Science.gov

Sample records for observing field lrc1

  1. Mars Observer magnetic fields investigation

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

    1992-01-01

    The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

  2. Hinode observations of polar fields

    NASA Astrophysics Data System (ADS)

    Tsuneta, Saku

    The Sun's polar magnetic fields are the direct extension of the global poloidal field, which serves as seed fields for the toroidal fields forming active regions and sunspots. The polar regions are also the source of fast solar wind, and are the final destination of pole-ward meridional flows. We present spectro-polarimetric maps of the vector magnetic fields in the polar region of the Sun that are unprecedented in terms of high spatial resolution, large field of view, and polarimetric precision. These observations were carried out with the Solar Optical Telescope aboard Hinode. More than 100 canopy-like vertical magnetic structures as strong as 1-1.2 kG are scattered in heliographic latitude of 70-90o . They all have the same polarity, consistent with the global polar fields. The temporal-spatial evolution of these kG patches, which are crucial to understanding of their origin, will be reported. In addition to the vertical fields, the polar region appears to be covered with ubiquitous horizontal fields. Chromospheric observations with Hinode indicate that substantial amount of the horizontal fields reach chromosphere. Our observations describe the magnetic landscape of this poorly known region of the solar atmosphere. The polar regions are the source of the fast solar wind channelled along unipolar coronal-hole magnetic fields. We conjecture that the fast solar wind emanates only from the vertical flux tubes (canopies), which also seem to serve as efficient chimneys for Alfven waves to accelerate the solar wind.

  3. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  4. CCD observations of old nova fields

    SciTech Connect

    Downes, R.A.; Szkody, P.; Washington Uni., Seattle )

    1989-06-01

    The discovery of CK Vulpeculae (Nova 1670) has prompted a major review of ideas concerning the long-term development of novae. Unfortunately, there are very few recovered novae old enough to provide confirmation (or rejection) of the new hibernation scenario. CCD images of seven old nova fields, and R band photometry for four fields, have been obtained in an attempt to recover these objects in quiescence. A strong candidate for U Leonis, and a possible counterpart for T Bootis, are found. For three other fields, weak candidates have been found. Finding charts and colors are presented for the seven fields observed. The R light curves of U Leo, indicating an orbital period of 192.5 or 385.0 min, are shown. 14 refs.

  5. CCD observations of old nova fields

    NASA Technical Reports Server (NTRS)

    Downes, Ronald A.; Szkody, Paula

    1989-01-01

    The discovery of CK Vulpeculae (Nova 1670) has prompted a major review of ideas concerning the long-term development of novae. Unfortunately, there are very few recovered novae old enough to provide confirmation (or rejection) of the new 'hibernation' scenario. CCD images of seven old nova fields, and R band photometry for four fields, have been obtained in an attempt to recover these objects in quiescence. A strong candidate for U Leonis, and a possible counterpart for T Bootis, are found. For three other fields, weak candidates have been found. Finding charts and colors are presented for the seven fields observed. The R light curves of U Leo, indicating an orbital period of 192.5 or 385.0 min, are shown.

  6. Lunar Electric Fields: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.

    2006-12-01

    Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.

  7. Gravity Field Recovery with Simulated GOCE Observations

    NASA Astrophysics Data System (ADS)

    Marty, J.; Bruinsma, S.; Balmino, G.; Abrikosov, O.; Foerste, C.; Rothacher, M.

    2005-12-01

    Numerical simulations of the gravity field parameter recovery using the direct method, with satellite positions as pseudo observations instead of simulated GPS Satellite-to-Satellite (SST) tracking data, and with gravity gradients (SGG data), were done and are ongoing in the framework of the European GOCE Gravity Consortium test and validation plan for GOCE mission data processing. This work shows the latest results from the CNES and GFZ software packages, GINS and EPOS, respectively. After the iterative least-squares orbit adjustment procedure has converged to the highest attainable precision level, the gravity field normal equations are computed in a subsequent step. These SST normal equations, representing the long wavelength gravity field signal, are then reduced for arc-dependent parameters (i.e. state vector at epoch, empirical parameters) and cumulated over the entire observation period. Secondly, the gravity gradient measurements (SGG) are processed, taking into account the coloured noise in these data, and yield (high resolution) normal equations. They are combined with the SST normal equations and the gravity field and gradiometer common mode calibration parameters are simultaneously estimated. The coloured noise in the SGG data is based on the latest and realistic gradiometer specifications. The precision in the measurement bandwidth is approximately 3-5 milliEotvos, but rapidly decreasing for lower frequencies. Due to this behaviour, the observation equations have to be filtered in order to obtain the most accurate recovery. The filter algorithm, design and results are presented to considerable detail since this particular step is the key element that will enable the achievement of the GOCE mission objectives from the ground segment point of view.

  8. Wide field camera observations of Baade's Window

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Light, R. M.; Baum, William A.; Worthey, Guy; Faber, S. M.; Hunter, Deidre A.; O'Neil, Earl J., Jr.; Kreidl, Tobias J.; Groth, E. J.; Westphal, James A.

    1993-01-01

    We have observed a field in Baade's Window using the Wide Field Camera (WFC) of the Hubble Space Telescope (HST) and obtain V- and I-band photometry down to V approximately 22.5. These data go several magnitudes fainter than previously obtained from the ground. The location of the break in the luminosity function suggests that there are a significant number of intermediate age (less than 10 Gyr) stars in the Galactic bulge. This conclusion rests on the assumptions that the extinction towards our field is similar to that seen in other parts of Baade's Window, that the distance to the bulge is approximately 8 kpc, and that we can determine fairly accurate zero points for the HST photometry. Changes in any one of these assumptions could increase the inferred age, but a conspiracy of lower reddening, a shorter distance to the bulge, and/or photometric zero-point errors would be needed to imply a population entirely older than 10 Gyr. We infer an initial mass function slope for the main-sequence stars, and find that it is consistent with that measured in the solar neighborhood; unfortunately, the slope is poorly constrained because we sample only a narrow range of stellar mass and because of uncertainties in the observed luminosity function at the faint end.

  9. GALEX Observations of the NTT Deep Field

    NASA Astrophysics Data System (ADS)

    Wei, L. H.; Baker, A. J.; Lutz, D.; Lehnert, M. D.; Vogel, S. N.; Bertoldi, F.

    2005-12-01

    We report on near- and far-UV observations of the NTT Deep Field with the Galaxy Evolution Explorer (GALEX). To investigate the cold dust content of UV-selected galaxy populations, we compare the GALEX catalog with 1.2mm continuum mapping obtained with the Max-Planck Millimeter Bolometer (MAMBO) array at the IRAM 30m telescope. We discuss the implications of our results for understanding the dust SEDs of high-redshift galaxies. This project is funded by NASA via GALEX Guest Investigator grant 04-0000-0074.

  10. Computerized Observation System (COS) for Field Experiences.

    ERIC Educational Resources Information Center

    Reed, Thomas M.; And Others

    The Computerized Observation System (COS) is a software program which an observer can use with a portable microcomputer to document preservice and inservice teacher performance. Specific observable behavior such as appropriate questions and responses shown to increase student achievement are recorded as Low Inference Observation Measures. Time on…

  11. Simultaneous particle and field observations of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Hoffman, R. A.; Burton, R. K.; Holzer, R. E.

    1973-01-01

    Simultaneous measurements of low energy precipitating electrons and magnetic fluctuations from the low altitude polar orbiting satellite OGO-4 have been compared. Analysis of the two sets of experimental data for isolated events led to the classification of high latitude field-aligned currents as purely temporal or purely spatial variations. Magnetic field disturbances calculated using these simple current models and the measured particle fluxes were in good agreement with measured field values. While fluxes of greater than 1 keV electrons are detected primarily on the nightside, magnetometer disturbances indicative of field-aligned currents were seen at all local times, both in the visual auroral regions and dayside polar cusp. Thus electrons with energies less than approximately 1 keV are the prime charge carriers in high latitude dayside field-aligned currents. The satellite measurements are in good agreement with previously measured field-aligned current values and with values predicted from several models involving magnetospheric field-aligned currents.

  12. Balloon-borne radiometer profiler: Field observations

    SciTech Connect

    Shaw, W.J.; Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Hubbe, J.M.; Scott, K.A.

    1995-03-01

    This project involves the development of the capability of making routine soundings of broadband radiative fluxes and radiative flux divergences to heights of 1500m AGL. Described in this document are radiometers carried on a stabilized platform in a harness inserted in the tetherline of a tethered balloon meteriological sounding system. Field test results are given.

  13. Field Research: Learning through the Process of Observation

    ERIC Educational Resources Information Center

    Hartlep, Nicholas Daniel

    2009-01-01

    This paper reports on the process of a participant observation. Its focus is its process, not on what was observed. This report provides the following: (1) an overview of this observation, (2) the purpose of this observation, (3) the site and situation of this observation, (4) two samples of reflective field notes from this observation, and (5) an…

  14. POLAR FIELD REVERSAL OBSERVATIONS WITH HINODE

    SciTech Connect

    Shiota, D.; Tsuneta, S.; Shimojo, M.; Orozco Suarez, D.; Ishikawa, R.; Sako, N.

    2012-07-10

    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard Hinode to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of the total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (10{sup 15}-10{sup 20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches ({>=}10{sup 18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<10{sup 18} Mx) and that of the horizontal magnetic fields during the years 2008-2012.

  15. Seismological Field Observation of Mesoscopic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst

    2016-04-01

    Noise based observations of seismic velocity changes have been made in various environments. We know of seasonal changes of velocities related to ground water or temperature changes, co-seismic changes originating from shaking or stress redistribution and changes related to volcanic activity. Is is often argued that a decrease of velocity is related to the opening of cracks while the closure of cracks leads to a velocity increase if permanent stress changes are invoked. In contrast shaking induced changes are often related to "damage" and subsequent "healing" of the material. The co-seismic decrease and transient recovery of seismic velocities can thus be explained with both - static stress changes or damage/healing processes. This results in ambiguous interpretations of the observations. Here we present the analysis of one particular seismic station in northern Chile that shows very strong and clear velocity changes associated with several earthquakes ranging from Mw=5.3 to Mw=8.1. The fact that we can observe the response to several events of various magnitudes from different directions offers the unique possibility to discern the two possible causative processes. We test the hypothesis, that the velocity changes are related to shaking rather than stress changes by developing an empirical model that is based on the local ground acceleration at the sensor site. The eight year of almost continuous observations of velocity changes are well modeled by a daily drop of the velocity followed by an exponential recovery. Both, the amplitude of the drop as well as the recovery time are proportional to the integrated acceleration at the seismic station. Effects of consecutive days are independent and superimposed resulting in strong changes after earthquakes and constantly increasing velocities during quiet days thereafter. This model describes the continuous observations of the velocity changes solely based on the acceleration time series without individually defined dates

  16. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Eriss-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    With the use of a prediction technique it is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar geomagnetic field.

  17. Herbicide runoff along highways. 1. Field observations.

    PubMed

    Huang, Xinjiang; Pedersen, Theresa; Fischer, Michael; White, Richard; Young, Thomas M

    2004-06-15

    Herbicides are widely applied along highways to control roadside vegetation, and surface water is frequently nearby. To determine whether herbicide runoff along highways threatens water quality, a field study was conducted at two sites in northern California for three rainy seasons. The herbicides oryzalin, isoxaben, diuron, glyphosate, and clopyralid were selected for study to include compounds with significant variation in physical/chemical properties. Concentrations of herbicides in runoff were monitored for up to 11 storms following herbicide application, and 24 samples were collected per storm, providing unprecedented temporal detail. Flow-weighted event mean concentrations were calculated for each herbicide in each storm and ranged from below detection limits to 43.13 microg/L for oryzalin. The least soluble compounds, isoxaben and oryzalin, were detected in all storms monitored while the more soluble compounds, diuron and clopyralid, declined to levels below detection limits before monitoring was concluded. Very small amounts of glyphosate were mobilized, but its transformation product aminomethylphosphonic acid was detected at higher concentrations, in more storm events, and at greater depth in the soil profile. A first-order model successfully described the declining herbicide concentrations in spray zone soil and in surface runoff for all sites and herbicides. Fitted first-order coefficients were always higher for runoff than for soil, indicating that the herbicide that persists in the source zone becomes less available for runoff as the time since application increases. The percentage of the applied herbicide that was detected in surface runoff over a season ranged from 0.05% to 43.5%, and the most critical variables in controlling the variation were the solubility of the herbicide and the runoff volume. For a given herbicide and site, the most critical factors in determining seasonal herbicide loss to surface water were the timing and intensity of the

  18. Null fields in the outer Jovian magnetosphere: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Haynes, P. L.; Balogh, A.; Dougherty, M. K.; Southwood, D. J.; Fazakerley, A.; Smith, E. J.

    1994-01-01

    This paper reports on a magnetic field phenomenon, hereafter referred to as null fields, which were discovered during the inbound pass of the recent flyby of Jupiter by the Ulysses spacecraft. These null fields which were observed in the outer dayside magnetosphere are characterised by brief but sharp decreases of the field magnitude to values less than 1 nT. The nulls are distinguished from the current sheet signatures characteristic of the middle magnetosphere by the fact that the field does not reverse across the event. A field configuration is suggested that accounts for the observed features of the events.

  19. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  20. Rethinking Field Observations: Strengthening Teacher Education through INFORM

    ERIC Educational Resources Information Center

    Hoyt, Kristin; Terantino, Joe

    2015-01-01

    This article introduces the Instructional Field Observation Rounds Model (INFORM), drawn from the medical profession where resident interns make rounds with experienced physicians, as an alternative approach for conducting classroom observations in pre-service teacher education methods courses. INFORM centers on structured group observations in…

  1. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  2. Observations of Strong Magnetic Fields in Nondegenerate Stars

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Schöller, Markus

    2015-10-01

    We review magnetic-field measurements of nondegenerate stars across the Hertzprung-Russell diagram for main sequence, premain sequence, and postmain sequence stars. For stars with complex magnetic-field morphologies, which includes all G-M main sequence stars, the analysis of spectra obtained in polarized vs unpolarized light provides very different magnetic measurements because of the presence or absence of cancellation by oppositely directed magnetic fields within the instrument's spatial resolution. This cancellation can be severe, as indicated by the spatially averaged magnetic field of the Sun viewed as a star. These averaged fields are smaller by a factor of 1000 or more compared to spatially resolved magnetic-field strengths. We explain magnetic-field terms that characterize the fields obtained with different measurement techniques. Magnetic fields typically control the structure of stellar atmospheres in and above the photosphere, the heating rates of stellar chromospheres and coronae, mass and angular momentum loss through stellar winds, chemical peculiarity, and the emission of high energy photons, which is critically important for the evolution of protoplanetary disks and the habitability of exoplanets. Since these effects are governed by the star's magnetic energy, which is proportional to the magnetic-field strength squared and its fractional surface coverage, it is important to measure or reliably infer the true magnetic-field strength and filling factor across a stellar disk. We summarize magnetic-field measurements obtained with the different observing techniques for different types of stars and estimate the highest magnetic-field strengths. We also comment on the different field morphologies observed for stars across the H-R diagram, typically inferred from Zeeman-Doppler imaging and rotational modulation observations,

  3. Radio and Millimeter Observations of the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Bertoldi, F.; Carilli, C. L.; Smolčič, V.; Scoville, N. Z.; Menten, K.; Voss, H.; Blain, A.; Lutz, D.

    2007-10-01

    The Cosmic Evolution Survey (COSMOS) targets an equatorial two square degree field covering the full electromagnetic spectrum. Here we present first results from observations of the COSMOS field in the millimeter and centimeter regime done with the IRAM 30 m/MAMBO array and NRAO's Very Large Array (VLA) at 250 GHz and 1.4 GHz, respectively.

  4. Low frequency radio observations of coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Kathiravan, C.

    2012-07-01

    Magnetic fields play an important role in the dynamics as well as the formation of the structures in the solar corona. Despite its fundamental importance, only a few direct measurements of the coronal magnetic field are available. The existing direct estimates using optical/infrared and radio emissions are limited to the inner corona, i.e., r < 1.2 R , where R is the radius of the Sun. In the outer corona beyond r > 3 R , Faraday rotation observations are used to derive the magnetic field. But due to lack of observational techniques, measurements in the range 1.2 R < r > 3 R (middle corona) are not available until now. As the photosphere, chromosphere, and corona are coupled by the solar magnetic field, the magnetic field strength at these distances is generally obtained by mathematical extrapolation of the observed line-of-sight component of the photospheric magnetic field assuming a potential or force-free model. The Indian Institute of Astrophysics has recently commissioned a radio polarimeter (based on inteferometer techniques) for dedicated obervations of the polarized radio emission from the solar corona. The frequency range of observation is 120-30 MHz which corresponds to a radial distance range of about 1.2-1.8 R. Estimates of weak magnetic fields in the 'undisturbed' Sun (non-flaring sunspot active regions, coronal streamers, etc.) obtained from observations with the above instrument will be presented.

  5. The wireless networking system of Earthquake precursor mobile field observation

    NASA Astrophysics Data System (ADS)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  6. Direct observations of field-induced assemblies in magnetite ferrofluids

    NASA Astrophysics Data System (ADS)

    Mousavi, N. S. Susan; Khapli, Sachin D.; Kumar, Sunil

    2015-03-01

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05-0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.

  7. Direct observations of field-induced assemblies in magnetite ferrofluids

    SciTech Connect

    Mousavi, N. S. Susan; Khapli, Sachin D.; Kumar, Sunil

    2015-03-14

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05–0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.

  8. Direct observations of field-induced assemblies in magnetite ferrofluids

    PubMed Central

    Mousavi, N. S. Susan

    2015-01-01

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05–0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity. PMID:25829566

  9. Early SDO/HMI Magnetic Field Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Hmi Magnetic Field Team

    2010-12-01

    Solar magnetic features no longer have any expectation of privacy and understanding the Sun’s magnetic field is the key to space weather prediction. The Helioseismic and Magnetic Imager on the Solar Dynamics Observatory measures polarized line profiles that measure both line-of-sight and vector magnetic fields in the photosphere. The longitudinal field is measured every 45 seconds with filtergrams from the same camera used to determine the velocity. The Stokes parameters are calculated from a longer sequence taken with a second 4096 x 4096 CCD. Inversion and disambiguation provide an estimate of the vector magnetic field components and uncertainties at least every 12 minutes in active regions. Full disk synoptic observations began in April and magnetograms are available shortly after they are observed from jsoc.stanford.edu along with a plethora of other useful magnetic field products. The low-noise line-of-sight measurements compare favorably with MDI and GONG. The vector field is being compared with other observations and appears quite stable, even in small strong-field concentrations outside of active regions. Scattered light is low and the sensitivity is very good. HMI observes the entire disk all of the time, so any feature of interest can be tracked during its entire disk passage without interruption. Knowing the detailed time development will lead to better understanding of energy storage and release in the atmosphere above and what leads to the spectacular events detected by AIA, EVE, and other instruments.

  10. Giacobini-Zinner magnetotail - Ice magnetic field observations

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Smith, E. J.; Tsurutani, B. T.; Siscoe, G. L.; Jones, D. E.; Mendis, D. A.

    1986-03-01

    A well developed magnetotail with a diameter of about 10,000 km has been revealed 7800 km downstream of the nucleus of Comet Giacobini-Zinner by International Cometary Explorer magnetic field observations. The tail is composed of two lobes of opposite magnetic polarity that are separated by an approximately 1500 km-thick plasma sheets. The field magnitude increases by a factor of 2 between the outer portions of the lobe and the central regions, where peak fields of about 60 nT were measured. Flaring is lowest in the high field regions of the central tail and greatest in the outer portions of the lobes, where minimum variance analyses on the magnetopause crossings furnishes flare angles of 20-40 deg. The Alfven field line draping model of type I cometary tails is confirmed by these observations.

  11. Observation of anticorrelation in incoherent thermal light fields

    SciTech Connect

    Chen Hui; Peng Tao; Karmakar, Sanjit; Xie Zhenda; Shih Yanhua

    2011-09-15

    We wish to report a recent experimental observation of anticorrelation from first-order and second-order incoherent thermal fields in the joint photodetection of two independent photodetectors. In the view of classical theory, the nontrivial second-order correlation of thermal light is caused by the statistical correlation of intensity fluctuations, which can be observed only from first-order coherent thermal radiations. What is the physical cause of this observed anticorrelation, then?.

  12. The magnetic field of Saturn - Pioneer 11 observations

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1980-01-01

    The Pioneer 11 high-field fluxgate magnetometer experiment consists of two biaxial fluxgate sensors assemblies and an associated electronics system that is designed to measure fields up to 10 gauss along three orthogonal axes. It was used to provide a higher upper range than that provided by the helium vector magnetometer whose maximum measureable field is only 1.4 gauss. Observations of the intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer were found to be much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole. It was determined that the polarity of Saturn is opposite that of Earth, and that the tilt is small, within 2 deg plus or minus 1 deg.

  13. Magnetic field observations during the ulysses flyby of jupiter.

    PubMed

    Balogh, A; Dougherty, M K; Forsyth, R J; Southwood, D J; Smith, E J; Tsurutani, B T; Murphy, N; Burton, M E

    1992-09-11

    The Jovian flyby of the Ulysses spacecraft presented the opportunity to confirm and complement the findings of the four previous missions that investigated the structure and dynamics of the Jovian magnetosphere and magnetic field, as well as to explore for the first time the high-latitude dusk side of the magnetosphere and its boundary regions. In addition to confirming the general structure of the dayside magnetosphere, the Ulysses magnetic field measurements also showed that the importance of the current sheet dynamics extends well into the middle and outer magnetosphere. On the dusk side, the magnetic field is swept back significantly toward the magnetotail. The importance of current systems, both azimuthal and field-aligned, in determining the configuration of the field has been strongly highlighted by the Ulysses data. No significant changes have been found in the internal planetary field; however, the need to modify the external current densities with respect to previous observations on the inbound pass shows that Jovian magnetic and magnetospheric models are highly sensitive to both the intensity and the structure assumed for the current sheet and to any time dependence that may be assigned to these. The observations show that all boundaries and boundary layers in the magnetosphere have a very complex microstructure. Waves and wave-like structures were observed throughout the magnetosphere; these included the longest lasting mirror-mode wave trains observed in space.

  14. Magnetic Fields Around the Heliosphere: Theory vs Observations

    NASA Astrophysics Data System (ADS)

    Pogorelov, Nikolai

    2016-07-01

    Voyager in situ measurements of the magnetic field around the heliosphere are the source of invaluable information about the interface between the solar wind (SW) and local interstellar medium (LISM). On the other hand, they are quite challenging for theoretical analysis unless accompanied by remote observations of neutral atoms the Interstellar Boundary Explorer (IBEX) and Ulysses missions. Of particular interest is the fine structure of the heliopause due to its instability and possible magnetic reconnection. Both phenomena may have contributed to the remarkable changes in the galactic and anomalous cosmic ray fluxes observed by Voyager 1 within a one-month period of 2012 after which the spacecraft penetrated into the LISM. Draping of the heliopause by the interstellar magnetic field affects the position of the bright ribbon of enhanced ENA flux observed by IBEX on the celestial sphere and 2-3 kHz radio emission caused by shock propagation through the outer heliosheath observed by Voyager 1. Interstellar magnetic field determines the structure of the bow wave in front of the heliopause. Moreover, magnetic fields define the orientation and shape of the heliotail, the features of which have been observed by IBEX. Recent numerical simulations show that the details of the large-scale interstellar magnetic field modification caused by the presence of the heliotail may be the source of the observed 1-10 TeV cosmic ray anisotropy studied in detail in numerous air shower measurements around the world. In this paper, an overview will be given of the recent theoretical and simulations results describing the magnetic field distribution around the heliosphere. The objective of the talk is to connect observational and theoretical results, and outline challenges that are going to inspire the heliospheric community in the coming years.

  15. Cosmic microwave background observables of small field models of inflation

    SciTech Connect

    Ben-Dayan, Ido; Brustein, Ram E-mail: ramyb@bgu.ac.il

    2010-09-01

    We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection.

  16. Constructing the Coronal Magnetic Field: by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Gary, G. A.

    1998-01-01

    The reconstruction of the coronal magnetic field is carried out using a perturbation procedure. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal fluxtubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures (1) that the normal component of the photospheric field remains unchanged, (2) that the field is given in the entire corona, (3) that the field remains divergence free, and (4) that electrical currents are introduced into the field. It is demonstrated that a simple radial parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 Nov 26. At a coronal height of 30 km, the resulting magnetic field is a non-force free magnetic field with the maximum Lorentz force being on the order of 2.6 x 10(exp -9) dyn resulting from an electric current density of $0.13 mu A/ sq m. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  17. Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10.

    PubMed

    Ness, N F; Behannon, K W; Lepping, R P; Whang, Y C; Schatten, K H

    1974-07-12

    Results are presented from a preliminary analysis of data obtained near Mercury on 29 March 1974 by the NASA-GSFC magnetic field experiment on Mariner 10. Rather unexpectedly, a very well-developed, detached bow shock wave, which develops as the super-Alfvénic solar wind interacts with the planet, has been observed. In addition, a magnetosphere-like region, with maximum field strength of 98 gammas at closest approach (704 kilometers altitude), has been observed, contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow is global in size, but the origin of the enhanced magnetic field has not yet been uniquely established. The field may be intrinsic to the planet and distorted by interaction with the solar wind. It may also be associated with a complex induction process whereby the planetary interior-atmosphere-ionosphere interacts with the solar wind flow to generate the observed field by a dynamo action. The complete body of data favors the preliminary conclusion that Mercury has an intrinsic magnetic field. If this is correct, it represents a major scientific discovery in planetary magnetism and will have considerable impact on studies of the origin of the solar system. PMID:17810508

  18. Evolution of the dipole geomagnetic field. Observations and models

    NASA Astrophysics Data System (ADS)

    Reshetnyak, M. Yu.; Pavlov, V. E.

    2016-01-01

    The works on paleomagnetic observations of the dipole geomagnetic field, its variations, and reversals in the last 3.5 billion years have been reviewed. It was noted that characteristic field variations are related to the evolution of the convection processes in the liquid core due to the effect of magnetic convection and solid core growth. Works on the geochemistry and energy budget of the Earth's core, the effect of the solid core on convection and the generation of the magnetic field, dynamo models are also considered. We consider how core growth affects the magnetic dipole generation and variations, as well as the possibility of magnetic field generation up to the appearance of the solid core. We also pay attention to the fact that not only the magnetic field but also its configuration and time variations, which are caused by the convection evolution in the core on geological timescales, are important factors for the biosphere.

  19. Observations of ionospheric electric fields above atmospheric weather systems

    SciTech Connect

    Farrell, W.M.; Aggson, T.L.; Rodgers, E.B.

    1994-10-01

    The authors report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. The authors report here on a set of likely E field candidates for atmosphere-ionosphere causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As they demonstrate, individual events can often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather. 31 refs., 11 figs., 1 tab.

  20. Observational constraints on gauge field production in axion inflation

    SciTech Connect

    Meerburg, P.D.; Pajer, E. E-mail: enrico.pajer@gmail.com

    2013-02-01

    Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling φF F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from μ-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.

  1. Observations of ionospheric electric fields above atmospheric weather systems

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  2. The galloping chromosphere. [H alpha observation of oscillating velocity fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C.

    1974-01-01

    Oscillating velocity fields can be observed on H-alpha filtergrams as a shifting pattern of intensity fluctuations known as 'the galloping chromosphere'. The characteristics of this activity are those of horizontal running waves of typical period of about 300 sec and long wavelength (about 20,000 km) that can be interpreted as acoustic-gravity waves propagating in the acoustic domain. Periods are longer in dark, structured regions, and in fibrils, and the change is quantitatively consistent with the reduction of resonance frequency in a magnetic field of 1 to 10 gauss. These easily observed fluctuations thus offer a means of estimating magnetic-field strength at specific locations in the chromosphere. Phase velocities are high, ranging upward from typical values between 50 and 100 km per sec, and tending to be lower in active regions and toward the limb.

  3. Constructing the Coronal Magnetic Field by Correlating Parameterized Magnetic Field Lines with Observed Coronal Plasma Structures

    NASA Technical Reports Server (NTRS)

    Allen, Gary G.; Alexander, David

    1999-01-01

    A method is presented for constructing the coronal magnetic field from photospheric magnetograms and observed coronal loops. A set of magnetic field lines generated from magnetogram data is parameterized and then deformed by varying the parameterized values. The coronal flux tubes associated with this field are adjusted until the correlation between the field lines and the observed coronal loops is maximized. A mathematical formulation is described which ensures that (1) the normal component of the photospheric field remains unchanged, (2) the field is given in the entire corona over an active region, (3) the field remains divergence-free, and 4electric currents are introduced into the field. It is demonstrated that a parameterization of a potential field, comprising a radial stretching of the field, can provide a match for a simple bipolar active region, AR 7999, which crossed the central meridian on 1996 November 26. The result is a non-force-free magnetic field with the Lorentz force being of the order of 10(exp -5.5) g per s(exp 2) resulting from an electric current density of 0.79 micro A per m(exp 2). Calculations show that the plasma beta becomes larger than unity at a strong non-radial currents requires low height of about 0.25 solar radii supporting the non-force-free conclusion. The presence of such strong non-radial currents requires large transverse pressure gradients fo maintain a magnetostatic atmosphere, required by the relatively persistent nature of the coronal structures observed in AR 7999. This scheme is an important tool in generating a magnetic field solution consistent with the coronal flux tube observations and the observed photospheric magnetic field.

  4. Implications of observing and writing field notes through different lenses

    PubMed Central

    Hellesø, Ragnhild; Melby, Line; Hauge, Solveig

    2015-01-01

    Background From a philosophy of science perspective, the literature has posited that different research approaches influence field studies. Studies addressing interdisciplinary research have focused on the challenges of organizing and running interdisciplinary teams, cultural differences between and within disciplines, and constraints in conducting interdisciplinary research. Studies exploring and discussing the process and outcome of transferring observations to notes from an interdisciplinary point of view are not identified. The aim of this paper is to explore the characteristics of field notes created by researchers representing different disciplines and experiences. Methods A case study using a modified dynamic observation method was employed. The analyses were initiated by a researcher who had not been involved in the data collection. The field notes were analyzed using three main steps. Results The structures of both researchers’ field notes were characterized by similarities in their descriptions, but the notes’ foci and analytical levels differed. Conclusion The findings contribute new insights concerning the execution of interdisciplinary observational studies. Our findings demonstrate that entering the field with different lenses produced richer and more varied data, providing a broader platform from which to discuss and interpret a study’s findings. From a theoretical point of view, the findings enable a more nuanced discussion and a conceptual elaboration regarding how observational approaches should be pursued in future studies. On a practical level, the findings show that even if the researchers agree on what the overall focus in the observations should be, differences can occur in both their focus and analytical level throughout the study. PMID:25914543

  5. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW

    SciTech Connect

    Koekemoer, Anton M.; Ellis, Richard S.; Schenker, Matthew A.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Curtis-Lake, Emma; Cirasuolo, Michele; Wild, V.; Targett, T.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Ono, Yoshiaki; Ouchi, Masami; Charlot, Stephane; Furlanetto, Steven R.

    2013-11-01

    We present the 2012 Hubble Ultra Deep Field campaign (UDF12), a large 128 orbit Cycle 19 Hubble Space Telescope program aimed at extending previous Wide Field Camera 3 (WFC3)/IR observations of the UDF by quadrupling the exposure time in the F105W filter, imaging in an additional F140W filter, and extending the F160W exposure time by 50%, as well as adding an extremely deep parallel field with the Advanced Camera for Surveys (ACS) in the F814W filter with a total exposure time of 128 orbits. The principal scientific goal of this project is to determine whether galaxies reionized the universe; our observations are designed to provide a robust determination of the star formation density at z ∼> 8, improve measurements of the ultraviolet continuum slope at z ∼ 7-8, facilitate the construction of new samples of z ∼ 9-10 candidates, and enable the detection of sources up to z ∼ 12. For this project we committed to combining these and other WFC3/IR imaging observations of the UDF area into a single homogeneous dataset to provide the deepest near-infrared observations of the sky. In this paper we present the observational overview of the project and describe the procedures used in reducing the data as well as the final products that were produced. We present the details of several special procedures that we implemented to correct calibration issues in the data for both the WFC3/IR observations of the main UDF field and our deep 128 orbit ACS/WFC F814W parallel field image, including treatment for persistence, correction for time-variable sky backgrounds, and astrometric alignment to an accuracy of a few milliarcseconds. We release the full, combined mosaics comprising a single, unified set of mosaics of the UDF, providing the deepest near-infrared blank-field view of the universe currently achievable, reaching magnitudes as deep as AB ∼ 30 mag in the near-infrared, and yielding a legacy dataset on this field.

  6. Observable gravitational waves from inflation with small field excursions

    SciTech Connect

    Hotchkiss, Shaun; Mazumdar, Anupam; Nadathur, Seshadri E-mail: a.mazumdar@lancaster.ac.uk

    2012-02-01

    The detection of primordial gravitational waves, or tensor perturbations, would be regarded as compelling evidence for inflation. The canonical measure of this is the ratio of tensor to scalar perturbations, r. For single-field slow-roll models of inflation with small field excursions, the Lyth bound dictates that if the evolution of the slow-roll parameter ε is monotonic, the tensor-to-scalar ratio must be below observationally detectable levels. We describe how non-monotonic evolution of ε can evade the Lyth bound and generate observationally large r, even with small field excursions. This has consequences for the scalar power spectrum as it necessarily predicts an enhancement in the spectrum at very small scales and significant scale-dependent running at CMB scales. This effect has not been appropriately accounted for in previous analyses. We describe a mechanism that will generically produce the required behaviour in ε and give an example of this mechanism arising in a well-motivated small-field model. This model can produce r ≥ 0.05 while satisfying all current observational constraints.

  7. Observations of field line resonance with global auroral images

    NASA Astrophysics Data System (ADS)

    Liou, K.; Takahashi, K.

    2013-12-01

    We report results from a detailed analysis of an auroral luminosity pulsation event in the Pc 5 range associated with auroral breakup using Polar ultraviolet imager data and magnetic field observations from the ground-based CARISMA magnetometer array and in space by the GOES 8 satellite. It is found that (1) the auroral pulsation appeared predominantly at frequencies around ~0.9 mHz and ~1.8 mHz in the midnight sector centered at the onset (~2100 magnetic local time (MLT)), (2) the longitudinal extent of the auroral pulsation is wider (~12 h in MLT) for the lower-frequency mode and is much narrower for the higher-frequency mode (~3 h in MLT), (3) both auroral and ground magnetic field data show latitudinal wave amplitude and phase shift structures consistent with the field-line resonance (FLR) theory, (4) magnetic field measurements from GOES 8, which was near the onset location, also show two spectral peaks at ~0.9 mHz in the compressional component and at ~2.1 mHz in the poloidal component. It is suggested the observed Pc 5 ULF waves are FLRs produced by the onset-associated magnetic field dipolarization.

  8. Near-field observation of light propagation in nanocoax waveguides.

    PubMed

    Merlo, Juan M; Ye, Fan; Rizal, Binod; Burns, Michael J; Naughton, Michael J

    2014-06-16

    We report the observation of propagating modes of visible and near infrared light in nanoscale coaxial (metal-dielectric-metal) structures, using near-field scanning optical microscopy. Together with numerical calculations, we show that the propagated modes have different nature depending on the excitation wavelength, i.e., plasmonic TE11 and TE21 modes in the near infrared and photonic TE31, TE41 and TM11 modes in the visible. Far field transmission out of the nanocoaxes is dominated by the superposition of Fabry-Perot cavity modes resonating in the structures, consistent with theory. Such coaxial optical waveguides may be useful for future nanoscale photonic systems.

  9. Observations of magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.

  10. Observation of Field-Emission Dependence on Stored Energy

    NASA Astrophysics Data System (ADS)

    Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.; Chen, Huaibi; Conde, Manoel; Doran, Darrell S.; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Shi, Jiaru; Wang, Dan; Wang, Faya; Whiteford, Charles E.; Wisniewski, Eric; Xiao, Liling

    2015-12-01

    Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L -band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. A very strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.

  11. Observation of Field-Emission Dependence on Stored Energy.

    PubMed

    Shao, Jiahang; Antipov, Sergey P; Baryshev, Sergey V; Chen, Huaibi; Conde, Manoel; Doran, Darrell S; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Shi, Jiaru; Wang, Dan; Wang, Faya; Whiteford, Charles E; Wisniewski, Eric; Xiao, Liling

    2015-12-31

    Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. A very strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system. PMID:26764996

  12. Probing the Earth's core with magnetic field observations from Swarm

    NASA Astrophysics Data System (ADS)

    Finlay, Christopher; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars

    2016-07-01

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide a unique means of probing the dynamics taking place in the deepest reaches of the Earth. In this contribution we present a new high resolution model of the core-generated magnetic field, and its recent time changes, derived from a dataset that includes more two years of observations from the Swarm mission. Resulting inferences regarding the underlying core flow, its dynamics, and the nature of the geodynamo process will be discussed. The CHAOS-6 geomagnetic field model, covering the interval 1999-2016, is derived from magnetic data collected by the three Swarm missions, as well as the earlier CHAMP and Oersted satellites, and monthly means data collected from 160 ground observatories. Advantage is taken of the constellation aspect of the Swarm mission by ingesting both scalar and vector field differences along-track and across track between the lower pair of Swarm satellites. The internal part of the model consists of a spherical harmonic (SH) expansion, time-dependent for degrees 20 and below. The model coefficients are estimated using a regularized, iteratively reweighted, least squares scheme involving Huber weights. At Earth's surface, CHAOS-6 shows evidence for positive acceleration of the field intensity in 2015 over a broad area around longitude 90deg E that is also seen at ground observatories such as Novosibirsk. At the core surface, we are able to map the secular variation (linear trend in the magnetic field) up to SH degree 16. The radial field acceleration at the core surface in 2015 is found be largest at low latitudes under the India-South East Asia region and under the region of northern South America, as well as at high northern latitudes under Alaska and Siberia. Surprisingly, there is also evidence for some acceleration in the central Pacific region, for example

  13. Mapping the Frontier Fields with Chandra X-ray Observations

    NASA Astrophysics Data System (ADS)

    Jones, Christine

    2015-08-01

    Chandra has observed both the clusters and the parallel fields in four of the Frontier Fields. These observations allow us to dramatically improve our understanding of cluster mergers through the detailed mapping of the hot cluster gas compared with high resolution mass maps and, by mapping the gas temperature and pressure, identify merger shocks. A comparison of the lensing maps and the Chandra images allows us to identify subclusters and determine if these have been stripped of their hot gas. In addition the HST images show unusual galaxies (e.g. jellyfish) whose morphologies may have resulted from interactions with the hot intracluster medium. Finally, we will report on any close pairs of AGN, which are candidates for gravitationally lensed QSOs.

  14. Plasma and field observations of a Pc 5 wave event

    NASA Technical Reports Server (NTRS)

    Waite, J. H.; Gallagher, D. L.; Chappell, C. R.; Chandler, M. O.; Olsen, R. C.; Comfort, R. H.; Johnson, J. F. E.; Peterson, W. K.; Weimer, D.; Shawhan, S. D.

    1986-01-01

    The particle detector and electric field data collected by the Dynamo Explorer 1 on the Pc 5 wave event encounter on July 14, 1982 are presented, yielding a nearly complete picture of the event. The overall structure of the Pc 5 seems to order the event into two distinct halves, suggesting a temporal or spatial variation of the micropulsation. Thermal plasma measurements showed that the dominant ion throughout both lobes was H(+). Significant quantities of He(+), O(+), N(+), and O(2+) were also observed to be present and rotating together in a plane normal to the magnetic field direction, due to the Pc5 E x B drift. The plasma parameters determined for the two lobes were used in theoretical calculations to predict the period of the observed resonance.

  15. Venus Express observations of magnetic field fluctuations in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Du, J.; Wang, C.; Zhang, T. L.; Volwerk, M.; Delva, M.; Baumjohann, W.

    2008-12-01

    Magnetic field fluctuations within a planetary magnetosheath play an important role in the solar wind interaction with the planet, since they can reconfigure the plasma flow and the magnetic field and transfer energy from the bow shock to the lower boundary. Many studies have been presented on the fluctuations in the terrestrial magnetosheath; however, hardly any studies have so far been carried out for Venusian magnetosheath fluctuations, except for Luhmann et al. [1983] and Vörös et al. [2008] who performed some case studies on the magnetosheath fluctuations at Venus. It was shown that the fluctuations are probably convected from the vicinity of the quasi-parallel bow shock along the streamlines. Based on the Venus Express observations in 2006 and 2007, we investigate the spatial distributions of magnetic field fluctuations in the Venus magnetosheath statistically.

  16. MESSENGER observations of induced magnetic fields in Mercury's core

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Korth, Haje; Hauck, Steven A.; Heyner, Daniel; Phillips, Roger J.; Winslow, Reka M.; Solomon, Sean C.

    2016-03-01

    Orbital data from the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft allow investigation of magnetic fields induced at the top of Mercury's core by time-varying magnetospheric fields. We used 15 Mercury years of observations of the magnetopause position as well as the magnetic field inside the magnetosphere to establish the presence and magnitude of an annual induction signal. Our results indicate an annual change in the internal axial dipole term, g10, of 7.5 to 9.5 nT. For negligible mantle conductivity, the average annual induction signal provides an estimate of Mercury's core radius to within ±90 km, independent of geodetic results. Larger induction signals during extreme events are expected but are challenging to identify because of reconnection-driven erosion. Our results indicate that the magnetopause reaches the dayside planetary surface 1.5-4% of the time.

  17. Cosmological observables in multi-field inflation with a non-flat field space

    SciTech Connect

    Gao, Xin; Li, Tianjun; Shukla, Pramod E-mail: tli@itp.ac.cn

    2014-10-01

    Using δN formalism, in the context of a generic multi-field inflation driven on a non-flat field space background, we revisit the analytic expressions of the various cosmological observables such as scalar/tensor power spectra, scalar/tensor spectral tilts, non-Gaussianity parameters, tensor-to-scalar ratio, and the various runnings of these observables. In our backward formalism approach, the subsequent expressions of observables automatically include the terms beyond the leading order slow-roll expansion correcting many of the expression at subleading order. To connect our analysis properly with the earlier results, we rederive the (well) known (single field) expressions in the limiting cases of our generic formulae. Further, in the light of PLANCK results, we examine for the compatibility of the consistency relations within the slow-roll regime of a two-field roulette poly-instanton inflation realized in the context of large volume scenarios.

  18. Evolution of Auroral Electric Fields Observed By Cluster

    NASA Astrophysics Data System (ADS)

    Marklund, G.; Cluster Auroral Team

    Cluster observations on nightside auroral field lines are used to study the existence and temporal evolution of quasi-static electric field structures on time scales of min- utes. Results are presented for two events characterized by intense and narrow-scale divergent electric fields. These were encountered at the boundary between the Cen- tral Plasma Sheet and the Plasma Sheet Boundary Layer associated with a large-scale plasma density gradient and a downward field-aligned current. The structures main- tain their bipolar shape but increase in magnitude and width between the crossings by the four spacecraft, each separated by a few minutes in a plane perpendicular to the magnetic field. The perpendicular electric potential calculated for the first event in- creased for about 200 s, following closely the increase in the characteristic energy of the upgoing electron beam. At the time of the last satellite crossing the structure had faded, the energy of the beam was much reduced, and the downward current, main- taining a constant total value throughout the Cluster crossings, was distributed over a much wider region than initially. In this way access was given to a wide collection area of return current electrons. For the other event, the electric field increase was accompanied by a deepening of a density cavity superposed on a larger scale density gradient and a downward field-aligned current that remained roughly constant during the crossings. The divergent structures are likely to represent the high-altitude exten- sion of quasi-static positive potential structures developing on a time scale of several hundred seconds which is comparable to the evacuation time for the return current electrons in the E- and lower F-region. The evolving potential structure and associated hole formation represent a growing load in the return current leg of the auroral current circuit with possible direct impact on the aurora.

  19. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  20. Field observations of a debris flow event in the Dolomites

    NASA Astrophysics Data System (ADS)

    Berti, Matteo; Genevois, Rinaldo; Simoni, Alessandro; Tecca, Pia Rosella

    1999-09-01

    A debris flow event occurred in June 1997 in the Dolomites (Eastern Alps, Italy). The phenomenon was directly observed in the field and recorded by a video camera near its initiation area. The debris flow originated shortly after an intense rainstorm (25 mm in 30 min) whose runoff mobilised the loose coarse debris that filled the bottom of the channel in its upper part. The analysis of the steep headwater basin indicates a very short concentration time (9-14 min) that fits the quick hydrological response observed in the field. The debris flow mobilisation was not contemporaneous with the arrival of the peak water discharge in the initiation area probably due to the time required for the saturation of the highly conductive channel-bed material. Channel cross-section measurements taken along the flow channel indicate debris flow peak velocity and discharge ranging from 3.1 to 9.0 m/s and from 23 to 71 m 3/s, respectively. Samples collected immediately after deposition were used to determine the water content and bulk density of the material. Channel scouring, fines enrichment and transported volume increase testify erosion and entrainment of material along the flow channel. Field estimates of the rheological properties based on open channel flow of Bingham fluid indicate a yield strength of 5000±400 Pa and relatively low viscosity (60-326 Pa s), probably due to a high percentage of fines (approx. 30%).

  1. Recent results from CHAMP plasma parameter and magnetic field observations

    NASA Astrophysics Data System (ADS)

    Stolle, Claudia; Luehr, Hermann; Park, Jaeheung; Xiong, Chao; Fejer, B. G.

    The multi-year data base of magnetic field and ionospheric measurements from the CHAMP satellite contains an enormous potential to investigate the behaviour and the origin of currents in the F region. Very prominent phenomena are the post-sunset equatorial plasma irregularities (commonly known as "bubbles", or "Equatorial Spread-F" (ESF)) which cause also signatures in the total magnetic field due to diamagnetic currents. The continuous magnetic observations, available at a 1Hz rate, have allowed for the compilation of a comprehensive climatology of the magnetic signatures due to ESF. It reveals a distinct seasonal/longitudinal (S/L) distribution, and the occurrence rate reduces considerably with decreasing solar flux. The (S/L) distribution of bubbles has been found to correlate very well, up to 90 percent, with the pre-reversal enhancement vertical plasma drift peak. This provides strong evidence for the close relation between these phenomena. Since the amplitude of the diamagnetic effect depends on the ambient magnetic field strength and on the background electron density, the global distribution shows also slight differences to the ESF climatology based on plasma depletions. Although electron density readings are only available every 15s, CHAMP data suggest that the plasma irregularities are less structured at places where the ambient magnetic field is strong (e.g. East Asia, Indonesia). In these regions the bubble statistic based on magnetic signatures is systematically lower than that from plasma measurements.

  2. Geomorphology: Perspectives on observation, history, and the field tradition

    NASA Astrophysics Data System (ADS)

    Vitek, John D.

    2013-10-01

    Other than a common interest in form and process, current geomorphologists have little in common with those who established the foundations of this science. Educated people who had an interest in Earth processes during the nineteenth century cannot be compared to the scholars who study geomorphology in the twenty-first century. Whereas Earth has undergone natural change from the beginning of time, the human record of observing and recording processes and changes in the surface Is but a recent phenomena. Observation is the only thread, however, that connects all practitioners of geomorphology through time. As people acquired knowledge related to all aspects of life, technological revolutions, such as the Iron Age, Bronze Age, agricultural revolution, the atomic age, and the digital age, shaped human existence and thought. Technology has greatly changed the power of human observation, including inward to the atomic scale and outward into the realm of space.Books and articles describe how to collect and analyze data but few references document the field experience. Each of us, however, has experienced unique circumstances during field work and we learned from various mentors how to observe. The surface of Earth on which we practice the vocation of geomorphology may not be much different from a hundred years ago but many things about how we collect data, analyze it and disseminate the results have changed. How we function in the field, including what we wear, what we eat, how we get there, and where we choose to collect data, clearly reflects the complexity of the human system on Earth and the processes and forms that arouse our interest. Computers, miniaturization of electronics, satellite communications and observation platforms in space provide access to data to aid in our quest to understand Earth surface processes. Once, people lived closer to nature in primitive shelters in contrast with life in urban environments. But as urban life continues to expand and people

  3. Seismostatistical characterization of microseismicity observed at geothermal fields

    NASA Astrophysics Data System (ADS)

    Eto, T.; Asanuma, H.; Adachi, M.; Saeki, K.; Aoyama, K.; Ozeki, H.; Häring, M. O.

    2012-12-01

    Recently, occurrence of felt earthquakes has been recognized as one of the most critical environmental burdens associated with geothermal development. We have taken seismostatistical approach to evaluate characteristics of the microseismicity at geothermal fields to establish realtime and automated monitoring techniques of the reservoir changes and risk assessment of the felt earthquakes. In this study, we have introduced the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to statistically model the time series of occurrences and the magnitude of microseismic events from hydrothermal and EGS fields. Here maximum likelihood estimation has been employed to estimate optimum parameters of the ETAS model. We analyzed microseismic events observed at Yanaizu Nishiyama, one of the largest hydrothermal fields in Japan. In this field, four felt earthquakes with local magnitude larger than 3.0 occurred during production operation since 1996, although no clear correlation between the occurrence of the felt earthquakes and operation to the reservoir has been observed (Asanuma et al., Trans. GRC, 2011). We found that the occurrence rate of primary fluid signals, which are the events triggered by external forcing and have been interpreted to be independent from a series of aftershocks (Hainzl and Ogata, JGR, 2005), correlated to the reinjection rate (Fig. 1). However, no significant change in the other parameters in the ETAS model has been observed. We also analyzed microseismic events observed at Basel EGS site in Switzerland, where some felt earthquakes occurred during and after hydraulic stimulation. The estimated ETAS model demonstrated that there is a correlation between the occurrence rate of primary fluid signals and injection rate. We, however, found that there is limitation to fit the ETAS model to the induced seismic events and new seismostatistical model is required for microseismic reservoir monitoring.ig. 1 A relation among production

  4. Field observations of dilution on the Ipanema Beach outfall.

    PubMed

    Roldão, J; Carvalho, J L; Roberts, P J

    2001-01-01

    Field observations of the Ipanema Beach, Rio de Janeiro, ocean sewage outfall are presented. Measurements of dilution and other wastefield characteristics were obtained by adding dye tracer to the effluent and measuring in-situ. Simultaneous measurements of oceanographic conditions were made by Acoustic Doppler Current Profilers, thermistor strings, and profiling instruments. Four experiments were performed, two during unstratified conditions when the plume was surfacing, and two during conditions of strong stratification when the plume was submerged. The minimum dilution varied from 30 to 130. The measurements reflect the worst case conditions as the campaigns were all made for weak currents. PMID:11443984

  5. Using Clocks and Atomic Interferometry for Gravity Field Observations

    NASA Astrophysics Data System (ADS)

    Müller, Jürgen

    2016-07-01

    New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.

  6. {Interball-1 Plasma, Magnetic Field, and Energetic Particle Observations}

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    1998-01-01

    Funding from NASA was received in two installments. The first installment supported research using Russian/Czech/Slovak/French Interball-1 plasma, magnetic field, and energetic particles observations in the vicinity of the magnetopause. The second installment provided salary support to review unsolicited proposals to NASA for data recovery and archiving, and also to survey ISTP data provision efforts. Two papers were published under the auspices of the grant. Sibeck et al. reported Interball-1 observations of a wave on the magnetopause with an amplitude in excess of 5 R(sub E), the largest ever reported to date. They attributed the wave to a hot flow anomaly striking the magnetopause and suggested that the hot flow anomaly itself formed during the interaction of an IMF discontinuity with the bow shock. Nemecek et al. used Interball-1's VDP Faraday cup to identify large transient increases in the magnetosheath density. They noted large variations in simultaneous Wind observations of the IMF cone angle, but were unable to establish any relationship between the cone angle variations at Wind and the density variations at Interball-1. Funds from the second installment were used to review over 20 proposals from various researchers in the scientific community who sought NASA support to restore or archive past observations. It also supported a survey of ISTP data provisions which was used as input to a Senior Review of ongoing NASA ISTP programs.

  7. A new approach to observe toroidal magnetic fields of magnetars

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Makishima, K.; Enoto, T.; Nakano, T.; Furuta, Y.; Nakazawa, K.

    2016-06-01

    Over the last decade, observational evidence has amounted that magnetars harbor enormous surface dipole magnetic fields (MFs) of B_{d} = 10^{14-15} {G}. Theoretically, we expect even stronger toroidal MFs B_{t} (e.g., Takiwaki+2009), which is observationally supported by a discovery of low-B_{d} magnetars (e.g., SGR 0418+5729; Rea+2013). Here, we will present a new approach to access B_{t} more directly. Suzaku allows us to simultaneously observe a soft thermal component and a distinct hard X-ray tail of magnetars. Extensively analyzing two magnetars, 4U 0142+61 and 1E 1547.0-5408, we found that their hard X-ray pulses suffered from slow phase modulations (Makishima+2014, 2015). This can be interpreted as a manifestation of free precession, under an axial deformation by ˜0.01%. If this effect is attributed to the magnetic stress, B_{t}˜10^{16} G is inferred. We further found that, within 6 years observation of 4U 0142+61, the modulation periods remained constant, while the amplitude gradually increased from < 0.4 to ˜1.3 sec. These results suggest the shift of the hard X-ray emission region (or direction).

  8. Inferences on Coronal Magnetic Fields from SOHO UVCS Observations

    NASA Technical Reports Server (NTRS)

    Poletto, G.; Romoli, M.; Suess, S. T.; Wang, A. H.; Wu, S. T.

    1996-01-01

    The characteristics of the magnetic field ubiquitously permeating the coronal plasma are still largely unknown. In this paper we analyze some aspects of coronal physics, related to the magnetic field behavior, which forthcoming SOHO UVCS observations can help better understand. To this end, three coronal structures will be examined: streamers, coronal mass ejections (CME's) and coronal holes. As to streamers and CME's, we show, via simulations of the Ly-alpha and white light emission from these objects, calculated on the basis of recent theoretical models, how new data from SOHO can help advancing our knowledge of the streamer/CME magnetic configuration. Our discussion highlights also those observational signatures which might offer clues on reconnection processes in streamers' current sheets. Coronal holes (CH's) are discussed in the last section of the paper. Little is known about CH flux tube geometry, which is closely related to the behavior of the solar wind at small heliocentric distances. Indirect evidence for the flux tube spreading factors, within a few solar radii, is here examined.

  9. Benefits of “Observer Effects”: Lessons from the Field

    PubMed Central

    Monahan, Torin; Fisher, Jill A.

    2011-01-01

    This paper responds to the criticism that “observer effects” in ethnographic research necessarily bias and therefore invalidate research findings. Instead of aspiring to distance and detachment, some of the greatest strengths of ethnographic research lie in cultivating close ties with others and collaboratively shaping discourses and practices in the field. Informants’ performances – however staged for or influenced by the observer – often reveal profound truths about social and/or cultural phenomena. To make this case, first we mobilize methodological insights from the field of science studies to illustrate the contingency and partiality of all knowledge and to challenge the notion that ethnography is less objective than other research methods. Second, we draw upon our ethnographic projects to illustrate the rich data that can be obtained from “staged performances” by informants. Finally, by detailing a few examples of questionable behavior on the part of informants, we challenge the fallacy that the presence of ethnographers will cause informants to self-censor. PMID:21297880

  10. INTERSTELLAR MAGNETIC FIELDS OBSERVED BY VOYAGER 1 BEYOND THE HELIOPAUSE

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2014-11-01

    Voyager 1 (V1) was beyond the heliopause between 2013.00 and 2014.41, where it was making in situ observations of the interstellar magnetic field (ISMF). The average azimuthal angle and elevation angle of the magnetic field B were (λ) = 292.°5 ± 1.°4 and (δ) = 22.°1 ± 1.°2, respectively. The angles λ and δ varied linearly at (1.°4 ± 0.°1) yr{sup –1} and (–1.°1 ± 0.°1) yr{sup –1}, respectively, suggesting that V1 was measuring the draped ISMF around the heliopause. The distributions of hourly averages of λ and δ were Gaussian distributions, with most probable values 292.°5 and 22.°1, and standard deviations (SDs) 1.°3 and 1.°1, respectively. The small SD indicates little or no turbulence transverse to B . An abrupt decrease in B from 0.50 nT on 2013/129.9 to 0.46 nT on 2013/130.6 was observed, possibly associated with a weak reverse shock or magnetoacoustic pressure wave following a burst of electron plasma oscillations. Between 2013/130.6 and 2013/365.3, (B) = 0.464 ± 0.009 nT, (λ) = 292.°6 ± 0.°8, and (δ) = 22.°1 ± 1.°1. The corresponding distribution of hourly averages of B was Gaussian with the most probable value 0.464 nT and σ = 0.009 nT. Since the uncertainty σ corresponds to the instrument and digitization noise, these observations provided an upper limit to the turbulence in the ISMF. The distributions of the hourly increments of B were Gaussian distributions with σ = 0.05 nT, 0.°4, and 0.°4, respectively, indicating that the V1 did not detect evidence of ''intermittent bursts'' of interstellar turbulence.

  11. A magnetospheric field model incorporating the OGO 3 and 5 magnetic field observations.

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1973-01-01

    A magnetospheric field model is presented in which the usually assumed toroidal ring current is replaced by a circular disk current of finite thickness that extends from the tail to geocentric distances less than 3 earth radii. The drastic departure of this model from the concept of the conventional ring current lies in that the current is continuous from the tail to the inner magnetosphere. This conceptual change was required to account for the recent results of analysis of the OGO 3 and 5 magnetic field observations. In the present model the cross-tail current flows along circular arcs concentric with the earth and completes circuit via surface currents on the magnetopause. Apart from these return currents in the tail magnetopause, Mead's (1964) model is used for the field from the magnetopause current. The difference scalar field, Delta B, defined as the difference between the scalar field calculated from the present model and the magnitude of the dipole field, is found to be in gross agreement with the observed Delta B.

  12. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  13. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  14. Quartz rheology from field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Grigull, Susanne; Ellis, Susan M.; Little, Timothy A.; Hill, Matthew P.; Buiter, Susanne J. H.

    2013-04-01

    The mechanical properties of quartz strongly influence the strength of the continental crust and therefore the depth of the brittle-ductile transition and the nucleation depth of major earthquakes. Despite quartz being one of the most abundant minerals constituting the crust, natural examples to constrain quartz rheology are rare. Here, we present a brittle-ductile fault array in the Southern Alps, New Zealand, and use it as a natural laboratory into the rheology of deformed quartz rocks. The faults formed in the hanging wall of the Alpine Fault during the late Cenozoic at ≥ 21 km depth. They are near-vertical, systematically and closely spaced, extend laterally and vertically over tens of metres, and strike sub-parallel to the Alpine Fault. They consistently express both dextral and NW-up senses of slip. The faults displace quartzofeldspathic meta-greywacke (Alpine Schist) through predominantly brittle processes. Brittle shearing usually ceases where the faults intersect centimetre-thick quartz veins that are hosted by the Alpine Schist and that are discordant to the dominant schist foliation. In these quartz veins shearing is variably ductile to brittle, with ductile shear strains of up to ~15 over shear zone widths of ~3 cm. We use field-observed geometrical scaling relationships related to the sheared quartz veins, such as ductile shear zone width vs. ductile slip, and interactions between brittle faults and ductilely deforming quartz veins that intersect them to produce a set of viable numerical models reflecting the field observations. Quartz rheology is modelled by linear or power law creep, and the material parameters extracted for the quartz veins, together with viscous and brittle strength ratios between vein quartz and schist. The results indicate that under the prevailing deformation conditions, the dominant deformation mechanism in the quartz veins was dislocation creep, resulting in a non-linear viscous quartz flow behaviour.

  15. Comparison of St. Lawrence blue whale vocalizations with field observations

    NASA Astrophysics Data System (ADS)

    Berchok, Catherine; Bradley, David; Gabrielson, Thomas; Sears, Richard

    2003-04-01

    During four field seasons from 1998-2001, vocalizations were recorded in the presence of St. Lawrence blue whales using a single omni-directional hydrophone. Both long duration infrasonic calls (~18 Hz, 5-20 s) as well as short duration higher frequency calls (85-25 Hz, ~2 s) were detected and compared with field observations. Two trends were noted. First, the long infrasonic call series were concentrated primarily in the deep (300 m) channel. These call series appear to compare well with blue whale vocalizations recorded by others in the deep open ocean. Second, the shorter audible calls were more evenly distributed over bathymetry and seem to be a form of short distance communication with at least one case occurring during an agonistic interaction. A comparison of these calls with biological parameters such as density of whales in the area, percentages of paired versus single whales, and numbers of males versus females will also be discussed. [Project supported by ARL/PSU, NSF, and the American Museum of Natural History.

  16. Review of lightning properties from electron field and TV observations

    NASA Astrophysics Data System (ADS)

    Rakov, Vladimir A.; Uman, Martin A.; Thottappillil, Rajeev

    1994-05-01

    strokes are similar to or shorter than those preceding higher-order strokes. These observations indicate that channel conditions for the propagation of a subsequent leader are determined not just by the immediately preceding channel heating and cooling processes but rather by the entire channel history. In particular, the status of the channel apparently depends on the number of strokes that have participated in its cumulative conditioning. The overwhelming majority of long continuing currents, those with a duration longer than 40 ms, were initiated by subsequent strokes of multiple-stroke flashes as opposed to either the first stroke in a multiple-stroke flash or the only stroke in a single-stroke flash. Strokes that initiate such long continuing currents were (1) relatively small (in terms of both return-stroke field peak and, as determined from an independent study in New Mexico, stroke charge), (2) followed relatively short interstroke intervals, and (3) showed a tendency to be preceded by a relatively large stroke. Millisecond-scale K and M electric field changes appeared different in terms of both microsecond-scale pulse content and interevent time intervals. Often no microsecond-scale K and M field pulses were detected. When they were present, such pulses were highly variable and sometimes irregular in waveshape, as opposed to the alleged characteristic K-pulse waveform described by Arnold and Pierce (1964), which has been extensively used in atmospheric radio-noise studies. There is a remarkable similarity between many lightning characteristics in Florida and in New Mexico.

  17. Photometric Observations of 6000 Stars in the Cygnus Field

    NASA Technical Reports Server (NTRS)

    Borucki, W.; Caldwell, D.; Koch, D.; Jenkins, J.; Ninkov, Z.

    1999-01-01

    A small photometer to detect transits by extrasolar planets has been assembled and is being tested at Lick Observatory on Mt. Hamilton, California. The Vulcan photometer is constructed from a 30 cm focal length, F/2.5 AeroEktar reconnaissance lens and Photometrics PXL16800 CCD camera. A spectral filter is used to confine the pass band from 480 to 763 mn. It simultaneously monitors 6000 stars brighter than 12th magnitude within a single star field in the galactic plane. When the data are folded and phased to discover low amplitude transits, the relative precision of one-hour samples is about 1 part per thousand (10 x l0(exp -3)) for many of the brighter stars. This precision is sufficient to find jovian-size planets orbiting solar-like stars, which have signal amplitudes from 5 to 30 x l0(exp -3) depending on the inflation of the planet and the size of the star. Based on the frequency of giant inner-planets discovered by Doppler-velocity method, one or two planets should be detectable in a rich star field. The goal of the observations is to obtain the sizes of giant extrasolar planets in short-period orbits and to combine these with masses determined from Doppler velocity measurements to determine the densities of these planets. A further goal is to compare the measured planetary diameters with those predicted from theoretical models. From August 10 through September 30 of 1998, a forty nine square degree field in the Cygnus constellation centered at RA and DEC of 19 hr 47 min, +36 deg 55 min was observed. Useful data were obtained on twenty-nine nights. Nearly fifty stars showed some evidence of transits with periods between 0.3 and 8 days. Most had amplitudes too large to be associated with planetary transits. However, several stars showed low amplitude transits. The data for several transits of each of these two stars have been folded and been folded into 30 minute periods. Only Cygl433 shows any evidence of a flattened bottom that is expected when a small object

  18. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; vonFrese, Ralph; Taylor, Patrick; Rangelova, Elena

    2011-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  19. Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    NASA Technical Reports Server (NTRS)

    Kim, Jeong Woo; Kim, Hyung Rae; von Frese, Ralph; Taylor, Patrick; Rangelova, Elena

    2012-01-01

    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation.

  20. Field observations of aye-ayes (Daubentonia madagascariensis) in Madagascar.

    PubMed

    Ancrenaz, M; Lackman-Ancrenaz, I; Mundy, N

    1994-01-01

    Data are presented from a field study of aye-ayes (Daubentonia madagascariensis) in an area of degraded secondary forest in northeast Madagascar. Animals were followed by radiotelemetry for 3 months during the cool dry season, when productivity of the forest is at a minimum. Population density was variable. Male home ranges were larger and overlapped the range of at least 1 female. Male ranges also overlapped, and areas of overlap could be occupied by 2 animals simultaneously. Most of the parties were solitary, but aggregations were observed at feeding sites. All activity was observed during darkness, and aye-ayes were always found to nest singly during the daytime. These patterns conform to those described for other nocturnal solitary prosimians. The aye-ayes showed versatility in their locomotor patterns, enabling them to use all types of supports and forest levels. Dietary diversity was high, although a preference for flower nectar was noted. These results suggest that, despite their anatomical specializations, aye-ayes are able to exploit a wide range of resources within recently degraded forest. This ability seems to allow aye-ayes to remain active throughout the year, unlike certain other nocturnal lemurs which become torpid during the dry season. PMID:7721206

  1. Determining degree-day thresholds from field observations

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Spano, Donatella; Cesaraccio, Carla; Duce, Pierpaolo

    This paper compares several methods for determining degree-day (°D) threshold temperatures from field observations. Three of the methods use the mean developmental period temperature and simple equations to estimate: (1) the smallest standard deviation in °D, (2) the least standard deviation in days, and (3) a linear regression intercept. Two additional methods use iterations of cumulative °D and threshold temperatures to determine the smallest root mean square error (RMSE). One of the iteration methods uses a linear model and the other uses a single triangle °D calculation method. The method giving the best results was verified by comparing observed and predicted phenological periods using 7 years of kiwifruit data and 10 years of cherry tree data. In general, the iteration method using the single triangle method to calculate °D provided threshold temperatures with the smallest RMSE values. However, the iteration method using a linear °D model also worked well. Simply using a threshold of zero gave predictions that were nearly as good as those obtained using the other two methods. The smallest standard deviation in °D performed the worst. The least standard deviation in days and the regression methods did well sometimes; however, the threshold temperatures were sometimes negative, which does not support the idea that development rates are related to heat units.

  2. Triple Doppler wind lidar observations during the mountain terrain atmospheric modeling and observations field campaign

    NASA Astrophysics Data System (ADS)

    Wang, Yansen; Hocut, Christopher M.; Hoch, Sebastian W.; Creegan, Edward; Fernando, Harindra J. S.; Whiteman, C. David; Felton, Melvin; Huynh, Giap

    2016-04-01

    Coordinated triple Doppler wind lidars (DWLs) were employed during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program field campaign to observe turbulent winds in the mountain terrain atmospheric boundary layer (ABL). The feasibility of observing large turbulent eddies was investigated by pointing three DWL at an intersecting probe volume adjoining a sonic anemometer mounted on the top of a meteorological tower. The time series and spectra of the sonic anemometer measurement were compared with the lidars. The lidar radial velocities closely followed those of the sonic anemometer, both in time and in the low frequency spectral domain, suggesting that the DWL technique is suitable for observing large turbulent eddies in the ABL. In addition, coordinated scanning triple DWL were used to directly measure the three-dimensional wind vectors, thus circumventing the assumptions required in using single or dual lidar deployments for full velocity measurements. The scanning triple lidar results were in satisfactory agreement with data from tower-based sonic anemometers. Notwithstanding, because of the difficulty of obtaining temporal and spatial synchronizations of the three lidars, the data were scant since a large amount of data had to be rejected in postprocessing. This difficulty is surmountable in the future by employing a robust control system for coordinated scanning.

  3. Field aligned current observations in the polar cusp ionosphere

    NASA Technical Reports Server (NTRS)

    Ledley, B. G.; Farthing, W. H.

    1973-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F-region which are interpreted as being caused by the payload's passage through a structured field aligned current system. The field aligned currents have a characteristic horizontal scale size of one kilometer. Analysis of one large field fluctuation gives a current density of 0.0001 amp/m sq.

  4. Experimental evidence for seismoelectric observations at field scale

    NASA Astrophysics Data System (ADS)

    Holzhauer, Julia; Yaramanci, Ugur

    2010-05-01

    In the past decades, seismoelectric has concentrated a growing interest as a promising tool for hydrogeophysical studies. Resulting from an electrokinetic coupling in porous saturated media traversed by an acoustic wave, this method could ultimately offer a direct access to various hydraulic parameters ranging from porosity to permeability or fluids conductivity. In some other aspects it also occasionally showed some ability to thin-layer resolution. Within the development of the new test-site Schillerslage with typical north-German geology, consisting of two shallow quaternary aquifers separated by a till layer over cretaceous marl, we tested the observability of the seismoelectric signal along with various conventional (seismic, georadar, geoelectric) and unconventional (magnetic resonance sounding -MRS, spectral induced polarisation -SIP) geophysical methods as well as boreholes analysis. The special focus was on the converted seismoelectric signal, an electromagnetic wave acting as a vertical dipole which should theoretically display on the seismoelectrogram as a horizontal arrival. This converted wave appears when the incident acoustic wave meets a hydraulic discontinuity affecting the pore space in any geometrical or chemical manner. This electromagnetic signal fades out rapidly, due to its dipole nature and its weakness, so that its relevance is restricted to the near surface characterisation. In the given setting, such a wave could either initiate at the water table or originate from an abrupt transition from sand to till. Decision was made to record both seismic and seismoelectric signal concomitantly. To allow the detection of the later signal, the field layout was gradually adjusted. Considering the source, hammer-seismic was chosen for its precision in near surface application and automatic trigger-techniques producing major disturbances in the first 10 ms of the seismoelectrogram were abandoned in favour of manual triggering. To avoid any further noise

  5. Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Holme, Richard

    2016-03-01

    We present new models of Jupiter's internal magnetic field and secular variation from all available direct measurements from three decades of spacecraft observation. A regularized minimum norm approach allows the creation of smooth, numerically stable models displaying a high degree of structure. External field from the magnetodisk is modeled iteratively for each orbit. Jupiter's inner magnetosphere is highly stable with time, with no evidence for variation with solar activity. We compare two spherical harmonic models, one assuming a field constant in time and a second allowing for linear time variation. Including secular variation improves data fit with fewer additional parameters than increasing field complexity. Our favored solution indicates a ˜0.012% yr-1 increase in Jupiter's dipole magnetic moment from 1973 to 2003; this value is roughly one quarter of that for Earth. Inaccuracies in determination of the planetary reference frame cannot explain all the observed secular variation. Should more structure be allowed in the solutions, we find the northern hemispherical configuration resembles recent models based on satellite auroral footprint locations, and there is also evidence of a possible patch of reversed polar flux seen at the expected depth of the dynamo region, resembling that found at Earth and with implications for the Jovian interior. Finally, using our preferred model, we infer flow dynamics at the top of Jupiter's dynamo source. Though highly speculative, the results produce several gyres with some symmetry about the equator, similar to those seen at Earth's core-mantle boundary, suggesting motion on cylinders aligned with the rotation axis.

  6. Field Observations of the Effects of Explosives on Snow Properties

    NASA Astrophysics Data System (ADS)

    Wooldridge, R.; Hendrikx, J.; Miller, D. A.; Birkeland, K.

    2012-12-01

    Explosives are a critically important component of avalanche control programs. They are used to both initiate avalanches and to test snowpack instability by ski areas, highway departments and other avalanche programs around the world. Current understanding of the effects of explosives on snow is mainly limited to shock wave behavior demonstrated through stress wave velocities, pressures and attenuation. This study seeks to enhance current knowledge of how explosives physically alter snow by providing practical, field-based observations and analyses that quantify the effect of explosives on snow density, snow hardness and snow stability test results. Density, hardness and stability test results were evaluated both before and after the application of 0.9 kg cast pentolite boosters as air blasts. Changes in these properties were evaluated at specified distances up to 4 meters (m) from the blast center using a density gauge, hand hardness, Compression Tests (CTs), and Extended Column Tests (ECTs). Statistically significant density increases occurred out to a distance of 1.5 m from the blast center and down to a depth of 60 centimeters (cm). Statistically significant density increases were also observed at the surface (down to 20 cm) out to a distance of 4 m. Hardness increased slightly at the surface and at the bottom of the snowpack (depths of 80-100 cm), while decreasing slightly in the middle of the snowpack (depths of 30-60 cm). Results from CTs showed a decrease in the number of taps needed for column failure in the post explosive tests, while a smaller data set of ECT results showed no overall change in ECT score. The findings of this study provide a better understanding of the physical changes in snow following explosives, which may lead to more effective and efficient avalanche risk mitigation.

  7. Wide-Field H2D+ Observations of Starless Cores

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Friesen, R.; Caselli, P.; Myers, P. C.; van der Tak, F. F. S.; Ceccarelli, C.

    2009-01-01

    In recent years, isolated starless cores have been revealed to have significant chemical differentiation with very low abundances of carbon-bearing molecules (such as CO and its isotopologues) in their cold, dense interiors. The inner regions of such cores, however, may be quite interesting, e.g., if contraction or collapse begins there. To explore these regions, we present detections of six isolated starless cores in the 110-111 line of H2D+ at 372 GHz using the new HARP instrument at the James Clerk Maxwell Telescope. Since the detection of this line requires very dry conditions on Mauna Kea (i.e., κ(225 GHz) < 0.05), only a multi-beam receiver system like the 4 X 4 HARP array can locate H2D+ emission across such cores in a practical amount of observing time. In all cases, the brightest line emission is coincident with the local peak of submillimeter continuum emission, but significant H2D+ emission is detected offset from the continuum peak in some. In addition, we describe the thermal and turbulent velocity fields in these cores revealed by these lines.

  8. The linear model and experimentally observed resonant field amplification in tokamaks and reversed field pinches

    SciTech Connect

    Pustovitov, V. D.

    2011-01-15

    A review is given of the experimentally observed effects related to the resonant field amplification (RFA) and the Resistive Wall Mode (RWM) instability in tokamaks and reversed field pinches (RFPs). This includes the feedback rotation of RWM in RFX-mod RFP, dependence of the RWM growth rate on the plasma-wall separation observed in JT-60U, appearance of the slowly growing RWM precursors in JT-60U and similar phenomena in other devices. The experimental results are compared with theoretical predictions based on the model comprising the Maxwell equations, Ohm's law for the conducting wall, the boundary conditions and assumption of linear plasma response to the external magnetic perturbations. The model describes the plasma reaction to the error field as essentially depending on two factors: the plasma proximity to the RWM stability threshold and the natural rotation frequency of the plasma mode. The linear response means that these characteristics are determined by the plasma equilibrium parameters only. It is shown that the mentioned effects in different devices under different conditions can be described on a common basis with only assumption that the plasma behaves as a linear system. To extend the range of the model validation, some predictions are derived with proposals for experimental studies of the RFA dynamics.

  9. Neotectonic stresses in Fennoscandia: field observations and modelling

    NASA Astrophysics Data System (ADS)

    Pascal, Christophe

    2013-04-01

    The present-day stress state of Fennoscandia is traditionally viewed as the combination of far field sources and residual glacial loading stresses. Investigations were conducted in different regions of Norway with the purpose of detecting and measuring stress-relief features and to derive from them valuable information on the crustal stress state. Stress-relief features are induced by blasting and sudden rock unloading in road construction and quarrying operations and are common in Norway and very likely in other regions of Fennoscandia. Stress relief at the Earth's surface is diagnostic of anomalously high stress levels at shallow depths in the crust and appears to be a characteristic of the formerly glaciated Baltic and Canadian Precambrian shields. The studied stress-relief features are, in general, indicative of NW-SE compression, suggesting ridge-push as the main source of stress. Our derived stress directions are also in excellent agreement with the ones derived from other kinds of stress indicators, including focal mechanisms from deep earthquakes, demonstrating that stress-relief features are valuable for neotectonic research. As a second step we applied numerical modelling techniques to simulate the neotectonic stress field in Fennoscandia with particular emphasis to southern Norway. A numerical method was used to reconstruct the structure of the Fennoscandian lithosphere. The numerical method involves classical steady-state heat equations to derive lithosphere thickness, geotherm and density distribution and, in addition, requires the studied lithosphere to be isostatically compensated at its base. The a priori crustal structure was derived from previous geophysical studies. Undulations of the geoid were used to calibrate the models. Once the density structure of the Fennoscandian lithosphere is reconstructed it is straightforward to quantify its stress state and compare modelling results with existing stress indicators. The modelling suggests that

  10. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  11. Coronal Magnetic Fields Derived from Simultaneous Microwave and EUV Observations and Comparison with the Potential Field Model

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shun; iwai, Kazumasa; Shibasaki, Kiyoto; Shiota, Daikou; Nozawa, Satoshi

    2016-02-01

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100-210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  12. Field Observations of Supraglacial Streams on the Juneau Icefield

    NASA Astrophysics Data System (ADS)

    Zok, A.; Karlstrom, L.; Hood, E. W.; Manga, M.; Wenzel, R.; Kite, E. S.

    2010-12-01

    Each year during the summer, networks of meltwater streams form below the neve line on many glaciers as the ice surface ablates. This supraglacial network forms an integral part of the total glacial hydrologic system, and exhibits many features common to other fluvial systems despite marked differences in the mechanisms and timescales of erosional processes. Here, we discuss field observations of supraglacial streams on the Mendenhall and Llewellyn glaciers on the Juneau Icefield, taken in July and August, 2010. These sites, 960 m apart in elevation and on different sides of the continental divide, exist in different microclimates and are dominated by different terrain features. The Mendenhall site, near the terminus, receives a large yearly rainwater input and exhibits well-developed stream networks dominated by structural control of the underlying ice. In contrast, the Llewellyn site is much drier and near the neve line, with a dense network of streams whose incision dominates the sculpting of the glacial surface. Stream data includes temperature measurements taken with a Distributed Temperature Sensor and HOBO temperature loggers, velocity profiles taken with an Acoustic Doppler Velocimeter, downstream meander migration rates, and the isotopic composition of water samples. We also document the dynamics of streams in the context of the broader supraglacial network by taking detailed GPS surveys of the beds and banks of streams, as well as measuring drainage density and subsurface flow. Finally, we relate these measurements to surface ablation rates and meteorological data gathered from each site. We find distinct diurnal variation in stream water temperature, discharge, and isotopic content. Distributed Temperature Sensor measurements and cross sectional temperature profiles reveal subtle variation in downstream and cross-stream water temperature. Water temperature generally increases downstream where channels tend to be large, and we investigate the contribution

  13. Kinetics of droplet growth observed in recent field campaigns

    NASA Astrophysics Data System (ADS)

    Mei, F.; Wang, J.

    2012-12-01

    Atmospheric aerosols can indirectly influence global climate budget by changing the microphysical structure, lifetime, and coverage of clouds. While it is generally agreed that aerosol indirect effects act to cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly understood. The formation of cloud droplets from aerosol particles is kinetically controlled by the availability of water vapor, equilibrium water vapor pressure above the growing droplet surface, and both the gas phase and aerosol phase mass transfer resistances. It has been hypothesized that the formation of surface organic films or the delay in dissolution of solute could significantly delay the growth of cloud droplets. Such delay could lead to a higher maximum supersaturation within a rising cloud parcel, therefore higher droplet number concentration and smaller droplet size at constant liquid water content. When only a subset of the droplets experiences significant growth delay, the overall droplet size spectrum will be broadened, which facilitates the formation of precipitation. During three recent field campaigns (CalNex-LA, CARES, and Aerosol Intensive Observation Period at Brookhaven National Laboratory), the CCN activity and droplet growth of size selected particles ranging from 25 to 320 nm were characterized by a CCN counter under supersaturations from 0.1% to 0.8%. The three campaigns allow us to examine the droplet growth for many representative organic aerosol types, including biogenic SOA, anthropogenic SOA, and organic aerosols from biomass burning. The droplet growth of size-selected ambient particles inside the CCN counter was found to be influenced by a number of parameters, including particle critical supersaturation, heterogeneity in particle composition, and particle concentration. For example, reduced droplet growth due to water vapor depletion was observed when particle concentration was higher than 200 cm

  14. Observing earthquakes triggered in the near field by dynamic deformations

    USGS Publications Warehouse

    Gomberg, J.; Bodin, P.; Reasenberg, P.A.

    2003-01-01

    We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.

  15. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-01

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  16. Application of relativistic mean field and effective field theory densities to scattering observables for Ca isotopes

    SciTech Connect

    Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.

    2010-12-15

    In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.

  17. Modified electron acoustic field and energy applied to observation data

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.

    2016-08-01

    Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.

  18. Field Science Ethnography: Methods For Systematic Observation on an Expedition

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The Haughton-Mars expedition is a multidisciplinary project, exploring an impact crater in an extreme environment to determine how people might live and work on Mars. The expedition seeks to understand and field test Mars facilities, crew roles, operations, and computer tools. I combine an ethnographic approach to establish a baseline understanding of how scientists prefer to live and work when relatively unemcumbered, with a participatory design approach of experimenting with procedures and tools in the context of use. This paper focuses on field methods for systematically recording and analyzing the expedition's activities. Systematic photography and time-lapse video are combined with concept mapping to organize and present information. This hybrid approach is generally applicable to the study of modern field expeditions having a dozen or more multidisciplinary participants, spread over a large terrain during multiple field seasons.

  19. Criteria for the observation of strong-field photoelectron holography

    SciTech Connect

    Marchenko, T.; Huismans, Y.; Schafer, K. J.; Vrakking, M. J. J.

    2011-11-15

    Photoelectron holography is studied experimentally and computationally using the ionization of ground-state xenon atoms by intense near-infrared radiation. A strong dependence of the occurrence of the holographic pattern on the laser wavelength and intensity is observed, and it is shown that the observation of the hologram requires that the ponderomotive energy U{sub p} is substantially larger than the photon energy. The holographic interference is therefore favored by longer wavelengths and higher laser intensities. Our results indicate that the tunneling regime is not a necessary condition for the observation of the holographic pattern, which can be observed under the conditions formally attributed to the multiphoton regime.

  20. Service Learning and Participant Observation: Undergraduate Field Research.

    ERIC Educational Resources Information Center

    White, Timothy J.

    2000-01-01

    Compares the service learning experience of college students to the traditional social science technique of participant observation. Suggests that service learning allows students to test theories through personal observation in a service setting and experience the logic and practice of social research. Uses examples from the Xavier University…

  1. Practising infanticide, observing narrative: controversial texts in a field science.

    PubMed

    Rees, A

    2001-08-01

    In recent recent years, social studies of science have developed a deep interest in the conduct of science in the field. However, studies of controversial field science remain relatively rare. This paper presents an analysis of a controversy about the origin of primate infanticide that began in the 1970s, and discusses the ways in which controversies in the field differ from those in the laboratory. Particularly important here is the inability of researchers to control the behaviour of their research subjects; to an important extent, the conduct of their research is dependent on the agency of their research subjects. Finally, it also points to the rôle played by the sciences of animal behaviour in the constructions of stories about the biological basis of human culture, a rôle that means that the investigation of controversy in these sciences is of paramount public importance.

  2. The magnetic field of saturn: pioneer 11 observations.

    PubMed

    Acuña, M H; Ness, N F

    1980-01-25

    The intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer is much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole of moment 0.20 +/- 0.01 gauss-Rs(3) = 4.3 +/- 0.2 x 10(28) gauss-cm(3) (1 Rs = 1 Saturn radius = 60,000 km). The polarity is opposite that of Earth, and, surprisingly, the tilt is small, within 2 degrees +/- 1 degrees of the rotation axis. The equatorial field intensity at the cloud tops is 0.2 gauss, and the polar intensity is 0.56 gauss. The unique moon Titan is expected to be located within the magnetosheath of Saturn or the interplanetary medium about 50 percent of the time because the average subsolar point distance to the magnetosphere is estimated to be 20 Rs, the orbital distance to Titan. PMID:17833558

  3. Magnetic Field and Plasma Diagnostics from Coordinated Prominence Observations

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Levens, P.; Dalmasse, K.; Mein, N.; Mein, P.; Lopez-Ariste, A.; Labrosse, N.; Heinzel, P.

    2016-04-01

    We study the magnetic field in prominences from a statistical point of view, by using THEMIS in the MTR mode, performing spectropolarimetry of the He I D3 line. Combining these measurements with spectroscopic data from IRIS, Hinode/EIS as well as ground-based telescopes, such as the Meudon Solar Tower, we infer the temperature, density, and flow velocities of the plasma. There are a number of open questions that we aim to answer: - What is the general direction of the magnetic field in prominences? Is the model using a single orientation of magnetic field always valid for atypical prominences? %- Does this depend on the location of the filament on the disk (visible in Hα, in He II 304 Å) over an inversion line between weak or strong network ? - Are prominences in a weak environment field dominated by gas pressure? - Measuring the Doppler shifts in Mg II lines (with IRIS) and in Hα can tell us if there are substantial velocities to maintain vertical rotating structures, as has been suggested for tornado-like prominences. We present here some results obtained with different ground-based and space-based instruments in this framework.

  4. Space Technology 5 observations of auroral field-aligned currents

    NASA Astrophysics Data System (ADS)

    Slavin, James

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.6o) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness, and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include horizontal ionospheric currents, ULF waves and geomagnetic field gradient analyses.

  5. Space Technology 5 Observations of Auroral Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Slavin, James

    2008-01-01

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.60) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness. and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the -standard method." based upon s/c velocity, but corrected for FAC current sheet motion. and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data sct and expand to include horizontal ionospheric currents. ULF waves and geomagnetic field gradient analyses.

  6. Sensor Technology Performance Characteristics- Field and Laboratory Observations

    EPA Science Inventory

    Observed Intangible Performance Characteristics RH and temperature impacts may be significant for some devices Internal battery lifetimes range from 4 to 24 hoursSensor packaging can interfere with accurate measurements (reactivity)Wireless communication protocols are not foolpr...

  7. Laboratory observation of magnetic field growth driven by shear flow

    SciTech Connect

    Intrator, T. P. Feng, Y.; Sears, J.; Weber, T.; Dorf, L.; Sun, X.

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  8. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  9. VOYAGER OBSERVATIONS OF THE DIFFUSE FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn; Holberg, Jay B.

    2012-03-01

    The two Voyager spacecraft have completed their planetary exploration mission and are now probing the outer realms of the heliosphere. The Voyager ultraviolet spectrometers continued to operate well after the Voyager 2 Neptune encounter in 1989. We present a complete database of diffuse radiation observations made by both Voyagers: a total of 1943 spectra (500-1600 A) scattered throughout the sky. These include observations of dust-scattered starlight, emission lines from the hot interstellar medium, and a number of locations where no diffuse radiation was detected, with the very low upper limit of about 25 photons cm{sup -2} s{sup -1} sr{sup -1} A{sup -1}. Many of these observations were from late in the mission when there was significantly less contribution from interplanetary emission lines and thus less contamination of the interstellar signal.

  10. Programs for the Field Collection of Observational Data.

    ERIC Educational Resources Information Center

    Roberts, William L.; Schill, Loreen G.

    The collection of observational data in natural settings and in real time requires equipment that is light and easily used, and programs that permit rapid and flexible encoding of data. This paper describes a set of four programs for collecting and analyzing continuous time sample, focal-individual data as described by J. Altmann (1974), using a…

  11. Quantifying solar superactive regions with vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.

    2012-07-01

    Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.

  12. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  13. Relationships between field-aligned currents, electric fields, and particle precipitation as observed by Dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1984-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  14. Relationships between field-aligned currents, electric fields and particle precipitation as observed by dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1983-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  15. Time Series Vegetation Aerodynamic Roughness Fields Estimated from MODIS Observations

    NASA Technical Reports Server (NTRS)

    Borak, Jordan S.; Jasinski, Michael F.; Crago, Richard D.

    2005-01-01

    Most land surface models used today require estimates of aerodynamic roughness length in order to characterize momentum transfer between the surface and atmosphere. The most common method of prescribing roughness is through the use of empirical look-up tables based solely on land cover class. Theoretical approaches that employ satellite-based estimates of canopy density present an attractive alternative to current look-up table approaches based on vegetation cover type that do not account for within-class variability and are oftentimes simplistic with respect to temporal variability. The current research applies Raupach s formulation of momentum aerodynamic roughness to MODIS data on a regional scale in order to estimate seasonally variable roughness and zero-plane displacement height fields using bulk land cover parameters estimated by [Jasinski, M.F., Borak, J., Crago, R., 2005. Bulk surface momentum parameters for satellite-derived vegetation fields. Agric. For. Meteorol. 133, 55-68]. Results indicate promising advances over look-up approaches with respect to characterization of vegetation roughness variability in land surface and atmospheric circulation models.

  16. Field Observations of Canopy Flows over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.; Mobbs, Stephen D.

    2015-08-01

    The investigation of airflow over and within forests in complex terrain has been, until recently, limited to a handful of modelling and laboratory studies. Here, we present an observational dataset of airflow measurements inside and above a forest situated on a ridge on the Isle of Arran, Scotland. The spatial coverage of the observations all the way across the ridge makes this a unique dataset. Two case studies of across-ridge flow under near-neutral conditions are presented and compared with recent idealized two-dimensional modelling studies. Changes in the canopy profiles of both mean wind and turbulent quantities across the ridge are broadly consistent with these idealized studies. Flow separation over the lee slope is seen as a ubiquitous feature of the flow. The three-dimensional nature of the terrain and the heterogeneous forest canopy does however lead to significant variations in the flow separation across the ridge, particularly over the less steep western slope. Furthermore, strong directional shear with height in regions of flow separation has a significant impact on the Reynolds stress terms and other turbulent statistics. Also observed is a decrease in the variability of the wind speed over the summit and lee slope, which has not been seen in previous studies. This dataset should provide a valuable resource for validating models of canopy flow over real, complex terrain.

  17. Field Observations of Meteotsunami in Kami-koshiki Island, Japan

    NASA Astrophysics Data System (ADS)

    Asano, T.; Yamashiro, T.; Nishimura, N.

    2012-12-01

    BACKGROUND Meteotsunami; atmospherically induced destructive ocean waves in the tsunami frequency band, are known in Japan by the local term "abiki", literally meaning "net-dragging waves" in Japanese. Large abiki occur in bays and harbors along the west coast of Kyushu almost every year during winter and early spring. On 24-25 February, 2009, Urauchi Bay, located on west coast of Kami-Koshiki Island on the southeast coast of Kyushu, was subjected to a destructive meteotsunami. In this event, a maximum sea surface height of 3.1 m was observed at the inner part of the bay. At least 18 boats capsized and eight houses were flooded. This event surpassed the previous record height for an abiki in Japan: 278 cm in Nagasaki Bay, also located west coast of Kyushu, in 1979. Generally, such an elongated inlet with narrow mouth as Urauchi bay provides calm water conditions even when offshore weather is stormy. Therefore, the area is regarded as a suitable place for the farming of large fish with a high market value. Possible damage to the extensive fish cage system as a result of meteotsunami events is of concern, especially because aquaculture is the main industry in the isolated islands. Forecasting of meteotsunami is a serious request from the local people. AIMS The objectives of the present study are to detect a meteotsunami event in Urauchi Bay and to clarify the meteorological and hydrodynamic conditions related to its occurrence. This work attempts to observe the whole process of a meteotsunami event: generation offshore, resonance while it propagates, and finally amplification in the bay. Observations were conducted over a period of 82 days; 12 January to 4 April, 2010, aiming to record large secondary oscillations. A comprehensive measuring system for sea level, current and barometric pressure fluctuations was deployed covering not only inside and near Urauchi Bay but also further offshore in the vicinity of Mejima in the East China Sea. MAIN RESULTS 1) Large

  18. Snowfall Characterization by Field Observation and Atmospheric Sounding

    NASA Astrophysics Data System (ADS)

    Francisco, Dianna M.

    The snowfall rate is related to microphysical and dynamical processes in weather systems and is further specified by choice of measurement time, related to the statistics of individual falling ice crystals. A snowflake is definable as a single ice crystal having long range order in the crystal lattice or as a polycrystalline having a multitude of individual single crystals, frozen together as graupel or held together though interlocking shapes as an aggregate snowflake. Snowflakes are collected on a black cloth, next to a scale, and photographed using a macro magnification. Snowflakes captured at the surface are characterized by their appearance from the habit, shape, size, symmetry, thickness, concentration, and fall of the individual ice crystals and of aggregates. Individual ice crystals are identified, counted, and related to the snowfall rate for a calculation of ice crystal number flux. The snowfall rate is characterized as a concentration and an inferred flux of individual nucleation events, to be related to possible direct nucleation and secondary ice formation (such as rime splintering) aloft. Identifying the number of ice crystals requires a degree of persistence and skill, is not readily automated, and is capable of providing key information on the growth history of ice crystals, not obtainable by other means. Surface data is collected through a surface weather station within one mile of the Observation Site. Atmospheric soundings produced by the National Weather Service, less than two miles distance from the Observation Site, aids in the approximation of the ice crystal's life history.

  19. Characterization of snowfall via field observations and nearby atmospheric soundings

    NASA Astrophysics Data System (ADS)

    Francisco, D.; Hallett, J. N.

    2011-12-01

    Snowfall is characterized through precipitation rate and depth of water after melting in a standard cylindrical gauge. The rates of snowfall are related to microphysical and dynamical processes in weather systems and are further specified by choice of measurement time, a minimum related to the statistics of individual falling particles. Origins of snowflakes at the surface and their growth aloft are inferred from the individual size, shape, concentration and fall of individual particles and of aggregates. Data collected enhances understanding of mixed-phase cloud dynamics. An ice particle is definable as a single crystal, having long range order in the crystal lattice or as polycrystal particles having a multitude of individual single crystals held together though interlocking shapes as a snowflake. Identifying the number of individual ice crystals requires a degree of persistence and skill, is not readily automated, and is capable of providing key information on the origin and growth history of particles, not obtainable by other means. Composite snowflakes are collected on a black cloth, with a scale, and photographed. Individual ice crystals are identified, counted, and related to the snowfall rate leading to a calculation of the individual ice crystal number flux. The snowfall rate is characterized as a concentration and an inferred flux of individual nucleation events to be related to possible direct nucleation and secondary ice formation aloft; accumulation rate thru hotplate measurements. Atmospheric soundings produced by the NWS Reno station, about two miles from the observation site, aides in the nucleation event approximations.

  20. [Economic assessment, a field between clinical research and observational studies].

    PubMed

    Launois, Robert

    2003-01-01

    Health technology assessments propose to study the differential impact of health interventions in a complex care system which is characterised by the multitude of individual behaviours and the diverse nature of the institutions involved. Current systems for data collection lend themselves poorly to this rigorous analysis of efficacy of treatments in the actual situations where they are used. Randomised trials endeavour to neutralise any parasitic interference which could compromise testing for a causal relationship between the treatment administered and the result obtained. Their methodology which establishes the term ceteris paribus in the principle of good practice lends itself poorly to an analysis of individual behaviour. Observational studies are start from actual treatment situations to describe them as reliably as possible. By definition, however, these assume that the natural course of events is not deviated by any intervention. The absence of an experimental plan increases the likelihood of bias and makes it more difficult to test for causal relationships. They lend themselves poorly to testing for incremental efficacy. The two instruments to be preferred are decisional analysis and quasi-experimental studies. Decisional analysis help to avoid the problems of external validity associated with randomised clinical trials by associating parameters which are extracted from data obtained from everyday practice. Quasi-experimental studies or pragmatic trials are based on the reality of behaviour of the prescriber and his/her patients; their impact on efficacy, quality of life social costs of the disease and of treatments may be identified under normal conditions of use. PMID:12609811

  1. An observation planning algorithm applied to multi-objective astronomical observations and its simulation in COSMOS field

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Gu, Yonggang; Zhai, Chao

    2012-09-01

    Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.

  2. Coronal Magnetic Structures Observing Campaign. 3: Coronal plasma and magnetic field diagnostics derived from multiwaveband active region observations

    NASA Technical Reports Server (NTRS)

    Schmelz, J. T.; Holman, G. D.; Brosius, J. W.; Willson, R. F.

    1994-01-01

    Simultaneous soft X-ray, microwave, and photospheric magnetic field observations were taken during the Coronal Magnetic Structures Observing Campaign (CoMStOC '87). The plasma electron temperature and emission measures determined from the X-ray data are used to predict the free-free emission expected at 20 and 6 cm. Comparing these predictions with the microwave observations, it is found that the predicted 20 cm brightness temperatures are higher than the observed, requiring cool absorbing material between the hot X-ray plasma and the observer. The model that is most consistent with all the observations and minimizes the required coronal fields indicates that this 20 cm emission is either free-free or a combination of free-free and fourth harmonic cyclotron emanating from the X-ray plasma with an electron temperature of approximately 3.1 x 10(exp 6) K and an emission measure of approximately 1.3 x 10(exp 29)/cm(exp 5). The observed 20 cm polarization requires a field strength of greater than or equal to 150 G. In addition, the 6 cm emission is free-free, emanating from cooler plasma with an electron temperature of approximately 1.5 x 10(exp 6) K and an emission measure of approximately 3-6 x 10(exp 29)/cm(exp 5). This model is consistent with the rather unusual combination of high 20 cm and low 6 cm polarization as well as the low extrapolated coronal fields.

  3. Snapshots from deep magma chambers: decoding field observations

    NASA Astrophysics Data System (ADS)

    De Campos, Cristina P.

    2014-05-01

    mingling, between contrasting magmas generated from different sources and depths. When flow patterns from these plutonic structures are compared to those obtained from experiments and numerical modeling, vortex-like systems may be locally recognized with chaotic regions among concentric regular flow cells, separated by major flow shearing zones. These patterns may be in remarkable good agreement with less complex flow patterns obtained for simpler dynamic systems. Differences in the magma supply and flow regimes between distinct plutons, in time and space, depict frozen moments in their evolution and therefore may explain some of the discrepancies in the different hybridization degrees for different complexes. The combination of detailed mapping of flow patterns in the field, numerical modeling and experimental results using natural magmatic products as end-members may provide new insights into the dynamics of magma chambers, specially for shallow chambers in a volcanic environment. Due to high viscosities and non-Newtonian behavior during a long time-interval, the application of fluid dynamics to understanding magmatic processes, especially those taking place in the deep crust, is still a major challenge to Geosciences. Extrapolation for plutonic environments remains therefore a great defiance. This discussion aims to show that it is nevertheless worthwhile.

  4. Observations of the magnetic field and plasma flow in Jupiter's magnetosheath

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Burlaga, L. F.; Klein, L. W.; Jessen, J. M.; Goodrich, C. C.

    1981-09-01

    A comprehensive description is given of the Jovian MS magnetic fields, and explanations of these phenomena are proposed. While emphasizing Voyager 1 and 2 magnetic field observations and their relations to the plasma observations, it is also shown that the same phenomena are present in the Pioneer 10 magnetic field data. An unusually high occurrence of nearly north or south fields is observed in the outbound MS, especially in the vicinity of the MP. It is noted that the outbound MS fields and their variations tend to occur in a plane parallel to the local MP, according to large scale MP models.

  5. Observations of Plasma Transient on the Lobe Field Line During the Substorm. Interball Tail Observations on October 3, 1995

    NASA Technical Reports Server (NTRS)

    Avanov, L. A.; Smimov, V. N.; Chandler, M. O.

    2004-01-01

    On October 3, 1995 Interball Tail spacecraft was located on tail lobe field lines. Solar wind conditions monitored by WIND and Getail spacecraft were quiet stable. During the time of operation of SCA-1 plasma spectrometer typical plasma mantle is observed. However, at approx. 15:07 UT strong plasma transient with duration of approx. 10 minutes was detected. We found that magnetic field profile of this plasma transient correlates well with ground based H component of magnetic field measured by Tixie Bay station. Ground base data indicates that this transient is observed during strong substorm. We argue that this transient is probably more dense mantle plasma which can be observed at the Interball Tail location provided that the current on the magnetopause is depressed. This depression probably reflects response of the tail magnetopause to changing of the global current system of the magnetosphere caused by the substorm.

  6. MMS Multipoint electric field observations of small-scale magnetic holes

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick D.; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnes, Werner; Gershman, Daniel; Giles, Barbara; Nakamura, Rumi; Stawarz, Julia; Holmes, Justin; Sturner, Andrew; Malaspina, David M.

    2016-06-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earth's magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (ρi). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E × B drift of electrons. Ions do not participate in the E × B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  7. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    SciTech Connect

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.

    2005-06-15

    Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.

  8. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  9. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  10. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, Andrew; Miller, John; Wood, Lowell

    2004-12-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  11. Observations of the Ion Signatures of Double Merging and the Formation of Newly Closed Field Lines

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.

    2007-01-01

    Observations from the Polar spacecraft, taken during a period of northward interplanetary magnetic field (IMF) show magnetosheath ions within the magnetosphere with velocity distributions resulting from multiple merging sites along the same field line. The observations from the TIDE instrument show two separate ion energy-time dispersions that are attributed to two widely separated (-20Re) merging sites. Estimates of the initial merging times show that they occurred nearly simultaneously (within 5 minutes.) Along with these populations, cold, ionospheric ions were observed counterstreaming along the field lines. The presence of such ions is evidence that these field lines are connected to the ionosphere on both ends. These results are consistent with the hypothesis that double merging can produce closed field lines populated by solar wind plasma. While the merging sites cannot be unambiguously located, the observations and analyses favor one site poleward of the northern cusp and a second site at low latitudes.

  12. Predicting observational consequences of magnetic field effects in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Ryutov1, D. D.; Kane1, J. O.; Mizuta2, A.; Pound3, M. W.; Remington1, B. A.

    2003-10-01

    Magnetic fields are thought to play a substantial role in photoevaporated molecular clouds, an example of which is the famous Eagle Nebula. On the other hand, any direct measurements of the magnetic fields in the Eagle Nebula are still absent. To help in developing the observational strategies, we consider two models of the magnetic field and discuss their general compatibility with the observed structures. We also consider other factors that can be used to derive the structure and the strength of the magnetic field. The two models are those of an initially quasi-homogeneous magnetic field permeating the cloud prior to the onset of hydrodynamic motion, and of a pre-existing "magnetostatic turbulence" [1]. We evaluate possible magnetic field strength in the ablated flow, magnetic field effects on the velocity distribution inside the cloud, and on the star formation. [1] D.D. Ryutov, B.A. Remington. PPCF, 44, B407, 2002.

  13. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  14. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  15. In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Eastwood, J. P.; Brain, D. A.; Phan, T. D.; Øieroset, M.; Lin, R. P.

    2009-11-01

    We present Mars Global Surveyor measurements of bipolar out-of-plane magnetic fields at current sheets in Mars' magnetosphere. These signatures match predictions from simulations and terrestrial observations of collisionless magnetic reconnection, and could similarly indicate differential ion and electron motion and the resulting Hall current systems near magnetic X lines. Thus, these observations may represent passages through or very near reconnection diffusion regions at Mars. Out of 28 events found at 400 km altitude with well-defined current sheet orientations, 26 have magnetic fields consistent with the expected polarities of Hall fields near diffusion regions. For these events, we find an average ratio of Hall field to main field of 0.51 ± 0.13, and an average ratio of normal to main field (reconnection rate) of 0.16 ± 0.09, consistent with terrestrial observations of reconnection. These events do not consistently correlate with the location of crustal fields or with IMF reversals, indicating that magnetic field draping alone (perhaps enhanced by high solar wind dynamic pressure) may generate current sheets capable of reconnection. For some events, we observe field-aligned electrons that may carry parallel currents that close the Hall current loop. Electron distributions around current sheets often indicate magnetic connection to the collisional exosphere. For crossings sunward of the X line, we usually observe an electron flux minimum at the current sheet, consistent with the resulting closed magnetic structure. For crossings antisunward of the X line, we do not observe flux minima, consistent with field lines open downstream. Collisionless reconnection, if common at Mars, could represent a significant atmospheric loss process.

  16. Observational estimate of magnetic field and geodynamo parameters under the surface of the Earth's core

    NASA Astrophysics Data System (ADS)

    Starchenko, S. V.

    2015-09-01

    For the first time, estimates (averaged in latitude and longitude) of the radial derivatives of the vortex magnetic field hidden directly under the surface of the Earth's core were obtained on the basis of contemporary determinations of the electric conductivity and systematic observations of the geomagnetic dipole evolution, as well as Faraday's and Ohm's laws. This allows one to formulate the simplest, `almost dipole" model of the vortex field under the core surface and to estimate a characteristic scale of the field measurements, which determines the depth of the adequacy area of the proposed simplest model. According to this estimate, the spatial size of the field (around 60 km) is an order of magnitude less than its typical size, following from an extrapolation of the observable field to the mantle-core boundary. This agrees well with the modern theory of hydromagnetic dynamos of planets, making it possible to refine the typical values of the magnetic field, the convection rate, and specific power, together with other geodynamo parameters, on the basis of known scaling laws and observations. The proposed new approach to determining the surface characteristics of the vortex magnetic field hidden in the interior of a physical object from the observed evolution of the potential field may be used for both astrophysical and engineering objects with an inaccessible current system.

  17. Ulysses Observations of Tripolar Guide-Magnetic Field Perturbations Across Solar Wind Reconnection Exhausts

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Peng, B.; Markidis, S.; Gosling, J. T.; McComas, D. J.; Lapenta, G.; Newman, D. L.

    2014-12-01

    We report observations from 15 solar wind reconnection exhausts encountered along the Ulysses orbit beyond 4 AU in 1996-1999 and 2002-2005. The events, which lasted between 17 and 45 min, were found at heliospheric latitudes between -36o and 21o with one event detected as high as 58o. All events shared a common characteristic of a tripolar guide-magnetic field perturbation being detected across the observed exhausts. The signature consists of an enhanced guide field magnitude within the exhaust center and two regions of significantly depressed guide-fields adjacent to the center region. The events displayed magnetic field shear angles as low as 37o with a mean of 89o. This corresponds to a strong external guide field relative to the anti-parallel reconnecting component of the magnetic field with a mean ratio of 1.3 and a maximum ratio of 3.1. A 2-D kinetic reconnection simulation for realistic solar wind conditions reveals that tripolar guide fields form at current sheets in the presence of multiple X-lines as two magnetic islands interact with one another for such strong guide fields. The Ulysses observations are also compared with the results of a 3-D kinetic simulation of multiple flux ropes in a strong guide field.

  18. Larmor electric field observed at the Earth's magnetopause by Polar satellite

    SciTech Connect

    Koga, D. Gonzalez, W. D.; Silveira, M. V. D.; Mozer, F. S.; Cardoso, F. R.

    2014-10-15

    We present, for the first time, observational evidence of a kinetic electric field near the X-line associated with asymmetric reconnection at the Earth's dayside magnetopause using Polar observations. On March 29, 2003, Polar satellite detected an asymmetric collisionless reconnection event. This event shows a unipolar Hall electric field signature and a simple deviation from the guide field during the magnetopause crossing, with the absence of an ion plasma jet outflow indicating that the magnetopause crossing was near the X-line. As expected from particle-in-cell simulations by Malakit et al. (Phys. Rev. Lett. 111, 135001 (2013)), an earthward pointing normal electric field appears in the magnetospheric side of the ion diffusion region. The electric field satisfies two necessary conditions for the existence of the finite ion Larmor radius effect: (1) the ion Larmor radius (r{sub g2}) is larger than the distance between the stagnation point and the edge of the ion diffusion region in the strong magnetic field side (δ{sub S2}) and (2) the spatial extent of the kinetic electric field (δ{sub EL}) is of the order of the ion Larmor radius. Furthermore, it is shown that the peak value of the Larmor electric field is comparable to the predicted value. The observation of the Larmor electric field can be valuable in other analyses to show that the crossing occurred near the X-line.

  19. DC Electric Fields and Associated Plasma Drifts Observed with the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Bromund, K.; Rowland, D.

    2009-01-01

    Initial DC electric field observations and associated plasma drifts are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite. We present statistical averages of the vector fields for the first year of operations that include both the zonal and radial components of the resulting E x B plasma flows at low latitudes. Magnetic field data from the VEFI science magnetometer are used to compute the plasma flows. The DC electric field detector reveals zonal and radial electric fields that undergo strong diurnal variations, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. There is considerable variation in the large scale DC electric field data, in both the daytime and nighttime cases, with enhanced structures typically observed at night. In general, the measured zonal DC electric field amplitudes include excursions that extend within the 0.4 - 2 m V/m range, corresponding to E x B drifts of the order of 30-150 m/s. The average vertical or radial electric fields may exceed the zonal fields in amplitude by a factor of 1.5 to 2. Although the data compare well, in a general sense, with previous satellite observations and statistical patterns of vertical ion drifts, the E x B drifts we report from C/NOFS rarely show a pronounced pre-reversal enhancement after sunset. We attribute this to a combination of extreme solar minimum conditions and the fact that the C/NOFS orbit of 401 by 867 km carries the probes essentially above the lower altitude regions where the wind-driven dynamo might be expected to create enhanced upwards drifts in the early evening. Evidence for wavenumber 4 tidal effects and other longitudinal signatures have been detected and will be presented. We also discuss off-equatorial electric fields and their relation to the ambient plasma density.

  20. The magnetic field of Jupiter - A comparison of radio astronomy and spacecraft observations

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Gulkis, S.

    1979-01-01

    The inner magnetic field of Jupiter is characterized on the basis of Pioneer 10 and 11 measurements and earth-based decimetric radio observations. The dipole parameters derived from the two data sets are in good agreement. Problems in reconciling asymmetries observed in the earth-based data and the spacecraft data are discussed. Models of synchrotron emission from arbitrary magnetic field configurations and high-resolution maps of the Jovian radiation belts in all polarizations are needed to further understanding of Jupiter's magnetic field

  1. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  2. What Preservice Physical Educators Observe about Lessons in Progressive Field Experiences.

    ERIC Educational Resources Information Center

    Belka, David E.

    1988-01-01

    Freshmen through senior physical education majors' observation and interpretation of a videotaped soccer skill lesson indicated that over time they tended to observe the lesson more congruently with program goals and reflect the targeted teaching skills in the current field experience. The quality and clarity of responses improved as the subjects…

  3. Interplanetary and Interstellar Dust Observed by the Wind/WAVES Electric Field Instrument

    NASA Technical Reports Server (NTRS)

    Malaspina, David; Horanyi, M.; Zaslavsky, A.; Goetz, K.; Wilson, L. B., III; Kersten, K.

    2014-01-01

    Observations of hypervelocity dust particles impacting the Wind spacecraft are reported here for the first time using data from the WindWAVES electric field instrument. A unique combination of rotating spacecraft, amplitude-triggered high-cadence waveform collection, and electric field antenna configuration allow the first direct determination of dust impact direction by any spacecraft using electric field data. Dust flux and impact direction data indicate that the observed dust is approximately micron-sized with both interplanetary and interstellar populations. Nanometer radius dust is not detected by Wind during times when nanometer dust is observed on the STEREO spacecraft and both spacecraft are in close proximity. Determined impact directions suggest that interplanetary dust detected by electric field instruments at 1 AU is dominated by particles on bound trajectories crossing Earths orbit, rather than dust with hyperbolic orbits.

  4. Magnetic field draping in the Comet Halley coma - Comparison of VEGA observations with computer simulations

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, K.; Riedler, W.; Yeroshenko, Ye.; Phillips, J. L.; Russell, C. T.; Luhmann, J. G.; Fedder, J. A.

    1987-06-01

    During the Vega-1 encounter with Comet Halley, the magnetometer observed draping and compression of the interplanetary magnetic field. These are reproduced well by a three-dimensional MHD simulation of the cometary interaction. Rotations in the magnetic field similar to those at closest approach are also observed 2.75 hours earlier. It is suggested that both rotations correspond to the same IMF interval and that the spacecraft had overtaken the plasma and encountered 'older' magnetic field as it penetrated the coma. Analysis of the MHD model indicates that it should take about 3 to 5 hours for a solar wind parcel to pass from the unperturbed solar wind to Vega-1 at closest approach. A simulated magnetic field profile composed of nested sections for different IMF orientations closely resembles the observations. This result supports the hypothesis of layered magnetic orientations in the coma.

  5. Comparison of inferred and observed interplanetary magnetic field polarities, 1970-1972

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.; Svalgaard, L.; Hedgecock, P. C.

    1975-01-01

    The inferred polarity (toward or away from the sun) of the interplanetary magnetic field at earth using polar observations of the geomagnetic field has been compared with spacecraft observations. A list published by Svalgaard (1974) of the inferred field polarities in the period from 1970 to 1972 is found to be correct on 82% of the days. A near real-time (same day) method of inferring the polarity of the interplanetary magnetic field using geomagnetic observations at Vostok and Thule is in use at the NOAA Space Environment Laboratory, Boulder, Colorado. During 1972, this method is found to be correct on 87% of the days. A list of 'well-defined' sector boundaries at earth from 1970 to 1972 is given.

  6. Comparison of Electric Fields and Density structures Seen in Simulations and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Deverapalli, C.; Khazanov, G.

    2005-01-01

    There are now clear observations of large parallel electric fields (E(sub ||)) from Polar and FAST in the auroral upward-current region (UCR). Such fields are associated with large perpendicular electric fields (E(sub perpendicular) and density cavities. The observed features of the fields and density are found to be compatible with their spatial structures seen in a simulated U-shaped potential structure (USPS), consisting of double layers (DL) with obliqueness ranging from zero to 90 degrees from the magnetic field. The spatial and temporal evolution of the USPS, its up and down motions and its striations into thin long potential structures, suggest a variety of signatures in the satellite detection of E(sub ||) and E(sub perpendicular)

  7. Field-aligned currents observed in the vicinity of a moving auroral arc

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Bruening, K.

    1984-01-01

    The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.

  8. Field-aligned currents observed in the vicinity of a moving auroral arc

    NASA Astrophysics Data System (ADS)

    Goertz, C. K.; Bruening, K.

    1984-09-01

    The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.

  9. Observation of cavitation bubbles and acoustic streaming in high intensity ultrasound fields

    NASA Astrophysics Data System (ADS)

    Uemura, Yuuki; Sasaki, Kazuma; Minami, Kyohei; Sato, Toshio; Choi, Pak-Kon; Takeuchi, Shinichi

    2015-07-01

    We observed the behavior of acoustic cavitation by sonochemical luminescence and ultrasound B-mode imaging with ultrasound diagnostic equipment in a standing-wave ultrasound field and focused ultrasound field. Furthermore, in order to investigate the influence of acoustic streaming on acoustic cavitation bubbles, we performed flow analysis of the sound field using particle image velocimetry. We found that acoustic cavitation bubbles are stirred by circulating acoustic streaming and local vortexes occurring in the water tank of the standing-wave ultrasound exposure system. We considered that the acoustic cavitation bubbles are carried away by acoustic streaming due to the high ultrasound pressure in the focused ultrasound field.

  10. Magnetic Fields in Low-Mass Stars: An Overview of Observational Biases

    NASA Astrophysics Data System (ADS)

    Reiners, Ansgar

    2014-08-01

    Stellar magnetic dynamos are driven by rotation, rapidly rotating stars produce stronger magnetic fields than slowly rotating stars do. The Zeeman effect is the most important indicator of magnetic fields, but Zeeman broadening must be disentangled from other broadening mechanisms, mainly rotation. The relations between rotation and magnetic field generation, between Doppler and Zeeman line broadening, and between rotation, stellar radius, and angular momentum evolution introduce several observational biases that affect our picture of stellar magnetism. In this overview, a few of these relations are explicitly shown, and the currently known distribution of field measurements is presented.

  11. Field and thermal plasma observations of ULF pulsations during a magnetically disturbed interval

    NASA Technical Reports Server (NTRS)

    Lin, N.; Engebretson, M. J.; Reinleitner, L. A.; Olson, J. V.; Gallagher, D. L.; Cahill, L. J., Jr.; Slavin, J. A.; Persoon, A. M.

    1992-01-01

    A ULF pulsation event is discussed on the basis of experimental observations of electric and magnetic field measurements as well as particle measurements from the DE 1 spacecraft. The observations were made near the magnetic equator in a space covering a large range of L shells and magnetic latitudes, and comparisons are made to ground observations. Azimuthal oscillations are observed following gradually decaying long-period compressional waves. Weak interaction between magnetic shells indicates that the source is probably weak, and ground data on magnetic pulsations showed strong signals that did not necessarily correspond to the quasisinusoidal pulsations observed in space. Azimuthal pulsations observed by the spacecraft indicate that there was a plasma density gradient beyond the plasmapause. The ULF pulsations were probably affected by changes in the magnetic field and solar-wind dynamic pressure, and their periods are found to be linked to geomagnetic latitude.

  12. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  13. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  14. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing

    2016-09-01

    Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.

  15. Magnetic fields around evolved stars: further observations of H2O maser polarization

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M. L.; Vlemmings, W. H. T.; Kemball, A.; Amiri, N.

    2013-06-01

    Context. A low- or intermediate-mass star is believed to maintain a spherical shape throughout the evolution from the main sequence to the asymptotic giant branch (AGB) phase. However, many post-AGB objects and planetary nebulae exhibit non-spherical symmetry. Several candidates have been suggested as factors that can play a role in this change of morphology, but the problem is still not well understood. Magnetic fields are one of these possible agents. Aims: We aim to detect the magnetic field and infer its properties around four AGB stars using H2O maser observations. The sample we observed consists of the following sources: the semi-regular variable RT Vir, and the Mira variables AP Lyn, IK Tau, and IRC+60370. Methods: We observed the 61,6 -52,3 H2O maser rotational transition in full-polarization mode to determine its linear and circular polarization. Based on the Zeeman effect, one can infer the properties of the magnetic field from the maser polarization analysis. Results: We detected a total of 238 maser features in three of the four observed sources. No masers were found toward AP Lyn. The observed masers are all located between 2.4 and 53.0 AU from the stars. Linear and circular polarization was found in 18 and 11 maser features, respectively. Conclusions: We more than doubled the number of AGB stars in which a magnetic field has been detected from H2O maser polarization. Our results confirm the presence of fields around IK Tau, RT Vir, and IRC+60370. The strength of the field along the line of sight is found to be between 47 and 331 mG in the H2O maser region. Extrapolating this result to the surface of the stars, assuming a toroidal field (∝ r-1), we find magnetic fields of 0.3-6.9 G on the stellar surfaces. If, instead of a toroidal field, we assume a poloidal field (∝ r-2), then the extrapolated magnetic field strength on the stellar surfaces are in the range between 2.2 and ~115 G. Finally, if a dipole field (∝ r-3) is assumed, the field

  16. Lunar remnant magnetic field mapping from orbital observations of mirrored electrons

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.; Anderson, K. A.; Lin, R. P.; Howe, H. C.; Mcguire, R. E.

    1975-01-01

    A technique is described for mapping areas of lunar surface magnetism by observing ambient low-energy electrons from lunar orbit with a detector that is sectored to distinguish directions of arrival with respect to the ambient magnetic field and the lunar surface. It is noted that the ambient electrons provide a probe along the ambient magnetic-field lines down to the lunar surface for remote sensing of the presence of surface fields. Unlike direct magnetometer measurements, this probe does not require low altitude or a very stable ambient field in order to map the occurrence regions of such fields. Preliminary maps generated for the surface magnetic areas underlying the orbit of the Particles and Fields Satellite deployed from Apollo 16 are presented to demonstrate the feasibility of this technique.

  17. Parallel Electric Fields Associated with Sub-Solar Reconnection: MMS Observations

    NASA Astrophysics Data System (ADS)

    Ergun, Robert; Goodrich, Katherine; Wilder, Frederick; Holmes, Justin; Stawarz, Julia; Sturner, Andrew; Eriksson, Stefan; Malaspina, David; Unsanova, Maria; Torbert, Roy; Lindqvist, Per-Arne; Khotyaintsev, Yuri; Burch, James; Strangeway, Robert; Russel, Christopher; Giles, Barbara; Pollock, Craig

    2016-04-01

    We present MMS observations of parallel electric fields associated with sub-solar magnetic reconnection and provide an early interpretation of their implications on the reconnection processes. The MMS satellites have observed many instances of large-amplitude parallel electric fields (10's to greater than 100 mV/m) that appear to lie on or near the magnetic reconnection separatrix, in particular, near a strong current layer on the magnetospheric-side separatrix. These parallel electric field events are directly associated with magnetic reconnection and, on most occasions, are recorded by more than one of the MMS spacecraft. We see several types of parallel electric fields. We interpret purely parallel electrostatic waves and the evolved nonlinear states of these waves as mixing of cold plasma with warm magnetosheath plasma on a freshly reconnected field line. Large-amplitude spikes associated with tangled magnetic fields represent possible secondary reconnection events. Whistler waves and evolved non-linear whistler waves are associated with associated with mixing of plasmas. These observations suggest that (1) magnetic reconnection is often "patchy" and results in tangled magnetic field lines and that (2) cold plasma (<10 eV) is often present in sub-solar reconnection.

  18. A comparison between maritime field observations and photosimulation for developing and validating visible signature evaluation tools

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Wheaton, Vivienne C.; Shao, Q. T.; Furnell, Alistair

    2015-10-01

    Over the past 50 years, the majority of detection models used to assess visible signatures have been developed and validated using static imagery. Some of these models are the German developed CAMAELEON (CAMou age Assessment by Evaluation of Local Energy Spatial Frequency and OrieNtation) model and the U.S. Army's Night Vision and Electronic Sensors Directorate (NVESD) ACQUIRE and TTP (Targeting Task Performance) models. All these models gathered the necessary human observer data for development and validation from static images in photosimulation experiments. In this paper, we compare the results of a field observation trial to a static photosimulation experiment. The probability of detection obtained from the field observation trial was compared to the detection probability obtained from the static photosimulation trial. The comparison showed good correlation between the field trial and the static image photosimulation detection probabilities, where a Spearman correlation coefficient of 0.59 was calculated. The photosimulation detection task was found to be significantly harder than the field observation detection task, suggesting that to use static image photosimulation to develop and validate maritime visible signature evaluation tools may need correction to represent detection in field observations.

  19. Airborne observations of electric fields around growing and decaying cumulus clouds

    NASA Technical Reports Server (NTRS)

    Giori, K. L.; Nanevicz, J. E.

    1991-01-01

    Airborne electric field data were gathered in an atmospheric electrification study near Cape Canaveral, FL. A Learjet 36A was instrumented with eight electric field meters (mills) and five different particle probes. The local electric field enhancements at each field mill site were determined under lab conditions and verified using in-flight data. The overdetermined system of eight equations (one for each field mill) was solved using a weighted least squares algorithm to compute the magnitude and direction of the ambient electric field. The signal processing system allowed the measured data to be expressed in terms of earth coordinates, regardless of the attitude of the aircraft. Thus, it was possible to take maximum advantage of the Learjet's speed and maneuverability in studying the electric field structure in the vicinity of the clouds. Data gathered while circling just outside the boundary of a growing cumulus cloud show a nonsymmetric pattern of electric field strength. Field intensity grew rapidly over a period of less than 10 minutes. The observed direction of the ambient electric field vector can be explained by an ascending motion of the charge centers of a classic tripole model of a thunderstorm.

  20. Coronal magnetic field and the plasma beta determined from radio and multiple satellite observations

    NASA Astrophysics Data System (ADS)

    Iwai, Kazumasa; Shibasaki, Kiyoto; Nozawa, Satoshi; Takahashi, Takuya; Sawada, Shinpei; Kitagawa, Jun; Miyawaki, Shun; Kashiwagi, Hirotaka

    2014-12-01

    We derived the coronal magnetic field, plasma density, and temperature from the observation of polarization and intensity of radio thermal free-free emission using the Nobeyama Radioheliograph (NoRH) and extreme ultraviolet (EUV) observations. We observed a post-flare loop on the west limb on 11 April 2013. The line-of-sight magnetic field was derived from the circularly polarized free-free emission observed by NoRH. The emission measure and temperature were derived from the Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The derived temperature was used to estimate the emission measure from the NoRH radio free-free emission observations. The derived density from NoRH was larger than that determined using AIA, which can be explained by the fact that the low-temperature plasma is not within the temperature coverage of the AIA filters used in this study. We also discuss the other observation of the post-flare loops by the EUV Imager onboard the Solar Terrestrial Relations Observatory (STEREO), which can be used in future studies to reconstruct the coronal magnetic field strength. The derived plasma parameters and magnetic field were used to derive the plasma beta, which is a ratio between the magnetic pressure and the plasma pressure. The derived plasma beta is about 5.7 × 10-4 to 7.6 × 10-4 at the loop top region.

  1. Magnetic field observations as Voyager 1 entered the heliosheath depletion region.

    PubMed

    Burlaga, L F; Ness, N F; Stone, E C

    2013-07-12

    Magnetic fields measured by Voyager 1 (V1) show that the spacecraft crossed the boundary of an unexpected region five times between days 210 and ~238 in 2012. The magnetic field strength B increased across this boundary from ≈0.2 to ≈0.4 nanotesla, and B remained near 0.4 nanotesla until at least day 270, 2012. The strong magnetic fields were associated with unusually low counting rates of >0.5 mega-electron volt per nuclear particle. The direction of B did not change significantly across any of the five boundary crossings; it was very uniform and very close to the spiral magnetic field direction, which was observed throughout the heliosheath. The observations indicate that V1 entered a region of the heliosheath (the heliosheath depletion region), rather than the interstellar medium.

  2. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    PubMed

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure. PMID:27419573

  3. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, L.-J.; Torbert, R. B.; Phan, T. D.; Lavraud, B.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Trattner, K. J.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Lindqvist, P.-A.; Drake, J. F.; Shay, M. A.; Nakamura, R.; Marklund, G. T.

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E∥ ) that is larger than predicted by simulations. The high-speed (˜300 km /s ) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E∥ is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  4. Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields

    PubMed Central

    Kondo, Takahiro; Guo, Donghui; Shikano, Taishi; Suzuki, Tetsuya; Sakurai, Masataka; Okada, Susumu; Nakamura, Junji

    2015-01-01

    Under perpendicular external magnetic fields, two-dimensional carriers exhibit Landau levels (LLs). However, it has recently been reported that LLs have been observed on graphene and graphite surfaces without external magnetic fields being applied. These anomalous LLs have been ascribed primarily to a strain of graphene sheets, leading to in-plane hopping modulation of electrons. Here, we report the observation of the LLs of massive Dirac fermions on atomically flat areas of a nitrogen-doped graphite surface in the absence of external magnetic fields. The corresponding magnetic fields were estimated to be as much as approximately 100 T. The generation of the LLs at the area with negligible strain can be explained by inequivalent hopping of π electrons that takes place at the perimeter of high-potential domains surrounded by positively charged substituted graphitic-nitrogen atoms. PMID:26549618

  5. MAVEN observations of energy-time dispersed electron signatures in Martian crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.; Hara, T.; Livi, R.; DiBraccio, G. A.; Ruhunusiri, S.; Jakosky, B. M.

    2016-02-01

    Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.

  6. Observation of the local field distribution in photonic crystal microcavity by SNOM technique

    NASA Astrophysics Data System (ADS)

    Maidykovski, Anton I.; Lebedev, Oleg V.; Dolgova, Tatyana V.; Kazantsev, D. V.; Fedyanin, Andrew A.

    2002-11-01

    The spatial distribution of the local optical field at the cleavage of photonic crystal smicrocavity has been obtained by the scanning near-field optical microscope (SNOM). The localization of optical radiation at microcavity resonant wavelength in the vicinity of the λ/2 spacer layer is demonstrated. Samples of photonic crystal microcavity are prepared from silicon wafer by electrochemical etching technique. The wavelength of the microcavity mode is optimized for resonance with wavelengths of lasers. The image of the spatial distribution of optical field at the cleaved edge of the facing vertically microcavity is observed. Sample is pumped through external single-mode fiber perpendicularly to the microcavity. SNOM operates in the collection mode with the apertureless tip. We observe the localization of the resonant optical field in microcavity but we do not reveal such localization of the radiation at the non-resonant wavelength.

  7. Cosmological backreaction for a test field observer in a chaotic inflationary model

    SciTech Connect

    Marozzi, Giovanni; Vacca, Gian Paolo; Brandenberger, Robert H. E-mail: vacca@bo.infn.it

    2013-02-01

    In an inhomogeneous universe, an observer associated with a particular matter field does not necessarily measure the same cosmological evolution as an observer in a homogeneous and isotropic universe. Here we consider, in the context of a chaotic inflationary background model, a class of observers associated with a ''clock field'' for which we use a light test field. We compute the effective expansion rate and fluid equation of state in a gauge invariant way, taking into account the quantum fluctuations of the long wavelength modes, and working up to second order in perturbation theory and in the slow-roll approximation. We find that the effective expansion rate is smaller than what would be measured in the absence of fluctuations. Within the stochastic approach we study the bounds for which the approximations we make are consistent.

  8. Dynamics of Tachyon Fields and Inflation - Comparison of Analytical and Numerical Results with Observation

    NASA Astrophysics Data System (ADS)

    Milošević, M.; Dimitrijević, D. D.; Djordjević, G. S.; Stojanović, M. D.

    2016-06-01

    The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n), and tensor-scalar ratio (r) for the given potentials. We pay special attention to the inverse power potential, first of all to V(x)˜ x^{-4}, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X_0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X_0 to the string theory motivated sector of its values is briefly considered.

  9. A simple model for geomagnetic field excursions and inferences for palaeomagnetic observations

    NASA Astrophysics Data System (ADS)

    Brown, M. C.; Korte, M.

    2016-05-01

    We explore simple excursion scenarios by imposing changes on the axial dipole component of the Holocene geomagnetic field model CALS10k.2 and investigate implications for our understanding of palaeomagnetic observations of excursions. Our findings indicate that globally observed directions of fully opposing polarity are only possible when the axial dipole reverses: linearly decaying the axial dipole to zero and then reestablishing it with the same sign produces a global intensity minimum, but does not produce fully reversed directions globally. Reversing the axial dipole term increases the intensity of the geomagnetic field observed at Earth's surface across the mid-point of the excursion, which results in a double-dip intensity structure during the excursion. Only a limited number of palaeomagnetic records of excursions contain such a double-dip intensity structure. Rather, the maximum directional change is coeval with a geomagnetic field intensity minimum.

  10. Latitudinal variation of perturbation electric fields during magnetically disturbed periods - 1986 Sundial observations and model results

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Spiro, R. W.; Wolf, R. A.; Foster, J. C.

    1990-06-01

    F-region incoherent scatter radar drift observations from Millstone Hill and Jicamarca, h-prime F observations from Huancayo, and high latitude ground-magnetometer measurements taken during the Sundial 1986 campaign are used to study the relationship between plasmaspheric electric field perturbations and high latitude currents during disturbed periods. The observations are in good agreement with numerical results from a Rice Covection Model run that involved a sharp increase in the polar cap potential drop followed by a subsequent decrease. The zonal disturbance electric field pattern is latitude independent, and the corresponding amplitudes change approximately as L exp n (where n is about 1.5). The meridional electric field patterns and amplitudes have larger latitudinal variations. The mid-, low, and equatorial electric fields from the Rice Convection Model are in good agreement with previous results from the semianalytic, Senior-Blanc (1987) model. Also discussed are three physical mechanisms (over-shielding, fossil winds, and magnetic reconfiguration) that contribute to the long lasting (1-2 h) equatorial zonal electric field perturbations associated with a sudden northward turning of the IMF. It is predicted that the penetration of high latitude electric fields to low latitudes should, in general, be closely related to the rate of motion of the shielding layer and the equatorward edge of the diffuse aurora.

  11. Interpolation of observed rainfall fields for flood forecasting in data poor areas

    NASA Astrophysics Data System (ADS)

    Rogelis Prada, M. C.; Werner, M. G. F.

    2010-09-01

    Observed rainfall fields constitute a crucial input for operational flood forecasting, providing boundary conditions to hydrological models for prediction of flows and levels in relevant forecast points. Such observed fields are derived through interpolation from available observed data from rain gauges. The reliability of the derived rainfall field depends on the density of the gauge network within the basin, as well as on the variability of the rainfall itself, and the interpolation method. In this paper interpolation methods to estimate rainfall fields under data- poor environments are researched, with the derived rainfall fields being used in operational flood warnings. Methods are applied in a small catchment in Bogotá, Colombia. This catchment has a complex climatology, which is strongly influenced by the inter-tropical convergence zone and orographic enhancement. As is common in such catchments in developing countries, the rainfall gauging network is sparse, while the need for reliable rainfall in flood forecasting is high. The extensive high flood risk zones in the lower areas of the catchment, where urbanization processes are characterized by unplanned occupation of areas close to rivers, is common in developing countries. Results show the sensitivity of interpolated rainfall fields to the interpolation methods chosen, and the importance of the use of indicator variables for improving the spatial distribution of interpolated rainfall. The value of these methods in establishing optimal new gauging sites for augmenting the sparse gauge network is demonstrated.

  12. The magnetic field of the earth - Performance considerations for space-based observing systems

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.

    1985-01-01

    Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.

  13. Future Observations of Cosmic Magnetic Fields with LOFAR, SKA and Its Precursors

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission from the Milky Way, galaxies and galaxy clusters, observed with the new Low Frequency Array (LOFAR) and the planned Square Kilometre Array (SKA), traces low-energy cosmic ray electrons and allows us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in halos and relics of clusters and in the Milky Way. Polarization at higher frequencies (1-10 GHz), to be observed with the SKA and its precursors Australia SKA Pathfinder (ASKAP) and the South African MeerKAT telescopes, will trace magnetic fields in the disks and central regions of galaxies and in cluster relics in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP (project POSSUM) and the SKA are dedicated to measure magnetic fields in intervening galaxies, clusters and intergalactic filaments, and will be used to model the overall structure and strength of magnetic fields in the Milky Way. Cosmic magnetism is "key science" for LOFAR, ASKAP and the SKA.

  14. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  15. A target detection model predicting field observer performance in maritime scenes

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Wheaton, Vivienne C.

    2014-10-01

    The U.S. Army's target acquisition models, the ACQUIRE and Target Task Performance (TTP) models, have been employed for many years to assess the performance of thermal infrared sensors. In recent years, ACQUIRE and the TTP models have been adapted to assess the performance of visible sensors. These adaptations have been primarily focused on the performance of an observer viewing a display device. This paper describes an implementation of the TTP model to predict field observer performance in maritime scenes. Predictions of the TTP model implementation were compared to observations of a small watercraft taken in a field trial. In this field trial 11 Australian Navy observers viewed a small watercraft in an open ocean scene. Comparisons of the observed probability of detection to predictions of the TTP model implementation showed the normalised RSS metric overestimated the probability of detection. The normalised Pixel Contrast using a literature value for V50 yielded a correlation of 0.58 between the predicted and observed probability of detection. With a measured value of N50 or V50 for the small watercraft used in this investigation, this implementation of the TTP model may yield stronger correlation with observed probability of detection.

  16. Magnetic fields in Venus nightside ionospheric holes - Collected Pioneer Venus Orbiter magnetometer observations

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Russell, D. S.

    1992-01-01

    The magnetic fields detected by the Pioneer Venus Orbiter (PVO) magnetometer within the electron density depletions called 'holes' in the nightside ionosphere are typically larger and more organized than the fields in the surrounding ionosphere. Moreover, they have substantial sunward/antisunward components which cause them to appear as near-radial fields near the antisolar point. The collection of observations presented here illustrate the variety of appearances of the fields in holes. Some new results which summarize their average properties, their dependence on solar wind conditions, and their lack of geographical control are aslo presented. These results are potentially pertinent to the interpretation of data from the PVO entry at the end of 1992 and from the impending Mars Obsever mission, which will probe the magnetic fields in the low-altitude wake of weakly magnetized Mars.

  17. Satellite-borne study of seismic phenomena by low frequency magnetic field observations

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Magnes, Werner; Xuhui, Shen; Wang, Jindong; Pollinger, Andreas; Hagen, Christian; Prattes, Gustav; Eichelberger, Hans-Ulrich; Wolbang, Daniel; Boudjada, Mohammed Y.; Besser, Bruno P.; Rozhnoi, Alexander A.; Zhang, Tielong

    2015-04-01

    A combined scalar-vector magnetic field experiment will be flown on the upcoming CSES mission (China Seismo-Electromagnetic Satellite). Magnetic field data from DC to 30 Hz will be measured with an accuracy of about 10 pT. A fluxgate instrument will provide the 3 magnetic field components and a new type of an optically pumped magnetometer [see Pollinger, 2010] will measure the magnitude of the ambient magnetic field. The satellite will operate in a Sun synchronous polar orbit at an altitude of about 500 km and with an inclination of 97°. We present a model of magnetic field fluctuations in the upper ionosphere based on previous satellite observations and on a model of the lithospheric-atmospheric-ionospheric coupling. Pollinger et al., CDSM-a new scalar magnetometer, EGU General Assembly 2010

  18. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Chen, L. J.; Lapenta, G.; Goldman, M. V.; Newman, D. L.; Schwartz, S. J.; Eastwood, J. P.; Phan, T. D.; Mozer, F. S.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Marklund, G.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E∥ ) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E∥ events near the electron diffusion region have amplitudes on the order of 100 mV /m , which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E∥ events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E∥ events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  19. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis

    SciTech Connect

    Tenforde, T.S.; Gaffey, C.T.; Moyer, B.R.; Budinger, T.F.

    1983-01-01

    Simultaneous measurements were made of the electrocardiogram (ECG) and the intraarterial blood pressure of adult male Macaca monkeys during acute exposure to homogeneous stationary magnetic fields ranging in strength up to 1.5 tesla. An instantaneous, field strength-dependent increase in the ECG signal amplitude at the locus of the T wave was observed in fields greater than 0.1 tesla. The temporal sequence of this signal in the ECG record and its reversibility following termination of the magnetic field exposure are consistent with an earlier suggestion that it arises from a magnetically induced aortic blood flow potential superimposed on the native T-wave signal. No measurable alterations in blood pressure resulted from exposure to fields up to 1.5 tesla. This experimental finding is in agreement with theoretical calculations of the magnetohydrodynamic effect on blood flow in the major arteries of the cardiovascular system. 27 references, 1 figure, 1 table.

  20. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    NASA Astrophysics Data System (ADS)

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  1. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    PubMed Central

    Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F

    2015-01-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197

  2. Observations of the magnetic field and plasma flow in Jupiter's magnetosheath

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Burlaga, L. F.; Klein, L. W.; Jessen, J. M.; Goodrich, G. C.

    1980-01-01

    Large scale (many minutes to 10 hours) magnetic field structures consisting predominantly of nearly north-south field direction were discovered in Jupiter's magnetosheath from the data of Voyagers 1 and 2 and Pioneer 10 during their outbound encounter trajectories. The Voyager 2 data, and that of Voyager 1 to a lesser extent, show evidence of a quasi-period of 10 hours (and occasionally 5 hours) for these structures. The north-south components of the field and plasma velocity were strongly correlated in the outbound magnetosheath as observed by Voyagers 1 and 2, and the components orthogonal to the north-south direction showed weak correlations. For both Voyager encounters the sense (positive and negative) of the north-south correlations were directly related to the direction of the ecliptic plane component of the interplanetary magnetic field using the field and plasma measurements of the non-encountering spacecraft.

  3. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    SciTech Connect

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.

  4. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGESBeta

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; Murooka, Y.; Reed, B. W.; Barwick, B.; Carbone, F.

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  5. Background-free observation of cold antihydrogen with field-ionization analysis of its states.

    PubMed

    Gabrielse, G; Bowden, N S; Oxley, P; Speck, A; Storry, C H; Tan, J N; Wessels, M; Grzonka, D; Oelert, W; Schepers, G; Sefzick, T; Walz, J; Pittner, H; Hänsch, T W; Hessels, E A

    2002-11-18

    A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.

  6. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    SciTech Connect

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip.

  7. Spectral Inversion of Multiline Full-Disk Observations of Quiet Sun Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Balthasar, H.; Demidov, M. L.

    2012-10-01

    Spectral inversion codes are powerful tools for analyzing spectropolarimetric observations, and they provide important diagnostics of solar magnetic fields. Inversion codes differ according to numerical procedure, approximation of the atmospheric model, and description of radiative transfer. Stokes Inversion based on Response functions (SIR) is an implementation widely used by the solar physics community. It allows one to work with different atmospheric components, where gradients of different physical parameters are possible, e.g., magnetic field strength and velocities. The spectropolarimetric full-disk observations were carried out with the Stokesmeter of the Solar Telescope for Operative Prediction (STOP) at the Sayan Observatory on 3 February 2009, when neither an active region nor any other extended flux concentration was present on the Sun. In this study of quiet Sun magnetic fields, we apply the SIR code simultaneously to 15 spectral lines. A tendency is found that weaker magnetic field strengths occur closer to the limb. We explain this finding by the fact that, close to the limb, we are more sensitive to higher altitudes in an expanding flux tube, where the field strength should be smaller since the magnetic flux is conserved with height. Typically, the inversions deliver two populations of magnetic elements: i) high magnetic field strengths (1500 - 2000 G) and high temperatures (5500 - 6500 K) and ii) weak magnetic fields (50 - 150 G) and low temperatures (5000 - 5300 K).

  8. Interaction of solar wind with Mercury and its magnetic field. [as observed by Mariner 10 space probe

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1976-01-01

    A brief review is presented of magnetic field and solar wind electron observations by Mariner 10 spacecraft. The intrinsic magnetic field of the planet Mercury and the implications of such a field for the planetary interior are also discussed.

  9. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    PubMed Central

    Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.

    2015-01-01

    Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335

  10. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  11. Modular model for Mercury's magnetospheric magnetic field confined within the average observed magnetopause

    PubMed Central

    Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.

    2015-01-01

    Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.

  12. OBSERVATION OF A NON-RADIAL PENUMBRA IN A FLUX EMERGING REGION UNDER CHROMOSPHERIC CANOPY FIELDS

    SciTech Connect

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip; Cho, Kyung-Suk

    2013-05-20

    The presence of a penumbra is one of the main properties of a mature sunspot, but its formation mechanism has been elusive due to a lack of observations that fully cover the formation process. Utilizing the New Solar Telescope at the Big Bear Solar Observatory, we observed the formation of a partial penumbra for about 7 hr simultaneously at the photospheric (TiO; 7057 A) and the chromospheric (H{alpha} - 1 A) spectral lines with high spatial and temporal resolution. From this uninterrupted, long observing sequence, we found that the formation of the observed penumbra was closely associated with flux emergence under the pre-existing chromospheric canopy fields. Based on this finding, we suggest a possible scenario for penumbra formation in which a penumbra forms when the emerging flux is constrained from continuing to emerge, but rather is trapped at the photospheric level by the overlying chromospheric canopy fields.

  13. Connecting Coronal Holes and Open Magnetic Field via Numerical Modeling and Observations

    NASA Astrophysics Data System (ADS)

    Lowder, Chris; Qui, Jiong; sLeamon, Robert J.; Longcope, Dana

    2015-04-01

    Coronal holes are regions of the Sun's surface that map the footprints of open magnetic field lines traced down from the corona and heliosphere beyond. Without the ability to directly and easily observe coronal magnetic field line structure, mapping their footprint 'dance' throughout the solar cycle is crucial for understanding this open field contribution to space weather. Coronal holes provide just this proxy.Using a combination of SOHO:EIT, SDO:AIA, and STEREO:EUVI A/B extreme ultraviolet (EUV) observations from 1996-2014, coronal holes are automatically detected and characterized throughout this span, enabling long-term solar-cycle-timescale study. In particular, the combination of SDO:AIA and STEREO:EUVI A/B data provides a new viewpoint on understanding coronal hole evolution. As the two STEREO spacecraft drift ahead and behind of the Earth in their orbit, respectively, they are able to peek around the corner and closer to the poles, providing the ability to image nearly the entire solar surface in EUV wavelengths, using SDO data in conjunction. A flux transport model driven by observed bipole data allows for the study and comparison of far-side magnetic field evolution. By combining our numerical models of solar open magnetic field evolution with coronal hole observations, comparison of far-side and polar dynamics becomes possible. Model constraints and boundary conditions are more easily fine-tuned with these global observations. Understanding the dynamics of boundary changes and distribution throughout the solar cycle yields important insight into connecting models of open magnetic field.

  14. Observation of low field microwave absorption in co-doped ZnO system

    NASA Astrophysics Data System (ADS)

    Mahule, Tebogo S.; Srinivasu, Vijaya V.; Das, Jayashree

    2016-10-01

    Room temperature low field microwave absorption (LFMA) in magnetic materials find application in microwave absorbers and low field sensors. However not all the magnetic materials show LFMA and the phenomenon is not fully understood. We report on the observation of low field microwave absorption (LFMA) or the non-resonant microwave absorption (NRMA) in the transition metal (TM) co-doped ZnO samples of the composition Zn1-x(TM:TM)xO synthesized by solid state reaction technique. LFMA peaks and hysteresis matches very well with that of the magnetization hysteresis loop and the anisotropy fields at room temperature similar to the reports in the literature for other magnetic systems. However we show through our careful experiments that such a correlation between LFMA and the magnetization does not survive at low temperatures and particularly at 10 K the LFMA hysteresis collapses in our TM co-doped ZnO system; whereas the magnetization hysteresis loop becomes very big and anisotropy field becomes bigger in the range of kOe. We interpret the LFMA as field dependent surface impedance or eddy current losses, in terms of a possible role of anomalous hall resistivity that follows magnetization and the ordinary hall resistivity that only follows the applied field. We then argue that LFMA accordingly follows magnetization or applied field when AHE or OHE dominates respectively. Also we confirm the absence of LFMA signals in the rare earth co-doped ZnO system.

  15. Modeling electron density, temperature distribution in the solar corona based on solar surface magnetic field observations

    NASA Astrophysics Data System (ADS)

    Lago, A.; Rodríguez, J. M.; Vieira, L.; Coelho Stekel, T. R.; Costa, J. E. R.; Pinto, T. S. N.

    2015-12-01

    Magnetic fields constitute a natural link between the Sun, the Earth and the Heliosphere in general. The solar dynamo action maintains and strengthens the magnetic field in the solar interior. The structure of the solar corona is mostly determined by the configuration and evolution of the magnetic field. While open magnetic field lines carry plasma into the heliosphere, closed field lines confine plasma. Additionally, key physical processes that impact the evolution of Earth's atmosphere on time-scale from days to millennia, such as the soft X-ray and EUV emission, are also determined by the solar magnetic field. However, observations of the solar spectral irradiance are restricted to the last few solar cycles and are subject to large uncertainties. Here we present a physics-based model to reconstruct in near-real time the evolution of the solar EUV emission based on the configuration of the magnetic field imprinted on the solar surface and assuming that the emission lines are optically thin. The structure of the coronal magnetic field is estimated employing a potential field source surface extrapolation based on the synoptic charts. The coronal plasma temperature and density are described by a hydrostatic model. The emission is estimated to employ the CHIANTI database. The performance of the model is compared to the emission observed by EVE instrument on board SDO spacecraft. The preliminary results and uncertainties are discussed in details. Furthermore, we examine the possibility of delivery the reconstruction of the solar spectral irradiance in near-real time using the infrastructure provided by the Brazilian Space weather program (EMBRACE/INPE). This work is partially supported by CNPq/Brazil under the grant agreement no. 140779/2015-9.

  16. High-resolution observations of the polar magnetic fields of the sun

    NASA Technical Reports Server (NTRS)

    Lin, H.; Varsik, J.; Zirin, H.

    1994-01-01

    High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.

  17. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  18. Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity

    NASA Astrophysics Data System (ADS)

    Torres-Díaz, Isaac; Rinaldi, Carlos; Khushrushahi, Shahriar; Zahn, Markus

    2012-04-01

    Flow of a ferrofluid in spherical and cylindrical geometries were measured under the influence of a uniform rotating magnetic field produced by two perpendicular spherical coils, a so-called fluxball, excited by quadrature currents. Using an ultrasound velocity profile technique and a commercial oil based ferrofluid (EFH1, Ferrotec) we observed rotational flow around the z-axis. In comparison, the radial component of the flow was found to be negligible. Results show that the magnitude of the azimuthal velocity profile increases as the applied magnetic field amplitude increases. This behavior is also observed for ferrofluid in a cylindrical container placed inside the fluxball cavity and inside a two-pole stator winding. These results indicate that inhomogeneities in the magnetic field produced by slots and finite height of the stator winding used in prior experiments are not the source of previously observed flows produced by a two pole stator winding. The experiments reported here either point to the existence of non-uniform demagnetizing magnetic fields due to the finite height of the cylindrical container, the existence of couple stresses and spin viscosity in ferrofluids, or to the need to develop alternate governing and constitutive equations capable of describing the experimental observations.

  19. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  20. Rocket-borne particle, field, and plasma observations in the cleft region. [ionospheric sounding

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Bahnsen, A.; Olesen, J. K.; Primdahl, F.; Spangslev, F.; Heikkila, W. J.; Klumpar, D. M.; Winningham, J. D.; Fahleson, U.; Falthammar, C.-G.

    1975-01-01

    Results are reported for comprehensive observations of magnetic and electric fields together with ambient and suprathermal plasmas above the dayside auroral oval with rocket-borne instrumentation which penetrated the cleft region. Measurements were also obtained equatorward and poleward of the cleft. Convection velocities as inferred from electric-field measurements were generally toward noon equatorward of the cleft and were antisunward over the polar cap. Observations of electron temperatures, electric fields, and low-frequency electrostatic noise provide strong evidence of a plasma instability (Farley-Buneman) in the E-layer associated with the appearance of the 'slant E condition' identified in ground-acquired ionograms. The positions of these measurements relative to that of the cleft were firmly established via the determination of the plasma environment with an electrostatic analyzer.

  1. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field - Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. Robert; Friis-Christensen, Eigil

    1988-01-01

    On July 23, 1983 the IMF turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, the onset of the reconfiguration of the high-latitude ionospheric currents is found to occur about 3 min after the northward IMF encounters the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. These observations and the results of numerical simulations indicate that the dayside polar-cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind.

  2. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  3. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  4. Pioneer Venus orbiter magnetic field and plasma observations in the Venus magnetotail

    SciTech Connect

    Slavin, J.A. ); Intriligator, D.S. ); Smith, E.J. )

    1989-03-01

    This study uses Pioneer Venus orbiter (PVO) magnetometer and plasma analyzer measurements to investigate the draped-field tail of Venus with an emphasis on determining the magnetic field and plasma conditions within the various tail regions and their dependence upon interplanetary magnetic field (IMF) orientation. For this purpose PVO orbits during which the spacecrafts high inclination trajectory took it through the central magnetotail were identified. Analysis of the observations taken during those orbits indicates that the distribution of plasma within the magnetotail is highly asymmetric and controlled by the orientation of the IMF. In the plasma sheet and adjacent lobe regions downstream of the Venus hemisphere over which the solar wind motional electric field, is directed away from the planet, PVO observed increasing fluxes of H{sup +} and O{sup +} as the spacecraft moves away from the tail axis toward the outer boundary of the tail. No O{sup +} ions were observed outside of the magnetotail based upon the magnetic field data and the definitions adopted in this study. Downstream of the Venus hemisphere over which the solar wind motional electric field is directed in toward the planet, PVO does not usually observe significant fluxes of E/Q = 0-8 kV ions, except sometimes directly adjacent to the outer boundary of the tail. These results are interpreted as being due to the more efficient pick-up of newly ionized atmospheric neutrals over the Venus hemisphere where the initial gyromotion takes the newly created ions away from the dense, lower atmosphere where they might be lost due to scattering (Cloutier et al., 1974). The implications of these findings for the formation and maintenance of the Venus magnetotail are discussed.

  5. Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    SciTech Connect

    Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.

    1984-05-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.

  6. Use of Unmanned Aircraft Systems in Observations of Glaciers, Ice Sheets, Sea Ice and Snow Fields

    NASA Astrophysics Data System (ADS)

    Herzfeld Mayer, M. U.

    2015-12-01

    Unmanned Aircraft Systems (UAS) are being used increasingly in observations of the Earth, especially as such UAS become smaller, lighter and hence less expensive. In this paper, we present examples of observations of snow fields, glaciers and ice sheets and of sea ice in the Arctic that have been collected from UAS. We further examine possibilities for instrument miniaturization, using smaller UAS and smaller sensors for collecting data. The quality and type of data is compared to that of satellite observations, observations from manned aircraft and to measurements made during field experiments on the ground. For example, a small UAS can be sent out to observe a sudden event, such as a natural catastrophe, and provide high-resolution imagery, but a satellite has the advantage of providing the same type of data over much of the Earth's surface and for several years, but the data is generally of lower resolution. Data collected on the ground typically have the best control and quality, but the survey area is usually small. Here we compare micro-topographic measurements made on snow fields the Colorado Rocky Mountains with airborne and satellite data.

  7. The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1984-09-01

    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z3 model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z3 zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z3 model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z3 model.

  8. A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Yoon, Peter H.; Freund, H. P.

    1989-01-01

    A generation mechanism for radio waves in the frequency range 150 - 700 kHz observed by ground facilities is suggested in terms of an electromagnetic electron cyclotron instability driven by auroral electrons. The excited waves can propagate downward along the ambient magnetic field lines and are thus observable with ground facilities. The trapped auroral electrons are supposed to play an important role in the generation process, because they give rise to a thermal anisotropy which consequently leads to the instability. The present work is a natural extension of the theory proposed earlier by Wu et al. (1983) which was discussed in a different context but may be used to explain the observed waves originated at low altitudes. This paper presents a possible wave generation mechanism valid in the entire auroral field-line region of interest.

  9. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement processes, analyses of remote sensing data such as those acquired by imaging radars and altimeters can provide a means of quantifying surface texture, identifying the size and distribution of flow components, and delineating textural unit boundaries.

  10. Retrieval of Hydrometeor Drop Size Distributions from TRMM Field Campaign Profiler Doppler Velocity Spectra Observations

    NASA Technical Reports Server (NTRS)

    Williams, Christopher R.; Gage, Kenneth S.

    2003-01-01

    Consistent with the original proposal and work plan, this project focused on estimating the raindrop size distributions (DSDs) retrieved from vertically pointing Doppler radar profilers and analyzing the relationship of the retrieved DSDs with the dynamics of the precipitation processes. The first phase of this project focused on developing the model to retrieve the DSD from the observed Doppler velocity spectra. The second phase used this model to perform DSD retrievals from the profiler observations made during the TRMM Ground Validation Field Campaigns of TEFLUN-B, TRMM-LBA, and KWAJEX. The third phase of this project established collaborations with scientists involved with each field campaign in order to validate the profiler DSD estimates and to enable the profiler retrievals to be used in their research. Through these collaborations, the retrieved DSDs were placed into context with the dynamical processes of the observed precipitating cloud systems.

  11. The performance of field scientists undertaking observations of early life fossils while in simulated space suit

    NASA Astrophysics Data System (ADS)

    Willson, D.; Rask, J. C.; George, S. C.; de Leon, P.; Bonaccorsi, R.; Blank, J.; Slocombe, J.; Silburn, K.; Steele, H.; Gargarno, M.; McKay, C. P.

    2014-01-01

    We conducted simulated Apollo Extravehicular Activity's (EVA) at the 3.45 Ga Australian 'Pilbara Dawn of life' (Western Australia) trail with field and non-field scientists using the University of North Dakota's NDX-1 pressurizable space suit to overview the effectiveness of scientist astronauts employing their field observation skills while looking for stromatolite fossil evidence. Off-world scientist astronauts will be faced with space suit limitations in vision, human sense perception, mobility, dexterity, the space suit fit, time limitations, and the psychological fear of death from accidents, causing physical fatigue reducing field science performance. Finding evidence of visible biosignatures for past life such as stromatolite fossils, on Mars, is a very significant discovery. Our preliminary overview trials showed that when in simulated EVAs, 25% stromatolite fossil evidence is missed with more incorrect identifications compared to ground truth surveys but providing quality characterization descriptions becomes less affected by simulated EVA limitations as the science importance of the features increases. Field scientists focused more on capturing high value characterization detail from the rock features whereas non-field scientists focused more on finding many features. We identified technologies and training to improve off-world field science performance. The data collected is also useful for NASA's "EVA performance and crew health" research program requirements but further work will be required to confirm the conclusions.

  12. MAVEN MAG Observations of Magnetic Field Enhancements and Decreases in the Induced Magnetosphere of Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Espley, J. R.; Connerney, J. E. P.; DiBraccio, G. A.; Gruesbeck, J.; Halekas, J. S.; Mitchell, D. L.; McFadden, J. P.; Brain, D. A.; Jakosky, B. M.; Schneider, N. M.; Mazelle, C. X.; Andersson, L.; Ergun, R. E.; Jain, S.; Deighan, J.; McClintock, W. E.

    2015-12-01

    Recent results have shown the occurrence of a large-scale flux rope (enhancement in magnetic field strength and rotation in magnetic field vectors) on the dayside of Mars as associated with a dayside current sheet region forming at the proximity of strong crustal magnetic fields. This dayside current sheet region including the example of the large-scale flux rope occurred when the draped solar wind magnetic field showed a +By component in the MSO frame. All events involved similar anisotropic pitch angle distribution of electrons with low-energy field aligned electrons and higher-energy trapped electrons, indicating either the mixing of trapped magnetosheath electrons with low energy field aligned ionospheric electrons and/or the pitch angle diffusion of ionospheric electrons. During a time of weak draped field, the current sheet region became highly extended and was observed alongside a decrease in magnetic field strength and highly anisotropic plasma indicative of a mirror mode structure or magnetic hole. The occurrence of magnetic decreases or magnetic holes are an established feature of the solar wind and are often found in the terrestrial magnetosheath, and have also been observed near Jupiter, Venus and comets. More recently, mirror mode structures have been reported within the Earth's magnetosphere. The occurrence of the mirror mode instability could result in the excitation of ULF waves and has also been related to Alfvén waves that could cause heating of the local plasma. Hence, both the large-scale flux ropes and mirror mode structures of current sheet regions on the dayside of Mars may have an important role in ionospheric heating and atmospheric escape at Mars. Therefore, using an automated routine we will attempt to search for the occurrence of magnetic field enhancements and magnetic field decreases in measurements of magnetic field by the Mars Atmosphere and Volatile EvolutioN (MAVEN) satellite Magnetometer (MAG) instrument whilst comparing to the

  13. Hinode magnetic-field observations of solar flares for exploring the energy storage and trigger mechanisms

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshifumi; Inoue, Satoshi; Kawabata, Yusuke

    2015-08-01

    Solar flares abruptly release the free energy stored as a non-potential magnetic field in the corona and may be accompanied by eruptions of the coronal plasma. Magnetic reconnection is considered as a physical process in which the magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration, but the location of magnetic reconnection is difficult to identify directly because of low emission measure at the reconnection region. We are still lack of observational knowledge on the 3D magnetic configuration and physical conditions for leading to flare trigger. Accurate measurements of vector magnetic fields at the solar photosphere, provided by the Solar Optical Telescope onboard Hinode, help us in exploring how the free energy is stored in the solar atmosphere and how the release of the energy is triggered. This presentation will review the magnetic field configuration and possible candidates for flare trigger primarily based on Hinode observations of some large flare events, which may include X5.4/X1.3 flares on 7 March 2012, X1.2 flare on 7 January 2014 and two M-class flares on 2 February 2014. The 7 March 2012 events were observed in an active region with delta-type sunspots, showing a strong shear in the entire magnetic system. For the sheared magnetic structure, the inclusion of a small-scale trigger field was identified near the polarity inversion line with excitation of a high-speed material flow in the horizontally oriented magnetic field formed nearly in parallel to the polarity inversion line. The observations suggest that gas dynamics at the solar surface play a vital role of leading to the onset of flares. The 7 January 2014 event is an exceptional event which most scientists would not be able to predict its occurrence. The flare unexpectedly happened apart from the sheared magnetic field region. The M-class flares on 2 February 2014 were observed in the magnetic field configuration, in which four magnetic domains were

  14. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    NASA Astrophysics Data System (ADS)

    Le Gall, A.; Janssen, M. A.; Wye, L. C.; Hayes, A. G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Lopes, R. M. C.; Wall, S.; Callahan, P.; Stofan, E. R.; Farr, T.; the Cassini Radar Team

    2011-06-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ˜12.5% of Titan's surface, which corresponds to an area of ˜10 million km 2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ˜11°, dune fields tend to become less emissive and brighter as one moves northward. Above ˜11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ˜14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate

  15. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields

    USGS Publications Warehouse

    Le, Gall A.; Janssen, M.A.; Wye, L.C.; Hayes, A.G.; Radebaugh, J.; Savage, C.; Zebker, H.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Lopes, R.M.C.; Wall, S.; Callahan, P.; Stofan, E.R.; Farr, Tom

    2011-01-01

    Large expanses of linear dunes cover Titan's equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini's radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan's geology and climate. We estimate that dune fields cover ???12.5% of Titan's surface, which corresponds to an area of ???10millionkm2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ???11??, dune fields tend to become less emissive and brighter as one moves northward. Above ???11?? this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ???14??. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying

  16. Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.

  17. Observations of a Newly "Captured" Magnetosheath Field Line: Evidence for "Double Reconnection"

    NASA Technical Reports Server (NTRS)

    Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.; Mozer, Forrest S.; Moore, Thomas E.

    2007-01-01

    We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a period of northward interplanetary magnetic field (IMF), shows magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. These results are consistent with the hypothesis that double merging can produce closed field .lines populated by solar wind plasma. Through the use of individual cases such as this and statistical studies of a broader database we seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp. We will present preliminary results of our ongoing study.

  18. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  19. Toward the Direct Measurement of Coronal Magnetic Fields: An Airborne Infrared Spectrometer for Eclipse Observations

    NASA Astrophysics Data System (ADS)

    Samra, J.; DeLuca, E. E.; Golub, L.; Cheimets, P.

    2014-12-01

    The solar magnetic field enables the heating of the corona and provides its underlying structure. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. Therefore, direct measurements of the coronal magnetic field have significant potential to enhance understanding of coronal dynamics and improve solar forecasting models. Of particular interest are observations of coronal field lines in the transitional region between closed and open flux systems, providing important information on the origin of the slow solar wind. While current instruments routinely observe only the photospheric and chromospheric magnetic fields, a proposed airborne spectrometer will take a step toward the direct observation of coronal fields by measuring plasma emission in the infrared at high spatial and spectral resolution. The targeted lines are four forbidden magnetic dipole transitions between 2 and 4 μm. The airborne system will consist of a telescope, grating spectrometer, and pointing/stabilization system to be flown on the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) during the August 2017 total solar eclipse. The project incorporates several optical engineering challenges, centered around maintaining adequate spectral and spatial resolution in a compact and inexpensive package and on a moving platform. Design studies are currently underway to examine the tradeoffs between various optical geometries and control strategies for the pointing/stabilization system. The results will be presented and interpreted in terms of the consequences for the scientific questions. In addition, results from a laboratory prototype and simulations of the final system will be presented.

  20. Voyager Observations of Magnetic Fields and Cosmic Rays in the Heliosheath

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.; Stone, E.; McDonald, F. B.

    2011-01-01

    The major features of the profile of greater than 70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (VI) in the heliosheath from 2005.8-2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence on CRI decreases observed by V 1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V 1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. (2009) and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects

  1. Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling

    USGS Publications Warehouse

    Ruggiero, P.; Walstra, D.-J.R.; Gelfenbaum, G.; van, Ormondt M.

    2009-01-01

    A coupled waves-currents-bathymetric evolution model (DELFT-3D) is compared with field measurements to test hypotheses regarding the processes responsible for alongshore varying nearshore morphological changes at seasonal time scales. A 2001 field experiment, along the beaches adjacent to Grays Harbor, Washington, USA, captured the transition between the high-energy erosive conditions of winter and the low-energy beach-building conditions typical of summer. The experiment documented shoreline progradation on the order of 10-20 m and on average approximately 70 m of onshore sandbar migration during a four-month period. Significant alongshore variability was observed in the morphological response of the sandbar over a 4 km reach of coast with sandbar movement ranging from 20 m of offshore migration to over 175 m of onshore bar migration, the largest seasonal-scale onshore migration event observed in a natural setting. Both observations and model results suggest that, in the case investigated here, alongshore variations in initial bathymetry are primarily responsible for the observed alongshore variable morphological changes. Alongshore varying incident hydrodynamic forcing, occasionally significant in this region due to a tidal inlet and associated ebb-tidal delta, was relatively minor during the study period and appears to play an insignificant role in the observed alongshore variability in sandbar behavior at kilometer-scale. The role of fully three-dimensional cell circulation patterns in explaining the observed morphological variability also appears to be minor, at least in the case investigated here. ?? 2009 Elsevier B.V.

  2. Simulation of polarized optical speckle fields: effects of the observation scale on polarimetry.

    PubMed

    Dupont, Jan; Orlik, Xavier

    2016-05-16

    In this paper, we propose the simulation of polarized speckle fields using the Stokes formalism, which allows the description of partially polarized electromagnetic waves. We define a unique parameter which determines the partial decorrelation of the involved fields, allowing to simulate the polarized speckles produced by all types of scatterers, from simple to multiple scatterers. We validate this model by comparison with experimental measurements. We use that simulation model to study the impact of the imaging device parameters on polarimetric measurements: first we emphasize a limit of resolution on retardance measurements, then we study the spatial depolarization, which appears when an observer is measuring any space-variant polarization map. PMID:27409937

  3. Observational Signatures and Non-Gaussianities ofGeneral Single Field Inflation

    SciTech Connect

    Chen, Xingang; Huang, Min-xin; Kachru, Shamit; Shiu, Gary

    2006-05-05

    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ''shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.

  4. Berry's phase in cavity QED: Proposal for observing an effect of field quantization

    SciTech Connect

    Carollo, A.; Santos, M. Franca; Vedral, V.

    2003-06-01

    We propose a feasible experiment to investigate quantum effects in geometric phases, arising when a classical source drives not a single quantum system, but two interacting ones. In particular, we show how to observe a signature of the quantization of the electromagnetic field through a vacuum effect in Berry's phase. To do so, we describe the interaction of an atom and a quantized cavity mode altogether driven by an external quasiclassical field. We also analyze the semiclassical limit recovering the usual Berry's phase results.

  5. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions.

    PubMed

    Kolenda, S; Wolf, M J; Beckmann, D

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100  μV/K, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  6. Are the laboratory and field conditions observations of acute mountain sickness related?

    PubMed

    Savourey, G; Guinet, A; Besnard, Y; Garcia, N; Hanniquet, A; Bittel, J

    1997-10-01

    In order to study relationships between acute mountain sickness (AMS) observations done both during a short-term hypoxic exposure in a hypobaric chamber, and in field conditions during a high altitude expedition, nine subjects were submitted to a 9-h hypoxic exposure in a hypobaric chamber. Then, they experienced a high altitude expedition in the Himalayas. The Lake Louise AMS scoring system was used to assess AMS in both conditions, especially the self report questionnaire. During the expedition, the mean self report score of each subject, defined as the ratio between the sum of daily self report scores and the duration of the expedition, appears to be correlated not only to the maximal self report score observed in altitude (r = +0.77, p < 0.05) but also to the self report and self report+clinical assessment scores observed at the end of the hypobaric chamber sojourn (r = +0.81, p < 0.01 and r = +0.75, p < 0.05, respectively). In conclusion, the Lake Louise AMS scoring system, especially the self report questionnaire, is relevant to assess AMS with simplicity and rapidity both in laboratory and in field conditions. Our study also suggests that AMS induced by a short term sojourn in a hypobaric chamber is related to AMS observed in field conditions.

  7. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  8. Magnetospheric Response to Interplanetary Field Enhancements: Coordinated Space-based and Ground-based Observations

    NASA Astrophysics Data System (ADS)

    Chi, Peter; Russell, Christopher; Lai, Hairong

    2014-05-01

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth's magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth's field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth's magnetopause. These ground stations spread across many

  9. Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    SciTech Connect

    Huntington, C. M.; Fiuza, F.; Ross, J. S.; Zylstra, A. B.; Drake, R. P.; Froula, D. H.; Gregori, G.; Kugland, N. L.; Kuranz, C. C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B. A.; Ryutov, D. D.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Park, H.-S.

    2015-01-19

    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of su fficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability effi ciently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. Furthermore, this result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.

  10. Observations of ELF fields near the low-altitude CRRES chemical releases

    SciTech Connect

    Koons, H.C.; Roeder, J.L.

    1995-08-01

    The Combined Release and Radiation Effects Satellite (CRRES) performed a series of seven low altitude chemical releases between September 10, 1990, and August 12, 1991. Immediately following each chemical release, electric and magnetic fields were detected by the extremely low frequency wave analyzer sensors of the Low Altitude Satellite Studies of Ionospheric Irregularities (LASSII) experiment on the spacecraft. The time series and spectra of the two field components are quite similar for each of the releases but vary in detail from release to release. The index of refraction estimated from the ratio of the magnetic field to the electric field is too small by about 2 orders of magnitude for either the right hand wave or the extraordinary wave modes which are the only propagating electromagnetic modes in the detected band above the O+ ion gyrofrequency (about 30 Hz). ELF hiss observed at higher altitudes is found to be propagating in the extraordinary wave mode with the correct index of refraction. This confirms that the intensity measurements are being made correctly by the instrument and that an alternative explanation is required for the signals detected following the chemical releases. The authors show that the waves are primarily electrostatic and that the magnitude of the wave magnetic field is consistent with the transverse magnetic field component of ion acoustic waves.

  11. 1969 to 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    NASA Astrophysics Data System (ADS)

    Philip, A. G. D.

    2011-04-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch Stars and published several papers on this topic in BOTT from 1967 thru 1972. I started by making Strömgren four-color observations at Kitt Peak National Observatory and then at Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c indices, caused by their greater (u-b) colors. Later four new filters were added (U, V, B, S). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope. We are making follow-up observations of the new FHB stars found.

  12. 1969 - 2010: Multicolor Photometric Observations of Population II Field Horizontal-Branch Stars

    NASA Astrophysics Data System (ADS)

    Philip, A. G. Davis

    2010-05-01

    From 1969 to 2010 I have been involved in a photometric study of Population II Field Horizontal-Branch stars. I started by making Stromgren four-color observations at Kitt Peak National Observatory and then Cerro Tololo Inter-American Observatory. I had taken spectral plates of all my selected areas on which I marked all the A-type stars. These stars were then observed photometrically. New FHB stars could be identified by their large c1 indices, caused by their greater (u-b) colors. Later four new filters were added ( U V B S ). With Richard Boyle of the Vatican Observatory we observed on Mt. Graham (Arizona) on the Vatican Advanced Technology Telescope.We plan follow-up observations of the new FHB stars found.

  13. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  14. Proto-Type Development of Optical Wide-field Patrol Network and Test Observation

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Yim, H.; Park, Y.; Hae, Y.; Park, S.; Choi, J.; Son, J.

    2014-09-01

    We present a prototype system developed for optical satellite tracking and its early test observation results. The main objective of the OWL (Optical Wide-field patroL) network is to get orbital information for Korean domestic satellites using optical means only and to maintain their orbital elements. The network is composed of 5 small wide-field telescopes deployed over the world. Each observing station is operated in fully robotic manner from receiving observation schedule to reporting the result, and controlled by the headquarter located in Daejeon, Korea, where orbit calculation and observation strategy will be determined. We developed a compact telescope system for robotic observation and easy maintenance. The telescope is 0.5m of aperture diameter with Rechey-Cretian configuration and its field of view is 1.1 deg. It is equipped with 4K CCD with 9um pixel size, and its pixel scale is 1.2 arcsec/pixel. A chopper wheel with variable speed is adopted to get more points in a single shot. The CCD camera and all the rotating parts (chopper wheel, de-rotator, and filter wheel) are integrated into one compact component called a wheel station. Each observing station is equipped with a fully automatic dome and heavy duty environment monitoring system. We could get an image every 20 seconds and up to ~100 trail points in a single exposure. Each point is time-tagged by ~1/1000 second precision. For one of best cases, we could estimate satellite position with RMS ~ 0.5km accuracy in the along-track with only 4 exposures (~100 points). The first system was installed at the Mongolian site after completing verification test at the testbed site in Daejeon, Korea. The second and third system will be installed in the end of this year.

  15. Observations of the Interstellar Magnetic Field in the Outer Heliosheath: Voyager 1

    NASA Astrophysics Data System (ADS)

    Burlaga, L. F.; Ness, N. F.

    2016-10-01

    New observations of the magnetic field {\\boldsymbol{B}} from ≈2014.7 through 2016.3288, together with the previous observations dating back to 2012 August 25, show that Voyager 1 continued to observe draped interstellar magnetic fields in the outer heliosheath. During this time, the direction of {\\boldsymbol{B}} was nearly constant (±3°), with no significant long-term trend. The slope of a linear least squares fit to the variation of the magnetic field strength B with time is (0.001 ± 0.001) nT yr‑1, consistent with no net change, and the average B = (0.48 ± 0.04) nT. The new observations show a second “disturbed interval” in which B was ≤slant 1.2< B> for ≈267 days. This interval began with a weak shock on 2014/236 (2014.6438), contained oscillations in B with a 28 day period, and possibly ended with a pressure balanced structure or a reverse shock. It is likely this disturbed interval was associated with Sun/solar wind disturbances that impacted the heliopause and produced disturbances that propagated into the outer heliosheath. A quiet interval containing weaker less variable {\\boldsymbol{B}} was observed from ≈2015.3700 until at least 2016.0. Unlike the previous quiet interval observed in the outer heliosheath, the direction of {\\boldsymbol{B}} did not change linearly and could not be extrapolated to the center of the IBEX ribbon.

  16. Possible Connections Between the History of the Venus Magnetic Field and Observable Features

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2002-05-01

    Venus does not have a global magnetic field at present and we have no information that relates directly to the past history of the field. Yoder finds evidence in gravity data to suggest a liquid iron core and this is reasonable on the basis of mineral physics alone. Dynamo scaling suggests that if Venus had a dynamo, it would generate a field that is quite large, about 5-10 precent of Earth's field. The most likely explanation for the absence of a Venus field is the absence of convection in the liquid core. Stevenson et al (1983) suggested that this arises because Venus has no inner core (because it is too hot and the pressures are too low). Earth's inner core is believed to play an important role in generation of the geomagnetic field. Here I discuss the alternative that Venus's field died as Venus transitioned from a mobile surface to a stagnant lid regime, gradually or catastrophically, beginning around 700 million years ago. This transition led to mantle heating and cessation of the cooling and hence convection of the Venus core, irrespective of whether it had an inner core. Parameterized convection models suggest that this is possible, although it depends on the layering of the Venus mantle and the extent of a boundary layer above the core-mantle boundary. In this story, there is a strong connection between the volcanic and resurfacing history of Venus and the presence of a global magnetic field. There is a slight possibility that paleomagnetic signatures (similar to Mars but much subdued) could be observed on Venus for terrains that were resurfaced more than 500 million years ago.

  17. Kilometric radio waves generated along auroral field lines observed by ground facilities - A theoretical model

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Wu, C. S.; Yoon, Peter H.

    1991-01-01

    A theory of generation of radio waves observed by ground-based facilities in the frequency range 150-700 kHz is discussed. This work is a continuation of an earlier discussion (Wu et al., 1989) in which it was proposed that the trapped electrons along the auroral field lines can lead to a cyclotron instability which amplifies the whistler waves observed at ground level. The objective of the present study is to investigate the propagation effect on the wave amplification and to examine whether the proposed mechanism is indeed viable.

  18. Surprises from the field: Novel aspects of aeolian saltation observed under natural turbulence

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Kok, J. F.; Chamecki, M.

    2015-12-01

    The mass flux of aeolian (wind-blown) sediment transport - critical for understanding earth and planetary geomorphology, dust generation, and soil stability - is difficult to predict. Recent work suggests that competing models for saltation (the characteristic hopping of aeolian sediment) fail because they do not adequately account for wind turbulence. To address this issue, we performed field deployments measuring high-frequency co-variations of aeolian saltation and near-surface winds at multiple sites under a range of conditions. Our observations yield several novel findings not currently captured by saltation models: (1) Saltation flux displays no significant lag relative to horizontal wind velocity; (2) Characteristic height of the saltation layer remains constant with changes in shear velocity; and (3) During saltation, the vertical profile of mean horizontal wind velocity is steeper than expected from the Reynolds stress. We examine how the interactions between saltation and turbulence in field settings could explain some of these surprising observations.

  19. Observation of Bose-Einstein condensation in a strong synthetic magnetic field

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin J.; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-10-01

    Extensions of Berry’s phase and the quantum Hall effect have led to the discovery of new states of matter with topological properties. Traditionally, this has been achieved using magnetic fields or spin-orbit interactions, which couple only to charged particles. For neutral ultracold atoms, synthetic magnetic fields have been created that are strong enough to realize the Harper-Hofstadter model. We report the first observation of Bose-Einstein condensation in this system and study the Harper-Hofstadter Hamiltonian with one-half flux quantum per lattice unit cell. The diffraction pattern of the superfluid state directly shows the momentum distribution of the wavefunction, which is gauge-dependent. It reveals both the reduced symmetry of the vector potential and the twofold degeneracy of the ground state. We explore an adiabatic many-body state preparation protocol via the Mott insulating phase and observe the superfluid ground state in a three-dimensional lattice with strong interactions.

  20. Low-frequency magnetic field fluctuations in comet P/Halley's magnetosheath - Giotto observations

    NASA Technical Reports Server (NTRS)

    Glassmeier, K. H.; Neubauer, F. M.; Acuna, M. H.; Mariani, F.

    1987-01-01

    The interaction region between comets and the solar wind is characterized by large amplitude, low frequency magnetic field fluctuations, both within the upstream region as well as in the magnetosheath. Magnetosheath observations of the magnetic field experiment onboard Giotto indicate values of delta B/B equal to about O(1). Power spectral peaks appear at frequencies of 10mHz with the spectrum exhibiting a power law dependence with an exponent of the order 2. Radial variation of the fluctuation level does not clearly increase with decreasing distance from the cometary nucleus as observed by the magnetometer onboard Vega-1 and as expected from quasi-linear theory. The entrance into the cometary bow shock is furthermore characterized by an order of magnitude increase of the fluctuation level, both on the in- and outbound pass of Giotto.

  1. Chandra X-ray Observations of Young Clusters. Volume II; Orion Flanking Fields Data

    NASA Technical Reports Server (NTRS)

    Ramirez, Solange V.; Rebull, Luisa; Stauffer, John; Strom, Stephen; Hillenbrand, Lynne; Hearty, Thomas; Kopan, Eugene L.; Pravdo, Steven; Makidon, Russell; Jones, Burton

    2004-01-01

    We present results of Chandra observations of two flanking fields (FFs) in Orion, outside the Orion Nebula Cluster (ONC). The observations were taken with the ACIS-I camera with an exposure time of about 48 ks each field. We present a catalog of 417 sources, which includes X-ray luminosity, optical and infrared photometry, and X-ray variability information. We have found 91 variable sources, 33 of which have a flarelike light curve and 11 of which have a pattern of a steady increase or decrease over a 10 hr period. The optical and infrared photometry for the stars identified as X-ray sources are consistent with most of these objects being pre-main-sequence stars with ages younger than 10 Myr. We present evidence for an age difference among the X-ray-selected samples of NGC 2264, Orion FFs, and ONC, with NGC 2264 being the oldest and ONC being the youngest.

  2. The plasma and magnetic field properties of coronal loops observed at high spatial resolution

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Holman, G. D.; Davis, J. M.; Kundu, M. R.; Shevgaonkar, R. K.

    1987-01-01

    Two data sets are analyzed in order to improve understanding of the plasma and magnetic field properties of active region coronal loops. Each set consists of coaligned, high spatial resolution soft X-ray, microwave, and magnetogram images that are used to compare observations of coronal loops and their feet in the photosphere and to constrain possible microwave emission mechanisms. The loops are found to have plasma parameters typical of quiescent active region loops. Each loop has a compact microwave source with peak brightness temperature T(b) = 1-2.5 x 10 to the 6th K cospatial with or near the loop apex. No complete loops are imaged in microwaves. The loop emission observed at 4.9 GHz is best described by fourth harmonic gyroresonance emission from a dipole loop model, but with less field variation along the loop than in the models of Holman and Kundu (1985).

  3. Observation of valence band electron emission from n-type silicon field emitter arrays

    NASA Astrophysics Data System (ADS)

    Ding, Meng; Kim, Han; Akinwande, Akintunde I.

    1999-08-01

    Electron emission from the valence band of n-type Si field emitter arrays is reported. High electrostatic field at the surface of Si was achieved by reducing the radius of the emitter tip. Using oxidation sharpening, 1 μm aperture polycrystalline Si gate, n-type Si field emitter arrays with small tip radius (˜10 nm) were fabricated. Three distinct emission regions were observed: conduction band emission at low gate voltages, saturated current emission from the conduction band at intermediate voltages, and valence band plus conduction band emission at high gate voltages. Emission currents at low and high voltages obey the Fowler-Nordheim theory. The ratio of the slopes of the corresponding Fowler-Nordheim fits for these two regions is 1.495 which is in close agreement with the theoretical value of 1.445.

  4. Observation of spectrum effect on the measurement of intrinsic error field on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Qian, Jin-Ping; Shi, Tong-Hui; Shen, Biao; Gu, Shuai; Liu, Yue-Qiang; Guo, Wen-Feng; Chu, Nan; He, Kai-Yang; Jia, Man-Ni; Chen, Da-Long; Xue, Min-Min; Ren, Jie; Wang, Yong; Sheng, Zhi-Cai; Xiao, Bing-Jia; Luo, Zheng-Ping; Liu, Yong; Liu, Hai-Qing; Zhao, Hai-Lin; Zeng, Long; Gong, Xian-Zu; Liang, Yun-Feng; Wan, Bao-Nian; The EAST Team

    2016-06-01

    Intrinsic error field on EAST is measured using the ‘compass scan’ technique with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The intrinsic error field measured using a non-resonant dominated spectrum with even connection of the upper and lower resonant magnetic perturbation coils is of the order {{b}r2,1}/{{B}\\text{T}}≃ {{10}-5} and the toroidal phase of intrinsic error field is around {{60}{^\\circ}} . A clear difference between the results using the two coil configurations, resonant and non-resonant dominated spectra, is observed. The ‘resonant’ and ‘non-resonant’ terminology is based on vacuum modeling. The penetration thresholds of the non-resonant dominated cases are much smaller than that of the resonant cases. The difference of penetration thresholds between the resonant and non-resonant cases is reduced by plasma response modeling using the MARS-F code.

  5. Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

    SciTech Connect

    Marhauser, Frank; Johnson, Rolland; Rodriguez, Rodolfo; Degtiarenko, Pavel; Hutton, Andrew; Kharashvili, George; Reece, Charles; Rimmer, Robert

    2013-09-01

    High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.

  6. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  7. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel‑1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  8. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  9. High-intensity geomagnetic field 'spike' observed at ca. 3000 cal BP in Texas, USA

    NASA Astrophysics Data System (ADS)

    Bourne, Mark D.; Feinberg, Joshua M.; Stafford, Thomas W.; Waters, Michael R.; Lundelius, Ernest; Forman, Steven L.

    2016-05-01

    By observing the fluctuations in direction and intensity of the Earth's magnetic field through time, we increase our understanding of the fluid motions of the Earth's outer core that sustain the geomagnetic field, the geodynamo. Recent archaeomagnetic studies in the Near East have found extremely rapid increases - 'spikes' - in geomagnetic field intensity at ca. 3000 yr cal BP. These observations have proved problematic for our current understanding of core-flow. However, until now, these geomagnetic spikes had not been observed outside of the Near East, where they have been preserved in metallurgical slag and fired, mud brick walls. We present a new, fully oriented, geomagnetic secular variation and relative palaeointensity (RPI) record for the last 17,000 yr from Hall's Cave, Texas, whose complete, >3.8 m thick sedimentary sequence spans from the present to 16 , 850 ± 110 RC yr BP (Modern to 20,600 cal BP). Within the stable, cool climate of the cave, pedogenic and bioturbation processes are negligible to non-existent, thereby limiting post-depositional physical and geochemical alteration of the magnetic record. The sub-aerial and subterranean setting of the sedimentary sequence in Hall's Cave enabled us to collect oriented palaeomagnetic cubes from a previously excavated stratigraphic section. The palaeomagnetic samples yielded high-quality vectors. An age model for the sequence, determined using 15 AMS 14C-dates on individual bones from microvertebrates, was combined with the palaeomagnetic data to construct a secular variation record. The record is in broad agreement with predictions by Holocene field models for the site's location. However, starting ca. 3000 yr ago, the RPI data indicate an almost four-fold increase in geomagnetic field intensity lasting several hundred years. This record presents well-dated evidence, obtained using conventional techniques, for the existence of a geomagnetic intensity spike in North America that is contemporaneous with the

  10. Observations of Field Line Resonances by Low-Altitude ST-5 Satellites

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Slavin, J. A.

    2010-01-01

    Space Technology 5 (ST-5) mission is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, and sun synchronous polar orbit with 105.6deg inclination angle. Due to the Earth's rotation and the dipole tilt effect, the spacecraft's dawn-dusk orbit track can reach as low as subauroral latitudes during the course of a day. Whenever the spacecraft traverse across the dayside closed field line region at subauroral latitudes, they frequently observe strong transverse oscillations at 30-200 mHz, or in the Pe 2-3 frequency range. These Pc 2-3 waves appear as wave packets with durations in the order of 5-10 minutes. As the maximum separations of the ST-5 spacecraft are in the order of 10 minutes, the three ST-5 satellites often observe very similar wave packets, implying these wave oscillations occur in a localized region. The coordinated ground-based magnetic observations at the spacecraft footprints, however, do not see waves in the Pc 2- 3 band; instead, the waves appear to be the common Pc 4-5 waves associated with field line resonances. We suggest that this unique Pc 2-3 waves seen by ST-5 are in fact the Doppler-shifted Pc 4-5 waves as a result of rapid traverse of the spacecraft across the resonant field lines azimuthally at low altitudes. The observations with the unique spacecraft dawn-disk orbits at proper altitudes and magnetic latitudes reveal the azimuthal characteristics of field-aligned resonances.

  11. Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.

    2013-12-01

    It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

  12. Observation of enhanced field emission properties of Au/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Girish P.; Bagal, Vivekanand S.; Suryawanshi, Sachin R.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-05-01

    Simple and low-cost method of thermal annealing was used to decorate Gold (Au) nanoparticles on aligned TiO2 nanotubes. The aligned TiO2 nanotubes were decorated by Au nanoparticles with an average diameter of 9, 18 and 28 nm (aligned TiO2 nanotubes referred as specimen A and TiO2 nanotubes decorated by Au nanoparticles with average diameter of 9, 18 and 28 nm are referred as specimen B, C and D, respectively). The detailed characterization such as structural, morphological and elemental analysis of TiO2 and Au/TiO2 nanocomposite have been carried out using X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, the meticulous comparative field emission characteristics of the aligned TiO2 nanotubes and Au/TiO2 nanocomposite have been performed. The turn-on field defined for the current density of 10 μA/cm2 has been found to be 3.9, 2.8, 3.2 and 3.7 V/μm for specimen A, B, C and D, respectively. The observed low turn-on field of specimen B has been found to be superior than the other semiconducting nanocomposites reported in the literature. The emission current stability over a period of 3 h is found to be better for all the specimens. To the best of our knowledge, a systematic field emission study of Au/TiO2 nanocomposite has not been explored. The observed superior field emission study of Au/TiO2 nanocomposite indicates their possible use in micro/nanoelectronic devices.

  13. FAST Observations of Acceleration Processes in the Cusp--Evidence for Parallel Electric Fields

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.. Jr.; Carlson, C.; McFadden, J.; Ergun, R.; Clemmons, J.; Klumpar D.; Strangeway, R.

    1999-01-01

    The existence of precipitating keV ions in the Earth's cusp originating at the magnetosheath provide unique means to test our understanding of particle acceleration and parallel electric fields in the lower altitude acceleration region. On numerous occasions, the FAST (The Fast Auroral Snapshot) spacecraft has encountered the Earth's cusp regions near its apogee of 4175 km which are characterized by their signatures of dispersed keV ion injections. The FAST instruments also reveal a complex microphysics inherent to many, but not all, of the cusp regions encountered by the spacecraft, that include upgoing ion beams and conics, inverted-V electrons, upgoing electron beams, and spikey DC-coupled electric fields and plasma waves. Detailed inspection of the FAST data often show clear modulation of the precipitating magnetosheath ions that indicate that they are affected by local electric potentials. For example, the magnetosheath ion precipitation is sometimes abruptly shut off precisely in regions where downgoing localized inverted-V electrons are observed. Such observations support the existence of a localized process, such as parallel electric fields, above the spacecraft which accelerate the electrons downward and consequently impede the precipitating ion precipitation. Other acceleration events in the cusp are sometimes organized with an apparent cellular structure that suggests Alfven waves or other large-scale phenomena are controlling the localized potentials. We examine several cusp encounters by the FAST satellite where the modulation of energetic session on acceleration particle populations reveals evidence of localized acceleration, most likely by parallel electric fields.

  14. Electric field observations of time constants related to charging and charge neutralization processes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Evans, D. S.; Troim, J.

    1982-01-01

    The Polar 5 electric field results are reviewed, and the transients from Polar 3 are presented. The phenomena are discussed from the standpoint of space charge. On the basis of the Polar 5 results, the large magnitude of the electric field from Polar 3 is seen as indicating that the observed space charge was probably within a few km or less of the payload. Reference is made to Cole's prediction (1960) that charges in the ionosphere would reach equilibrium with a time constant of the order of a few microsec. The processes involved in the two cases presented here require time constants of the order of ms. If the sheath dimensions are taken to be between 50 and 100 m, which is not considered unreasonable in view of the electric field measurements, then a qualitative estimate of the neutralization time would be the transit time for ions across the sheath. Since the kinetic velocity of a 1-eV proton is approximately 14 m/s, it would traverse the distance in 4 to 8 ms, assuming freedom of movement across magnetic field lines. This is the order of the decay times observed on Polar 5.

  15. Constraints on common envelope magnetic fields from observations of jets in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Tocknell, James; De Marco, Orsola; Wardle, Mark

    2014-04-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we have not been able to find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation may preclude the formation of even one accretion disc able to supply the necessary accretion rate to cause the observed jets.

  16. OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, H. M.; Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P.

    2011-06-01

    Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

  17. Validation of EGSIEM gravity field products with globally distributed in situ ocean bottom pressure observations

    NASA Astrophysics Data System (ADS)

    Poropat, Lea; Bergmann-Wolf, Inga; Flechtner, Frank; Dobslaw, Henryk

    2016-04-01

    Time variable global gravity field models that are processed by different research institutions all across Europe are currently compared and subsequently combined within the "European Gravity Field Service for Improved Emergency Management (EGSIEM)" project funded by the European Union. To objectively assess differences between the results from different groups, and also to evaluate the impact of changes in the data processing at an individual institution in preparation of a new data release, a validation of the final GRACE gravity fields against independent observations is required. 
For such a validation, we apply data from a set of globally distributed ocean bottom pressure sensors. The in situ observations have been thoroughly revised for outliers, instrumental drift and jumps, and were additionally reduced for tides. GRACE monthly mean solutions are then validated with the monthly resampled in situ observations. The validation typically concentrates on seasonal to interannual signals, but in case of GRACE-based series with daily sampling available from, e.g., Kalman Smoother Solutions, also sub-monthly signal variability can be assessed.

  18. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection.

    PubMed

    Ergun, R E; Goodrich, K A; Wilder, F D; Holmes, J C; Stawarz, J E; Eriksson, S; Sturner, A P; Malaspina, D M; Usanova, M E; Torbert, R B; Lindqvist, P-A; Khotyaintsev, Y; Burch, J L; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Chen, L J; Lapenta, G; Goldman, M V; Newman, D L; Schwartz, S J; Eastwood, J P; Phan, T D; Mozer, F S; Drake, J; Shay, M A; Cassak, P A; Nakamura, R; Marklund, G

    2016-06-10

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100  mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields. PMID:27341241

  19. Use of real-time tools to support field operations of NSF's Lower Atmosphere Observing Facilities

    NASA Astrophysics Data System (ADS)

    Daniels, M.; Stossmeister, G.; Johnson, E.; Martin, C.; Webster, C.; Dixon, M.; Maclean, G.

    2012-12-01

    NCAR's Earth Observing Laboratory (EOL) operates Lower Atmosphere Observing Facilities (LAOF) for the scientific community, under sponsorship of the National Science Foundation. In order to obtain the highest quality dataset during field campaigns, real-time decision-making critically depends on the availability of timely data and reliable communications between field operations staff and instrument operators. EOL incorporates the latest technologies to monitor the health of instrumentation, facilitate remote operations of instrumentation and keep project participants abreast of changing conditions in the field. As the availability of bandwidth on mobile communication networks and the capabilities of their associated devices (smart phone, tablets, etc.) improved, so has the ability of researchers to respond to rapidly changing conditions and coordinate ever more detailed measurements from multiple remote fixed, portable and airborne platforms. This presentation will describe several new tools that EOL is making available to project investigators and how these tools are being used in a mobile computing environment to support enhanced data collection during field campaigns. LAOF platforms such as radars, aircraft, sondes, balloons and surface stations all rely on displays of real-time data for their operations. Data from sondes are ingested into the Global Telecommunications System (GTS) for assimilation into regional forecasting models that help guide project operations. Since many of EOL's projects occur around the globe and at the same time instrument complexity has increased, automated monitoring of instrumentation platforms and systems has become essential. Tools are being developed to allow remote instrument control of our suite of observing systems where feasible. The Computing, Data and Software (CDS) Facility of EOL develops and supports a Field Catalog used in field campaigns for nearly two decades. Today, the Field Catalog serves as a hub for the

  20. Intercomparison of surface heat transfer in the Arctic for multiple reanalyses, satellite data and field observations

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Mazilkina, Alexandra; Ivanov, Vladimir

    2015-04-01

    This study evaluated surface heat fluxes from reanalyses (ERAInterim, NCEP/NCAR, ASR) in the Arctic Ocean during summer and fall. Several types of surface conditions are compared: very new ice cover during a period of low temperature, ice-free conditions, ice with leads and melt ponds, pack ice and marginal ice zone. Meteorological and micrometeorological observations were used to validate the temperature profiles and surface heat fluxes in the major reanalyses. We use data from Nansen and Amundsen basins observation system (NABOS) project to evaluate the performance of reanalyses forin the Arctic Ocean. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009 and 2013. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. With the explicit treatment of the ice concentration, ERA-Interim generally reproduces the surface heat transfer, while NCEP/NCAR, based on a 55% concentration threshold, shows obvious disagreement with the observations in highly ice-covered and ice-free situations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on the comparison of field experiments data, satellite-derived data and reanalysis the causes of underestimation of the values of turbulent heat fluxes in the Arctic modern reanalysis are investigated. Obtained differences are related to the temperature and structural inhomogeneity of the surface and the development of space-organized convection fields. Reanalyses data are sometimes used to calculate the surface heat budgets over polynyas to estimate ice production in

  1. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  2. A Cosmic Train Wreck: JVLA Radio Observations of the HST Frontier Fields Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Pearce, Connor; Van Weeren, Reinout J.; Jones, Christine; Forman, William R.; Ogrean, Georgiana A.; Andrade-Santos, Felipe; Kraft, Ralph P.; Dawson, William; Brüggen, Marcus; Roediger, Elke; Bulbul, Esra; Mroczkowski, Tony

    2016-01-01

    The galaxy cluster mergers observed in the HST Frontier Fields represent some of the most energetic events in the Universe. Major cluster mergers leave distinct signatures in the ICM in the form of shocks, turbulence, and diffuse cluster radio sources. These diffuse radio sources, so-called radio relics and halos, provide evidence for the acceleration of relativistic particles and the presence of large scale magnetic fields in the ICM. Observations of these halos and relics allow us to (i) study the physics of particle acceleration and its relation with shocks and turbulence in the ICM and (ii) constrain the dynamical evolution of the merger eventsWe present Jansky Very Large Array 1-4 GHz observations of the Frontier cluster Abell 2744. We confirm the presence of the known giant radio halo and radio relic via our deep radio images. Owing to the much greater sensitivity of the JVLA compared to previous observations, we are able to detect a previously unobserved long Mpc-size filament of synchrotron emission to the south west of the cluster core. We also present a radio spectral index image of the diffuse cluster emission to test the origin of the radio relic and halo, related to the underlying particle acceleration mechanism. Finally, we carry out a search for radio emission from the 'jellyfish' galaxies in A2744 to estimate their star formation rate. These highly disturbed galaxies are likely influenced by the cluster merger event, although the precise origin of these galaxies is still being debated.

  3. Analysis of the interplanetary magnetic field observations at different heliocentric distances

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga

    2013-04-01

    Multi-spacecraft measurements of the interplanetary magnetic field (IMF) from 0.29 AU to 5 AU along the ecliptic plane have demonstrated systematic deviations of the observed IMF strength from the values predicted on the basis of the Parker-like radial extension models (Khabarova, Obridko, 2012). In particular, it was found that the radial IMF component |Br| decreases with a heliocentric distance r with a slope of -5/3 (instead of r-2 expansion law). The current investigation of multi-point observations continues the analysis of the IMF (and, especially, Br) large-scale behaviour, including its latitudinal distribution. Additionally, examples of the mismatches between the expected IMF characteristics and observations at smaller scales are discussed. It is shown that the observed effects may be explained by not complete IMF freezing-in to the solar wind plasma. This research was supported by the Russian Fund of Basic Researches' grants Nos.11-02-00259-a, and 12-02-10008-K. Khabarova Olga, and Obridko Vladimir, Puzzles of the Interplanetary Magnetic Field in the Inner Heliosphere, 2012, Astrophysical Journal, 761, 2, 82, doi:10.1088/0004-637X/761/2/82, http://arxiv.org/pdf/1204.6672v2.pdf

  4. Theory and observations of upward field-aligned currents at the magnetopause boundary layer

    NASA Astrophysics Data System (ADS)

    Wing, Simon; Johnson, Jay R.

    2015-11-01

    The dependence of the upward field-aligned current density (J||) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J||. Excluding data from noon, our least squares fit returns log(J||,max_cal) = (0.96 ± 0.04) log(J||_obs) + (0.03 ± 0.01) where J||,max_cal = calculated J||,max and J||_obs = observed J||.

  5. Multiple X Line Reconnection in the Near Earth Magnetotail: Cluster Multipoint Plasma and Field Observations

    NASA Technical Reports Server (NTRS)

    Eastwood, J. P.; Sibeck, D. G.; Slavin, J. A.; Goldstein, M. L.; Keith, W.; Hesse, M.; Lavraud, B.; Sitnov, M.; Licek, E. A.; Balogh, A.

    2005-01-01

    Eastwood et al. [2004, manuscript submitted to CRL], have recently reported observations of multiple X line reconnection proceeding in the near Earth (approximately 18Re) magnetotail, leading to the formation and growth of an Earthward moving flux rope. Here we present the associated ion and electron measurements that indicate significant structuring to the magnetic field; in particular, an absence of counterstreaming electrons in the center of the flux rope. The observations, made on October 2, 2003, are put into a wider context by examining the surrounding plasma conditions, which indicate that after the event, the plasma sheet was highly dynamic. We also consider how common these observations are in the Cluster dataset, and discuss the implications for previous single spacecraft studies.

  6. Plasma and Field Observations at the Day-Side, Equatorial Magnetopause, Boundary Layers and Magnetosphere

    NASA Technical Reports Server (NTRS)

    Chandler, M. O.; Craven, P. D.; Moore, T. E.; Coffey, V. N.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Polar spacecraft's orbit has precessed in latitude to an orientation that places it at the dayside magnetopause every 18 hours. In this configuration the various regions near the magnetopause(LLBL, turbulent boundary layer, magnetosphere, and magnetosheath) are sampled with high temporal and spatial resolution. These observational periods-ranging from several minutes to more than two hours-provide an unprecedented look at plasma conditions in these regions. Initial analysis of the low-energy ion data from TIDE reveal plasmaspheric-like ions within the turbulent boundary layer. Within this layer, circularly polarized waves accelerate these ions to 30-40 kilometers per second perpendicular to the local magnetic field. These relatively high velocities allow the H(+) to be observed above the -2V spacecraft potential. They also put the low-density O(+) in the higher-energy, higher sensitivity channels such that densities of order 10e-2 can be observed.

  7. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  8. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGESBeta

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  9. Voyager 1 observations of the interstellar magnetic field and the transition from the heliosheath

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2014-04-01

    Voyager 1 (V1) has been observing interstellar magnetic fields for more than one year beginning ≈2012/209, when V1 crossed a current sheet, a 'CS0' having the structure of a tangential discontinuity. The inclination of this current sheet is consistent with an interstellar magnetic field B draped on a blunt heliopause. Two other current sheets (sector boundaries) were observed at ≈2012/167 and ≈2011/276 with high inclinations (99° ± 10° and 89° ± 10°, respectively). From 2013.0 to ≈2013.6, the difference between the azimuthal angle λ of B from the Parker spiral angle at the latitude 34.°6 of V1 was λ – λ{sub P} = 22° ± 3° and the corresponding difference of the elevation angle δ was δ – δ{sub P} = 23° ± 8°. During 2012, the deviation from the Parker spiral angle was somewhat smaller. The interstellar magnetic field has a 'west to east polarity,' opposite to the direction of planetary motions. The magnitude of B varied smoothly in the range 0.38-0.59 nT with an average B = 0.486 ± 0.045 after 2012/237.7. The transition from heliosheath to interstellar magnetic fields is related to a 'two-step' increase in the cosmic ray intensity observed by V1 from ≈2012.30 to ≈2012.65. The first step increase began near the end of an unusual 'away-polarity' sector, and it reached a plateau when V1 moved into a 'toward-polarity' sector that ended at CS0. The second step increase began slowly after V1 crossed CS0, and it ended abruptly at 2012/237.728.

  10. Discrepancies between Observational Data and Theoretical Forecast in Single Field Slow Roll Inflation

    NASA Astrophysics Data System (ADS)

    Amorós, Jaume; de Haro, Jaume

    2016-09-01

    The PLANCK collaboration has determined, or greatly constrained, values for the spectral parameters of the CMB radiation, namely the spectral index n s , its running α s , the running of the running β s , using a growing body of measurements of CMB anisotropies by the Planck satellite and other missions. These values do not follow the hierarchy of sizes predicted by single field, slow roll inflationary theory, and are thus difficult to fit for such inflation models. In this work we present first a study of 49 single field, slow roll inflationary potentials in which we assess the likelyhood of these models fitting the spectral parameters to their currently most accurate determination given by the PLANCK collaboration. We check numerically with a MATLAB program the spectral parameters that each model can yield for a very broad, comprehensive list of possible parameter and field values. The comparison of spectral parameter values supported by the models with their determinations by the PLANCK collaboration leads to the conclusion that the data provided by PLANCK2015 TT+lowP and PLANCK2015 TT,TE,EE+lowP taking into account the running of the running disfavours 40 of the 49 models with confidence level at least 92.8 %. Next, we discuss the reliability of the current computations of these spectral parameters. We identify a bias in the method of determination of the spectral parameters by least residue parameter fitting (using MCMC or any other scheme) currently used to reconstruct the power spectrum of scalar perturbations. This bias can explain the observed contradiction between theory and observations. Its removal is computationally costly, but necessary in order to compare the forecasts of single field, slow roll theories with observations.

  11. Observed Enhancement of Reflectivity and Electric Field in Long-Lived Florida Anvils

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Willett, John C.

    2007-01-01

    A study of two long-lived Florida anvils showed that reflectivity greater than 20 dBZ increased in area, thickness and sometimes magnitude at mid-level well downstream of the convective cores. In these same regions electric fields maintained strengths greater than 10 kV m(sup -1) for many tens of minutes and became quite uniform over tens of kilometers. Millimetric aggregates persisted at 9 to 10 km for extended times and distances. Aggregation of ice particles enhanced by strong electric fields might have contributed to reflectivity growth in the early anvil, but is unlikely to explain observations further out in the anvil. The enhanced reflectivity and existence of small, medium and large ice particles far out into the anvil suggest that an updraft was acting, perhaps in weak convective cells formed by instability generated from the evaporation and melting of falling ice particles. We conclude that charge separation must have occurred in these anvils, perhaps at the melting level but also at higher altitudes, in order to maintain fields greater than 10 kV m(sup -1) at 9 to 10 km for extended periods of time over large distances. We speculate that charge separation occurred as a result of ice-ice particle collisions (without supercooled water being present) via either a noninductive or perhaps even an inductive mechanism, given the observed broad ice particle spectra, the strong pre-existing electric fields and the many tens of minutes available for particle interactions. The observations, particularly in the early anvil, show that the charge structure in these anvils was quite complex.

  12. Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments

    NASA Astrophysics Data System (ADS)

    Hanna, Steven; Chang, Joseph; Huq, Pablo

    2016-01-01

    As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.

  13. An Evaluation of Tropical Cyclogenesis Theories through Intercomparison of Field Experiment Observations

    NASA Astrophysics Data System (ADS)

    Helms, C. N.; Hart, R. E.

    2011-12-01

    The process by which tropical cyclones evolve from loosely organized convective clusters into well organized systems is still poorly understood. A number of theories have been proposed to explain this evolution based on vortex dynamics, adiabatic processes, and diabatic processes. Due to the data sparse location in which many of these systems develop, many studies of tropical cyclogenesis theory are limited to either a few case studies or are forced to rely on simulations to critically evaluate the theories. The recent PREDICT and GRIP field experiments have provided a new opportunity to examine these theories using unusually dense observations. The present study aims at using this new data in conjunction with data from previous field experiments, such as NAMMA, GATE, and TOGA COARE, to evaluate three existing theories: top-down vortex merger (Ritchie and Holland, 1997; Simpson et al., 1997), top-down shower-head (Emanuel, 1993; Bister and Emanuel, 1997), and bottom-up vortex merger (Montgomery and Enagonio, 1998; Enagonio and Montgomery, 2001). Additionally, these observations are used to briefly examine the newer marsupial framework for tropical cyclogenesis in African easterly waves (Dunkerton et al. 2009). The processes associated with each of these theories create unique signatures in wind, vorticity, potential temperature, and humidity fields. Timelines of these fields, created from composited mean dropsonde soundings, are used to determine the system-wide evolution. Further, the temporal evolution of sub-system processes, which are minimized or removed as a result of the compositing process, are identified in isobaric surface plot series. While previous studies have shown that no theory completely explains tropical cyclogenesis, it is hoped that a thorough analysis of these data sets will highlight both consistencies and inconsistencies between theory and observation.

  14. Observed Enhancement of Reflectivity and Electric Field in Long-Lived Florida Anvils

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Willett, John C.

    2007-01-01

    A study of two long-lived Florida anvils showed that reflectivity >20 dBZ increased in area, thickness and sometimes magnitude at mid-level well downstream of the convective cores. In these same regions electric fields maintained strengths >10 kV m1 for many tens of minutes and became quite uniform over tens of kilometers. Millimetric aggregates persisted at 9 to 10 km for extended times and distances. Aggregation of ice particles enhanced by strong electric fields might have contributed to reflectivity growth in the early anvil, but is unlikely to explain observations further out in the anvil. The enhanced reflectivity and existence of small, medium and large ice particles far out into the anvil suggest that an updraft was acting, perhaps in weak convective cells formed by instability generated from the evaporation and melting of falling ice particles. We conclude that charge separation must have occurred in these anvils, perhaps at the melting level but also at higher altitudes, in order to maintain fields >10 kV m 1 at 9 to 10 km for extended periods of time over large distances. We speculate that charge separation occurred as a result of ice-ice particle collisions (without supercooled water being present) via either a non-inductive or perhaps even an inductive mechanism, given the observed broad ice particle spectra, the strong pre-existing electric fields and the many tens of minutes available for particle interactions. The observations, particularly in the early anvil, show that the charge structure in these anvils was quite complex.

  15. Balloon observations of ultra-low-frequency waves in the electric field above the South Pole

    SciTech Connect

    Liao, B.; Benbrrook, J.R.; Bering E.A. III; Byrne, G.J.; Theall, J.R. )

    1988-01-01

    The physics of ultra-low-frequency waves in the magnetosphere, near the cusp and in the polar cap, is important because this region is one where ultra-low-frequency wave energy from the magnetopause can most easily enter the magnetosphere. During the 1985-1986 South Pole balloon campaign, eight stratospheric balloon payloads were launched from Amundsen-Scott Station, South Geographic Pole, Antarctica, to record data on ultra-low-frequency waves. The payloads were instrumented with three-axis double-probe electric field detectors and X-ray scintillation counters. This paper concentrates on the third flight of this series, which was launched at 2205 universal time on 21 December 1985. Good data were received from the payload until the transmitter failed at 0342 universal time on 22 December. During most of the four hours that the balloon was afloat, an intense ultra-low-frequency wave event was in progress. The electric-field data from this period have been examined in detail and compared with magnetic field data, obtained with ground-based fluxgate and induction magnetometers to determine the characteristics of the waves. After float was reached, the electric-field data in figure 1 show large-amplitude, quasi-periodic fluctuations suggesting the presence of intense ultra-low-frequency wave activity. In conclusion, the electric-field signature observed from flight 3 appears to have been essentially an electrostatic event or possibly a short-wavelength hydromagnetic wave with a varying and interesting polarization character. The authors are continuing the analysis of the data to determine the source of the observed ultra-low-frequency waves.

  16. Using MERRA Gridded Innovations for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Redder, Christopher

    2010-01-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum

  17. Constraints on Common Envelope Magnetic Fields from Observations of Jets in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; Tocknell, J.; Wardle, M.

    2014-01-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary and may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few Gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 years after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands Gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we cannot find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation would preclude the formation of even one accretion disk able to supply the necessary accretion rate to cause the observed jets. Additional and improved observations of post-CE PN will provide a powerful tool to constrain the CE interaction.

  18. The robustness of using near-UV observations to detect and study exoplanet magnetic fields

    NASA Astrophysics Data System (ADS)

    Turner, J.; Christie, D.; Arras, P.; Johnson, R.

    2015-10-01

    Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input

  19. Global control of merging by the interplanetary magnetic field: Cluster observations of dawnside flank magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Elkington, S. R.; Phan, T. D.; Petrinec, S. M.; RèMe, H.; Dunlop, M. W.; Wiltberger, M.; Balogh, A.; Ergun, R. E.; André, M.

    2004-12-01

    Detailed Cluster observations of flank magnetopause reconnection are presented for two events on the Northern and the Southern Hemispheric dawnside flanks when the interplanetary magnetic field (IMF) clock angle ? = arctan(By/Bz) is within ˜45° of the equatorial plane. The event selection is based on the relative proximity between the Cluster spacecraft 1 position and the predicted magnetospheric sash where antiparallel merging is expected to develop. MHD simulations performed for the two events indicate that the Cluster spacecraft were passing through the MHD sash region in the Northern Hemisphere on 30 June 2001, while crossing the magnetopause equatorward of the Southern Hemispheric sash on 29 May 2001. Accelerated and decelerated plasma flows relative to the magnetosheath velocity were detected by Cluster on both occasions. The Walén test confirms that the observed ΔV is directly correlated with the predicted magnetic field rotation ΔB/? with the expected direction of the normal magnetic field and so we interpret them as speed changes due to magnetic reconnection. The observed directions of ΔV compare very well with the location of the simulated MHD sash relative to Cluster. The magnetic field shear in the locally tangential plane of the magnetopause ranges between 171° and 177° for the 30 June event in good agreement with antiparallel merging at the MHD sash. The corresponding local field shear for the 29 May event is only 144°, either suggesting a component merging site in the direction of the sash or indicating that Cluster is farther away from the location where the neutral line was initially formed as compared with the 30 June event. A comparison between the projected regions of antiparallel and component merging onto the magnetopause and the quasi-steady direction of plasma acceleration detected by Cluster on 29 May and 30 June support the view that the IMF controls the expected global location of magnetic reconnection at limited regions of the

  20. Observation of a magnetic field dependence of the lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Jin, Hyungyu; Restrepo, Oscar; Antolin, Nikolas; Windl, Wolfgang; Barnes, Stewart; Heremans, Joseph

    2014-03-01

    Can phonons respond to magnetic fields? From the simple point of view of the classical lattice vibrations, there is no clue that phonons possess any magnetic characteristics. Here, we report for the first time that the lattice thermal conductivity can show a response to an external magnetic field in a non-magnetic semiconductor crystal. We observe a magnetic field dependence of the lattice thermal conductivity in a high quality 2x1015 Te doped single crystal of InSb. The electronic contribution is over 106 times smaller than the lattice. The effect is observed in the temperature regime where the Umklapp processes start appearing, and still mainly involve phonons with long mean free paths. A special thermal design is employed to obtain a high accuracy heat flux measurement. Detailed experimental procedures and results are presented along with a brief discussion about possible origins of the effect. HJ and JPH are supported by AFOSR MURI ``Cryogenic Peltier Cooling'' Contract #FA9550-10-1-0533; ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at The Ohio State University (Grant DMR-0820414).

  1. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    SciTech Connect

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-11-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z approx 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  2. Neutral hydrogen and magnetic fields in M83 observed with the SKA Pathfinder KAT-7

    NASA Astrophysics Data System (ADS)

    Heald, G.; de Blok, W. J. G.; Lucero, D.; Carignan, C.; Jarrett, T.; Elson, E.; Oozeer, N.; Randriamampandry, T. H.; van Zee, L.

    2016-10-01

    We present new KAT-7 observations of the neutral hydrogen (H I) spectral line, and polarized radio continuum emission, in the grand-design spiral M83. These observations provide a sensitive probe of the outer-disc structure and kinematics, revealing a vast and massive neutral gas distribution that appears to be tightly coupled to the interaction of the galaxy with the environment. We present a new rotation curve extending out to a radius of 50 kpc. Based on our new H I data set and comparison with multiwavelength data from the literature, we consider the impact of mergers on the outer disc and discuss the evolution of M83. We also study the periphery of the H I distribution and reveal a sharp edge to the gaseous disc that is consistent with photoionization or ram pressure from the intergalactic medium. The radio continuum emission is not nearly as extended as the H I and is restricted to the main optical disc. Despite the relatively low angular resolution, we are able to draw broad conclusions about the large-scale magnetic field topology. We show that the magnetic field of M83 is similar in form to other nearby star-forming galaxies, and suggest that the disc-halo interface may host a large-scale regular magnetic field.

  3. TSUBASA (MDS-1) observations of energetic electrons and magnetic field variations in outer radiation belt

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Matsuoka, H.; Liu, H.; Koshiishi, H.; Koga, K.; Matsumoto, H.; Goka, T.

    2002-12-01

    We have investigated variations of energetic electrons (> 0.4 MeV) and magnetic field in the radiation belt obtained from the Standard DOse Monitor (SDOM) and the MAgnetoMeter (MAM) of the Space Environment Data Acquisition equipment (SEDA) onboard TSUBASA (the Mission Demonstration Test Satellite (MDS)-1) launched on February 4, 2002. Since TSUBASA is operated in the geostationary transfer orbit, it has provided rare opportunities of directly observing near-equatorial radiation belt plasma particles and magnetic field, having already included several large magnetic storms. The energetic electrons in the outer radiation belt are contributors to the total radiation dose deposited in lightly shielded spacecraft electronics for high altitude orbits and are known to have a drastic variability associated with geomagnetic storm and high speed solar wind streams. The abrupt energetic electron flux decreases in the outside of outer radiation belt show characteristic variations of in situ magnetic field. These observations have implications for the possible mechanisms of the depletion and the following recovery and/or buildup of energetic electrons in the outer radiation belt.

  4. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  5. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  6. New Approach for Environmental Monitoring and Plant Observation Using a Light-Field Camera

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Mollenhauer, Hannes; Grenzdörffer, Görres; Merbach, Ines; Lausch, Angela; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    The aim of gaining a better understanding of ecosystems and the processes in nature accentuates the need for observing exactly these processes with a higher temporal and spatial resolution. In the field of environmental monitoring, an inexpensive and field applicable imaging technique to derive three-dimensional information about plants and vegetation would represent a decisive contribution to the understanding of the interactions and dynamics of ecosystems. This is particularly true for the monitoring of plant growth and the frequently mentioned lack of morphological information about the plants, e.g. plant height, vegetation canopy, leaf position or leaf arrangement. Therefore, an innovative and inexpensive light-field (plenoptic) camera, the Lytro LF, and a stereo vision system, based on two industrial cameras, were tested and evaluated as possible measurement tools for the given monitoring purpose. In this instance, the usage of a light field camera offers the promising opportunity of providing three-dimensional information without any additional requirements during the field measurements based on one single shot, which represents a substantial methodological improvement in the area of environmental research and monitoring. Since the Lytro LF was designed as a daily-life consumer camera, it does not support depth or distance estimation or rather an external triggering by default. Therefore, different technical modifications and a calibration routine had to be figured out during the preliminary study. As a result, the used light-field camera was proven suitable as a depth and distance measurement tool with a measuring range of approximately one meter. Consequently, this confirms the assumption that a light field camera holds the potential of being a promising measurement tool for environmental monitoring purposes, especially with regard to a low methodological effort in field. Within the framework of the Global Change Experimental Facility Project, founded by

  7. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics

  8. Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Delva, M.; Baumjohann, W.; Volwerk, M.; Russell, C. T.; Barabash, S.; Balikhin, M.; Pope, S.; Glassmeier, K.-H.; Wang, C.; Kudela, K.

    2008-05-01

    Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name "magnetopause" to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ˜250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ˜95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar

  9. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  10. Subsolar magnetopause observation and kinetic simulation of a tripolar guide magnetic field perturbation consistent with a magnetic island

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.

    2016-04-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.

  11. The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-01-01

    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  12. Sub-solar Magnetopause Observation and Simulation of a Tripolar Guide-Magnetic Field Perturbation

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Cassak, P.; Retino, A.; Mozer, F.

    2015-12-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 at a rather symmetric sub-solar magnetopause that displayed different out-of-plane signatures for similar solar wind conditions. The first case was reported by Mozer et al. [2002] and displayed a bipolar guide field supporting a quadrupole Hall field consistent with a single X-line. The second case, however, shows the first known example of a tripolar guide-field perturbation at Earth's magnetopause reminiscent of the types of solar wind exhausts that Eriksson et al. [2014; 2015] have reported to be in agreement with multiple X-lines. A dedicated particle-in-cell simulation is performed for the prevailing conditions across the magnetopause. We propose an explanation in terms of asymmetric Hall magnetic fields due to a presence of a magnetic island between two X-lines, and discuss how higher resolution MMS observations can be used to further study this problem at the magnetopause.

  13. The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-12-01

    We have analyzed 3 years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to earlier global fields, and we obtained a preliminary value of the tidal Love number k2 of 0.451 ± 0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 ± 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 ± 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3:2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  14. Spatial configuration of a flux rope observed downstream from the Martian crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.; Saito, M. H.

    2012-12-01

    Mars is a unique planet since it locally possesses strong crustal magnetic fields mainly located in the southern hemisphere [e.g., Acuna et al., 1999]. The Martian electromagnetic environment can thus become highly complicated and variable, since the interplanetary magnetic field (IMF) embedded in the solar wind interacts with the Martian crustal magnetic field. Whereas it is known that the Martian upper atmosphere is escaping to interplanetary space due to the interaction with the solar wind [e.g., Lundin et al., 1989; Barabash et al., 2007], the contribution of crustal magnetic fields to atmospheric escape from Mars has not yet been well understood. Flux ropes are characteristic magnetic field structures seen throughout the solar system, e.g., at the Sun, in the interplanetary space, and at the Earth often in association with substorms. Flux ropes are also observed at planets such as at Venus and Mars [e.g., Russell and Elphic, 1979; Vignes et al., 2004], which do not possess a global magnetic field. Recently, Brain et al. [2010] found a large-scale isolated flux rope filled with Martian atmospheric plasma located downstream from the crustal magnetic fields with respect to the solar wind flow based on their analyses of the magnetic field and suprathermal electron measurements from the Mars Global Surveyor (MGS) spacecraft. They suggested that the flux rope can intermittently carry significant amounts of atmosphere away from Mars by a bulk removal process such as magnetic reconnection between the IMF and the crustal magnetic fields. They supposed that this process occurs frequently and may account for as much as 10 % of the total present-day ion escape from Mars. We here attempt to reconstruct the spatial configuration of the reported flux rope using the Grad-Shafranov (GS) reconstruction technique, assuming that it has a magnetohydrostatic, two-dimensional magnetic field structure [Hu and Sonnerup, 2002]. The GS reconstruction technique is capable of recovering a

  15. Prominence plasma and magnetic field structure - A coordinated observation with IRIS, Hinode and THEMIS

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Labrosse, Nicolas; Levens, Peter; Lopez Ariste, Arturo

    2016-07-01

    During an international campaign in 2014, utilising both space-based (IRIS and Hinode) and ground-based (THEMIS) instruments, we focused on observing prominences. We compare IRIS observations with those of Hinode (EIS and SOT) in order to build a more complete picture of the prominence structure for a quiescent prominence observed on 15 July 2014, identified to have tornado-like structure. THEMIS provides valuable information on the orientation and strength of the internal magnetic field. Here we find there is almost ubiquitously horizontal field with respect to the local limb, with possibly a turbulent component. The Mg II lines form the majority of our IRIS analysis, with a mixture of reversed and non-reversed profiles present in the prominence spectra. Comparing the differences between the Mg II data from IRIS and the Ca II images from Hinode/SOT provides an intriguing insight into the prominence legs in these channels. We present plasma diagnostics from IRIS, with line of sight velocities of around 10 km/s in either direction along the magnetic loops of material in the front of the prominence, and line widths comparable to those found for prominences by previous authors (e.g. Schmieder et al. 2014). We also take a look into the lines formed at higher, coronal plasma temperatures, as seen by Hinode/EIS, to compare plasma structures at a full range of temperatures.

  16. Combination of various observation techniques for regional modeling of the gravity field

    NASA Astrophysics Data System (ADS)

    Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Börger, Klaus

    2016-05-01

    Modeling a very broad spectrum of the Earth's gravity field needs observations from various measurement techniques with different spectral sensitivities. Typically, high-resolution regional gravity data are combined with low-resolution global observations. To exploit the gravitational information as optimally as possible, we set up a regional modeling approach using radial spherical basis functions, emphasizing the strengths of various data sets by the flexible combination of high- and middle-resolution terrestrial, airborne, shipborne, and altimetry measurements. The basis functions are defined and located in the region of interest in such a manner, which the highest measure of information of the input data is captured. Any functional of the Earth's gravity field can be derived, as, e.g., quasi-geoid heights or gravity anomalies. Here we present results of a study area in Northern Germany. A comprehensive cross validation to external observation data delivers standard deviations less than 5 cm. Differences to an existing regional quasi-geoid model count on average ±6 cm and proof the plausibility of our solution. The comparison with existing global models reaches higher standard deviations for the more sensitive gravity anomalies as for quasi-geoid heights, showing the additional value of our solution in the high frequency domain. Covering a broad frequency spectrum, our regional models can be used as basis for various applications, such as refinement of global models, national geoid determination, and detection of mass anomalies in the Earth's interior.

  17. Assessing the GOANNA Visual Field Algorithm Using Artificial Scotoma Generation on Human Observers

    PubMed Central

    Chong, Luke X.; Turpin, Andrew; McKendrick, Allison M.

    2016-01-01

    Purpose To validate the performance of a new perimetric algorithm (Gradient-Oriented Automated Natural Neighbor Approach; GOANNA) in humans using a novel combination of computer simulation and human testing, which we call Artificial Scotoma Generation (ASG). Methods Fifteen healthy observers were recruited. Baseline conventional automated perimetry was performed on the Octopus 900. Visual field sensitivity was measured using two different procedures: GOANNA and Zippy Estimation by Sequential Testing (ZEST). Four different scotoma types were induced in each observer by implementing a novel technique that inserts a step between the algorithm and the perimeter, which in turn alters presentation levels to simulate scotomata in human observers. Accuracy, precision, and unique number of locations tested were measured, with the maximum difference between a location and its neighbors (Max_d) used to stratify results. Results GOANNA sampled significantly more locations than ZEST (paired t-test, P < 0.001), while maintaining comparable test times. Difference plots showed that GOANNA displayed greater accuracy than ZEST when Max_d was in the 10 to 30 dB range (with the exception of Max_d = 20 dB; Wilcoxon, P < 0.001). Similarly, GOANNA demonstrated greater precision than ZEST when Max_d was in the 20 to 30 dB range (Wilcoxon, P < 0.001). Conclusions We have introduced a novel method for assessing accuracy of perimetric algorithms in human observers. Results observed in the current study agreed with the results seen in earlier simulation studies, and thus provide support for performing larger scale clinical trials with GOANNA in the future. Translational Relevance The GOANNA perimetric testing algorithm offers a new paradigm for visual field testing where locations for testing are chosen that target scotoma borders. Further, the ASG methodology used in this paper to assess GOANNA shows promise as a hybrid between computer simulation and patient testing, which may allow more

  18. Assessing the GOANNA Visual Field Algorithm Using Artificial Scotoma Generation on Human Observers

    PubMed Central

    Chong, Luke X.; Turpin, Andrew; McKendrick, Allison M.

    2016-01-01

    Purpose To validate the performance of a new perimetric algorithm (Gradient-Oriented Automated Natural Neighbor Approach; GOANNA) in humans using a novel combination of computer simulation and human testing, which we call Artificial Scotoma Generation (ASG). Methods Fifteen healthy observers were recruited. Baseline conventional automated perimetry was performed on the Octopus 900. Visual field sensitivity was measured using two different procedures: GOANNA and Zippy Estimation by Sequential Testing (ZEST). Four different scotoma types were induced in each observer by implementing a novel technique that inserts a step between the algorithm and the perimeter, which in turn alters presentation levels to simulate scotomata in human observers. Accuracy, precision, and unique number of locations tested were measured, with the maximum difference between a location and its neighbors (Max_d) used to stratify results. Results GOANNA sampled significantly more locations than ZEST (paired t-test, P < 0.001), while maintaining comparable test times. Difference plots showed that GOANNA displayed greater accuracy than ZEST when Max_d was in the 10 to 30 dB range (with the exception of Max_d = 20 dB; Wilcoxon, P < 0.001). Similarly, GOANNA demonstrated greater precision than ZEST when Max_d was in the 20 to 30 dB range (Wilcoxon, P < 0.001). Conclusions We have introduced a novel method for assessing accuracy of perimetric algorithms in human observers. Results observed in the current study agreed with the results seen in earlier simulation studies, and thus provide support for performing larger scale clinical trials with GOANNA in the future. Translational Relevance The GOANNA perimetric testing algorithm offers a new paradigm for visual field testing where locations for testing are chosen that target scotoma borders. Further, the ASG methodology used in this paper to assess GOANNA shows promise as a hybrid between computer simulation and patient testing, which may allow more

  19. Building wake dispersion at an Arctic industrial site: Field tracer observations and plume model evaluations

    NASA Astrophysics Data System (ADS)

    Guenther, Alex; Lamb, Brian; Allwine, Eugene

    Ten multi-hour atmospheric dispersion SF 6 tracer experiments were conducted during October and November of 1987 near a large oil gathering facility in the Prudhoe Bay, Alaska, oilfield reservation. The purpose of this study was to investigate dispersion under arctic conditions and in situations where building-generated airflow disturbances dominate downwind distributions of ground level pollutant concentrations. This was accomplished with a network of micrometeorological instruments, portable syringe tracer samplers, continuous tracer analyzers, and infrared visualization of near source plume behavior. Atmospheric stability and wind speed profiles at this arctic site are influenced by the smooth (surface roughness = 0.03 cm), snow covered tundra surface which receives negligible levels of solar isolation in winter. The dispersion of pollutants emitted from sources within the oil gathering facility, however, is dominated by the influence of nearby buildings when high winds generate elevated ground level concentrations. An order of magnitude increase in maximum ground level concentration was observed as wind speeds increased from 5 to 8 m s -1 and another order of magnitude increase was observed as winds increased from 8 to 16 m s -1. Variation in maximum concentrations was also observed with changes in wind direction. Vertical plume diffusion ( σz) near the buildings was a factor of 2-3 greater than that observed in open terrain and was dependent on both wind speed and the projected building width and location of nearby buildings. Wind tunnel tracer distributions for east winds agree with field observations but also indicate that a significant increase in plume downwash occurs with other wind directions. Concentration distributions were calculated using several versions of the Industrial Source Complex (ISC) model. Model estimates of ground level concentrations were within a factor of three depending on wind direction. The model predictions are extremely sensitive

  20. Observational Assessment Of Field Trial Site For The Implementation Of A PACS Network

    NASA Astrophysics Data System (ADS)

    Coristine, Marjorie A.; Tombaugh, Jo W.; Dillon, Richard F.

    1989-05-01

    In building an integrated radiological information system (IRIS) and preparing for field trials at a large hospital, it was necessary to consider the working conventions and needs of radiologists and clinicians. It was also necessary to analyse the current practices involved in the requesting, reading, and reporting of x-rays. Because IRIS is designed to be a mechanism for effective consultations, an understanding of the conventions and nature of x-ray related consultations was also needed. In order to gain this understanding, two observational studies were conducted. The first addressed issues of x-ray related behavior in the emergency department, and the second assessed the task requirements of radiologists when reporting x-rays or consulting with other physicians about x-rays. These findings had major implications for the design of IRIS and for conducting the field trials.

  1. Observations of electromagnetic fields and plasma flow in hohlraums with proton radiography

    SciTech Connect

    Li, C K; Seguin, F H; Frenje, J A; Petrasso, R D; Amendt, P A; Town, R J; Landen, O L; Rygg, J R; Betti, R; Knauer, J P; Meyerhofer, D D; Soures, J M; Back, C A; Kilkenny, J D; Nikroo, A

    2009-01-29

    The authors report on the first proton radiography of laser-irradiated hohlraums. This experiment, with vacuum gold (Au) hohlraums, resulted in observations of self-generated electric and magnetic fields. Peak values are {approx} 10{sup 9} V m{sup -1} and {approx} 10{sup 6} gauss. Time-gated radiographs of monoenergetic protons with discrete energies (15.0 and 3.3 MeV) reveal dynamic pictures of field structures and plasma flow. Near the end of the 1-ns laser drive, a stagnating Au plasma ({approx} 10 mg cm{sup -3}) forms at the center of the hohlraum, a consequence of supersonic, radially directed Au jets ({approx} 1000 {micro}m ns{sup -1}, {approx} Mach 4) as laser-driven plasma bubbles approaching one another.

  2. Interaction between Japanese flowering cherry trees and some wild animals observed during physiological experiment in fields

    NASA Technical Reports Server (NTRS)

    Nakamura, Teruko

    2003-01-01

    We have studied the weeping habit of Japanese flowering cherry tree in the field of Tama Forest Science Garden, Forestry and Forest Products Research Institute at the foot of Mt. Takao. Since cherry trees at various age were the materials for our plant physiology experiments, our studies were conducted in the fields where we experienced certain difficulties. Even under such difficult environment that was rather unexpected and uncontrollable, we could obtain fruitful results on the growth of cherry tree, and found them scientifically significant, especially in terms of biological effects of gravity on earth. Moreover, a lot of interesting interactions of cherry trees with various kinds of animals were observed in parallel to the plant physiology.

  3. Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission

    PubMed

    Acuña; Connerney; Wasilewski; Lin; Anderson; Carlson; McFadden; Curtis; Mitchell; Reme; Mazelle; Sauvaud; d'Uston; Cros; Medale; Bauer; Cloutier; Mayhew; Winterhalter; Ness

    1998-03-13

    The magnetometer and electron reflectometer investigation (MAG/ER) on the Mars Global Surveyor spacecraft has obtained magnetic field and plasma observations throughout the near-Mars environment, from beyond the influence of Mars to just above the surface (at an altitude of approximately 100 kilometers). The solar wind interaction with Mars is in many ways similar to that at Venus and at an active comet, that is, primarily an ionospheric-atmospheric interaction. No significant planetary magnetic field of global scale has been detected to date (<2 x 10(21) Gauss-cubic centimeter), but here the discovery of multiple magnetic anomalies of small spatial scale in the crust of Mars is reported.

  4. Inferring spatial clouds statistics from limited field-of-view, zenith observations

    SciTech Connect

    Sun, C.H.; Thorne, L.R.

    1996-04-01

    Many of the Cloud and Radiation Testbed (CART) measurements produce a time series of zenith observations, but spatial averages are often the desired data product. One possible approach to deriving spatial averages from temporal averages is to invoke Taylor`s hypothesis where and when it is valid. Taylor`s hypothesis states that when the turbulence is small compared with the mean flow, the covariance in time is related to the covariance in space by the speed of the mean flow. For clouds fields, Taylor`s hypothesis would apply when the {open_quotes}local{close_quotes} turbulence is small compared with advective flow (mean wind). The objective of this study is to determine under what conditions Taylor`s hypothesis holds or does not hold true for broken cloud fields.

  5. Observations of toroidicity-induced Alfvén eigenmodes in a reversed field pinch plasma

    NASA Astrophysics Data System (ADS)

    Regnoli, G.; Bergsâker, H.; Tennfors, E.; Zonca, F.; Martines, E.; Serianni, G.; Spolaore, M.; Vianello, N.; Cecconello, M.; Antoni, V.; Cavazzana, R.; Malmberg, J.-A.

    2005-04-01

    High frequency peaks in the spectra of magnetic field signals have been detected at the edge of Extrap-T2R [P. R. Brunsell, H. Bergsåker, M. Cecconello, J. R. Drake, R. M. Gravestijn, A. Hedqvist, and J.-A. Malmberg, Plasma Phys. Controlled Fusion, 43, 1457 (2001)]. The measured fluctuation is found to be mainly polarized along the toroidal direction, with high toroidal periodicity n and Alfvénic scaling (f∝B/√mini ). Calculations for a reversed field pinch plasma predict the existence of an edge resonant, high frequency, high-n number toroidicity-induced Alfvén eigenmode with the observed frequency scaling. In addition, gas puffing experiments show that edge density fluctuations are responsible for the rapid changes of mode frequency. Finally a coupling with the electron drift turbulence is proposed as drive mechanism for the eigenmode.

  6. Laboratory and Field Observations of Microcystis aeruginosa in nearly homogeneous turbulent flows

    NASA Astrophysics Data System (ADS)

    Wilkinson, Anne; Hondzo, Miki; Guala, Michele

    2015-11-01

    Microcystis aeruginosa is a single-celled cyanobacterium, forming large colonies on the surface of freshwater ecosystems during summer, and producing a toxin (microcystin) that in high concentration can be harmful to humans and animals. In addition to water temperature, light and nutrient abundance, fluid motion is also an abiotic environmental factor affecting the growth and metabolism of Microcystis. Systematic investigations in a laboratory bioreactor are paired with field measurements in the lacustrine photic zone from two sites in Lake Minnetonka (MN) to ensure that dissipation levels, water temperature, dissolved oxygen and pH are correctly reproduced under laboratory conditions. Laboratory results for biomass accrual and photosynthetic activity suggest that turbulence levels within the range observed in the field, mediates the metabolism, rather than the cell population growth, of Microcystis aeruginosa. This work was supported by the NSF Graduate Research Fellowship and University of Minnesota start-up funding.

  7. Field observations in a small subtropical estuary during and after a rainstorm event

    NASA Astrophysics Data System (ADS)

    Chanson, Hubert

    2008-10-01

    In Australia, a large majority of small subtropical estuaries are narrow, elongated and meandering channels with large width to depth ratio and cross-sections which deepen and widen towards the mouth. Up to date, episodic rainstorm events in such small systems were rarely documented, and this study presents a field data set collected during and immediately after a rainstorm. A number of hydrodynamic and physio-chemical parameters were recorded simultaneously at several longitudinal locations for 12 h. The field measurements demonstrated a significant flushing of the estuarine zone, caused primarily by the rainfall runoff from the nearby shopping malls and roadways. Some strong vertical stratification of the water column was observed at all sampling locations, and the depth-averaged salinity data exhibited a dome-shaped intrusion curve. A solution of the salt dispersion equation provided some agreement with the freshwater flushing conditions during the wet weather.

  8. On the observed hysteresis in field-scale soil moisture variability and its physical controls

    NASA Astrophysics Data System (ADS)

    Mascaro, G.; Vivoni, E. R.

    2016-08-01

    The spatiotemporal variability of soil moisture (θ) has rarely been studied at the field scale across different seasons and sites. Here, we utilized 9 months of θ data in two semiarid ecosystems of North America to investigate the key relationship between the spatial mean (<θ>) and standard deviation (σ θ ) at the field-scale (∼100 m). Analyses revealed a strong seasonal control on the σ θ versus <θ> relation and the existence of hysteretic cycles where wetting and dry-down phases have notably different behavior. Empirical orthogonal functions (EOFs) showed that θ variability depends on two dominant spatial patterns, with time-stable and seasonally varying contributions in time, respectively. Correlations between EOFs and land surface properties also indicated that θ patterns are linked to vegetation (terrain and soil) factors at the site with higher (lower) vegetation cover. These physical controls explained the observed hysteresis cycles, thus confirming interpretations from previous modeling studies for the first time.

  9. Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission

    PubMed

    Acuña; Connerney; Wasilewski; Lin; Anderson; Carlson; McFadden; Curtis; Mitchell; Reme; Mazelle; Sauvaud; d'Uston; Cros; Medale; Bauer; Cloutier; Mayhew; Winterhalter; Ness

    1998-03-13

    The magnetometer and electron reflectometer investigation (MAG/ER) on the Mars Global Surveyor spacecraft has obtained magnetic field and plasma observations throughout the near-Mars environment, from beyond the influence of Mars to just above the surface (at an altitude of approximately 100 kilometers). The solar wind interaction with Mars is in many ways similar to that at Venus and at an active comet, that is, primarily an ionospheric-atmospheric interaction. No significant planetary magnetic field of global scale has been detected to date (<2 x 10(21) Gauss-cubic centimeter), but here the discovery of multiple magnetic anomalies of small spatial scale in the crust of Mars is reported. PMID:9497279

  10. An Explanation for the Observed Spectral Contrast Reduction Between Field and Laboratory Infrared Measurements of Soils

    NASA Astrophysics Data System (ADS)

    Johnson, J. R.; Lucey, P. G.; Horton, K. A.; Williams, T.; Winter, E. M.; Stocker, A. D.

    1996-03-01

    Comparison of emission spectra (7-14 m) of pristine soils in the field with bidirectional reflectance spectra of soils obtained in the laboratory shows that laboratory spectra tend to have less contrast than field spectra. We investigated this phenomenon by measuring emission spectra of both pristine (in situ) and sampled soils (prepared as if for transport to the laboratory). The sampled soils had much less spectral contrast than the pristine soils in the reststrahlen region near 9 m. We hypothesize that this effect is due to a difference in grainsize distribution of the optically active layer (i.e., fine particle coatings). This concept was proposed by Salisbury et al. to explain their observations that soils washed free of small particles adhering to larger grains exhibited greater spectral contrast than unwashed soils. Unrecognized, this phenomenon could influence interpretations of remote sensing data since it is a common practice to use spectra of materials obtained in the laboratory to interpret spectra obtained remotely.

  11. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations

    NASA Astrophysics Data System (ADS)

    Morales, Miguel F.; Hewitt, Jacqueline

    2004-11-01

    This paper explores the potential for statistical epoch of reionization (EOR) measurements using wide-field radio observations. New developments in low-frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next-generation low-frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations and are significantly more sensitive than other techniques that have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3 σ power spectrum points in 100 hr of observation with only 4 MHz bandwidth with LOFAR for simple models of the high-redshift 21 cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radio frequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual unsubtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.

  12. The ionopause transition and boundary layers at comet Halley from Giotto magnetic field observations

    SciTech Connect

    Neubauer, F.M. )

    1988-07-01

    Giotto magnetic field observations at a time resolution of 28.24 vectors per second in the innermost part of the interaction region of comet Halley with the solar wind have yielded the following results: (1) The outer boundary of the cavity, the ionopause, has a thickness of 25 km only, both inbound and outbound, and magnetic field magnitude drops of 20 nT and 18.3 nT, respectively. Plasma densities reported by the Giotto mass spectrometers then lead to three alternatives: If no density jump occurs across the ionopause an electron temperature of at least 6,000 K just inside the ionopause cannot be avoided. Smaller electron temperatures require an inward discontinuous increase in plasma density across the ionopause. Third, an additional hot ion population of sufficient pressure inside the cavity would make a high electron temperature unnecessary. (2) The ionopause boundary layers are characterized by ({und j}{times}{und B}) forces of 5.7 {times} 10{sup {minus}16} N m{sup {minus}3} and 7.3 {times} 10{sup {minus}16} N m{sup {minus}3} inbound and outbound, respectively. These magnetic forces must be balanced by the sum of the elastic frictional force, the forces due to massloading by photoions, due to ion molecule reactions and due to ionization by hot electrons. (3) A magnetic field bulge of 80-km length is interpreted as a weak, almost perpendicular, subcritical shock propagating radically outward. (4) The hot ions and particularly electrons and additional energy input suggested by these observations point to the importance of dynamic phenomena in the innermost part of the interaction region, such as magnetic field line merging in the tail.

  13. Recent changes of the Earth's core derived from satellite observations of magnetic and gravity fields.

    PubMed

    Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis

    2012-11-20

    To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models. PMID:23064635

  14. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2008-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss

  15. Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase

    NASA Technical Reports Server (NTRS)

    Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.

    2007-01-01

    We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field

  16. Observation Of New Variable Stars In The Field Of Open Cluster M23

    NASA Astrophysics Data System (ADS)

    Wilkerson, Jeffrey A.; Brown, T. S.; Frank, K. A.; Joshi, U.; Lacoul, B. K.; Rengstorf, N. P.; Schiefelbein, A. M.

    2007-05-01

    In 2002 a program of surveying regions containing bright open star clusters was initiated using the observing facilities at Luther College. As part of this program the half degree square field containing open cluster M23 was observed in 2003, 2005 and 2006, resulting in approximately 45,000 2.5-second images, 45,000 3.5-second images and 65,000 5.0-second images. The data set contains images from 94 nights spanning a time range from JD 2452810 to JD 2454005. We have searched for stellar variability on timescales from seconds to years in approximately 1600 stars in this field. Unambiguous variability is apparent in 30 stars ranging in magnitude from about 10 to 17. Twenty-eight of these stars have not been previously reported as variable. Seven of the stars are eclipsing binaries, including two apparent W UMa-type contact binaries and one additional eclipsing binary with a period shorter than 0.6 days. The remaining 23 variables are red pulsating stars with long periods. Most of these stars have amplitudes smaller than two magnitudes and periods between 200 and 400 days. Thus, they are likely Semi-Regular variables. We present celestial coordinates, estimated amplitude and estimated period for each of these stars, as well as several selected light curves. Finally, we have performed low-precision BVRI photometry of the field and have placed most of the observed variables on color magnitude diagrams. We are grateful for support from the Roy J. Carver Charitable Trust and the R. J. McElroy Trust.

  17. Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field

    NASA Astrophysics Data System (ADS)

    Jelić, V.; de Bruyn, A. G.; Pandey, V. N.; Mevius, M.; Haverkorn, M.; Brentjens, M. A.; Koopmans, L. V. E.; Zaroubi, S.; Abdalla, F. B.; Asad, K. M. B.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jensen, H.; Kazemi, S.; Mellema, G.; Offringa, A. R.; Patil, A. H.; Vedantham, H. K.; Yatawatta, S.

    2015-11-01

    Aims: This study aims to characterize linear polarization structures in LOFAR observations of the interstellar medium (ISM) in the 3C 196 field, one of the primary fields of the LOFAR-Epoch of Reionization key science project. Methods: We have used the high band antennas (HBA) of LOFAR to image this region and rotation measure (RM) synthesis to unravel the distribution of polarized structures in Faraday depth. Results: The brightness temperature of the detected Galactic emission is 5-15 K in polarized intensity and covers the range from -3 to +8 rad m-2 in Faraday depth. The most interesting morphological feature is a strikingly straight filament at a Faraday depth of +0.5 rad m-2 running from north to south, right through the centre of the field and parallel to the Galactic plane. There is also an interesting system of linear depolarization canals conspicuous in an image showing the peaks of Faraday spectra. We used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. For the first time, we see some common morphology in the RM cubes made at 150 and 350 MHz. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies and previous LOFAR observations. Based on our results, we determined physical parameters of the ISM and proposed a simple model that may explain the observed distribution of the intervening magneto-ionic medium. Conclusions: The mean line-of-sight magnetic field component, B∥, is determined to be 0.3 ± 0.1 μG and its spatial variation across the 3C 196 field is 0.1 μG. The filamentary structure is probably an ionized filament in the ISM, located somewhere within the Local Bubble. This filamentary structure shows an excess in thermal electron density (neB∥> 6.2 cm-3μG) compared to its surroundings. The RM cubes (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  18. Paddy field mapping and yield estimation by satellite imagery and in situ observations

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.

    2011-12-01

    Since Asian countries are responsible for approximately 90% of the world rice production and consumptions, rice is the most significant cereal crop in Asia. In order to ensure food security and take mitigation strategies or policies to manage food shortages, timely and accurate statistics of rice production are essential. It is time and cost consuming work to create accurate statistics of rice production by ground-based measurements. Hence, satellite remote sensing is expected to contribute food security through the systematic collection of food security related information such as crop growth or yield estimation. In 2011, Japan Aerospace Exploration Agency (JAXA) is collaborating with GISTDA (Geo-Informatics and Space Technology Development Agency, Thailand) in research projects of rice yield estimation by integrating satellite imagery and in situ data. Thailand is one of the largest rice production countries and the largest rice exporting country, therefore rice related statistics are imperative for food security and economy in the country. However, satellite observation by optical sensor in tropics including Thailand is highly limited, because the area is frequently covered by cloud. In contrast, Japanese microwave sensor, namely Phased-Array L-Band Synthetic Aperture Radar (PALSAR) on board Advanced Land Observing Satellite (ALOS) is suitable for monitoring cloudy area such as Southeast Asia, because PALSAR can penetrate clouds and collect land-surface information even if the area is covered by cloud. In this study, rice crop yield over Khon Kaen, northeast part of Thailand was estimated by combining satellite imagery and in-situ observation. This study consists of mainly two parts, paddy field mapping and yield estimation by numerical crop model. First, paddy field areas were detected by integrating PALSAR and AVNIR-2 data. PALSAR imagery has much speckle noise and the border of each landcover is ambiguous compared to that of optical sensor. To overcome this

  19. New Observations of the Heliospheric Magnetic Field from the Voyager Spacecraft

    NASA Technical Reports Server (NTRS)

    Burlaga, Leonard F.

    2007-01-01

    We review recent observations of variations of the heliospheric magnetic field B(t) made by Voyager 1 and 2 (V1 and V2), and we discuss the boundary conditions needed for models to explain the observations. Usually, observations from a spacecraft close to the Sun, such as ACE, WIND or Ulysses are used as input to a time-dependent model. Generally, the predicted profile B(t) can be compared directly with the observed profile only when either V1 or V2 is approximately radially aligned with a near-Sun spacecraft; this happens rarely and only for a brief time interval. The Bastille Day events illustrate this situation. In the absence of radial alignment of the spacecraft it is possible to predict the development of a global structure (a GMIR) with data from ACE or WIND, if they obtain a representative sample the flows that merge to form a GMIR. When latitudinal gradients are small and when there is statistical homogeneity in the azimuthal direction, it is possible to predict the statistical properties of the large-scale fluctuations of B(t) observed by V1 or V2 during a year or so. We illustrate this situation with observations from the recent solar maximum and the declining phase of the solar cycle. Predictions of detailed observations made by V1 and V2 under general conditions (e.g., when there is a large latitudinal gradient) require boundary conditions as a function of time on a surface, such as a Sun-centered sphere with a radius of 1 AU. These conditions can only be provided by global solar observations. We suggest the feasibility of such an approach, using V2 observations for 2005 and 2006. The prediction of observations in the heliosheath requires the solution of the 3-D boundary problem for the supersonic solar wind and propagation of solar wind through the termination shock into the heliosphere. The properties of B(t) observed in the heliosheath have not yet been predicted.

  20. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    Understanding the interior structure and dynamics of a planet is a key step towards understanding the formation and evolution of a planet. In this thesis, I combine field observation and dynamo modeling to understand planetary interiors. Focus has been put on planets Saturn and Mercury. The Cassini spacecraft has been taking continuous measurements in the Saturnian system since the Saturn orbital insertion in June 2004. Since the Mercury orbital insertion in March 2011, the MESSENGER spacecraft has been examining planet Mercury. After analyzing the close-in portion of the in-situ Cassini magnetometer measurements around Saturn, I find that Saturn's magnetic field features several surprising characteristics. First, Saturn's magnetic field is extremely axisymmetric. We cannot find any consistent departure from axisymmetry, and have put an extremely tight upper bound on the dipole tilt of Saturn: the dipole tilt of Saturn has to be smaller than 0.06 degrees. Second, we find that Saturn's magnetic field is extremely stable with time. Third, we estimated the magnetic moments of Saturn up to degree 5. This is the first magnetic field model for Saturn which goes beyond degree 3. We find that not only Saturn's intrinsic magnetic field is dominated by the axial moments; among these axial moments the odd degree ones dominate. In addition, the first three odd degree axial moments all take the same sign. This sign pattern of Saturn's magnetic moments is in contrast to that of the Earth's magnetic moments which takes alternative signs for the past century. The contrast between the geometries of Saturn's magnetic field and the Earth's magnetic field lead us to propose a dynamo hypothesis which speculates that such differences are caused by structural and dynamical differences inside these two planets. Our dynamo hypothesis for Saturn has two essential ingredients. The first concerns about the existence and size of a central core inside Saturn and its influence on Saturn's dynamo

  1. Field observations of the persistence of Comp B explosives residues in a salt marsh impact area.

    PubMed

    Walsh, Marianne E; Taylor, Susan; Hewitt, Alan D; Walsh, Michael R; Ramsey, Charles A; Collins, Charles M

    2010-01-01

    Field observations of weathering Comp B (RDX/TNT 60/40) residue were made on a live-fire training range over four years. The Comp B residue was formed by low-order detonations of 120-mm mortar projectiles. Physical changes were the disaggregation of initially solid chunks into masses of smaller diameter pieces and formation of red phototransformation products that washed off with rain or tidal flooding. Disaggregation increased the surface area of the residue, thereby increasing the potential for dissolution. The bulk of the mass of Comp B was in the craters, but solid chunks were scattered asymmetrically up to 30m away. PMID:19883934

  2. Observation of quantized motion of Rb atoms in an optical field

    NASA Astrophysics Data System (ADS)

    Jessen, P. S.; Gerz, C.; Lett, P. D.; Phillips, W. D.; Rolston, S. L.; Spreeuw, R. J. C.; Westbrook, C. I.

    1992-07-01

    We observe transitions of laser-cooled Rb between vibrational levels in subwavelength-sized optical potential wells, using high-resolution spectroscopy of resonance fluorescence. We measure the spacing of the levels and the population distribution, and find the atoms to be localized to 1/15 of the optical wavelength. We find up to 60% of the population of trapped atoms in the vibrational ground state. The dependence of the spectrum on the parameters of the optical field provides detailed information about the dynamics of laser-cooled atoms.

  3. Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation

    NASA Astrophysics Data System (ADS)

    Finke, G.; Kujawińska, M.; Kozacki, T.; Zaperty, W.

    2016-09-01

    In this paper we propose a method which allows to overcome the basic functional problems in holographic displays with naked eye observation caused by delivering too small images visible in narrow viewing angles. The solution is based on combining the spatiotemporal multiplexing method with a 4f optical system. It enables to increase an aperture of a holographic display and extend the angular visual field of view. The applicability of the modified display is evidenced by Wigner distribution analysis of holographic imaging with spatiotemporal multiplexing method and by the experiments performed at the display demonstrator.

  4. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Lynch, Brian; Konopka, Uwe; Merlino, Robert L.; Rosenberg, Marlene

    2015-03-01

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the "dust grid" and point out potential implications and applications of these observations.

  5. Surface Meteorological Observations in Severe Thunderstorms. Part II: Field Experiments with TOTO.

    NASA Astrophysics Data System (ADS)

    Bluestein, Howard B.

    1983-05-01

    The TOTO (Totable Tornado Observatory) device was field tested in the Southern Plains by a severe-storm intercept team from the University of Oklahoma from late May through early June 1981. The results from two intercept missions and a gust-front intercomparison at the National Severe Storms laboratory are discussed. Measurements are presented of wind speed, wind direction, pressure and temperature made underneath a rotating wall cloud and within 1.5 km of two tornadoes. A damage survey and a Doppler-radar observed mesocyclone-signature track were used in conjunction with the TOTO data to obtain an estimate of the maximum wind speed inside one of the tornadoes.

  6. Observations of imposed ordered structures in a dusty plasma at high magnetic field

    SciTech Connect

    Thomas, Edward Lynch, Brian; Konopka, Uwe; Merlino, Robert L.; Rosenberg, Marlene

    2015-03-15

    Dusty plasmas have been studied in argon, rf glow discharge plasmas at magnetic fields up to 2 T, where the electrons and ions are strongly magnetized. In this experiment, plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper, electrically floating electrode supports a semi-transparent, titanium mesh. We report on the formation of an ordered dusty plasma, where the dust particles form a spatial structure that is aligned to the mesh. We discuss possible mechanisms that may lead to the formation of the “dust grid” and point out potential implications and applications of these observations.

  7. Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture

    NASA Astrophysics Data System (ADS)

    Makurira, H.; Savenije, H. H. G.; Uhlenbrook, S.

    2009-08-01

    Smallholder rainfed farming systems generally realise sub-optimal crop yields which are largely attributed to dry spell occurrences during crop growth stages. However, with improved farming practices, it seems possible to significantly increase yield levels even with little and highly variable rainfall. The presented results follow research conducted in the Makanya catchment in northern Tanzania where gross rainfall amounts to less than 400 mm/season which is insufficient to support staple food crops (e.g. maize). Alternative cultivation techniques such as runoff harvesting and in-field micro-storage structures are compared. These techniques aim to reduce soil and nutrient loss from the field but, more importantly, promote in-field infiltration and water retention. Water balance components have been observed in order to study water partitioning processes under different cultivation techniques. Based on rainfall, soil evaporation, transpiration, runoff and soil moisture measurements, a water balance model has been developed to simulate soil moisture variations over the growing season. It appears that about 50% of the diverted water leaves the root zone through deep percolation. Modelling shows that during the field trials the average productive transpiration flow ranged between 1.1-1.4 mm d-1 in the trial plots compared to 0.7-1.0 mm d-1 under traditional tillage practice. Productive transpiration processes accounted for 23-29% while losses to deep percolation accounted for 33-48% of the available water. Conclusions from the research are that the innovations tested are effective in enhancing soil moisture retention at field scale and that diversions allow crop growth moisture conditions to be attained with early rains. It is also concluded that there is more scope for efficient utilisation of the diverted runoff water if storage structures could be installed to regulate water flow to the root zone when required.

  8. Direct observation of ferroelectric domain switching in varying electric field regimes using in situ TEM.

    PubMed

    Winkler, C R; Damodaran, A R; Karthik, J; Martin, L W; Taheri, M L

    2012-11-01

    In situ Transmission Electron Microscopy (TEM) techniques can potentially fill in gaps in the current understanding interfacial phenomena in complex oxides. Select multiferroic oxide materials, such as BiFeO(3) (BFO), exhibit ferroelectric and magnetic order, and the two order parameters are coupled through a quantum-mechanical exchange interaction. The magneto-electric coupling in BFO allows control of the ferroelectric and magnetic domain structures via applied electric fields. Because of these unique properties, BFO and other magneto-electric multiferroics constitute a promising class of materials for incorporation into devices such as high-density ferroelectric and magnetoresistive memories, spin valves, and magnetic field sensors. The magneto-electric coupling in BFO is mediated by volatile ferroelastically switched domains that make it difficult to incorporate this material into devices. To facilitate device integration, an understanding of the microstructural factors that affect ferroelastic relaxation and ferroelectric domain switching must be developed. In this article, a method of viewing ferroelectric (and ferroelastic) domain dynamics using in situ biasing in TEM is presented. The evolution of ferroelastically switched ferroelectric domains in BFO thin films during many switching cycles is investigated. Evidence of partial domain nucleation, propagation, and switching even at applied electric fields below the estimated coercive field is revealed. Our observations indicate that the occurrence of ferroelastic relaxation in switched domains and the stability of these domains is influenced the applied field as well as the BFO microstructure. These biasing experiments provide a real time view of the complex dynamics of domain switching and complement scanning probe techniques. Quantitative information about domain switching under bias in ferroelectric and multiferroic materials can be extracted from in situ TEM to provide a predictive tool for future device

  9. Analysis of field observations of tracer transport in a fractured till.

    PubMed

    Kosakowski, G; Berkowitz, B; Scher, H

    2001-01-01

    We analyze a set of observations from a recently published, field-scale tracer test in a fractured till. These observations demonstrate a dominant, underlying non-Fickian behavior, which cannot be quantified using traditional modeling approaches. We use a continuous time random walk (CTRW) approach which thoroughly accounts for the measurements, and which is based on a physical picture of contaminant motion that is consistent with the geometric and hydraulic characterization of the fractured formation. We also incorporate convolution techniques in the CTRW theory, to consider transport between different regions containing distinct heterogeneity patterns. These results enhance the possibility that limitations in predicting non-Fickian modes of contaminant migration can be overcome.

  10. A system for collecting data on observer preferences in the field using personal data assistants

    NASA Astrophysics Data System (ADS)

    Bennett, John G.; Crile, James

    2003-09-01

    Field tests to compare camouflage patterns rely on collecting data on the preferences of human observers. The director of such tests has been faced with a choice between using pencil-and-paper ballots or using an expensive data collection system based on push buttons wired to personal computers with custom software. In this paper we describe an alternative system that combines the advantages of digital collection with the simplicity of paper ballots. The key ingredients to the system are personal data assistants (PDA's) and database software that runs on a PDA. Specifically, our system makes use of Palm Pilots and the commercial database program thinkDB. Using a stylus, each observer enters his selection of the better camouflage pattern by pushing a radio button on the screen of his Palm Pilot. At the end of the test, the test director uses the Palm HotSync function to transfer the results to a personal computer for analysis.

  11. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  12. Vibrio viscosus in farmed Atlantic salmon Salmo salar in Scotland: field and experimental observations.

    PubMed

    Bruno, D W; Griffiths, J; Petrie, J; Hastings, T S

    1998-11-30

    Winter mortality occurred in market-sized (2 to 3 kg) Atlantic salmon Salmo salar reared in sea cages in Scottish waters. Many of the fish had skin ulcers. Internally prominent dark-brown petechiae or ecchymotic haemorrhage was observed. Splenomegaly was associated with congestion and widespread necrosis. A Vibrio sp. was isolated from internal organs. Biochemically isolates of the bacterium were similar to a previously described bacterium, Vibrio viscosus, recorded in a phenotypic study from farmed salmon in Norway. This work examines the occurrence of V. viscosus in marine-reared Atlantic salmon for the first time in Scottish waters. An experimental study reproduced the field observations and Koch's postulates were fulfilled. The histopathology associated with natural infection was compared with that in laboratory-infected fish. PMID:9891731

  13. MESSENGER observations of the response of Mercury's magnetosphere to northward and southward interplanetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Slavin, James

    M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of

  14. Tsunami damages assessment: vulnerability functions on buildings based on field and earth observation survey.

    NASA Astrophysics Data System (ADS)

    Gauraz, A. L.; Valencia, N.; Koscielny, M.; Guillande, R.; Gardi, A.; Leone, F.; Salaun, T.

    2009-04-01

    The assessment of damages caused by tsunami scenarios on coastal buildings requires using vulnerability matrixes or functions to carry out a relation between the magnitude of the phenomena and the damage expected. These functions represent the probability for a building belonging to a class of vulnerability to suffer from a mean damage level. The physical vulnerability of buildings depends on two parameters: the solicitation level applied by the tsunami on buildings and their resistance capacity. According to the authors after post-tsunami observations (Reese et al. 2007; Ruangrassamee et al. 2006; Leone et al. 2006; Peiris 2006), the level of damage is clearly linked to the water elevation of the inundated areas and the type of observed buildings. Very few works propose relations based on velocity or hydrodynamic pressure of the waves. An approach developed for the estimation of the building vulnerability consists in deriving empirical damage functions starting from field observations. As part of the SCHEMA European Project on the vulnerability assessment for tsunami hazards in the Atlantic and Mediterranean area, vulnerability functions have been elaborated for different classes of buildings in order to produce vulnerability maps for exposed areas with emphasis on extraction of building characteristics using remote sensing data. The damage detection has been carried out by field data collected after the 24 December 2006 tsunami event on the southwest area of Banda Aceh (Sumatra, Thailand) completed by photo-interpretation of satellite images to get representative functions with large population of samples. The building classes consist in several categories depending mainly on the type of construction material (timber/bamboo, traditional brick, reinforced concrete …), the type of structure (beam, pillars, etc) and the number of storeys. The level of damage has been also classified in five categories, from D0 (no damage) to D5 (total destruction). Vulnerability

  15. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  16. Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.

    PubMed

    Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie

    2016-03-21

    Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves. PMID:27136878

  17. Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.

    PubMed

    Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie

    2016-03-21

    Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.

  18. Determination of the plasmapause boundary using ground magnetometer field line resonances, satellite observations, and modeling

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Boudouridis, A.; Jorgensen, A. M.; Yizengaw, E.; Chi, P. J.; Moldwin, M.; Carranza, T.; Mann, I. R.; Johnston, W. R.; Wilson, G. R.

    2012-12-01

    The plasmapause boundary layer (PBL) separates the cold and dense plasmaspheric plasma from the more tenuous and hot plasma sheet plasma and organizes the spatial distribution of ULF and VLF waves that can contribute to acceleration or loss processes of radiation belt particles through wave-particle interactions. The PBL has been traditionally determined by in situ observations and can be given by empirical models. Recent work has shown that a mid-latitude chain of well-spaced ground magnetometers can also determine the PBL boundary location. Spectral properties, like the cross-phase reversal between two stations closely aligned in latitude, have been shown to indicate the presence of a sharp PBL. We show here an example of such a PBL identification during the moderate storm of Nov 9-12, 2006. We combine observations from the SAMBA (South American Meridional B-field Array), MEASURE (Magnetometers along the Eastern Atlantic Seaboard for Undergraduate Research and Education), McMAC (Mid-continent Magnetoseismic Chain), and CARISMA ground magnetometer chains covering L values from L=2 to L=5 to statistically determine how commonly the PBL is determined from ground magnetometers. In our initial study we examine observations from June to December, 2006. We compare our PBL determinations with the determination of the same boundary from the Defense Meteorological Satellite Program (DMSP) satellites, based on the H+ density observations, which have been shown to accurately identify the PBL from a low-Earth orbiting satellite. We also compare our PBL identification with those determined from a global GPS TEC map and GPS TEC tomography technique used by a chain of ground GPS receivers. Finally, we compare our observations with results from the Dynamic Global Core Plasma Model (DGCPM), as well as existing empirical models based on in situ observations.

  19. A Reevaluation of Airborne HO(x) Observations from NASA Field Campaigns

    NASA Technical Reports Server (NTRS)

    Olson, Jennifer; Crawford, James H.; Chen, Gao; Brune, William H.; Faloona, Ian C.; Tan, David; Harder, Hartwig; Martinez, Monica

    2006-01-01

    In-situ observations of tropospheric HO(x) (OH and HO2) obtained during four NASA airborne campaigns (SUCCESS, SONEX, PEM-Tropics B and TRACE-P) are reevaluated using the NASA Langley time-dependent photochemical box model. Special attention is given to previously diagnosed discrepancies between observed and predicted HO2 which increase with higher NO(x) levels and at high solar zenith angles. This analysis shows that much of the model discrepancy at high NO(x) during SUCCESS can be attributed to modeling observations at time-scales too long to capture the nonlinearity of HO(x) chemistry under highly variable conditions for NO(x). Discrepancies at high NO(x) during SONEX can be moderated to a large extent by complete use of all available precursor observations. Differences in kinetic rate coefficients and photolysis frequencies available for previous studies versus current recommendations also explain some of the disparity. Each of these causes is shown to exert greater influence with increasing NO(x) due to both the chemical nonlinearity between HO(x) and NO(x) and the increased sensitivity of HO(x) to changes in sources at high NO(x). In contrast, discrepancies at high solar zenith angles will persist until an adequate nighttime source of HO(x) can be identified. It is important to note that this analysis falls short of fully eliminating the issue of discrepancies between observed and predicted HO(x) for high NO(x) environments. These discrepancies are not resolved with the above causes in other data sets from ground-based field studies. Nevertheless, these results highlight important considerations in the application of box models to observationally based predictions of HO(x) radicals.

  20. Structured DC Electric Fields With and Without Associated Plasma Density Gradients Observed with the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.

    2009-01-01

    DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients

  1. Quiet Sun Magnetic Field Evolution Observed with Hinode SOT and IRIS

    NASA Astrophysics Data System (ADS)

    Fischer, C. E.; Bello González, N.; Rezaei, R.

    2016-04-01

    We study two physical processes that can be commonly observed in the quiet sun and involve temporal evolution of the magnetic field: convective collapse and flux cancellation. The aim is to investigate the response of the chromosphere to the magnetic events in the photosphere below. We have calibrated and aligned a co-spatial and co-temporal 3 hour quiet sun time series observed with the Hinode SOT (Solar Optical Telescope) and the IRIS (Interface Region Imaging Spectrograph) satellites. Convective collapse events are identified in the photosphere by inverting spectropolarimetric data and searching for magnetic field intensification, preceded by a downflow and accompanied by the development of a bright point in Ca II H images. We find a corresponding downflow in the low chromosphere as deduced from IRIS Mg II k and h spectra and an ensuing oscillatory velocity pattern. We use magnetograms in the high photosphere to study pairs of magnetic elements involved in flux cancellation and find an increase in the entire quasi-continuum of the IRIS Mg II k and h spectrum following the flux cancellation process and indicating a substantial energy deposit into the lower atmosphere.

  2. Multi-Point Electric Field Observations in the High-Altitude Cusp Region

    NASA Astrophysics Data System (ADS)

    Laakso, H.; Escoubet, C.; Grard, R.; Masson, A.; Moullard, O.; Andre, M.; Eriksson, A. I.; Gustafsson, G.; Hull, A.; Mozer, F.; Lindqvist, P.; Pedersen, A.; Balogh, A.; Dunlop, M.; Fazakerley, A.; Taylor, M.

    2001-12-01

    In January-April 2001 the Cluster quartet crossed the cusp region twice per their 56 hours orbital period. These cusp encounters occurred at high altitudes, usually above 8 RE distance. Basically these encounters can be categorized into two groups. The first group consists of crossings where the satellites enter and exit the cusp at a rather constant altitude so that the satellites exit/enter the cusp through the entry layer, on the equatorial side of the cusp, and the plasma mantle, on the poleward side of the cusp. In the second group, the satellites' movement is quite parallel with respect to cusp orientation so that their altitude changes quickly with a rather constant latitude, and then the satellites enter/exit the cusp through the exterior cusp, in the magnetosheath just above the cusp. In this study we will investigate multi-point measurements with the Cluster electric field instrument (EFW) which let us study both plasma drift patterns and electron density variations (from the spacecraft potential data) within the cusp region. We also utilize simultaneous ion, electron, and magnetic field measurements that are important observations for our effort to interpret the EFW data. In particular we attempt to investigate both dynamical and structural aspects of the cusp, as with multi-point observations we have a chance to separate spatial and temporal features from the data.

  3. Field observations and morphodynamic modeling of spontaneous tidal network formation within a constructed salt marsh

    NASA Astrophysics Data System (ADS)

    D'Alpaos, A.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2007-12-01

    We have monitored and analyzed, through remote sensing and ancillary field surveys, the rapid (O(1) year) development of a tidal network within a newly established artificial salt marsh in the Venice Lagoon. After the construction of the salt marsh, a network of volunteer creeks established themselves away from an artificially constructed main channel (with mean and maximum annual headward-growth rates of 11 m/yr and 18 m/yr, respectively). The rapid formation of this system of tidal creeks provides a unique opportunity to test the reliability of a model of tidal network initiation and development, previously proposed by the authors. The restored marsh presents the characteristics of a controlled environment analogous to a large-scale field laboratory, as it allows comparison of the morphologic features of real and simulated network structures under the reasonable assumption of neglecting accretion and deposition processes over the timescales of observation. Our results compare favorably with observational evidence, showing that the model proves reasonably capable of reproducing the main features of the actual channel-network patterns. The model reproduces statistical network characteristics of eco-morphodynamic and hydrodynamic relevance and captures the dominant modes of the network-incision process.

  4. Plasma and field observation of the structures in the polar solar wind

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Barraclough, B. L.; Gosling, J. T.; Hammond, C. M.; Phillips, J. L.; Neugebauer, M.; Balogh, A.; Forsyth, R. J.

    1995-01-01

    Since passing essentially continuously into regions of solar wind from the southern polar coronal hole at approximately 36 deg S, Ulysses has observed frequent structures lasting from several hours to several days. In addition to Alfven waves and coronal mass ejections, which have been discussed by previous authors, two other sorts of structures are routinely evident. This paper provides the first report of these structures in the high latitude solar wind: (1) small scale compressional structures, and (2) pressure balance structures. The compressional structures are driven by faster solar wind overtaking the slower solar wind ahead of it and exhibit the plasma and field properties expected for compressions. However, unlike large scale stream interaction regions observed in and near the ecliptic plane, these structures are much smaller scale and are transient, not recurring from one rotation to the next. The pressure balance structures are indicated by roughly equal increases in the plasma pressure and decreases in the magnetic field pressure. These structures, which are several degrees across, are more dense and have higher plasma pressures and betas than the surrounding solar wind. These pressure balance structures seem to be likely manifestations of 'polar plumes.'

  5. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest

    NASA Astrophysics Data System (ADS)

    Bu, Wensheng; Zang, Runguo; Ding, Yi

    2014-02-01

    The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.

  6. Evaluation of Gravitational Field Models Based on the Laser Range Observation of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Hong-bo, Wang; Chang-yin, Zhao; Wei, Zhang; Jin-wei, Zhan; Sheng-xian, Yu

    2016-07-01

    The Earth gravitational field model is one of the most important dynamic models in satellite orbit computation. Several space gravity missions made great successes in recent years, prompting the publishing of several gravitational filed models. In this paper, two classical (JGM3, EGM96) and four latest (EIGEN-CHAMP05S, GGM03S, GOCE02S, EGM2008) models are evaluated by employing them in the precision orbit determination (POD) and prediction. These calculations are performed based on the laser ranging observation of four Low Earth Orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. The main results we obtained are as follows. (1) For the POD of LEOs, the accuracies of 4 latest models are at the same level, and better than those of 2 classical models; (2) Taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70, the accuracy keeps constant, implying that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO computation of centimeter precision.

  7. Field Observation of Joint Structures in Various Types of Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Kano, Shingo; Tsuchiya, Noriyoshi

    2006-05-01

    In this study, field observations of natural fracture network systems in some intrusive and extrusive rocks were undertaken, to clarify the fracturing mechanism in the rocks. Shallow intrusives, whose depth of emplacement was less than several hundred metres, include the Momo-iwa Dacite dome on Rebun Island (Hokkaido), and Jodogahama Rhyolite in Iwate prefecture. Extrusive complexes studied include the Tojinbo Andesite and Ojima Rhyodacite in Fukui prefecture. Rocks of `granitic' composition were collected from the Takidani (Japan Alps) and Hijiori (Yamagata prefecture) plutons. The joint structure in Hijiori Granite was evaluated by analysis of core samples extracted from the HDR-3 geothermal production well. Based on detailed field observation, joint structures related to thermal contraction of a rock mass could be classified according to their inferred depth of formation. Joints from a near surface setting, such as shallow intrusive rocks and extrusives, tend to form pentagonal — hexagonal columnar structures (for a variety of rock types), whilst granitic rocks (from a deeper setting) typically exhibit a parallelepiped structure. The apparent differences in joint form are inferred to be dependent on the confining pressure, which acts on joint generation and propagation. In cases of non-confining pressure, such as the near-surface (shallow intrusive/extrusive) setting, joint networks typically form a columnar structure. On the contrary, confining pressure is considerably greater for deeper rock masses, and these form a parallelepiped joint structure.

  8. Observations of 3-D Electric Fields and Waves Associated With Reconnection at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.

  9. HUBBLE SPACE TELESCOPE OBSERVATIONS OF AN OUTER FIELD IN OMEGA CENTAURI: A DEFINITIVE HELIUM ABUNDANCE

    SciTech Connect

    King, I. R.; Bedin, L. R.; Bellini, A.; Anderson, J.; Cassisi, S.; Pietrinferni, A.; Milone, A. P.; Piotto, G.; Cordier, D. E-mail: bellini@stsci.edu E-mail: luigi.bedin@oapd.inaf.it E-mail: adriano@oa-teramo.inaf.it E-mail: giampaolo.piotto@unipd.it

    2012-07-15

    We revisit the problem of the split main sequence (MS) of the globular cluster {omega} Centauri, and report the results of two-epoch Hubble Space Telescope observations of an outer field, for which proper motions give us a pure sample of cluster members, and an improved separation of the two branches of the MS. Using a new set of stellar models covering a grid of values of helium and metallicity, we find that the best possible estimate of the helium abundance of the bluer branch of the MS is Y = 0.39 {+-} 0.02. For the cluster center, we apply new techniques to old observations: we use indices of photometric quality to select a high-quality sample of stars, which we also correct for differential reddening. We then superpose the color-magnitude diagram of the outer field on that of the cluster center, and suggest a connection of the bluer branch of the MS with one of the more prominent among the many sequences in the subgiant region. We also report a group of undoubted cluster members that are well to the red of the lower MS.

  10. LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA

    SciTech Connect

    Cat, P. De; Ren, A. B.; Yang, X. H.; Fu, J. N.; Shi, J. R.; Luo, A. L.; Yang, M.; Wang, J. L.; Zhang, H. T.; Shi, H. M.; Zhang, W.; Dong, Subo; Catanzaro, G.; Frasca, A.; Corbally, C. J.; Gray, R. O.; Żakowicz, J. Molenda-; Uytterhoeven, K.; Briquet, M.; Bruntt, H.; and others

    2015-09-15

    The nearly continuous light curves with micromagnitude precision provided by the space mission Kepler are revolutionizing our view of pulsating stars. They have revealed a vast sea of low-amplitude pulsation modes that were undetectable from Earth. The long time base of Kepler light curves allows for the accurate determination of the frequencies and amplitudes of pulsation modes needed for in-depth asteroseismic modeling. However, for an asteroseismic study to be successful, the first estimates of stellar parameters need to be known and they cannot be derived from the Kepler photometry itself. The Kepler Input Catalog provides values for the effective temperature, surface gravity, and metallicity, but not always with sufficient accuracy. Moreover, information on the chemical composition and rotation rate is lacking. We are collecting low-resolution spectra for objects in the Kepler field of view with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (lamost, Xinglong observatory, China). All of the requested fields have now been observed at least once. In this paper, we describe those observations and provide a useful database for the whole astronomical community.

  11. Some experimental observations on circulating currents in a crossed field plasma accelerator

    NASA Technical Reports Server (NTRS)

    Jedlicka, J.; Haacker, J.

    1971-01-01

    Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

  12. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2016-08-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  13. Shuttle near-field environmental impacts - Conclusions and observations for launching at other locations

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Knott, W. M.

    1985-01-01

    Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.

  14. A theoretical analysis of the observed variability of the geomagnetic dipole field

    NASA Astrophysics Data System (ADS)

    Hoyng, P.; Schmitt, D.; Ossendrijver, M. A. J. H.

    2002-04-01

    We present a detailed analysis of the Sint-800 virtual axial dipole moment (VADM) data in terms of an αΩ mean field model of the geodynamo that features a non-steady generation of poloidal from toroidal magnetic field. The result is a variable excitation of the dipole mode and the overtones, and there are occasional dipole reversals. The model permits a theoretical evaluation of the statistical properties of the dipole mode. We show that the model correctly predicts the distribution of the VADM and the autocorrelation function inferred from the Sint-800 data. The autocorrelation technique allows us to determine the turbulent diffusion time τd= R2/ β of the geodynamo. We find that τd is about 10-15 kyr. The model is able to reproduce the observed secular variation of the dipole mode, and the mean time between successive dipole reversals. On the other hand, the duration of a reversal is a factor ˜2 too long. This could be due to imperfections in the model or to unknown systematics in the Sint-800 data. The use of mean field theory is shown to be selfconsistent.

  15. Observing soil water dynamics under two field conditions by a novel sensor system

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Sun, Y.; Schulze Lammers, P.; Schumann, H.; Berg, A.; Shi, C.; Wang, C.

    2011-10-01

    SummarySufficiently available soil water is a basic requirement in agricultural production. Monitoring soil water dynamics (SWD) in the root zone is an optimal approach for managing a crop's growth. This study presents a novel sensor system that simultaneously measures volumetric soil water content (VSWC), apparent electrical conductivity (EC a) and soil temperature at two different soil depths (shallow: 16 cm; deep: 36 cm). For testing its feasibility in the field, two prototypes were installed, one in bare soil and the other in a sugar beet ( Beta vulgaris L.) field in the summer of 2010. Following a sequence of rainfall events randomly distributed over the experimental period, we observed distinct responses from the sensors at each monitored depth in both field conditions. In addition to the multi-parameter measurements, the novel sensor design includes a series of technical advantages such as solar-powered operation, wireless communication, and being relatively easy to install/remove. Thus, the developed wireless sensor system is promising for networked applications in precision farming.

  16. Gemini planet imager observational calibrations IV: wavelength calibration and flexure correction for the integral field spectograph

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler G.; Perrin, Marshall D.; Maire, Jérôme; Ingraham, Patrick J.; Rantakyrö, Fredrik T.; Hibon, Pascale

    2014-08-01

    We present the wavelength calibration for the lenslet-based Integral Field Spectrograph (IFS) that serves as the science instrument for the Gemini Planet Imager (GPI). The GPI IFS features a 2.7" x 2.7" field of view and a 190 x 190 lenslet array (14.3 mas/lenslet) operating in Y, J, H, and K bands with spectral resolving power ranging from R ~ 35 to 78. Due to variations across the field of view, a unique wavelength solution is determined for each lenslet characterized by a two-dimensional position, the spectral dispersion, and the rotation of the spectrum with respect to the detector axes. The four free parameters are fit using a constrained Levenberg-Marquardt least-squares minimization algorithm, which compares an individual lenslet's arc lamp spectrum to a simulated arc lamp spectrum. This method enables measurement of spectral positions to better than 1/10th of a pixel on the GPI IFS detector using Gemini's facility calibration lamp unit GCAL, improving spectral extraction accuracy compared to earlier approaches. Using such wavelength calibrations we have measured how internal flexure of the spectrograph with changing zenith angle shifts spectra on the detector. We describe the methods used to compensate for these shifts when assembling datacubes from on-sky observations using GPI.

  17. Structures observed on the spot radiance fields during the FIRE experiment

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Smith, Leonard; Desbois, Michel

    1990-01-01

    Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.

  18. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  19. Observational study of the role of magnetic fields in star formation

    NASA Astrophysics Data System (ADS)

    Hakobian, Nicholas Szandor

    This project is a multi-faceted approach to establish a link between proposed theories of star formation and direct observation. Some key factors explored include: if magnetic fields cause significant support against gravitational collapse, which physical parameters are sampled by different tracer molecules, and what these results tell us about the structure and development of the regions observed. Until recently, only ambipolar diffusion theory had numerical models that simulated possible physical results that could be compared to observational data. These theories interpret the models in terms of a physical parameter: the ratio of the mass to the magnetic flux (M/phi). Performing measurements of the magnetic field, to determine the magnetic flux (phi), is complicated. It is only possible to obtain direct measurements of the strength of the line-of-sight component of the magnetic field through the normal Zeeman effect. Only a few molecules have Zeeman splitting factors large enough to be successfully used to measure magnetic fields. Of these few, OH traces lower density molecular species, while CN is believed to trace higher density regions. Using the Green Bank Telescope (GBT) we mapped the magnetic fields of cores and envelopes of dark cloud cores using OH as a tracer molecule. From this, the ratio of M/phi between the cores and envelopes were computed, and were consistently determined to be < 1. This is inconsistent with published ambipolar diffusion theory which expects this ratio to be > 1. This study can be extended to other types of objects by using different tracer molecules. CN can be used to probe hot dense regions; however, it requires high resolution mapping currently only obtainable with an interferometer. Using CARMA, we obtained maps of 6 high mass star formation regions with a spatial resolution of approximately 2" by combining data from the C, D, and E arrays. CARMA's correlator was used to sample several spectral lines simultaneously in order to

  20. Dynamic Recrystallization in Ice : In-Situ Observation of the Strain Field during Grain Nucleation.

    NASA Astrophysics Data System (ADS)

    Chauve, T.; Montagnat, M.; Tommasi, A.; Vacher, P.

    2014-12-01

    close focus on a triple junction. In particular, we will provide original observations of strain-field evolution associated with the nucleation of new grains and subboundaries close to this triple junction. Associated with post-deformation analyses by AITA and EBSD, these observations enable to follow the strain redistribution due to the nucleation.

  1. Field and LiDAR observations of the Hector Mine California 1999 surface rupture

    NASA Astrophysics Data System (ADS)

    Sousa, F.; Akciz, S. O.; Harvey, J. C.; Hudnut, K. W.; Lynch, D. K.; Scharer, K. M.; Stock, J. M.; Witkosky, R.; Kendrick, K. J.; Wespestad, C.

    2014-12-01

    We report new field- and computer-based investigations of the surface rupture of the October 16, 1999 Hector Mine Earthquake. Since May 2012, in cooperation with the United States Marine Corps Air Ground Combat Center (MCAGCC) at Twentynine Palms, CA, our team has been allowed ground and aerial access to the entire surface rupture. We have focused our new field-based research and imagery analysis along the ~10 kilometer-long maximum slip zone (MSZ) which roughly corresponds to the zone of >4 meter dextral horizontal offset. New data include: 1) a 1 km wide aerial LiDAR survey along the entire surface rupture (@ 10 shots/m2, May 2012, www.opentopography.org); 2) terrestrial LiDAR surveys at 5 sites within the MSZ (@ >1000 shots/m2, April 2014); 3) low altitude aerial photography and ground based photography of the entire MSZ; 4) a ground-truthed database of 87 out of the 94 imagery-based offset measurements made within the MSZ; and 5) a database of 50 new field-based offset measurements made within the MSZ by our team on the ground, 31 of which have also been made on the computer (Ladicaoz) with both the 2000 LiDAR data (@ 0.5 m DEM resolution; Chen et al, in review) and 2012 LiDAR data (@ 35 cm DEM resolution; our team). New results to date include 1) significant variability (> 2 m) in horizontal offsets measured along short distances of the surface rupture (~100 m) within segments of the surface rupture that are localized to a single fault strand; 2) strong dependence of decadal scale fault scarp preservation on local lithology (bedrock vs. alluvial fan vs. fine sediment) and geomorphology (uphill vs. downhill facing scarp); 3) newly observed offset features which were never measured during the post-event field response; 4) newly observed offset features too small to be resolved in airborne LiDAR data (< 1 m); 5) nearly 25% of LiDAR imagery-based measurements that were later ground-truthed were judged by our team to warrant removal from the database due to

  2. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    This thesis is focused on the development and testing of a new instrument capable of finding and characterizing recently-formed Jupiter-sized planets orbiting other stars. To observe these planets, I present the design, construction and testing of the Gemini Planet Imager (GPI) Integral Field Spectrograph (IFS). GPI is a facility class instrument for the Gemini Observatory with the primary goal of directly detecting young Jovian planets. The GPI IFS utilizes an infrared transmissive lenslet array to sample a rectangular 2.7 x 2.7 arcsecond field of view and provide low-resolution spectra across five bands between 1 and 2.5 mum. The dispersing element can be replaced with a Wollaston prism to provide broadband polarimetry across the same five filter bands. The IFS construction was based at the University of California, Los Angeles in collaboration with the Universite de Montreal, Immervision and Lawrence Livermore National Laboratory. I will present performance results, from in-lab testing, of the Integral Field Spectrograph (IFS) for the Gemini Planet Imager (GPI). The IFS is a large, complex, cryogenic, optical system requiring several years of development and testing. I will present the design and integration of the mechanical and optical performance of the spectrograph optics. The IFS passed its pre-ship review in 2011 and was shipped to University of California, Santa Cruz for integration with the remaining sub-systems of GPI. The UCLA built GPI IFS was integrated with the rest of GPI and is delivering high quality spectral datacubes of GPI's coronagraphic field. Using the NIRC2 instrument located at the Keck Observatory, my collaborators and I observed the planetary companion to beta Pictoris in L' (3.5--4.1mum). Observations taken in the fall of 2009 and 2012 are used to find the location and inclination of the planet relative to the massive debris disk orbiting beta Pictoris. We find that the planet's orbit has a position angle on the sky of 211

  3. 30 years of remote sensing imagery in Sahel confronted to field observations (Gourma, Mali)

    NASA Astrophysics Data System (ADS)

    Dardel, Cecile; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Grippa, Manuela; Auda, Yves; Tucker, Compton Jim

    2013-04-01

    Long time-series of satellite data (AVHRR, VGT, METEOSAT, MODIS) now provide important evidence of decadal trends in vegetation activity for different biomes (arctic, boreal, temperate, tropical). Obtaining such time-series is notoriously difficult for a number of reasons including sensor calibration and spectral characterization, orbital drift, consistency of atmospheric corrections confronted to poorly-known aerosol and dust fields, to name just a few. Consistency between sensors or products has already been addressed, but corroboration with in situ data remains challenging. We present here such a consistency check based on long term productivity data collected within the frame of the AMMA-CATCH observatory in northern Sahel, Mali. Firstly, a comparison is performed between various NDVI datasets. The new-released GIMMS-3g dataset is available from 1981 to 2011 with a spatial resolution of 9km and 15 days maximum composite images. It is compared to two other NDVI datasets also based on AVHRR data: LTDR (1981-1999) and the previous GIMMS dataset (1981-2006). Correlations are calculated on a regional basis through simple linear correlation maps over the common time period. Better correlations are found over the Sahelian belt than over the Sahara desert, where vegetation is nil or too sparse. Correlation is higher between LTDR and GIMMS-3g than between GIMMS and GIMMS-3g. Temporal profile is also performed in order to compare AVHRR NDVI to NDVI product from the MODIS sensor (2000-2012). These four datasets were found to be consistent over time once corrected for the observed offsets in NDVI absolute values. Particularly, interannual variability is consistent. GIMMS-3g and MODIS show a good agreement over the last decade. Some minor discrepancies are found for 2010 and 2011 when GIMMS-3g shows lower values especially during the dry season. Preliminary results on the consistency with the Meteosat albedo product and SPOT-VGT time series are also presented. Secondly

  4. Modelling field scale water partitioning using on-site observations in sub-Saharan rainfed agriculture

    NASA Astrophysics Data System (ADS)

    Makurira, H.; Savenije, H. H. G.; Uhlenbrook, S.

    2010-04-01

    Smallholder rainfed farming systems generally realise sub-optimal crop yields which are largely attributed to dry spell occurrences during crop growth stages. However, through the introduction of appropriate farming practices, it is possible to substantially increase yield levels even with little and highly variable rainfall. The presented results follow research conducted in the Makanya catchment in northern Tanzania where gross rainfall amounts to less than 400 mm/season which is insufficient to support staple food crops (e.g. maize). The yields from farming system innovations (SIs), which are basically alternative cultivation techniques, are compared against traditional farming practices. The SIs tested in this research are runoff harvesting used in combination with in-field trenches and soil bunds (fanya juus). These SIs aim to reduce soil and nutrient loss from the field and, more importantly, promote in-field infiltration and water retention. Water balance components have been observed in order to study water partitioning processes for the "with" and "without" SI scenarios. Based on rainfall, soil evaporation, transpiration, runoff and soil moisture measurements, a water balance model has been developed to simulate soil moisture variations over the growing season. Simulation results show that, during the field trials, the average productive transpiration flow ranged between 1.1-1.4 mm d-1 in the trial plots compared to 0.7-1.0 mm d-1 under traditional tillage practice. Productive transpiration processes accounted for 23-29% while losses to deep percolation accounted for 33-48% of the available water. The field system has been successfully modelled using the spreadsheet-based water balance 1-D model. Conclusions from the research are that the SIs that were tested are effective in enhancing soil moisture retention at field scale and that diversions allow crop growth moisture conditions to be attained with early rains. From the partitioning analysis, it is also

  5. Direct observation of f-pair magnetic field effects and time-dependence of radical pair composition using rapidly switched magnetic fields and time-resolved infrared methods.

    PubMed

    Woodward, Jonathan R; Foster, Timothy J; Salaoru, Adrian T; Vink, Claire B

    2008-07-21

    A rapidly switched (<10 ns) magnetic field was employed to directly observe magnetic fields from f-pair reactions of radical pairs in homogeneous solution. Geminate radical pairs from the photoabstraction reaction of benzophenone from cyclohexanol were observed directly using a pump-probe pulsed magnetic field method to determine their existence time. No magnetic field effects from geminate pairs were observed at times greater than 100 ns after initial photoexcitation. By measuring magnetic field effects for fields applied continuously only after this initial geminate period, f-pair effects could be directly observed. Measurement of the time-dependence of the field effect for the photolysis of 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone in cyclohexanol using time-resolved infrared spectroscopy revealed not only the presence of f-pair magnetic field effects but also the ability of the time dependence of the MARY spectra to observe the changing composition of the randomly encountering pairs throughout the second order reaction period.

  6. Swarm observations of field-aligned currents associated with pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Gillies, D. M.; Knudsen, D.; Spanswick, E.; Donovan, E.; Burchill, J.; Patrick, M.

    2015-11-01

    We have performed a superposed epoch study of in situ field-aligned currents located near the edges of regions of pulsating aurora observed simultaneously using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imager (ASI) network and magnetometers on board the Swarm satellites. A total of nine traversals of Swarm over regions of pulsating aurora identified using THEMIS ASI were studied. We determined that in the cases where a clear boundary can be identified, strong downward currents are seen just poleward and equatorward of the pulsating patches. A downward current in the range of ~1-6 μA/m2 can be seen just poleward of the boundary. A weaker upward current of ~1-3 μA/m2 is observed throughout the interior of the patch. These observations indicate that currents carried by precipitating electrons within patches could close through horizontal currents and be returned at the edges, in agreement with Oguti and Hayashi (1984) and Hosokawa et al. (2010b). In addition to confirming these earlier results and adding to their statistical significance, the contribution of this study is to quantify the upward and downward current magnitudes, in some cases using two satellites traversing the same pulsating regions. Finally, we compare Swarm's two-satellite field-aligned current product to the single-satellite results and determine that the data product can be compromised in regions of pulsating aurora, a phenomenon that occurs over widespread regions and tends to persist for long periods of time. These results underscore the importance of electrical coupling between the ionosphere and magnetosphere in regions of patchy pulsating aurora.

  7. Time-resolved observation of discrete and continuous magnetohydrodynamic dynamo in the reversed-field pinch edge

    SciTech Connect

    Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S. )

    1994-08-01

    We report the first experimental verification of the magnetohydrodynamic (MHD) dynamo in the reversed-field pinch (RFP). A burst of MHD dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the Madison Symmetric Totus RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes.

  8. Characterization of Saturn's bow shock: Magnetic field observations of quasi-perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.

    2016-05-01

    Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. First, separating the influences of these parameters on physical mechanisms such as energy dissipation. Second, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in situ observations. Here we present the parameter space of MA bow shock crossings from 2004 to 2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the θBn of each crossing to show that Saturn's (dayside) bow shock is predominantly quasi-perpendicular by virtue of the Parker spiral at 10 AU. Our results suggest a strong dependence on MA in controlling the onset of physical mechanisms in collisionless shocks, particularly nontime stationarity and variability. We anticipate that our comprehensive assessment will yield deeper insight into high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks.

  9. Magnetic Field Structure of Pressure Balanced Structures from Ulysses High Latitudes Observations

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Suess, S. T.; Sakurai, T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Ulysses observations showed that pressure balance structures (PBSs) are a common feature in the high-latitude solar winds near the solar minimum. On the other hand, coronal plumes are common in polar coronal holes near the solar minimum. It is therefore considered that the PBSs would be remnants of plumes. Several detailed studies of the PBSs have been made from Ulysses/SWOOPS observations, but study of their magnetic structures has not yet been done. The study of the magnetic structure is important because previous observations and theoretical models of plumes indicate that they are related to the network activity such as magnetic reconnection on the photosphere. We have investigated the magnetic structures of the PBSs with Ulysses magnetometer and SWOOPS data. We have found that magnetic reversals in radial magnetic field take place while the spacecraft passes through most of the PBSs These magnetic reversals have been interpreted as large amplitude Alfv/'enic fluctuations but our results suggest that Ulysses is also traversing current sheets of plasmoids associated with network activity at the base of plumes.

  10. Field observations of medium-sized debris from postburnout solid-fuel rocket motors

    NASA Astrophysics Data System (ADS)

    Bernstein, Marc D.; Sheeks, Benny J.

    1997-10-01

    Solid-fuel rocket motors are well recognized as a source of numerous small-sized (10 micrometer or less) debris that are ejected at high velocities during the propellant burning process. Medium-sized (1 mm to 10 cm), low velocity versions of these metallic oxide or other combustion chamber debris have also been reported from static ground tests of solid-fuel motors. Field observations of a third component of the debris generated by solid-fuel rocket motor operation are presented in this paper. These are medium-sized debris that are expelled at low velocities through the rocket motor nozzles after the nominal cessation of propellant burning. These post-burnout debris, referred to as chuffing debris, may be a significant component of the orbital debris environment. Radar and optical measurements of these debris have been collected during numerous sub-orbital flight tests conducted over the past several years. The large database of such observations that has now been accumulated indicates that such post-burnout debris are a generic consequence of solid-fuel rocket motor operation. Selected portions of this database are reviewed, and a preliminary model of such medium-sized debris production is presented that is suitable for correlation with existing orbital debris observations and population models.

  11. Field observations of the relation between satellite and sea radiances in coastal waters

    NASA Astrophysics Data System (ADS)

    Aas, Eyvind; Sørensen, Kai

    1995-08-01

    Estimates of the different contributions to the satellite radiance above the outer Oslofjord are presented. The contribution from the sea is of the order of 10% of the total signal, and the part due to reflection from the sea surface constitutes 10-20%. The presence of land may increase the satellite radiance up to 4-9%, but such effects, which are probably reduced to 1/e at a distance of 1 km from the coast, cannot be detected in the present measurements. In situ observations of the marine radiance are corrected for shadings by ship and instrument and for varying solar altitude. The average correction for the self-shading effect of the marine instrument becomes 30-50% in these waters. The linear relations between satellite and sea radiances are determined with correlation coefficients of better than 0.95. The observed minimum value of the satellite radiance (or darkest pixel) is not a satisfactory approximation for the atmospheric correction. It is concluded that, in coastal waters and at the present stage, satellite observations have to be combined with field measurements to obtain reliable results.

  12. First faint dual-field off-axis observations in optical long baseline interferometry

    SciTech Connect

    Woillez, J.; Wizinowich, P.; Ragland, S.; Akeson, R.; Millan-Gabet, R.; Colavita, M.; Eisner, J.; Monnier, J. D.; Pott, J.-U.

    2014-03-10

    Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneously measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability.

  13. Spatial distribution of polychlorinated naphthalenes in the atmosphere across North China based on gridded field observations.

    PubMed

    Lin, Yan; Zhao, Yifan; Qiu, Xinghua; Ma, Jin; Yang, Qiaoyun; Shao, Min; Zhu, Tong

    2013-09-01

    Polychlorinated naphthalenes (PCNs) belong to a group of dioxin-like pollutants; however little information is available on PCNs in North China. In this study, gridded field observations by passive air sampling at 90 sites were undertaken to determine the levels, spatial distributions, and sources of PCNs in the atmosphere of North China. A median concentration of 48 pg m(-3) (range: 10-2460 pg m(-3)) for ∑29PCNs indicated heavy PCN pollution. The compositional profile indicated that nearly 90% of PCNs observed were from thermal processes rather than from commercial mixtures. Regarding the source type, a quantitative apportionment suggested that local non-point emissions contributed two-thirds of the total PCNs observed in the study, whereas a point source of electronic-waste recycling site contributed a quarter of total PCNs. The estimated toxic equivalent quantity for dioxin-like PCNs ranged from 0.97 to 687 fg TEQ m(-3), with the electronic-waste recycling site with the highest risk.

  14. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  15. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  16. Mercury's gravity field and ephemeris after 3 years of MESSENGER orbital observations

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander J.; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2014-05-01

    18 March 2014 will be the third anniversary of MESSENGER's insertion into orbit about Mercury. The initial orbit was highly eccentric and nearly polar, with a 12-h period and a periapsis at 200 km altitude and ~60°N latitude. The third-body perturbation of the Sun combined with the high eccentricity of the orbit led to a substantial evolution of the periapsis, which drifted slowly northward and reached an altitude of 500 km several times before orbit-corrections maneuvers returned the periapsis altitude to ~200 km. In March 2012, the mission orbital phase was extended for a second year, and the spacecraft transitioned to an 8-h orbit period one month later. A second extended mission started in March 2013, will last for another two years, and will eventually allow observations at very low altitudes (<100 km), starting in September 2014. One of the main mission goals is the determination of the interior structure of Mercury, enabled by a suite of instruments that includes the radio system and a laser altimeter. The X-band tracking system and NASA's Deep Space Network (DSN) were used to determine the gravity field of Mercury. The effective spatial resolution of the gravity field is strongly dependent on latitude, however, because of MESSENGER's eccentric orbit and its high apoapsis over the southern hemisphere (~15,000 km in the first year, ~10,000 km subsequently). The gravity field of the southern hemisphere remains largely unconstrained at short wavelengths, although the global long-wavelength field has been determined robustly. Furthermore, MESSENGER radio tracking data represent an excellent opportunity to improve Mercury's ephemeris. The current knowledge of the orbit of Mercury around the Sun has been mainly defined by direct ranging. Range measurements from the three Mercury flybys and orbital phase of MESSENGER provide a strong data set to measure the motion of Mercury's center of mass. The 1-m range accuracy potentially allows the recovery of the

  17. Magnetic Field Strength Fluctuations in the Heliosheath: Voyager 1 Observations during 2009

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    2011-01-01

    We analyze the "microscale fluctuations" of the magnetic field strength Beta on a scale of several hours observed by Voyager I (VI) in the heliosheath during 2009. The microscale fluctuations of Beta range from coherent to stochastic structures. The amplitude of microscale fluctuations of Beta during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) I to 331, 2009, is very intermittent. SD(t) has a 1/f or "pink noise" spectrum on scales from I to 100 days, and it has a broad multi fractal spectrum f(alpha) with 0.57 much < alpha much < 1.39. The time series of increments SD(t + r) - SD(t) has a pink noise spectrum with alpha' = 0.88 +/- 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 +/- 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and Set) are often associated with a change in Beta across a data gap and with identifiable physical structures. The "turbulence" observed by VI during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of "turbulence" in the heliosheath.

  18. Magnetic Field Strength Fluctuations in the Heliosheath: Voyager 1 Observations During 2009

    NASA Technical Reports Server (NTRS)

    Brulaga, L. F.; Ness, N. F.

    2012-01-01

    We analyze the microscale fluctuations of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or "pink noise" spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f(alpha) with 0.57 less than or equal to alpha less than or equal to 1.39. The time series of increments SD(t + tau) -- SD(t) has a pink noise spectrum with alpha(1) = 0.88 plus or minus 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 plus or minus 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The "turbulence" observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of turbulence in the heliosheath.

  19. MAGNETIC FIELD STRENGTH FLUCTUATIONS IN THE HELIOSHEATH: VOYAGER 1 OBSERVATIONS DURING 2009

    SciTech Connect

    Burlaga, L. F.; Ness, N. F. E-mail: nfnudel@yahoo.com

    2012-01-01

    We analyze the ''microscale fluctuations'' of the magnetic field strength B on a scale of several hours observed by Voyager1 (V1) in the heliosheath during 2009. The microscale fluctuations of B range from coherent to stochastic structures. The amplitude of microscale fluctuations of B during 1 day is measured by the standard deviation (SD) of 48 s averages of B. The distribution of the daily values of SD is lognormal. SD(t) from day of year (DOY) 1 to 331, 2009, is very intermittent. SD(t) has a 1/f or 'pink noise' spectrum on scales from 1 to 100 days, and it has a broad multifractal spectrum f({alpha}) with 0.57 {<=} {alpha} {<=} 1.39. The time series of increments SD(t + {tau}) - SD(t) has a pink noise spectrum with {alpha}' = 0.88 {+-} 0.14 on scales from 1 to 100 days. The increments have a Tsallis (q-Gaussian) distribution on scales from 1 to 165 days, with an average q = 1.75 {+-} 0.12. The skewness S and kurtosis K have Gaussian and lognormal distributions, respectively. The largest spikes in K(t) and S(t) are often associated with a change in B across a data gap and with identifiable physical structures. The 'turbulence' observed by V1 during 2009 was weakly compressible on average but still very intermittent, highly variable, and highly compressible at times. The turbulence observed just behind the termination shock by Voyager 2 was twice as strong. These observations place strong constraints on any model of 'turbulence' in the heliosheath.

  20. Chatanika observations of the latitudinal structure of electric fields and particle precipitation on November 21, 1975

    NASA Technical Reports Server (NTRS)

    Wedde, T.; Doupnik, J. R.; Banks, P. M.

    1977-01-01

    By using a new multiposition experimental procedure the incoherent scatter radar facility of Chatanika, Alaska, has been used to obtain detailed latitudinal structure of ion velocities and electric fields in the afternoon and midnight sectors during a period of moderate magnetic disturbance. In particular, the latitudinal and local time structure of the Harang discontinuity has been investigated. In agreement with other observations it is found that the convection flow direction changes from westward through south to eastward over a fairly wide local time range (1-2 hours), the highest latitudes displaying the widest region. The Harang discontinuity encounter is accompanied by an abrupt increase in electron precipitation, the most intense part being located slightly east of the center of the discontinuity. It is suggested that this injection is due to processes closely connected with the discontinuity region itself, rather than to a substorm-related energization.

  1. Global mapping and characterization of Titan's dune fields with Cassini: Correlation between RADAR and VIMS observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Garcia, A.; Lucas, A.; Appéré, T.; Le Gall, A.; Reffet, E.; Le Corre, L.; Le Mouélic, S.; Cornet, T.; Courrech du Pont, S.; Narteau, C.; Bourgeois, O.; Radebaugh, J.; Arnold, K.; Barnes, J. W.; Stephan, K.; Jaumann, R.; Sotin, C.; Brown, R. H.; Lorenz, R. D.; Turtle, E. P.

    2014-02-01

    Vast fields of linear dunes have been observed in the equatorial regions of Titan, Saturn's largest moon. As the Cassini mission, in orbit around Saturn since July 2004 and extended until May 2017, carries on, the high-resolution coverage of Titan's surface increases, revealing new dune fields and allowing refinements in the examination of their properties. In this paper, we present the joint analysis of Cassini's microwave and infrared global scale observations of Titan. Integrating within an up-to-date global map of Titan all the Cassini RADAR and VIMS (Visual and Infrared Mapping Spectrometer) images - the latter being empirically corrected for atmospheric scattering and surface photometry, from July 2004 through July 2013 and June 2010 respectively, we found very good qualitative and quantitative spatial matching between the geographic distribution of the dune fields and a specific infrared spectral unit (namely the “dark brown” unit). The high degree of spatial correlation between dunes and the “dark brown” unit has important implications for Titan's geology and climate. We found that RADAR-mapped dunes and the “dark brown” unit are similarly confined within the equatorial belt (±30° in latitudes) with an equivalent distribution with latitude, suggesting an increasing sediment availability and mobility at Titan's tropics relative to higher latitudes, compatible with the lower ground humidity predicted in equatorial regions by General Circulation Models. Furthermore, the strong correlation between RADAR-mapped dunes and the VIMS “dark brown” unit (72%) allows us to better constrain the total surface area covered by dune material, previously estimated from the extrapolation of the RADAR observations alone. According to our calculations, dune material cover 17.5 ± 1.5% of Titan's surface area, equivalent to a total surface area of 14.6 ± 1.2 million km2 (˜1.5 times the surface area of Earth's Sahara desert). The VIMS “dark brown

  2. Ship-based Surface Flux Observations Under Atmospheric Rivers During the CALWATER 2015 Field Campaign

    NASA Astrophysics Data System (ADS)

    Blomquist, B.; Fairall, C. W.; Intrieri, J. M.; Wolfe, D. E.; Pezoa, S.

    2015-12-01

    The NOAA Physical Sciences Division portable flux system was deployed on the R/V Ron Brown as part of the surface observational strategy for the CALWATER 2015 field investigation. Measurements included turbulent fluxes of temperature, water vapor and wind stress. A refined 'best' set of bulk meteorological measurements for the duration of the cruise was produced from combined NOAA, DOE ARM-AMF2 and shipboard sensors. Direct eddy correlation and bulk model estimates of sensible and latent heat are broadly consistent (RMSE < 10 W/m2). We present a comparison of in-situ fluxes with gridded forecast and reanalysis datasets and assess the potential magnitude of surface flux to the vapor transport budget.

  3. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

    PubMed Central

    Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  4. Updated velocity field for the Caribbean plate from COCONet GPS observations

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Mattioli, G. S.; Jansma, P. E.

    2013-05-01

    The currently accepted kinematic model of the Caribbean plate presented by DeMets et al., 2007, is based on velocities from 6 continuous and 14 campaign GPS sites. Our work attempts to refine the current plate model by evaluating data from the 60+ continuous GPS stations that comprise COCONet. COCONet (Continuously Operating Caribbean Observation Network) is an NSF-funded collaborative natural hazards research effort that has enhanced the geodetic infrastructure in the region surrounding the Caribbean plate. Data for this study was obtained from the open data archive at UNAVCO. GPS data have been processed with an absolute point positioning strategy using GIPSY-OASIS II, using the non-fiducial, final precise clock and orbit parameters provided by JPL. An updated velocity field for the Caribbean plate will be presented and co-seismic and post-seismic slip, recorded by network stations will be examined for earthquakes that have occurred within the COCONet footprint.

  5. Observation of laser-induced field-free permanent planar alignment of molecules

    SciTech Connect

    Hoque, Md. Z.; Lapert, M.; Hertz, E.; Billard, F.; Sugny, D.; Lavorel, B.; Faucher, O.

    2011-07-15

    Permanent planar alignment of gas-phase linear molecules is achieved by a pair of delayed perpendicularly polarized short laser pulses. The experiment is performed in a supersonic jet, ensuring a relatively high number density of molecules with moderately low rotational temperature. The effect is optically probed on a femtosecond time scale by the use of a third short pulse, enabling a time-resolved birefringence detection performed successively in two perpendicular planes of the laboratory frame. The technique allows for an unambiguous estimation of the molecular planar delocalization produced within the polarization plane of the pulse pair after the turn-off of the field. The measurements are supported by numerical simulations which lead to the quantification of the observed effect and provide more physical insights into the phenomenon.

  6. TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY SUNRISE

    SciTech Connect

    Danilovic, S.; Beeck, B.; Pietarila, A.; Schuessler, M.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Domingo, V.; Berkefeld, T.; Schmidt, W.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 x 10{sup -4} s{sup -1} arcsec{sup -2}, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

  7. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  8. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 1

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.

    1986-01-01

    Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.

  9. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2003-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine what are the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  10. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Dubovik, Oleg; Holben, Brent; Torres, Omar; Anderson, Tad; Quinn, Patricia; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET, satellite retrievals from the TOMS instrument, and field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption. and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  11. Aerosol Absorption in the Atmosphere: Perspectives from Global Model, Ground-Based Measurements, and Field Observations

    NASA Technical Reports Server (NTRS)

    Chin, Main; Dubovik, Oleg; Holben, Brent; Anderson, Tad; Quinn, Patricia; Duncan, Bryan; Ginoux, Paul

    2004-01-01

    Aerosol absorption in the atmosphere poses a major uncertainty in assessing the aerosol climate effects. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, and our limited knowledge of aerosol mixing state and optical properties. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt. We compare the model calculated total aerosol optical thickness, extinction, and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia. We will examine the most sensitive factors in determining the aerosol absorption, and the consequences of assessing the aerosol radiative forcing and atmospheric heating associated with those factors.

  12. Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields.

    PubMed

    Schütte, B; Arbeiter, M; Fennel, T; Jabbari, G; Kuleff, A I; Vrakking, M J J; Rouzée, A

    2015-01-01

    When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997

  13. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    SciTech Connect

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin E-mail: sukuyd@gmail.com E-mail: samijamia@gmail.com

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis.

  14. Initial results on the correlation between the magnetic and electric fields observed from the DE-2 satellite in the field-aligned current regions

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Maynard, N. C.; Farthing, W. H.; Heppner, J. P.; Ledley, B. G.; Cahill, L. J., Jr.

    1982-01-01

    Initial results of the electric and magnetic field observations from the DE-2 satellite show a remarkably good correlation between the north-south component of the electric field and the east-west component of the magnetic field in many passes of the field-aligned current regions. For a dayside cusp pass on August 15, 1981 the coefficient of correlation between these components was 0.996. A preliminary inspection of the available data from the first 6 months of the DE operation indicates that the similarity between the electric and magnetic field signatures of the field-aligned currents is a commonly observed feature at all local times. This high correlation is interpreted to be an indication that the closure of the field-aligned current is essentially meridional. When the correlation between these components is not good, the closure current is likely to be flowing along the auroral belt. When the correlation between the electric and magnetic fields is high, it is possible to estimate the height-integrated Pedersen conductivity from the observed field components.

  15. Dual Spacecraft Observations of Lobe Magnetic Field Perturbations Before, During and after Plasmoid Release

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Hesse, M.; Owen, C. J.; Taguchi, S.; Fairfield, D. H.; Lepping, R. P.; Kokubun, S.; Mukai, T.; Lui, A. T. Y.; Anderson, R. R.

    1999-01-01

    This study examines a unique data set returned by IMP8 and Geotail on January 29, 1995 during a substorm which resulted in the ejection of a plasmoid. The two spacecraft (s/c) were situated in the north lobe of the tail and both observed a traveling compression region (TCR). From single s/c observations only the length of the plasmoid in X and an estimate of its height in Z can be determined. However, we show that dual s/c measurements of TCRs can be used to model all three dimensions of the underlying plasmoid and to estimate of its rate of expansion or contraction. For this event plasmoid dimensions of Delta(X) approximates 18, Delta(Y) approximates 30, and Delta(Z) approximates 10 R(sub e) are inferred from the IMP8 and Geotail lobe magnetic field measurements. The earthward end of the plasmoid was inferred to be near the mean location of the near-earth neutral line, X approximates -26 R(sub e). Its center was underneath IMP 8 at X approximates -34 R(sub e) and its tailward end appeared to be near X approximates -44 R(sub e). Furthermore, a factor of approximately 2 increase in the amplitude of the TCR occurred in the 1.5 min it took to move from IMP 8 to Geotail. Modeled using conservation of the magnetic flux, this increase in lobe compression implies that the underlying plasmoid was expanding at a rate of approximately 140 km/s. Such an expansion is comparable to recently reported V(sub y) speeds in "young" plasmoids in this region of the tail. Finally, the Geotail measurements indicate that a reconfiguration of the lobe magnetic field closely followed the ejection of the plasmoid which moved magnetic flux tubes into the wake behind the plasmoid where they would convect into the near-earth neutral line and reconnect.

  16. Intermittency of magnetic field turbulence: Astrophysical applications of in-situ observations

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev M.; Bykov, Andrei M.; Uvarov, Yury A.; Artemyev, Anton V.

    2015-08-01

    We briefly review some aspects of magnetic turbulence intermittency observed in space plasmas. Deviation of statistical characteristics of a system (e.g. its high statistical momenta) from the Gaussian can manifest itself as domination of rare large intensity peaks often associated with the intermittency in the system's dynamics. Thirty years ago, Zeldovich stressed the importance of the non-Gaussian appearance of the sharp values of vector and scalar physical parameters in random media as a factor of magnetic field amplification in cosmic structures. Magnetic turbulence is governing the behavior of collisionless plasmas in space and especially the physics of shocks and magnetic reconnections. Clear evidence of intermittent magnetic turbulence was found in recent in-situ spacecraft measurements of magnetic fields in the near-Earth and interplanetary plasma environments. We discuss the potentially promising approaches of incorporating the knowledge gained from spacecraft in-situ measurements into modern models describing plasma dynamics and radiation in various astrophysical systems. As an example, we discuss supernova remnants (SNRs) which are known to be the sources of energy, momentum, chemical elements, and high-energy cosmic rays (CRs) in galaxies. Supernova shocks accelerate charged particles to very high energies and may strongly amplify turbulent magnetic fields via instabilities driven by CRs. Relativistic electrons accelerated in SNRs radiate polarized synchrotron emission in a broad range of frequencies spanning from the radio to gamma-rays. We discuss the effects of intermittency of magnetic turbulence on the images of polarized synchrotron X-ray emission of young SNRs and emission spectra of pulsar wind nebula.

  17. Improved Gap Control System Using a Disturbance Observer for Near-Field Recording

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Gon; Kang, Min-Seok; Kwon, Tea-Wook; Jeong, Jun; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil

    2008-07-01

    In a solid immersion lens (SIL) based near-field recoding (NFR) system which is one of the emerging technologies for next-generation optical data storage systems, it is essential that the air gap between the SIL and the rotating disk is maintained at less than 50 nm without collision in order to obtain the proper coupling efficiency of evanescent waves. To fabricate a reliable near-field air gap servo system, various disturbances such as disk vibration, external shock and overshoot have to be considered, and these possible disturbances have to be prevented effectively. We propose an improved gap servo system using a disturbance observer (DOB), which has a reduced overshoot and rejection performance for the previously mentioned disturbances. The effectiveness of the proposed controller is verified by experimentally. The experiment results, show that the overshoot was reduced using the proposed near-field air gap servo system with a DOB. In the case of the ramp approach mode with and without the hand-over mode in the mode-switching servo, the overshoots were decreased to 50.9% and collision was avoided, respectively. In addition, in the case of the modified approach mode with and without the hand-over mode in the mode-switching servo, the overshoot was decreased to 2.9 and 3.7%, respectively. Consequently, the access time was decreased in each approach case without the hand-over mode using the DOB-based controller. In addition, the disturbance rejection performance of the external shock was improved to 9.11%.

  18. Tropical Cyclone Precipitation Types and Electrical Field Information Observed by High Altitude Aircraft Instrumentation

    NASA Technical Reports Server (NTRS)

    Hood, Robbie E.; Blakeslee, Richard; Cecil, Daniel; LaFontaine, Frank J.; Heymsfield, Gerald; Marks, Frank

    2004-01-01

    During the 1998 and 200 1 hurricane seasons of the Atlantic Ocean Basin, the Advanced Microwave Precipitation Radiometer (AMPR), the ER-2 Doppler (EDOP) radar, and the Lightning Instrument Package (LIP) were flown aboard the National Aeronautics and Space Administration (NASA) ER-2 high altitude aircraft as part of the Third Convection And Moisture Experiment (CAMEX-3) and the Fourth Convection And Moisture Experiment (CAMEX-4). Several hurricanes and tropical storms were sampled during these experiments. A rainfall screening technique has been developed using AMPR passive microwave observations of these tropical cyclones (TC) collected at frequencies of 10.7, 19.35,37.1, and 85.5 GHz and verified using vertical profiles of EDOP reflectivity and lower altitude horizontal reflectivity scam collected by the National Oceanic and Atmospheric Administration (NOM) P-3 radar. Matching the rainfall classification results with coincident electrical field information collected by the LIP readily identifl convective rain regions within the TC precipitation fields. Strengths and weaknesses of the rainfall classification procedure will be discussed as well as its potential as a real-time analysis tool for monitoring vertical updrafl strength and convective intensity from a remotely operated or uninhabited aerial vehicle.

  19. LOFAR 150-MHz observations of the Boötes field: catalogue and source counts

    NASA Astrophysics Data System (ADS)

    Williams, W. L.; van Weeren, R. J.; Röttgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Brüggen, M.; Brunetti, G.; Conway, J. E.; Enßlin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapińska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orrú, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.

    2016-08-01

    We present the first wide area (19 deg2), deep (≈120-150 μJy beam-1), high-resolution (5.6 × 7.4 arcsec) LOFAR High Band Antenna image of the Boötes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg2, with a peak flux density threshold of 5σ. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.

  20. Field observations of wave-driven circulation over spur and groove formations on a coral reef

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Dunbar, Robert B.; Koweek, David

    2015-01-01

    and groove (SAG) formations are found on the forereefs of many coral reefs worldwide. Modeling results have shown that SAG formations together with shoaling waves induce a nearshore Lagrangian circulation pattern of counter-rotating circulation cells, but these have never been observed in the field. We present results from two separate field studies of SAG formations on Palmyra Atoll which show their effect on waves to be small, but reveal a persistent order 1 cm/s depth-averaged Lagrangian offshore flow over the spur and onshore flow over the grooves. This circulation was stronger for larger, directly incident waves and low alongshore flow conditions, consistent with predictions from modeling. Favorable forcing conditions must be maintained on the order of 1 h to accelerate and develop the SAG circulation cells. The primary cross and alongshore depth-averaged momentum balances were between the pressure gradient, radiation stress gradient, and nonlinear convective terms, and the bottom drag was similar to values found on other reefs. The vertical structure of these circulation cells was previously unknown and the results show a complex horizontal offshore Lagrangian flow over the spurs near the surface driven by alongshore variability in radiation stress gradients. Vertical flow was downward over the spur and upward over the groove, likely driven by alongshore differences in bottom stress and not by vortex forcing.

  1. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  2. BLAST OBSERVATIONS OF THE SOUTH ECLIPTIC POLE FIELD: NUMBER COUNTS AND SOURCE CATALOGS

    SciTech Connect

    Valiante, Elisabetta; Braglia, Filiberto G.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Bock, James J.; Devlin, Mark J.; Klein, Jeff; Gundersen, Joshua O.; Hughes, David H.; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume; Rex, Marie

    2010-12-15

    We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg{sup 2} field near the South Ecliptic Pole at 250, 350, and 500 {mu}m. The median 1{sigma} depths of the maps are 36.0, 26.4, and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89, and 61 sources with S/N {>=}4 at 250, 350, 500 {mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance {>=}4{sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.

  3. Field Observations of Methane Emissions from Unconventional and Conventional Fossil Fuel Exploration

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Lindenmaier, R.; Arata, C.; Costigan, K. R.; Frankenberg, C.; Kort, E. A.; Rahn, T. A.; Henderson, B. G.; Love, S. P.; Aubrey, A. D.

    2013-12-01

    Energy from methane (CH4) has lower carbon dioxide and air pollutant emissions per unit energy produced than coal or oil making it a desirable fossil fuel. Hydraulic fracturing is allowing United States to harvest the nation's abundant domestic shale gas reservoirs to achieve energy independence. However, CH4 is a gas that is hard to contain during mining, processing, transport and end-use. Therefore fugitive CH4 leaks occur that are reported in bottom up inventories by the EPA. Recent targeted field observations at selected plays have provided top down CH4 leak estimates that are larger than the reported EPA inventories. Furthermore, no long-term regional baselines are available to delineate leaks from unconventional mining operations from historical conventional mining. We will report and compare observations of fugitive CH4 leaks from conventional and unconventional mining to understand changes from technology shifts. We will report in situ and regional column measurements of CH4, its isotopologue 13CH4 and ethane (C2H6) at our Four Corners site near Farmington, NM. The region has substantial coal bed methane, conventional oil and gas production, processing and distribution with minimal hydraulic fracturing activity. We observe large enhancements in in situ and regional column CH4 with distinct time dependence. Our in situ 13CH4 observations and remote C2H6/CH4 provide strong evidence of thermogenic sources. Comparisons of WRF-simulations with emissions inventory (Edgar) with our observations show that the fugitive CH4 leaks from conventional mining are 3 times greater than reported. We also compare in situ mobile surveys of fugitive CH4 and 13CH4 leak signals in basins with conventional (San Juan) mining and unconventional (Permian and Powder River) mining. A large number of active and closed wells were sampled in these regions. Furthermore, play scale surveys on public roads allowed us to gain a regional perspective. The composition of atmospheric 13CH4

  4. A Review of Direct Observation Research within the Past Decade in the Field of Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Adamson, Reesha M.; Wachsmuth, Sean T.

    2014-01-01

    This study reviewed prominent journals within the field of emotional and behavioral disorders to identify direct observation approaches, reported reliability statistics, and key features of direct observation. Selected journals were systematically reviewed for the past 10 years identifying and quantifying specific direct observation systems and…

  5. Effect of the Planets' Gravity Fields to the Sun and Solar Cycles and its Observable Factors

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    2014-05-01

    and their own electric currents. This dynamics system is cause of producing tachocline too. In the other words, this magneto-thermo layer and tachocline are two transition zones which are origins of the Sun's magnetic fields and their own electrical currents. The observable factors for proving this dislocation is overlapping of the solar cycles with the Jupiter's orbit period which is 11.856 years. In solar system, the Jupiter's gravity has largest effect to the Sun's core and its dislocation, because the gravity force between the Jupiter and the Sun is 11.834 times of the gravity force between the Earth and the Sun. Fluctuations of the core during its dislocation is by passing other planets between the Sun and Jupiter (or the Sun will be between the Jupiter and them), specially just as the Venus (which its gravity force on the Sun is 1.573 times of the Earth's gravity force on the Sun) and the Earth.

  6. Mars Infrared Spectroscopy: From Theory and the Laboratory To Field Observations

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel (Editor); Mustard, John (Editor); McAfee, John (Editor); Hapke, Bruce (Editor); Ramsey, Michael (Editor)

    2002-01-01

    The continuity and timely implementation of the Mars exploration strategy relies heavily on the ability of the planetary community to interpret infrared spectral data. However, the increasing mission rate, data volume, and data variety, combined with the small number of spectroscopists within the planetary community, will require a coordinated community effort for effective and timely interpretation of the newly acquired and planned data sets. Relevant spectroscopic instruments include the 1996 TES, 2001 THEMIS, 2003 Pancam, 2003 Mini-TES, 2003 Mars Express OMEGA, 2003 Mars Express PFS, and 2005 CFUSM. In light of that, leaders of the Mars spectral community met June 4-6 to address the question: What terrestrial theoretical, laboratory, and field studies are most needed to best support timely interpretations of current and planned visible infrared spectrometer data sets, in light of the Mars Program goals? A primary goal of the spectral community is to provide a reservoir of information to enhance and expand the exploration of Mars. Spectroscopy has a long history of providing the fundamental compositional discoveries in the solar system, from atmospheric constituents to surface mineralogy, from earth-based to spacecraft-based observations. However, such spectroscopic compositional discoveries, especially surface mineralogies, have usually come after long periods of detailed integration of remote observations, laboratory analyses, and field measurements. Spectroscopic information of surfaces is particularly complex and often is confounded by interference of broad, overlapping absorption features as well as confusing issues of mixtures, coatings, and grain size effects. Thus some spectroscopic compositional discoveries have come only after many years of research. However, we are entering an era of Mars exploration with missions carrying sophisticated spectrometers launching about every 2 years. It is critical that each mission provide answers to relevant questions

  7. DEMETER Observations of Highly Structured Plasma Density and Associated ELF Electric Field and Magnetic Field Irregularities at Middle and Low Latitudes

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.; Berthelier, J.-J.; Parrot, M.; Lebreton, J.-P.

    2008-01-01

    The DEMETER spacecraft frequently encounters structured plasma and electric field irregularities associated with equatorial spread-F. However, during severe geonagnetic storms, the spacecraft detects broader regions of density structures that extend to higher latitudes, in some instances to the sub-auroral regions. In addition to the electric field irregularities, ELF magnetic field irregularities are sometimes observed. for example, on the walls of the density structures, and appear related to finely-structured spatial currents and/or Alfven waves. The mid-latitude irregularities are compared with those of equatorial spread-F as well as wit11 intense irregularities associated with the trough region observed at sub-auroral latitudes.

  8. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars

    NASA Astrophysics Data System (ADS)

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; Reynolds, Kaeleigh; Ajello, Marco; Fegan, Stephen J.; McCann, Kevin

    2015-11-01

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10-19 G for LB ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  9. Convective cloud fields in the Atlantic sector of the Arctic: Satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Esau, I. N.; Chernokulsky, A. V.

    2015-12-01

    Convective cloudiness in the Atlantic sector of the Arctic is considered as an atmospheric spatially self-organized convective field. Convective cloud development is usually studied as a local process reflecting the convective instability of the turbulent planetary boundary layer over a heated surface. The convective cloudiness has a different dynamical structure in high latitudes. Cloud development follows cold-air outbreaks into the areas with a relatively warm surface. As a result, the physical and morphological characteristics of clouds, such as the type of convective cloud, and their geographical localization are interrelated. It has been shown that marginal sea ice and coastal zones are the most frequently occupied by Cu hum, Cu med convective clouds, which are organized in convective rolls. Simultaneously, the open water marine areas are occupied by Cu cong, Cb, which are organized in convective cells. An intercomparison of cloud statistics using satellite data ISCCP and ground-based observations has revealed an inconsistency in the cloudiness trends in these data sources: convective cloudiness decreases in ISCCP data and increases in the groundbased observation data. In general, according to the stated hypothesis, the retreat of the sea-ice boundary may lead to an increase in the amount of convective clouds.

  10. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight

    NASA Astrophysics Data System (ADS)

    de Foy, Benjamin; Tong, Yindong; Yin, Xiufeng; Zhang, Wei; Kang, Shichang; Zhang, Qianggong; Zhang, Guoshuai; Wang, Xuejun; Schauer, James J.

    2016-06-01

    Hourly speciated measurements of atmospheric mercury made in a remote, high-altitude site in the Tibetan Plateau revealed the first field observations of the reduction of reactive mercury in the presence of sunlight in the atmosphere. Measurements were collected over four winter months on the shore of Nam Co Lake in the inland Tibetan Plateau. The data was analyzed to identify sources and atmospheric transformations of the speciated mercury compounds. The absence of local anthropogenic sources provided a unique opportunity to examine chemical transformations of mercury. An optimization algorithm was used to determine the parameters of a chemical box model that would match the measured reactive mercury concentrations. This required the presence of a photolytic reduction reaction previously observed in laboratory studies and in power plant plumes. In addition, the model estimated the role of vertical mixing in diluting reactive gaseous mercury during the day, and the role of bromine chemistry in oxidizing gaseous elemental mercury to produce reactive gaseous mercury. This work provides further evidence of the need to add the photolytic reduction reaction of oxidized mercury into atmospheric transport models in order to better simulate mercury deposition.

  11. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    SciTech Connect

    Finke, Justin D.; Reyes, Luis C.; Reynolds, Kaeleigh; Georganopoulos, Markos; McCann, Kevin; Ajello, Marco; Fegan, Stephen J. E-mail: lreyes04@calpoly.edu

    2015-11-20

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (L{sub B}). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10{sup −19} G for L{sub B} ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  12. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    SciTech Connect

    Schmelz, J. T.; Jenkins, B. S.; Pathak, S.

    2013-06-10

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  13. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices

    PubMed Central

    Hahn, Choloong; Choi, Youngsun; Yoon, Jae Woong; Song, Seok Ho; Oh, Cha Hwan; Berini, Pierre

    2016-01-01

    Recently, synthetic optical materials represented via non-Hermitian Hamiltonians have attracted significant attention because of their nonorthogonal eigensystems, enabling unidirectionality, nonreciprocity and unconventional beam dynamics. Such systems demand carefully configured complex optical potentials to create skewed vector spaces with a desired metric distortion. In this paper, we report optically generated non-Hermitian photonic lattices with versatile control of real and imaginary sub-lattices. In the proposed method, such lattices are generated by vector-field holographic interference of two elliptically polarized pump beams on azobenzene-doped polymer thin films. We experimentally observe violation of Friedel's law of diffraction, indicating the onset of complex lattice formation. We further create an exact parity-time symmetric lattice to demonstrate totally asymmetric diffraction at the spontaneous symmetry-breaking threshold, referred to as an exceptional point. On this basis, we provide the experimental demonstration of reconfigurable non-Hermitian photonic lattices in the optical domain and observe the purest exceptional point ever reported to date. PMID:27425577

  14. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars

    NASA Astrophysics Data System (ADS)

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; Reynolds, Kaeleigh; Ajello, Marco; Fegan, Stephen J.; McCann, Kevin

    2015-11-01

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10‑19 G for LB ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  15. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  16. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices

    NASA Astrophysics Data System (ADS)

    Hahn, Choloong; Choi, Youngsun; Yoon, Jae Woong; Song, Seok Ho; Oh, Cha Hwan; Berini, Pierre

    2016-07-01

    Recently, synthetic optical materials represented via non-Hermitian Hamiltonians have attracted significant attention because of their nonorthogonal eigensystems, enabling unidirectionality, nonreciprocity and unconventional beam dynamics. Such systems demand carefully configured complex optical potentials to create skewed vector spaces with a desired metric distortion. In this paper, we report optically generated non-Hermitian photonic lattices with versatile control of real and imaginary sub-lattices. In the proposed method, such lattices are generated by vector-field holographic interference of two elliptically polarized pump beams on azobenzene-doped polymer thin films. We experimentally observe violation of Friedel's law of diffraction, indicating the onset of complex lattice formation. We further create an exact parity-time symmetric lattice to demonstrate totally asymmetric diffraction at the spontaneous symmetry-breaking threshold, referred to as an exceptional point. On this basis, we provide the experimental demonstration of reconfigurable non-Hermitian photonic lattices in the optical domain and observe the purest exceptional point ever reported to date.

  17. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices.

    PubMed

    Hahn, Choloong; Choi, Youngsun; Yoon, Jae Woong; Song, Seok Ho; Oh, Cha Hwan; Berini, Pierre

    2016-01-01

    Recently, synthetic optical materials represented via non-Hermitian Hamiltonians have attracted significant attention because of their nonorthogonal eigensystems, enabling unidirectionality, nonreciprocity and unconventional beam dynamics. Such systems demand carefully configured complex optical potentials to create skewed vector spaces with a desired metric distortion. In this paper, we report optically generated non-Hermitian photonic lattices with versatile control of real and imaginary sub-lattices. In the proposed method, such lattices are generated by vector-field holographic interference of two elliptically polarized pump beams on azobenzene-doped polymer thin films. We experimentally observe violation of Friedel's law of diffraction, indicating the onset of complex lattice formation. We further create an exact parity-time symmetric lattice to demonstrate totally asymmetric diffraction at the spontaneous symmetry-breaking threshold, referred to as an exceptional point. On this basis, we provide the experimental demonstration of reconfigurable non-Hermitian photonic lattices in the optical domain and observe the purest exceptional point ever reported to date. PMID:27425577

  18. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  19. Detection of Two Buried Cross Pipelines by Observation of the Scattered Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Mangini, Fabio; Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Muzi, Marco; Tedeschi, Nicola

    2015-04-01

    In this work we present a numerical study on the effects that can be observed in the electromagnetic scattering of a plane wave due to the presence of two crossed pipelines buried in a half-space occupied by cement. The pipeline, supposed to be used for water conveyance, is modeled as a cylindrical shell made of metallic or poly-vinyl chloride (PVC) material. In order to make the model simpler, the pipelines are supposed running parallel to the air-cement interface on two different parallel planes; moreover, initially we suppose that the two tubes make an angle of 90 degrees. We consider a circularly-polarized plane wave impinging normally to the interface between air and the previously-mentioned medium, which excites the structure in order to determine the most useful configuration in terms of scattered-field sensitivity. To perform the study, a commercially available simulator which implements the Finite Element Method was adopted. A preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the commercial pipeline cross-section. We monitor the three components of the scattered electric field along a line just above the interface between the two media. The electromagnetic properties of the materials employed in this study are taken from the literature and, since a frequency-domain technique is adopted, no further approximation is needed. Once the ideal problem has been studied, i.e. having considered orthogonal and tangential scenario, we further complicate the model by considering different crossing angles and distances between the tubes, in two cases of PVC and metallic material. The results obtained in these cases are compared with those of the initial problem with the goal of determining the scattered field dependence on the geometrical characteristics of the cross between two pipelines. One of the practical applications in the field of Civil Engineering of this study may be the use of ground

  20. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Bryan, M. T.; Fry, P. W.; Fischer, P. J.; Allwood, D. A.

    2008-04-01

    Magnetic transmission x-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300nm wide, 24nm thick Ni81Fe19 nanowire. Both transverse- and vortex-type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  1. Observation of field-induced domain wall propagation in magnetic nanowires by magnetic transmission X-ray microscopy

    SciTech Connect

    Bryan, M. T.; Fry, P. W.; Fischer, P.; Allwood, D. A.

    2007-12-01

    Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic ring structures formed by a 300 nm wide, 24 nm thick Ni{sub 81}Fe{sub 19} nanowire. Both transverse and vortex type domain walls are observed after application of different field sequences. Domain walls can be observed by comparing images obtained from opposite field sequences, or else domain wall propagation observed by comparing successive images in a particular field sequence. This demonstrates the potential use of M-TXM in developing and understanding planar magnetic nanowire behavior.

  2. Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign

    DOE PAGESBeta

    Mechem, David B.; Giangrande, Scott E.; Wittman, Carly S.; Borque, Paloma; Toto, Tami; Kollias, Pavlos

    2015-03-13

    A case of shallow cumulus and precipitating cumulus congestus sampled at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) supersite is analyzed using a multi-sensor observational approach and numerical simulation. Observations from a new radar suite surrounding the facility are used to characterize the evolving statistical behavior of the precipitating cloud system. This is accomplished using distributions of different measures of cloud geometry and precipitation properties. Large-eddy simulation (LES) with size-resolved (bin) microphysics is employed to determine the forcings most important in producing the salient aspects of the cloud system captured in the radar observations. Our emphasis ismore » on assessing the importance of time-varying vs. steady-state large-scale forcing on the model's ability to reproduce the evolutionary behavior of the cloud system. Additional consideration is given to how the characteristic spatial scale and homogeneity of the forcing imposed on the simulation influences the evolution of cloud system properties. Results indicate that several new scanning radar estimates such as distributions of cloud top are useful to differentiate the value of time-varying (or at least temporally well-matched) forcing on LES solution fidelity.« less

  3. Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign

    SciTech Connect

    Mechem, David B.; Giangrande, Scott E.; Wittman, Carly S.; Borque, Paloma; Toto, Tami; Kollias, Pavlos

    2015-03-13

    A case of shallow cumulus and precipitating cumulus congestus sampled at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) supersite is analyzed using a multi-sensor observational approach and numerical simulation. Observations from a new radar suite surrounding the facility are used to characterize the evolving statistical behavior of the precipitating cloud system. This is accomplished using distributions of different measures of cloud geometry and precipitation properties. Large-eddy simulation (LES) with size-resolved (bin) microphysics is employed to determine the forcings most important in producing the salient aspects of the cloud system captured in the radar observations. Our emphasis is on assessing the importance of time-varying vs. steady-state large-scale forcing on the model's ability to reproduce the evolutionary behavior of the cloud system. Additional consideration is given to how the characteristic spatial scale and homogeneity of the forcing imposed on the simulation influences the evolution of cloud system properties. Results indicate that several new scanning radar estimates such as distributions of cloud top are useful to differentiate the value of time-varying (or at least temporally well-matched) forcing on LES solution fidelity.

  4. Numerical Stress Field Modelling: from geophysical observations toward volcano hazard assessment

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Coco, Armando; Privitera, Emanuela

    2015-04-01

    We propose numerical approaches to evaluate ground deformation caused by hydrothermal fluid circulation and pressurization of magma chambers. Our aims are focused on the developing of advanced numerical models for interpreting the observed ground deformation and evaluating the conditions leading to volcano unrest. Deformation of volcano edifice is traditionally interpreted as being induced by pressure change within a finite source, though it has also been suggested that hydrothermal fluid circulations may play an important role. To investigate both processes, numerical procedures are implemented to estimate the expected changes in stress and strain fields generated by magmatic overpressure and hydrothermal activity. Firstly, we conduct a stress-strain analysis in an inelastic medium, to determine the favorable conditions for magma chamber failure in different source geometries, reference stress states, failure criteria, rock rheologies and topographic profiles. The numerical results allow us to pinpoint the conditions promoting seismicity, ground deformation and flank instability. The stress-strain analysis provides hints about the favourable conditions which lead to magma chamber wall rupture and the onset of magma migration toward the surface. Secondly, we implemented a thermo-poroelastic model to evaluate ground deformation, caused by hydrothermal fluid circulation. The numerical model is fully coupled with TOUGH2, a commercial software simulating multi-phase and multi-component fluid flow and heat transfer. The two-way coupling is performed through: (i) the concept of effective stress, which is controlled by pore pressure and thermal expansion, and (ii) empirical expressions for porosity, permeability, and capillary pressure, which are dependent on the effective stress. Based on poroelasticity theory and the definition of failure criteria, stress and strain fields are evaluated to define the regions of the volcano edifice more likely to fail and displace

  5. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo

    NASA Astrophysics Data System (ADS)

    Heald, George H.; Rand, Richard J.; Benjamin, Robert A.; Bershady, Matthew A.

    2007-07-01

    We present moderate-resolution spectroscopy of extraplanar diffuse ionized gas (EDIG) emission in the edge-on spiral galaxy NGC 4302. The spectra were obtained with the SparsePak integral field unit (IFU) at the WIYN Observatory. The wavelength coverage of the observations includes the [N II] λ6548, 6583, Hα, and [S II] λ6716, 6731 emission lines. The spatial coverage of the IFU includes the entirety of the EDIG emission noted in previous imaging studies of this galaxy. The spectra are used to construct position-velocity (PV) diagrams at several ranges of heights above the midplane. Azimuthal velocities are directly extracted from the PV diagrams using the envelope-tracing method and indicate an extremely steep drop-off in rotational velocity with increasing height, with magnitude ~30 km s-1 kpc-1. We find evidence for a radial variation in the velocity gradient on the receding side. We have also performed artificial observations of galaxy models in an attempt to match the PV diagrams. The results of a statistical analysis also favor a gradient of ~30 km s-1 kpc-1. We compare these results with an entirely ballistic model of disk-halo flow and find a strong dichotomy between the observed kinematics and those predicted by the model. The disagreement is worse than we have found for other galaxies in previous studies. The conclusions of this paper are compared to results for two other galaxies, NGC 5775 and NGC 891. We find that the vertical gradient in rotation speed, per unit EDIG scale height, for all three galaxies is consistent with a constant magnitude (within the errors) of approximately 15-25 km s-1 per scale height, independent of radius. This relationship is also true within the galaxy NGC 4302. We also discuss how the gradient depends on the distribution and morphology of the EDIG and the star formation rates of the galaxies, and consequences for the origin of the gas.

  6. State-Space-Based Approach to Quantum Field Theory for Arbitrary Observers in Electromagnetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Dolby, Carl E.; Gull, Stephen F.

    2001-11-01

    A reformulation of fermionic QFT in electromagnetic backgrounds is presented which uses methods analogous to those of conventional multiparticle quantum mechanics. Emphasis is placed on the (Schrödinger picture) states of the system, described in terms of Slater determinants of Dirac states, and not on the field operator ψ̂(x) (which is superfluous in this approach). The vacuum state "at time τ" is defined as the Slater determinant of a basis for the span of the negative spectrum of the "first quantized" Hamiltonian H(τ), thus providing a concrete realisation of the Dirac Sea. The general S-matrix element of the theory is derived in terms of time-dependent Bogoliubov coefficients, demonstrating that the S-matrix follows directly from the definition of inner product between Slater determinants. The process of "Hermitian extension," inherited directly from conventional multiparticle quantum mechanics, allows second quantized operators to be defined without appealing to a complete set of orthonormal modes and provides an extremely straightforward derivation of the general expectation value of the theory. The concept of "radar time," advocated by Bondi in his work on k-calculus, is used to generalise the particle interpretation to an arbitrarily moving observer. A definition of particle results, which depends only on the observer's motion and the background present, not on any choice of coordinates or gauge, or of the particle detector. We relate this approach to conventional methods by comparing and contrasting various derivations. Our particle definition can be viewed as a generalisation to arbitrary observers of the approach of G. W. Gibbons (1975, Comm. Math. Phys.44, 245).

  7. THERMAL MODEL CALIBRATION FOR MINOR PLANETS OBSERVED WITH WIDE-FIELD INFRARED SURVEY EXPLORER/NEOWISE

    SciTech Connect

    Mainzer, A.; Masiero, J.; Bauer, J.; Ressler, M.; Eisenhardt, P.; Grav, T.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of {approx}10% and {approx}20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 {mu}m and 4.6 {mu}m, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical

  8. Thermal Model Calibration for Minor Planets Observed with Wide-field Infrared Survey Explorer/NEOWISE

    NASA Astrophysics Data System (ADS)

    Mainzer, A.; Grav, T.; Masiero, J.; Bauer, J.; Wright, E.; Cutri, R. M.; McMillan, R. S.; Cohen, M.; Ressler, M.; Eisenhardt, P.

    2011-08-01

    With the Wide-field Infrared Survey Explorer (WISE), we have observed over 157,000 minor planets. Included in these are a number of near-Earth objects, main-belt asteroids, and irregular satellites which have well measured physical properties (via radar studies and in situ imaging) such as diameters. We have used these objects to validate models of thermal emission and reflected sunlight using the WISE measurements, as well as the color corrections derived in Wright et al. for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical near-Earth asteroid thermal model (NEATM) to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes (after applying the color corrections given in Wright et al.) in each of the four WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5%-10%, and hence minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Additionally, visible albedos for the objects are computed and compared to the albedos at 3.4 μm and 4.6 μm, which contain a combination of reflected sunlight and thermal emission for most minor planets observed by WISE. Finally, we derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. to be used for minor planets by computing only subsolar temperature instead of a faceted thermophysical model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of minor planets observed by WISE using a spherical NEATM model.

  9. Diagnosis of magnetic and electric fields of chromospheric jets through spectropolarimetric observations of H I Paschen lines

    SciTech Connect

    Anan, T.; Ichimoto, K.; Casini, R. E-mail: ichimoto@kwasan.kyoto-u.ac.jp

    2014-05-10

    Magnetic fields govern the plasma dynamics in the outer layers of the solar atmosphere, and electric fields acting on neutral atoms that move across the magnetic field enable us to study the dynamical coupling between neutrals and ions in the plasma. In order to measure the magnetic and electric fields of chromospheric jets, the full Stokes spectra of the Paschen series of neutral hydrogen in a surge and in some active region jets that took place at the solar limb were observed on 2012 May 5, using the spectropolarimeter of the Domeless Solar Telescope at Hida observatory, Japan. First, we inverted the Stokes spectra taking into account only the effect of magnetic fields on the energy structure and polarization of the hydrogen levels. Having found no definitive evidence of the effects of electric fields in the observed Stokes profiles, we then estimated an upper bound for these fields by calculating the polarization degree under the magnetic field configuration derived in the first step, with the additional presence of a perpendicular (Lorentz type) electric field of varying strength. The inferred direction of the magnetic field on the plane of the sky approximately aligns to the active region jets and the surge, with magnetic field strengths in the range 10 G < B < 640 G for the surge. Using magnetic field strengths of 70, 200, and 600 G, we obtained upper limits for possible electric fields of 0.04, 0.3, and 0.8 V cm{sup –1}, respectively. This upper bound is conservative, since in our modeling we neglected the possible contribution of collisional depolarization. Because the velocity of neutral atoms of hydrogen moving across the magnetic field derived from these upper limits of the Lorentz electric field is far below the bulk velocity of the plasma perpendicular to the magnetic field as measured by the Doppler shift, we conclude that the neutral atoms must be highly frozen to the magnetic field in the surge.

  10. Permafrost response to climate change: Linking field observation with numerical simulation

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Rivière, A.; Quinton, W. L.; McKenzie, J. M.; Voss, C. I.

    2013-12-01

    The Scotty Creek basin (152 km2) is located in the Northwest Territories, Canada, within the peat-covered discontinuous permafrost zone with a high density of wetlands. The extensive peat layer (up to 3-4 m thick) is underlain by generally clay-rich glacial sediments. The landcover consists of peat plateaus underlain by permafrost, permafrost-free channel fens, and connected and isolated permafrost-free ombrotrophic flat bogs, occurring as a complex mosaic of patches. The runoff from peat plateaus drains into isolated bogs and a network of connected bogs and fens. During the course of field studies since 1999, stark changes have been observed on the permafrost plateaus, including a deepening of active layer, soil settlement and depression formation, and changes in the lateral and vertical extent of the unsaturated zone. In general, the area of permafrost plateaus is decreasing, and the areas of fens and bog areas are increasing. These changes affect water flow and induce changes in heat transport, which in turn affect the aforementioned changes in permafrost plateaus (i.e. feedback processes). The goal of this study is to understand the feedbacks and their effects on permafrost degradation by used of the field observations and numerical simulations. We use a modified version of the three-dimensional SUTRA model that can simulate groundwater flow and heat transport, including freeze-thaw processes. Numerical simulation of heat transport accounts for the effects of latent heat associated with freezing and thawing, and variable heat capacity, thermal conductivity, and permeability as a function of ice content. The model is used to simulate the plateau-fen-bog complex, where intensive field studies have generated a large amount of data. The SUTRA model does not simulate complex surface processes such as radiative and turbulent heat exchange, snow accumulation and melt, and canopy effects. We use an energy and water transfer model, Northern Ecosystem Soil Temperature

  11. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  12. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  13. CHROMOSPHERIC RAPID BLUESHIFTED EXCURSIONS OBSERVED WITH IBIS AND THEIR ASSOCIATION WITH PHOTOSPHERIC MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Deng, Na; Chen, Xin; Liu, Chang; Jing, Ju; Wang, Shuo; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin P.; Lamb, Derek A.; Deforest, Craig E.; Denker, Carsten; Liu, Rui

    2015-02-01

    Chromospheric rapid blueshifted excursions (RBEs) are suggested to be the disk counterparts of type II spicules at the limb and believed to contribute to the coronal heating process. Previous identification of RBEs was mainly based on feature detection using Dopplergrams. In this paper, we study RBEs on 2011 October 21 in a very quiet region at the disk center, which were observed with the high-cadence imaging spectroscopy of the Ca II 8542 Å line from the Interferometric Bidimensional Spectrometer (IBIS). By using an automatic spectral analysis algorithm, a total of 98 RBEs are identified during an 11 minute period. Most of these RBEs have either a round or elongated shape, with an average area of 1.2 arcsec{sup 2}. The detailed temporal evolution of spectra from IBIS makes possible a quantitative determination of the velocity (∼16 km s{sup –1}) and acceleration (∼400 m s{sup –2}) of Ca II 8542 RBEs, and reveals an additional deceleration (∼–160 m s{sup –2}) phase that usually follows the initial acceleration. In addition, we also investigate the association of RBEs with the concomitant photospheric magnetic field evolution, using coordinated high-resolution and high-sensitivity magnetograms made by Hinode. Clear examples are found where RBEs appear to be associated with the preceding magnetic flux emergence and/or the subsequent flux cancellation. However, further analysis with the aid of the Southwest Automatic Magnetic Identification Suite does not yield a significant statistical association between these RBEs and magnetic field evolution. We discuss the implications of our results in the context of understanding the driving mechanism of RBEs.

  14. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  15. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  16. Observations of Radiation Divergence and Stability Driven Slope Flows during the Field Experiment KASCADE

    NASA Astrophysics Data System (ADS)

    Duine, Gert-Jan; Durand, Pierre; Hedde, Thierry; Roubin, Pierre; Augustin, Patrick; Fourmentin, Marc; Lohou, Fabienne; Lothon, Marie

    2014-05-01

    This work is in the frame of the PhD-thesis entitled "Dispersion of pollutants in stable boundary layer conditions in the middle valley of the Durance", financed by the Commissariat à l'Energie Atomique (CEA) and jointly supervised by CEA and Laboratoire d'Aérologie (LA), Toulouse. It takes place in a wider context of R & D work performed at CEA to characterize the site specific atmospheric conditions, with a view to improve the knowledge of the impact of the potential release of pollutants. During the winter of 2013 the intensive field measurement campaign KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) has been carried out at Cadarache, a research centre of CEA, located in South-Eastern France. The stability of the lower atmospheric boundary layer caused by radiative cooling at night, combined with the local orography, strongly affects the conditions for the dispersion of potential pollutants. Understanding the complex patterns of drainage flow and cold pool build up in the smaller valleys confluent to the Durance river is thus a major issue for refining the models used to assess the sanitary and environmental impact of Cadarache. Stability is easily formed in the region and in combination with the orographic complexity, there is a need to study the Stable Boundary Layer (SBL), which potentially can have a large impact on the dispersion of gaseous emissions released by the various facilities of Cadarache. KASCADE was designed to characterize the local SBL in order to feed future planned numerical simulations with WRF and impact studies involving numerical models coping with dispersion. With a focus on night time, a combination of continuous observations (SODAR and a flux-measurement tower of 30 meter [M30]) and 23 Intensive Observational Periods (IOPs) (Tethered Balloon [TB] profiling and radio-soundings) allows to study the relevant phenomena for SBL-formation. M30 was equipped with sonic anemometers at 3 levels for

  17. Researching of sea waves influence on a coastal line transformation (based on field observation results)

    NASA Astrophysics Data System (ADS)

    Chernov, A.; Kouznetsov, K.; Kurkin, A.; Shevchenko, G.

    2009-04-01

    The long duration registrations of bottom pressure, temperature and meteorological data took place in June - October 2007 on the shelf near 104th - 110th kilometer of interstate road Yuzhno-Sakhalinsk - Okha. Sediment transport and abrasion processes are observed in this place, it is a dangerous factor for road and railroad constructions, it can also be threat for some buildings of Vzmorie town. Distributed network of autonomous pressure gauges was installed for wave structure studying. Gauges were installed in tree lines with 100, 150 and 200 meters far from each other. Gathered data contains information about different wave's regimes under different weather conditions, it's allowed us to make analysis. Different data rows for different wave regimes were taken for analysis. Transformation of wave field along shoreline and opposite was observed. The results of observation are showed that disposition of waves was determined by swell waves with period 8-9 second. Wind waves were weaker than swell waves, conceivably because of big depths in the studied area. Much more interesting results were found in the infragravity waves range (0.5 - 5 min). For example, peaks with period above 150 and 75 seconds are presented in the spectral estimation of record from gauge 23. The same peaks were not observed in other gauges to the North and to the South from 23. However, low frequency peak was much stronger at the storm weather, but 75 seconds peak was stayed non-changed under the different weather conditions. For understanding mechanism of infra-gravitation waves generation group structure of waves were studied. Spectrum characteristics of different data rows for different wave regimes and also for their envelopes were provided. Results of this research allow us to consider that wave packets with common period 7 - 8 seconds make infra-gravitation waves with period above 5 minutes which forcing sediment transport processes. Satellite images of studied place were used in this

  18. Kepler Observations and Asteroseismology of θ Cyg, the Brightest StarObservable in the Kepler Field of View

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce A.; Houdek, G.; Chaplin, W. J.; Kurtz, D.; Gilliland, R. L.; Mullally, F.; Rowe, J. F.; Haas, M. R.; Bryson, S. T.; Still, M. D.

    2012-05-01

    θ Cyg (13 Cyg) is an F4 main sequence star that, at visual magnitude V=4.48, is the brightest star observable by the Kepler spacecraft. Short-cadence photometric data using a custom aperture requiring 1800 pixels were obtained for this star during Quarter 6 (June-Sept 2010) and Quarter 8 (Jan-March 2011). We present analyses of the solar-like oscillations first discovered in the Q6 data [1, 2]. We use observational constraints from the literature and recent ground-based observations including angular diameters from optical interferometry in conjunction with the frequency data to derive stellar properties (e.g., mass, age, metallicity, extent of convection zones). We also discuss the prospects for detecting longer period gravity-mode pulsations as seen in gamma Doradus variable stars of spectral type A-F, given these constraints. With an effective temperature near 6500 K and near ‘solar’ element abundances, θ Cyg is near the red edge of the gamma Doradus instability strip, where high-order gravity-mode pulsations with periods of 1 day may be present. If the envelope convection zone of the star is not too deep, these gravity-mode pulsations may be driven by the convective blocking mechanism. The calculated envelope convection zone depth depends on the element abundance mixtures adopted for the stellar models [2]. Asteroseismic studies of θ Cyg therefore have potential to shed light on the solar abundance problem [3, 4], as well as to put constraints on the presence and detectability of g-mode pulsations for main-sequence solar-like stars. References: [1] Haas, M.R. et al. 2011, BAAS, 43, No. 2, 140.07. [2] Guzik, J.A. et al. 2011, in Resolving the Future of Astronomy with Long Baseline Interferometry, Soccoro, NM, March 2011, ASP, in press. [3] Guzik, J.A. and Mussack, K. 2010, ApJ 713, 1108. [4] Basu, S. and Antia, H.M. 2008, Phys. Rep. 457, 217.

  19. Prediction of the Dst index with magnetic field observations in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Kubicka, Manuel; Möstl, Christian; Rollett, Tanja; Boakes, Peter; Feng, Li; Eastwood, Jonathan

    2016-04-01

    The prediction of the effects of interplanetary coronal mass ejections (ICMEs) on Earth strongly depends on knowledge of the properties of the interplanetary magnetic field (IMF), especially it's southward component (Bz), acting as a main driver for geomagnetic storms. We are using data from a spacecraft located in the inner heliosphere, Venus Express (VEX) at 0.72 AU and will provide a proof-of-concept for predicting an ICMEs arrival time and speed at 1AU, the ICMEs Bz component at Earth and the resulting Dst index by only using data measured by VEX. To forecast the Dst index, the two well established Dst models from Burton et al. (1975) and O'Brien & McPherron (2000) are used. In combination with a drag based model (Vršnak et al. 2013) and the WSA/ENLIL model the ICMEs arrival speed at Earth is obtained. Additionally, a power law (Leitner et al. 2007) is used to scale the magnetic field from 0.72 to 1 AU. Investigation of an ICME in June 2012 shows already promising results for the Dst index (predicted: -96 nT ± 17nT, observed: -86 nT), as well as for the arrival speed (predicted: 531 km s-1± 23 kms-1, observed: 490 kms-1± 30 kms-1) and timing (˜6h ± 1h late of true arrival) . An advantage of this method is the high prediction lead time of ˜21 hours compared only ˜40-60 minutes, using an L1 located spacecraft. To further investigate the feasibility of this method, data from any spacecraft temporarily located between Sun and Earth can be used. It is possible to extend this method to arbitrary spacecraft alignments and also to apply it to data from Helios or future space missions like Solar Orbiter and Solar Probe Plus. The techniques we develop could be routinely applied to a mission that forms an artificial Lagrange point along the Sun-Earth line, e.g. for a Sunjammer or Heliostorm mission.

  20. Reconstructing deglaciation of Kolahoi glacier, western Himalaya and validation through field observations

    NASA Astrophysics Data System (ADS)

    Tayal, S.

    2011-12-01

    Kolahoi glacier, western Himalaya is located in Jammu and Kashmir, India between N 340 07'-340 12' and E 750 19'-750 23'. The glacier makes the head of Liddar valley and provides origin to west Liddar river, draining into river Jhelum. Kolahoi is characterized by the frontal activities of westerly winds from Dec to March-April and by dry subtropical climate during summer season. The glacier represents a twin glacier system with one branch from two sides of Kolahoi peak-east and west, merging together to form a common ablation zone and a north facing snout. The first recorded visit to Kolahoi Glacier was made by E. F. Neve in 1909. The earliest attempt to establish the quaternary glacial history of Liddar valley can be attributed to Grinlinton (1928) followed by Terra & Patterson (1939). As a result of their work, the quaternary glaciation of Liddar valley has been divided into a main series of four glacial and three interglacial epochs, of which the first two glaciations were more intensive than the later two. A significant result of this history has been that as compared with the interglacial periods the glacial periods were much shorter, in SW Kashmir. Presence of various glacial features of fourth stage, observed in the valley were correlated with the literature, coordinates taken through GPS and built on a GIS platform with overlyering of satellite image time series of recent decades. Decadal history of Kolahoi glacier deglaciation was reconstructed based on the satellite image time series, indirect volume-area scaling methods and field experiments, indicating variable retreat rate contributing to a total recession of 485m in the snout of glacier and an area loss of 15% in previous four decades, since 1965. Annual measurement of mass balance for Kolahoi glacier were conducted through glaciologic method since the first drilling of ablation stakes in 2008, which indicate a range from -2.0 m.w.e. to -3.5 m.w.e. per annum for the glacier. However, field observance

  1. MAMBO 1.2 mm Observations of Luminous Starbursts at z ~ 2 in the SWIRE Fields

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Polletta, Maria del Carmen; Omont, Alain; Shupe, Dave; Berta, Stefano; Zylka, Robert; Siana, Brian; Lutz, Dieter; Farrah, Duncan; Smith, Harding E.; Lagache, Guilaine; DeBreuck, Carlos; Owen, Frazer; Beelen, Alexandre; Weedman, Dan; Franceschini, Alberto; Clements, Dave; Tacconi, Linda; Afonso-Luis, Alejandro; Pérez-Fournon, Ismael; Cox, Pierre; Bertoldi, Frank

    2009-02-01

    We report on-off pointed MAMBO observations at 1.2 mm of 61 Spitzer-selected star-forming galaxies from the Spitzer Wide Area Infrared Extragalactic Legacy survey (SWIRE). The sources are selected on the basis of bright 24 μm fluxes (f 24 μm > 0.4 mJy) and of stellar dominated near-infrared spectral energy distributions in order to favor z ~ 2 starburst galaxies. The average 1.2 mm flux for the whole sample is 1.5 ± 0.2 mJy. Our analysis focuses on 29 sources in the Lockman Hole field where the average 1.2 mm flux (1.9 ± 0.3 mJy) is higher than in other fields (1.1 ± 0.2 mJy). The analysis of the multiwavelength spectral energy distributions indicates that these sources are starburst galaxies with far-infrared luminosities from 1012 to 1013.3 L sun, and stellar masses of ~0.2-6 × 1011 M sun. Compared to submillimeter selected galaxies (SMGs), the SWIRE-MAMBO sources are among those with the largest 24 μm/1.2 mm flux ratios. The origin of such large ratios is investigated by comparing the average mid-infrared spectra and the stacked far-infrared spectral energy distributions of the SWIRE-MAMBO sources and of SMGs. The mid-infrared spectra, available for a handful of sources, exhibit strong polycyclic aromatic hydrocarbon (PAH) features, and a warm dust continuum. The warm dust continuum contributes ~34% of the mid-infrared emission, and is likely associated with an AGN component. This contribution is consistent with what is found in SMGs. The large 24 μm/1.2 mm flux ratios are thus not due to AGN emission, but rather to enhanced PAH emission compared to SMGs. The analysis of the stacked far-infrared fluxes yields warmer dust temperatures than typically observed in SMGs. Our selection favors warm ultraluminous infrared sources at high-z, a class of objects that is rarely found in SMG samples. Indeed SMGs are not common among bright 24 μm sources (e.g., only about 20% of SMGs have f 24 μm > 0.4 mJy). Our sample is the largest Spitzer-selected sample detected

  2. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  3. Field geologic observation and sample collection strategies for planetary surface exploration: Insights from the 2010 Desert RATS geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Hurtado, José M.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W.

    2013-10-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  4. Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Raveri, Marco; Vernieri, Daniele; Hu, Bin; Silvestri, Alessandra

    2016-09-01

    We consider Hořava gravity within the framework of the effective field theory (EFT) of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Hořava gravity and place constraints on its parameters using several cosmological data sets. In particular we use cosmic microwave background (CMB) temperature-temperature and lensing power spectra by Planck 2013, WMAP low- ℓ polarization spectra, WiggleZ galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the baryon acoustic oscillations measurements from BOSS, SDSS and 6dFGS. We get improved upper bounds, with respect to those from Big Bang Nucleosynthesis, on the deviation of the cosmological gravitational constant from the local Newtonian one. At the level of the background phenomenology, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss in details all the relevant effects on the observables and find that in general the quasi-static approximation is not safe to describe the evolution of perturbations. Overall we find that the effects of the modifications induced by the low-energy Hořava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

  5. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible.

  6. Evaluation of Gravitational Field Models Based on the Laser Range Observation of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Zhao, C. Y.; Zhang, W.; Zhan, J. W.; Yu, S. X.

    2015-09-01

    The Earth gravitational filed model is a kind of important dynamic model in satellite orbit computation. In recent years, several space gravity missions have obtained great success, prompting a lot of gravitational filed models to be published. In this paper, 2 classical models (JGM3, EGM96) and 4 latest models, including EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008 are evaluated by being employed in the precision orbit determination (POD) and prediction, based on the laser range observation of four low earth orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. We show the main results as follows: (1) for LEO POD, the accuracies of 4 latest models (EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008) are at the same level, and better than those of 2 classical models (JGM3, EGM96); (2) If taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70 the accuracy keeps stable, and is unrelated with the increasing degree, meaning that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO orbit computation with centimeter level precision.

  7. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows

    PubMed Central

    Tauro, Flavia; Aureli, Matteo; Porfiri, Maurizio; Grimaldi, Salvatore

    2010-01-01

    In this paper, the feasibility of off-the-shelf buoyant fluorescent microspheres as particle tracers in turbid water flows is investigated. Microspheres’ fluorescence intensity is experimentally measured and detected in placid aqueous suspensions of increasing concentrations of clay to simulate typical conditions occurring in natural drainage networks. Experiments are conducted in a broad range of clay concentrations and particle immersion depths by using photoconductive cells and image-based sensing technologies. Results obtained with both methodologies exhibit comparable trends and show that the considered particles are fairly detectable in critically turbid water flows. Further information on performance and integration of the studied microspheres in low-cost measurement instrumentation for field observations is obtained through experiments conducted in a custom built miniature water channel. This experimental characterization provides a first assessment of the feasibility of commercially available buoyant fluorescent beads in the analysis of high turbidity surface water flows. The proposed technology may serve as a minimally invasive sensing system for hazardous events, such as pollutant diffusion in natural streams and flash flooding due to extreme rainfall. PMID:22163540

  8. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.

    2012-01-10

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  9. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    USGS Publications Warehouse

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  10. Swarm Observations of Field-aligned Currents Associated with Pulsating Auroral Patches

    NASA Astrophysics Data System (ADS)

    Gillies, D. M.; Knudsen, D. J.; Spanswick, E.; Donovan, E.; Burchill, J. K.; Patrick, M.

    2015-12-01

    Using the ground-based optical data from the THEMIS all-sky imager network in conjunction with magnetometers on board the Swarm satellites, we performed a study of in situ field-aligned currents located near the edges of regions of pulsating aurora. A total of nine traversals of Swarm over regions of pulsating aurora identified using THEMIS ASI were studied. We used a satellite-aligned keogram to identify when Swarm was within a patch of pulsating aurora. A downward current in the range of ~1-6 μA/m2 can be seen just poleward of the boundary. A weaker upward current of ~1-3 μA/m2 is observed throughout the interior of the patch. The existence of these currents has been reported before but their magnitudes have not been quantified. In this study we quantify the magnitudes, in some cases by using two satellites traversing the same pulsating regions. We also compared Swarm's two-satellite FAC product to the single-satellite results and determine that the data product can be compromised in regions of pulsating aurora, a phenomenon that occurs over widespread regions and tends to persist for hours. Acknowledgements: This research was supported by an ESA Living Planet Fellowship and various CSA grants.

  11. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A bayesian geostatistical parameter estimation approach

    USGS Publications Warehouse

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-01-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologie parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into faci??s associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O) ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained. Copyright 2009 by the American Geophysical Union.

  12. NEAR-INFRARED OBSERVATIONS OF GQ LUP b USING THE GEMINI INTEGRAL FIELD SPECTROGRAPH NIFS

    SciTech Connect

    Lavigne, Jean-Francois; Doyon, Rene; Lafreniere, David; Marois, Christian; Barman, Travis

    2009-10-20

    We present new JHK spectroscopy (R approx 5000) of GQ Lup b, acquired with the Near-Infrared Integral Field Spectrograph and the adaptive optics system ALTAIR at the Gemini North telescope. Angular differential imaging was used in the J and H bands to suppress the speckle noise from GQ Lup A; we show that this approach can provide improvements in signal-to-noise ratio (S/N) by a factor of 2-6 for companions located at subarcsecond separations. Based on high-quality observations and Global Astrometric lnterferometer for Astrophysics synthetic spectra, we estimate the companion effective temperature to T {sub eff} = 2400 +- 100 K, its gravity to log g = 4.0 +- 0.5, and its luminosity to log(L/L {sub sun}) = -2.47 +- 0.28. Comparisons with the predictions of the DUSTY evolutionary tracks allow us to constrain the mass of GQ Lup b to 8-60 M {sub Jup}, most likely in the brown dwarf regime. Compared with the spectra published by Seifahrt and collaborators, our spectra of GQ Lup b are significantly redder (by 15%-50%) and do not show important Pabeta emission. Our spectra are in excellent agreement with the lower S/N spectra previously published by McElwain and collaborators.

  13. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  14. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  15. Observations of deformation and mixing of the total ozone field in the Antaractic Polar Vortex

    SciTech Connect

    Bowman, K.P. ); Mangus, N.J. )

    1993-09-01

    Total Ozone Mapping Spectrometer (TOMS) images of the springtime Southern Hemisphere commonly show concentric layers in the total ozone field outside the Antarctic polar vortex. The layering appears to result from horizontal folding and stretching of regions on the equatorward flank of the polar vortex near the midlatitude ozone maximum. This folding and stretching interleaves low and high ozone air from the subtropics and midlatitudes, respectively. Occasional large amplitude wave events can extract very low ozone air from the interior of the polar vortex (the Antarctic ozone hole), but the folding and stretching results in relatively rapid horizontal mixing of the atmosphere on the equatorward flank of the jet. This type of lagrangian behavior may be common in the atmosphere, but is only visible when local tracer gradients are large and observations with high spatial resolution are available. Also, experimentation has shown that gray-scale images of TOMS data show the details of the spatial distribution of ozone much more clearly than contour maps of false-color images. 22 refs., 3 figs., 2 tabs.

  16. Intergalactic magnetic fields and gamma-ray observations of extreme TeV blazars

    SciTech Connect

    Arlen, Timothy C.; Vassilev, Vladimir V.; Weisgarber, Thomas; Wakely, Scott P.; Shafi, S. Yusef

    2014-11-20

    The intergalactic magnetic field (IGMF) in cosmic voids can be indirectly probed through its effect on electromagnetic cascades initiated by a source of teraelectronvolt (TeV) gamma-rays, such as active galactic nuclei (AGNs). AGNs that are sufficiently luminous at TeV energies, 'extreme TeV blazars', can produce detectable levels of secondary radiation from inverse Compton scattering of the electrons in the cascade, provided that the IGMF is not too large. We review recent work in the literature that utilizes this idea to derive constraints on the IGMF for three TeV-detected blazars, 1ES 0229+200, 1ES 1218+304, and RGB J0710+591, and we also investigate four other hard-spectrum TeV blazars in the same framework. Through a recently developed, detailed, three-dimensional particle-tracking Monte Carlo code, incorporating all major effects of QED and cosmological expansion, we research the effects of major uncertainties, such as the spectral properties of the source, uncertainty in the ultraviolet and far-infrared extragalactic background light, undersampled very high energy (energy ≥100 GeV) coverage, past history of gamma-ray emission, source versus observer geometry, and the jet AGN Doppler factor. The implications of these effects on the recently reported lower limits of the IGMF are thoroughly examined to conclude that the presently available data are compatible with a zero-IGMF hypothesis.

  17. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  18. Observations of deformation and mixing of the total ozone field in the Antarctic polar vortex

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Mangus, Nicholas J.

    1993-01-01

    Total Ozone Mapping Spectrometer (TOMS) images of the springtime Southern Hemisphere commonly show concentric layers in the total ozone field outside the Antarctic polar vortex. The layering appears to result from horizontal folding and stretching of regions on the equatorward flank of the polar vortex near the midlatitude ozone maximum. This folding and stretching interleaves low and high ozone air from the subtropics and midlatitudes, respectively. Occaisional large amplitude wave events can extract very low ozone air from the interior of the polar vortex (the Antarctic ozone hole), but the folding and stretching occurs in midlatitiudes even when wave amplitudes are not exceptionally large. The folding and stretching results in relatively rapid horizontal mixing of the atmosphere on the equatorward flank of the jet. This type of Lagrangian behavior may be common in the atmosphere, but is visible when local tracer gradients are large and observations with high spatial resolution are available. Also, experimentation has shown that gray-scale images of TOMS data show the details of the spatial distribution of ozone much more clearly than contour maps or false-color images.

  19. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

    NASA Astrophysics Data System (ADS)

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-08-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.

  20. Intergalactic Magnetic Fields and Gamma-Ray Observations of Extreme TeV Blazars

    NASA Astrophysics Data System (ADS)

    Arlen, Timothy C.; Vassilev, Vladimir V.; Weisgarber, Thomas; Wakely, Scott P.; Yusef Shafi, S.

    2014-11-01

    The intergalactic magnetic field (IGMF) in cosmic voids can be indirectly probed through its effect on electromagnetic cascades initiated by a source of teraelectronvolt (TeV) gamma-rays, such as active galactic nuclei (AGNs). AGNs that are sufficiently luminous at TeV energies, "extreme TeV blazars", can produce detectable levels of secondary radiation from inverse Compton scattering of the electrons in the cascade, provided that the IGMF is not too large. We review recent work in the literature that utilizes this idea to derive constraints on the IGMF for three TeV-detected blazars, 1ES 0229+200, 1ES 1218+304, and RGB J0710+591, and we also investigate four other hard-spectrum TeV blazars in the same framework. Through a recently developed, detailed, three-dimensional particle-tracking Monte Carlo code, incorporating all major effects of QED and cosmological expansion, we research the effects of major uncertainties, such as the spectral properties of the source, uncertainty in the ultraviolet and far-infrared extragalactic background light, undersampled very high energy (energy >=100 GeV) coverage, past history of gamma-ray emission, source versus observer geometry, and the jet AGN Doppler factor. The implications of these effects on the recently reported lower limits of the IGMF are thoroughly examined to conclude that the presently available data are compatible with a zero-IGMF hypothesis.

  1. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    NASA Astrophysics Data System (ADS)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles <30° due to specular reflection from regular surface. At larger incidence angles, the relative non-polarized contribution decreases, but grows again at HH-polarization approaching 0.7-0.8 at 65° for 10 m/s wind speed, suggesting that backscattering from breaking waves dominates HH NRCS at low grazing angles. At high incidence angles (>60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on

  2. The deep structure of the Western Pyrenees: constraints from tomographic imaging, field and marine geological observations

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Chevrot, Sébastien; Mohn, Geoffroy

    2015-04-01

    Knowledge of magma-poor rifted margin architecture has significantly evolved over the past decades. Refraction seismic data combined with drill-hole observations unravelled the velocity structure and lithological assemblages of the most distal part of continental rifted margins. Present-day models of continental rifted margins include the occurrence of hyperextended domains consisting in extremely thinned continental crust and/or exhumed subcontinental mantle as described at many rifted margins. Studies in mountain belts revealed that remnants of hyperextended domains could also be identified in internal parts of collisional orogens. Integrating recent developments in the understanding of rifted margins in the study of mountain building processes, in particular the importance of the reactivation of inherited rift structures is therefore essential and may result in alternative interpretations of the lithospheric scale structure of collisional orogens. In this contribution, we focus on the western part of the Pyrenean orogen that resulted from the inversion of a complex Late Jurassic to Mid Cretaceous rift system. The transition from preserved oceanic and rift domains to the west (in the offshore Bay of Biscay) to their complete inversion in the east provides simultaneous access to seismically imaged and exposed parts of a hyperextended rift system. Based on a multi-scale dataset that combines sub-surface data (field and drill-hole observations) with tomographic imaging (PYROPE experiment) and integrating new concepts derived from the study of present-day rifted margins, we investigate the lithospheric-scale architecture of the Western Pyrenees. Our results suggest that the imaged north-dipping crustal root may correspond to the former exhumed mantle and hyperthinned domains that have been subducted/underthrust at the onset of convergence. This interpretation contrasts with the classical assumption that the crustal root is made of lower crustal rocks. This

  3. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  4. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    SciTech Connect

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  5. Anisotropic viscosity and fabric evolution from laboratory experiments and field observations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Warren, Jessica; Zimmerman, Mark; Kohlstedt, David; Skemer, Philip; Hirth, Greg

    2013-04-01

    viscosities are ~1 order of magnitude larger in the unfavorable orientation than in the favorable orientation. The results of these experiments are used to model strain localization in a shear zone in the Josephine Peridotite (SW Oregon) in which crystallographic fabrics follow a similar evolution to that observed in our second set of experiments (Warren et al., EPSL, 2008). Synthetic strain profiles calculated using measured water contents, grain sizes, and laboratory-derived flow laws cannot reproduce the observed degree of strain localization. Viscous anisotropy is included in the calculation by incorporating a fabric tensor into laboratory-derived flow laws. The elements of this tensor are derived from the results of the deformation experiments. The rotation rate of the fabric anisotropy relative to the reference frame of the shear zone is defined using the crystallographic fabric evolution observed in the field. The degree of localization is more closely approximated when fabric evolution is taken into account, demonstrating that viscous anisotropy is an important component in the formation of lithospheric shear zones.

  6. Connecting multi-scale fault geometry with field observations: insights into fluid-fault rock relations

    NASA Astrophysics Data System (ADS)

    Sherry, T. J.; Melosh, B. L.; Rowe, C. D.

    2012-12-01

    Fault geometry along with heterogenities in fluid pressure locally influences the mechanical behavior of faulting and the type of fault rock damage generated. The Naukluft Nappe Complex in central Namibia, southwest Africa features a well exposed basal foreland thrust fault emplaced during the 550 Ma Damara Orogen. Using differential GPS we walked and mapped the kilometer-scale dolomitic basal fault at two localities, the East and West side of the nappe complex. 3D fault geometry and orientation over each locality was interpolated using the high resolution GPS maps. The interpolated 3D geometry was then correlated with field observations of fault rock damage including cataclastic injection systems, brecciation, and alteration in the fault rock. 2D cross-sections were rendered using the interpolated 3D geometries. The eastern flank of the nappe complex locally exhibits ramp geometries and a prevalent granular fault rock known as "gritty dolomite". Cataclastic injection systems of gritty dolomite are observed injecting upsection off the basal thrust through opening mode fractures and are generally subvertical to the fault plane. The injectites are centimeter to meter scale, sometimes reach tens of meters in vertical extent, the width tapered towards the injection tip. Laminae interpreted as flow banding are oriented subparallel to the injectite walls and is also present in the basal thrust subparallel to the fault plane. Neocrystallized dolomite, quartz, and fracture filling calcite is observed within injectite systems suggesting the presence of super-saturated fluid. Bending strains create localized extension as the hanging wall enters the ramp, facilitating Mode I fractures and the formation of injectites which are observed at the base, within, and at the upper flat of the ramp structure, recording progressive hanging wall transport. Fault dip increases in the northern area of the eastern locality where a unit of shales directly overlies footwall limestone. The

  7. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  8. New Field Observations About 19 August 1966 Varto earthquake, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Gurboga, S.

    2013-12-01

    Some destructive earthquakes in the past and even in the recent have several mysteries. For example, magnitude, epicenter location, faulting type and source fault of an earthquake have not been detected yet. One of these mysteries events is 19 August 1966 Varto earthquake in Turkey. 19 August 1966 Varto earthquake (Ms = 6.8) was an extra ordinary event at the 40 km east of junction between NAFS and EAFS which are two seismogenic system and active structures shaping the tectonics of Turkey. This earthquake sourced from Varto fault zone which are approximately 4 km width and 43 km length. It consists of faults which have parallel to sub-parallel, closely-spaced, north and south-dipping up to 85°-88° dip amount. Although this event has 6.8 (Ms) magnitude that is big enough to create a surface rupture, there was no clear surface deformation had been detected. This creates the controversial issue about the source fault and the mechanism of the earthquake. According to Wallace (1968) the type of faulting is right-lateral. On the other hand, McKenzie (1972) proposed right-lateral movement with thrust component by using the focal mechanism solution. The recent work done by Sançar et al. (2011) claimed that type of faulting is pure right-lateral strike-slip and there is no any surface rupture during the earthquake. Furthermore, they suggested that Varto segment in the Varto Fault Zone was most probably not broken in 1966 earthquake. This study is purely focused on the field geology and trenching survey for the investigation of 1966 Varto earthquake. Four fault segments have been mapped along the Varto fault zone: Varto, Sazlica, Leylekdağ and Çayçati segments. Because of the thick volcanic cover on the area around Varto, surface rupture has only been detected by trenching survey. Two trenching survey have been applied along the Yayikli and Ağaçalti faults in the Varto fault zone. Consequently, detailed geological work in the field and trenching survey indicate that

  9. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  10. Experimental observation of further frequency upshift from dc to ac radiation converter with perpendicular dc magnetic field

    PubMed

    Higashiguchi; Yugami; Gao; Niiyama; Sasaki; Takahashi; Ito; Nishida

    2000-11-20

    A frequency upshift of a short microwave pulse is generated by the interaction between a relativistic underdense ionization front and a periodic electrostatic field with a perpendicular dc magnetic field. When the dc magnetic field is applied, further frequency upshift of 3 GHz is observed with respect to an unmagnetized case which has typically a GHz range. The radiation frequency depends on both the plasma density and the strength of the dc magnetic field, i.e., the plasma frequency and the cyclotron frequency. The frequency of the emitted radiation is in reasonable agreement with the theoretical values. PMID:11082591

  11. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  12. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  13. Calculating rheologic properties of magmas from field observations combined with experimental data

    NASA Astrophysics Data System (ADS)

    Verberne, R.; Ulmer, P.; Muntener, O.

    2010-12-01

    In order to investigate the emplacement processes that occur in shallow level plutonic magma reservoirs, we try to relate phase assemblages and mineral composition to the emplacement history of a particular rock suite by combining field and experimental approaches to understand the physical, rheological and temporal evolution of crystallizing batholiths. Here we present a case study of the Listino Ring Structure of the Adamello Batholith, N-Italy, where processes of interaction between felsic and mafic magmas, such as mafic dike injection in partly crystallized silicic magmas, dike disaggregation, enclave formation, and near-solidus shearing were studied in glacier-polished outcrops. Most of these phenomena are generally assigned to fluid dynamic processes operating in a magma reservoir (Turner & Campbell, 1986), where rheological barriers (e.g. viscosity contrast) inhibit chemical mixing of mafic magmas with crystal-rich silicic magmas (Sparks & Marshall, 1986; Blundy & Sparks, 1992). Our approach centers around the determination of mineral assemblages and crystal fractions present at the time of the process under investigation. The mineral assemblage at the time of injection of ma