizio
2008-07-01
Recently a new bosonization method has been used to derive, at zero fermion density, an effective action for relativistic field theories whose partition function is dominated by fermionic composites, chiral mesons in the case of QCD. This approach shares two important features with variational methods: the restriction to the subspace of the composites, and the determination of their structure functions by a variational calculation. But unlike standard variational methods it treats excited states on the same footing as the ground state. I show that this bosonization method is an approximation of an exact procedure in which composites are introduced in the presence of fermionic states with the quantum numbers of the constituents (quasiparticles). This procedure consists of an independent Bogoliubov transformation at each time slice. The time-dependent parameters of the transformation are then associated with composite fields. In this way states of nonvanishing fermion (baryon) number (neglected in the bosonization approach) are retained. By the exact procedure I derive an effective action for QCD at finite temperature and baryon density. I test the result on a four-fermion interaction model.
Accuracy of cosmological parameters using the baryon acoustic scale
Thepsuriya, Kiattisak; Lewis, Antony E-mail: antony@cosmologist.info
2015-01-01
Percent-level measurements of the comoving baryon acoustic scale standard ruler can be used to break degeneracies in parameter constraints from the CMB alone. The sound horizon at the epoch of baryon drag is often used as a proxy for the scale of the peak in the matter density correlation function, and can conveniently be calculated quickly for different cosmological models. However, the measurements are not directly constraining this scale, but rather a measurement of the full correlation function, which depends on the detailed evolution through decoupling. We assess the level of reliability of parameter constraints based on a simple approximation of the acoustic scale compared to a more direct determination from the full numerical two-point correlation function. Using a five-parameter fitting technique similar to recent BAO data analyses, we find that for standard ΛCDM models and extensions with massive neutrinos and additional relativistic degrees of freedom, the approximation is at better than 0.15% for most parameter combinations varying over reasonable ranges.
Fragmentation fractions of two-body b-baryon decays
NASA Astrophysics Data System (ADS)
Hsiao, Y. K.; Lin, P. Y.; Luo, L. W.; Geng, C. Q.
2015-12-01
We study the fragmentation fractions (fBb) of the b-quark to b-baryons (Bb). By the assumption of fΛb / (fu +fd) = 0.25 ± 0.15 in accordance with the measurements by LEP, CDF and LHCb Collaborations, we estimate that fΛb = 0.175 ± 0.106 and fΞb-,0 = 0.019 ± 0.013. From these fragmentation fractions, we derive B (Λb → J / ψΛ) = (3.3 ± 2.1) ×10-4, B (Ξb- → J / ψΞ-) = (5.3 ± 3.9) ×10-4 and B (Ωb- → J / ψΩ-) > 1.9 ×10-5. The predictions of B (Λb → J / ψΛ) and B (Ξb- → J / ψΞ-) clearly enable us to test the theoretical models, such as the QCD factorization approach in the b-baryon decays.
Baryons in O(4) and the vibron model
NASA Astrophysics Data System (ADS)
Kirchbach, M.; Moshinsky, M.; Smirnov, Yu. F.
2001-12-01
The structure of the reported excitation spectra of light unflavored baryons is described in terms of multispin valued Lorentz group representations of the so called Rarita-Schwinger (RS) type (K/2,K/2)⊗[(12,0)⊕(0,12)] with K=1,3, and 5. We first motivate the legitimacy of such a pattern as fundamental fields as they emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the baryon realization of RS fields as composite systems by means of the quark version of the U(4) symmetric diatomic rovibron model. In using the U(4)⊃O(4)⊃O(3)⊃O(2) reduction chain, we are able to reproduce the quantum numbers and mass splittings of the above resonance assemblies. We present essentials of the four dimensional angular momentum algebra, and construct electromagnetic tensor operators. The predictive power of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various resonances to the nucleon.
Tying dark matter to baryons with self-interactions.
Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo
2014-07-11
Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates. PMID:25062162
Efficient reconstruction of linear baryon acoustic oscillations in galaxy surveys
NASA Astrophysics Data System (ADS)
Burden, A.; Percival, W. J.; Manera, M.; Cuesta, Antonio J.; Vargas Magana, Mariana; Ho, Shirley
2014-12-01
Reconstructing an estimate of linear baryon acoustic oscillations (BAO) from an evolved galaxy field has become a standard technique in recent analyses. By partially removing non-linear damping caused by bulk motions, the real-space BAO peak in the correlation function is sharpened, and oscillations in the power spectrum are visible to smaller scales. In turn these lead to stronger measurements of the BAO scale. Future surveys are being designed assuming that this improvement has been applied, and this technique is therefore of critical importance for future BAO measurements. A number of reconstruction techniques are available, but the most widely used is a simple algorithm that decorrelates large-scale and small-scale modes approximately removing the bulk-flow displacements by moving the overdensity field. We consider the practical implementation of this algorithm, looking at the efficiency of reconstruction as a function of the assumptions made for the bulk-flow scale, the shot-noise level in a random catalogue used to quantify the mask and the method used to estimate the bulk-flow shifts. We also examine the efficiency of reconstruction against external factors including galaxy density, volume and edge effects, and consider their impact for future surveys. Throughout we make use of the mocks catalogues created for the Baryon Oscillation Spectroscopic Survey (BOSS) Date Release 11 samples covering 0.43 < z < 0.7 (CMASS) and 0.15 < z < 0.43 (LOWZ), to empirically test these changes.
Determination of |Vub| from exclusive baryonic B decays
NASA Astrophysics Data System (ADS)
Hsiao, Y. K.; Geng, C. Q.
2016-04-01
We use the exclusive baryonic B decays to determine the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vub. From the relation |Vub|2 / |Vcb|2 = (Bπ /BD)Rff based on B- → p p bar π- and Bbar0 → p p bar D0 decays, where |Vcb | and Bπ /BD ≡ B (B- → p p bar π-) / B (Bbar0 → p p bar D0) are the data input parameters, while Rff is the one fixed by the B → p p bar transition matrix elements, we find |Vub | = (3.48-0.63+0.87 ± 0.40 ± 0.07) ×10-3 with the errors corresponding to the uncertainties from Rff, Bπ /BD and |Vcb |, respectively. Being independent of the previous results, our determination of |Vub | has the central value close to those from the exclusive B bar → πℓνbarℓ and Λb → pμ-νbarμ decays, but overlaps the one from the inclusive B bar →Xu ℓνbarℓ with the current uncertainties. The extraction of |Vub | in the baryonic B decays is clearly very useful for the complete determination of the CKM matrix elements as well as the exploration of new physics.
Pion- and strangeness-baryon σ terms in the extended chiral constituent quark model
NASA Astrophysics Data System (ADS)
An, C. S.; Saghai, B.
2015-07-01
Within an extended chiral constituent quark formalism, we investigate contributions from all possible five-quark components in the octet baryons to the pion-baryon (σπ B) and strangeness-baryon (σs B) sigma terms: B ≡N ,Λ ,Σ ,Ξ . The probabilities of the quark-antiquark components in the ground-state baryon octet wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled via the 3P0 mechanism. Predictions for σπ B and σs B obtained by using input parameters taken from the literature are reported. Our results turn out to be, in general, consistent with the findings via lattice QCD and chiral perturbation theory.
Chiral corrections to the vector and axial couplings of quarks and baryons
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Holstein, Barry R.
2008-06-01
We calculate chiral corrections to the semileptonic vector and axial quark coupling constants using a manifestly Lorentz covariant chiral quark approach up to order O(p{sup 4}) in the two- and three-flavor pictures. These couplings are then used in the evaluation of the corresponding couplings which govern the semileptonic transitions between octet baryon states. In the calculation of baryon matrix elements we use a general ansatz for the spatial form of the quark wave function, without referring to a specific realization of hadronization and confinement of quarks in baryons. Matching the physical amplitudes calculated within our approach to the model-independent predictions of baryon chiral perturbation theory allows us to deduce a connection between our parameters and those of baryon chiral perturbation theory.
Properties of hadron matter. II - Dense baryon matter and neutron stars.
NASA Technical Reports Server (NTRS)
Leung, Y. C.; Wang, C. G.
1971-01-01
In this article we have provided certain details of a nuclear-matter computation, based on the Brueckner-Bethe-Goldstone theory of nuclear reaction, which leads to an equation of state for matter in the density region of 10 to 500 trillion g/cu cm. We also explore the possibilities that at very high baryon densities or for very short baryon separations, the net baryon-baryon interaction may be negligible so that the results of dynamical models, like the statistical bootstrap model and the dual-resonance model, may be applicable to the study of dense baryon matter. Several plausible equations of state are constructed, and their effect on the limiting mass of the neutron star is examined.
Testing the copernican principle via cosmological observations
Bolejko, Krzysztof; Wyithe, J. Stuart B. E-mail: swyithe@unimelb.edu.au
2009-02-15
Observations of distances to Type-Ia supernovae can be explained by cosmological models that include either a gigaparsec-scale void, or a cosmic flow, without the need for Dark Energy. Instead of invoking dark energy, these inhomogeneous models instead violate the Copernican Principle. we show that current cosmological observations (Supernovae, Baryon Acoustic Oscillations and estimates of the Hubble parameters based on the age of the oldest stars) are not able to rule out inhomogeneous anti-Copernican models. The next generation of surveys for baryonic acoustic oscillations will be sufficiently precise to either validate the Copernican Principle or determine the existence of a local Gpc scale inhomogeneity.
Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki; DeBoer, David R.; McDonald, Patrick; Aguirre, James E.; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.
2013-03-15
This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.
Measurement of the Λ(b)(0), Ξ (b)(-), and Ω(b((-) Baryon masses.
Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2013-05-01
Bottom baryons decaying to a J/ψ meson and a hyperon are reconstructed using 1.0 fb(-1) of data collected in 2011 with the LHCb detector. Significant Λ(b)(0) → J/ψΛ, Ξ(b((-) → J/ψΞ(-) and Ω(b)(-) → J/ψΩ(-) signals are observed and the corresponding masses are measured to be M(Λ(b)(0))=5619.53 ± 0.13(stat.) ± 0.45(syst.) MeV/c(2), M(Ξ(b)(-)) = 5795.8 ± 0.9(stat.) ± 0.4(syst.) MeV/c(2), M(Ω(b)(-)) = 6046.0 ± 2.2(stat.) ± 0.5(syst.) MeV/c(2) , while the differences with respect to the Λ(b)(0) mass are M(Ξ(b)(-))-M(Λ(b)(0))=176.2 ± 0.9(stat.) ± 0.1(syst.) MeV/c(2), M(Ω(b)(-))-M(Λ(b)(0))=426.4 ± 2.2(stat.) ± 0.4(syst.) MeV/c(2). These are the most precise mass measurements of the Λ(b)(0), Ξ(b)(-) and Ω(b)(-) baryons to date. Averaging the above Λ(b)(0) mass measurement with that published by LHCb using 35 pb(-1) of data collected in 2010 yields M(Λ(b)(0)) = 5619.44 ± 0.13(stat.)± 0.38(syst.) MeV/c(2). PMID:23683191
An Increasing Stellar Baryon Fraction in Bright Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Finkelstein, Steven L.; Song, Mimi; Behroozi, Peter; Somerville, Rachel S.; Papovich, Casey; Milosavljević, Miloš; Dekel, Avishai; Narayanan, Desika; Ashby, Matthew L. N.; Cooray, Asantha; Fazio, Giovanni G.; Ferguson, Henry C.; Koekemoer, Anton M.; Salmon, Brett; Willner, S. P.
2015-12-01
Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately {M}{UV}*˜ -21. We investigate this apparent non-evolution by examining a sample of 173 bright, MUV < -21 galaxies at z = 4-7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that {M}{UV}* galaxies at z = 4-7 have similar stellar masses of log(M/M⊙) = 9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z = 4-7 are less massive and have younger inferred ages than similarly bright galaxies at z = 2-3, even though the two populations have similar star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances of these bright z = 4-7 galaxies to halo mass functions from the Bolshoi ΛCDM simulation implies that the typical halo masses in ˜ {M}{{UV}}* galaxies decrease from log(Mh/M⊙) = 11.9 at z = 4 to log(Mh/M⊙) = 11.4 at z = 7. Thus, although we are studying galaxies at a similar stellar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in ˜ {M}{{UV}}* galaxies in units of the cosmic mean Ωb/Ωm rises from 5.1% at z = 4 to 11.7% at z = 7; this evolution is significant at the ˜3σ level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.
Measurement of the Λ(b)(0), Ξ (b)(-), and Ω(b((-) Baryon masses.
Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A
2013-05-01
Bottom baryons decaying to a J/ψ meson and a hyperon are reconstructed using 1.0 fb(-1) of data collected in 2011 with the LHCb detector. Significant Λ(b)(0) → J/ψΛ, Ξ(b((-) → J/ψΞ(-) and Ω(b)(-) → J/ψΩ(-) signals are observed and the corresponding masses are measured to be M(Λ(b)(0))=5619.53 ± 0.13(stat.) ± 0.45(syst.) MeV/c(2), M(Ξ(b)(-)) = 5795.8 ± 0.9(stat.) ± 0.4(syst.) MeV/c(2), M(Ω(b)(-)) = 6046.0 ± 2.2(stat.) ± 0.5(syst.) MeV/c(2) , while the differences with respect to the Λ(b)(0) mass are M(Ξ(b)(-))-M(Λ(b)(0))=176.2 ± 0.9(stat.) ± 0.1(syst.) MeV/c(2), M(Ω(b)(-))-M(Λ(b)(0))=426.4 ± 2.2(stat.) ± 0.4(syst.) MeV/c(2). These are the most precise mass measurements of the Λ(b)(0), Ξ(b)(-) and Ω(b)(-) baryons to date. Averaging the above Λ(b)(0) mass measurement with that published by LHCb using 35 pb(-1) of data collected in 2010 yields M(Λ(b)(0)) = 5619.44 ± 0.13(stat.)± 0.38(syst.) MeV/c(2).
Faltenbacher, A.; Finoguenov, A.; Drory, N.
2010-03-20
The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present a simple fitting formula for the cumulative mass function accurate to {approx}<5% for halo masses between 10{sup 10} and 10{sup 15} h {sup -1} M{sub sun}. We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.
Asymmetries in the production of Λc+ and Λc- baryons in 500 GeV//c π- nucleon interactions
NASA Astrophysics Data System (ADS)
Fermilab E791 Collaboration; Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Devmal, S.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Magnin, J.; MayTal-Beck, S.; Meadows, B.; de Mello Neto, J. R. T.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; d'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K. S.; Santoro, A. F. S.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Simão, F. R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.
2000-12-01
We present a measurement of asymmetries in the production of Λc+ and Λc- baryons in 500 GeV//c π--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman /x (xF) and transverse momentum squared (pT2) using a sample of 1819+/-62 Λc's observed in the decay channel Λc+-->pK-π+. We observe more Λc+ than Λc- baryons, with an asymmetry of /(12.7+/-3.4+/-1.3)% independent of xF and pT2 in our kinematical range (-0.1<=xF<=0.6 and 0.0<=pT2<=8.0 (GeV/c)2). This Λc asymmetry measurement is the first with data in both the positive and negative xF regions.
NASA Astrophysics Data System (ADS)
Armstrong, T.; Baubillier, M.; Beusch, W.; Bloodworth, I. J.; Bonesini, M.; Burns, A.; Calligarich, E.; Carena, F.; Carney, J. N.; Cecchet, G.; Costa, G.; Dolfini, R.; Ghidini, B.; Kinson, J. B.; Knudson, K.; Lenti, V.; Liguori, G.; Mandelli, L.; Mazzanti, M.; Navach, F.; Palano, A.; Perini, L.; Pons, Y.; Quercigh, E.; Strachman, Z.; Tamborini, M.; Teodoro, D.; Worsell, M. F.; Zito, G.; Zitoun, R.; Bari-Birmingham-CERN-Milan-Paris-Pavia Collaboration
1982-10-01
Narrow baryonium production in the baryon exchange reactions K-p → Λ overlinepp and K-p → pK-overlinepp at 18.5 GeV/ c is investigated in a 12 events/nb experiment performed at the CERN Ω' spectrometer. No narrow structure is observed in the p overlinep mass spectra. Upper limits for production of baryonium states are given as a function of p overlinep mass.
Symétries et nomenclature des baryons: Proposition d'une nouvelle nomenclature
NASA Astrophysics Data System (ADS)
Landry, Gaëtan
Baryons, such as protons and neutrons, are matter particles made of three quarks. Their current nomenclature is based on the concept of isospin, introduced by Werner Heisenberg in 1932 to explain the similarity between the masses of protons and neutrons, as well as the similarity of their behaviour under the strong interaction. It is a refinement of a nomenclature designed in 1964, before the acceptance of the quark model, for light baryons. A historical review of baryon physics before the advent of the quark model is given to understand the motivations behind the light baryon nomenclature. Then, an overview of the quark model is given to understand the extensions done to this nomenclature in 1986, as well as to understand the physics of baryons and of properties such as isospin and flavour quantum numbers. Since baryon properties are in general explained by the quark model, a nomenclature based on isospin leads to several issues of physics and of clarity. To resolve these issues, the concepts of isospin and mass groups are generalized to all flavours of quarks, the Gell-Mann--Okubo formalism is extended to generalized mass groups, and a baryon nomenclature based on the quark model, reflecting modern knowledge, is proposed.
MEASURING BARYON ACOUSTIC OSCILLATIONS ON 21 cm INTENSITY FLUCTUATIONS AT MODERATE REDSHIFTS
Mao Xiaochun
2012-06-20
After reionization, emission in the 21 cm hyperfine transition provides a direct probe of neutral hydrogen distributed in galaxies. Different from galaxy redshift surveys, observation of baryon acoustic oscillations in the cumulative 21 cm emission may offer an attractive method for constraining dark energy properties at moderate redshifts. Keys to this program are techniques to extract the faint cosmological signal from various contaminants, such as detector noise and continuum foregrounds. In this paper, we investigate the possible systematic and statistical errors in the acoustic scale estimates using ground-based radio interferometers. Based on the simulated 21 cm interferometric measurements, we analyze the performance of a Fourier-space, light-of-sight algorithm in subtracting foregrounds, and further study the observing strategy as a function of instrumental configurations. Measurement uncertainties are presented from a suite of simulations with a variety of parameters, in order to have an estimate of what behaviors will be accessible in the future generation of hydrogen surveys. We find that 10 separate interferometers, each of which contains {approx}300 dishes, observing an independent patch of the sky and producing an instantaneous field of view (FOV) of {approx}100 deg{sup 2}, can be used to make a significant detection of acoustic features over a period of a few years. Compared to optical surveys, the broad bandwidth, wide FOV, and multi-beam observation are all unprecedented capabilities of low-frequency radio experiments.
Baryon Spectroscopy and Operator Construction in Lattice QCD
S. Basak; I. Sato; S. Wallace; R. Edwards; D. Richards; R. Fiebig; G. Fleming; U. Heller; C. Morningstar
2004-07-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances. I will describe how such calculations provide insight into the structure of the hadrons, and enable comparison both with experiment, and with QCD-inspired pictures of hadron structure, such as calculations in the limit of large N{sub c}.
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William
2015-04-01
There is little known about the baryon antibaryon photoproduction mechanism. Three reactions, γp --> pp p , γp --> ppπ- n , and γp --> p p π+ n have been investigated for the photon energy range of 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with an integrated luminosity of 68 pb-1. General features of the data for these three reactions will be shown. In particular, the angular and energy dependence of the antibaryons as well as the preliminary normalized yields will be presented. Also, preliminary partial wave analysis results for the p p system will be discussed.
Baryon Antibaryon Photoproduction using CLAS at Jefferson Lab
NASA Astrophysics Data System (ADS)
Phelps, William; CLAS Collaboration
2014-09-01
There is little known about the baryon antibaryon photoproduction mechanism. Three reactions, γ p --> pp p , γp --> pp π- n , and γp --> p p π+ n have been investigated for the photon energy range of 4.4-5.45 GeV. The data were from the g12 experiment taken with the CLAS detector using a liquid hydrogen target at Thomas Jefferson National Accelerator Facility. This experiment had high statistics, with an integrated luminosity of 68 pb-1. General features of the data for these three reactions will be shown. In particular, the angular and energy dependence of the antibaryons as well as the preliminary normalized yields will be presented. Also, preliminary partial wave analysis results for the p p system will be discussed.
Measuring the speed of light with baryon acoustic oscillations.
Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth
2015-03-13
In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c. PMID:25815922
QCD Phase Diagram at Finite Baryon and Isospin Chemical Potentials
Sasaki, T.; Sakai, Y.; Yahiro, M.; Kouno, H.
2011-10-21
The phase structure of two-flavor QCD is explored for finite temperature T and finite baryon- and isospin-chemical potentials, {mu}{sub B} and {mu}{sub I}, by using the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data in the {mu}{sub I}-T plane at {mu}{sub B} = 0. In the {mu}{sub I}-{mu}{sub B}-T space, the critical endpoint of the chiral phase transition in the {mu}{sub B}-T plane at {mu}{sub I} = 0 moves to the tricritical point of the pion-superfluidity phase transition in the {mu}{sub I}-T plane at {mu}{sub B} = 0 as {mu}{sub I} increases.
Dark matter from unification of color and baryon number
NASA Astrophysics Data System (ADS)
Fornal, Bartosz; Tait, Tim M. P.
2016-04-01
We analyze a recently proposed extension of the Standard Model based on the S U (4 )×S U (2 )L×U (1 )X gauge group, in which baryon number is interpreted as the fourth color and dark matter emerges as a neutral partner of the ordinary quarks under S U (4 ). We show that under well-motivated minimal flavor-violating assumptions the particle spectrum contains a heavy dark matter candidate which is dominantly the partner of the right-handed top quark. Assuming a standard cosmology, the correct thermal relic density through freeze-out is obtained for dark matter masses around 2-3 TeV. We examine the constraints and future prospects for direct and indirect searches for dark matter. We also briefly discuss the LHC phenomenology, which is rich in top quark signatures, and investigate the prospects for discovery at a 100 TeV hadron collider.
Hypermagnetic gyrotropy, inflation, and the baryon asymmetry of the Universe
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2015-12-01
We investigate the production of the hypermagnetic gyrotropy when the electric and magnetic gauge couplings evolve at different rates, as it happens in the relativistic theory of the van der Waals forces. If a pseudoscalar interaction breaks the duality symmetry of the corresponding equations, the gyrotropic configurations of the hypermagnetic fields can be amplified from the vacuum during an inflationary stage of expansion. After charting the parameter space of the model in terms of the rates of evolution of the magnetic and electric gauge couplings, we identify the regions where the gyrotropy is sufficiently intense to seed the baryon asymmetry of the Universe at the electroweak epoch while the backreaction constraints, the strong coupling bounds and the other astrophysical limits are concurrently satisfied.
Yukawa Meson, Sakata Model and Baryon-Lepton Symmetry Revisited
NASA Astrophysics Data System (ADS)
Marshak, R. E.
It is difficult for me to grasp that this symposium is celebrating the jubilee of meson theory since I was a junior at Columbia College in 1935. I recall hearing a colloquium by Paul Dirac that year telling an enraptured audience about the infinite sea of negative energy states but I do not recall any special note being taken of the birth of an equally revolutionary concept, the Yukawa meson. Perhaps the reason was the publication of Hideki Yukawa's paper in an inaccessible Japanese journal, perhaps Dirac's electron theory was dealing with the well-known electromagnetic force whereas Yukawa' meson theory was put forth to understand the nature of two new forces - the nuclear and the weak. Whatever the reason, the situation changed drastically when I migrated to Cornell (to do my thesis under Hans Bethe during the years 1937sim39) and found a deep interest in meson theory. Thus, my own scientific career has almost spanned the period since the birth of meson theory but, what is more to the point, it has been strongly influenced by the work of Yukawa and his collaborators. It therefore gives me great pleasure to be able to talk at this MESON 50 symposium. As one of the oldest speakers, I shall respond in a loose way to Professor Maki's invitation to cover ``topics concerning the historical developments of hadron physics''. I shall select several major themes from the Japanese work that have had special interest for me. My remarks will fall under the four headings: (A) Yukawa Meson; (B) Sakata Model; (C) Baryon-Lepton Symmetry; and (D) Extensions of Baryon-Lepton Symmetry.
Efficient construction of mock catalogs for baryon acoustic oscillation surveys
NASA Astrophysics Data System (ADS)
Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin; Habib, Salman; Rangel, Esteban
2016-05-01
Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum to better than 1% both in real and redshift space for k=1hMpc-1, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z=0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k=1hMpc-1). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.
Efficient construction of mock catalogs for baryon acoustic oscillation surveys