Sample records for observing system geos

  1. GEOS observation systems intercomparison investigation results

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.

    1974-01-01

    The results of an investigation designed to determine the relative accuracy and precision of the different types of geodetic observation systems used by NASA is presented. A collocation technique was used to minimize the effects of uncertainties in the relative station locations and in the earth's gravity field model by installing accurate reference tracking systems close to the systems to be compared, and by precisely determining their relative survey. The Goddard laser and camera systems were shipped to selected sites, where they tracked the GEOS satellite simultaneously with other systems for an intercomparison observation.

  2. GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).

    USGS Publications Warehouse

    Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.

    1985-01-01

    Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.

  3. Incorporating Parallel Computing into the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Larson, Jay W.

    1998-01-01

    Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.

  4. Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); daSilva, Arlindo; Dee, Dick; Bloom, Stephen; Bosilovich, Michael; Pawson, Steven; Schubert, Siegfried; Wu, Man-Li; Sienkiewicz, Meta; Stajner, Ivanka

    2005-01-01

    This document describes the structure and validation of a frozen version of the Goddard Earth Observing System Data Assimilation System (GEOS DAS): GEOS-4.0.3. Significant features of GEOS-4 include: version 3 of the Community Climate Model (CCM3) with the addition of a finite volume dynamical core; version two of the Community Land Model (CLM2); the Physical-space Statistical Analysis System (PSAS); and an interactive retrieval system (iRET) for assimilating TOVS radiance data. Upon completion of the GEOS-4 validation in December 2003, GEOS-4 became operational on 15 January 2004. Products from GEOS-4 have been used in supporting field campaigns and for reprocessing several years of data for CERES.

  5. Observation-Corrected Precipitation Estimates in GEOS-5

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing

    2014-01-01

    Several GEOS-5 applications, including the GEOS-5 seasonal forecasting system and the MERRA-Land data product, rely on global precipitation data that have been corrected with satellite and or gauge-based precipitation observations. This document describes the methodology used to generate the corrected precipitation estimates and their use in GEOS-5 applications. The corrected precipitation estimates are derived by disaggregating publicly available, observationally based, global precipitation products from daily or pentad totals to hourly accumulations using background precipitation estimates from the GEOS-5 atmospheric data assimilation system. Depending on the specific combination of the observational precipitation product and the GEOS-5 background estimates, the observational product may also be downscaled in space. The resulting corrected precipitation data product is at the finer temporal and spatial resolution of the GEOS-5 background and matches the observed precipitation at the coarser scale of the observational product, separately for each day (or pentad) and each grid cell.

  6. The ConnectinGEO Observation Inventory

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Nativi, S.; Jirka, S.; McCallum, I.

    2016-12-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations) is an EU-funded project under the H2020 Framework Programme. The primary goal of the project is to link existing coordinated Earth Observation networks with science and technology (S&T) communities, the industry sector and the GEOSS and Copernicus stakeholders. An expected outcome of the project is a prioritized list of critical gaps within GEOSS (Global Earth Observation System of Systems) in observations and models that translate observations into practice relevant knowledge. The project defines and utilizes a formalized methodology to create a set of observation requirements that will be related to information on available observations to identify key gaps. Gaps in the information provided by current observation systems as well as gaps in the systems themselves will be derived from five different threads. One of these threads consists in the analysis of the observations and measurements that are currently registered in GEO Discovery and Access Broker (DAB). To this aim, an Observation Inventory (OI) has been created and populated using the current metadata information harmonized by the DAB. This presentation describes the process defined to populate the ConnectinGEO OI and the resulting system architecture. In addition, it provides information on how to systematically access the OI for performing the gap analysis. Furthermore it demonstrates initial findings of the gap analysis, and shortcomings in the metadata that need attention. The research leading to these results benefited from funding by the European Union H2020 Framework Programme under grant agreement n. 641538 (ConnectinGEO).

  7. I/O Parallelization for the Goddard Earth Observing System Data Assimilation System (GEOS DAS)

    NASA Technical Reports Server (NTRS)

    Lucchesi, Rob; Sawyer, W.; Takacs, L. L.; Lyster, P.; Zero, J.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center (GSFC) has developed the GEOS DAS, a data assimilation system that provides production support for NASA missions and will support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS will be used to provide background fields of meteorological quantities to EOS satellite instrument teams for use in their data algorithms as well as providing assimilated data sets for climate studies on decadal time scales. The DAO has been involved in prototyping parallel implementations of the GEOS DAS for a number of years and is now embarking on an effort to convert the production version from shared-memory parallelism to distributed-memory parallelism using the portable Message-Passing Interface (MPI). The GEOS DAS consists of two main components, an atmospheric General Circulation Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM operates on data that are stored on a regular grid while PSAS works with observational data that are scattered irregularly throughout the atmosphere. As a result, the two components have different data decompositions. The GCM is decomposed horizontally as a checkerboard with all vertical levels of each box existing on the same processing element(PE). The dynamical core of the GCM can also operate on a rotated grid, which requires communication-intensive grid transformations during GCM integration. PSAS groups observations on PEs in a more irregular and dynamic fashion.

  8. Global Gridded Data from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Goddard Earth Observing System Data Assimilation System (GEOS-DAS) timeseries is a globally gridded atmospheric data set for use in climate research. This near real-time data set is produced by the Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center in direct support of the operational EOS instrument product generation from the Terra (12/1999 launch), Aqua (05/2002 launch) and Aura (01/2004 launch) spacecrafts. The data is archived in the EOS Core System (ECS) at the Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC). The data is only a selection of the products available from the GEOS-DAS. The data is organized chronologically in timeseries format to facilitate the computation of statistics. GEOS-DAS data will be available for the time period January 1, 2000, through present.

  9. POD experiments using real and simulated time-sharing observations for GEO satellites in C-band transfer ranging system

    NASA Astrophysics Data System (ADS)

    Fen, Cao; XuHai, Yang; ZhiGang, Li; ChuGang, Feng

    2016-08-01

    The normal consecutive observing model in Chinese Area Positioning System (CAPS) can only supply observations of one GEO satellite in 1 day from one station. However, this can't satisfy the project need for observing many GEO satellites in 1 day. In order to obtain observations of several GEO satellites in 1 day like GPS/GLONASS/Galileo/BeiDou, the time-sharing observing model for GEO satellites in CAPS needs research. The principle of time-sharing observing model is illuminated with subsequent Precise Orbit Determination (POD) experiments using simulated time-sharing observations in 2005 and the real time-sharing observations in 2015. From time-sharing simulation experiments before 2014, the time-sharing observing 6 GEO satellites every 2 h has nearly the same orbit precision with the consecutive observing model. From POD experiments using the real time-sharing observations, POD precision for ZX12# and Yatai7# are about 3.234 m and 2.570 m, respectively, which indicates the time-sharing observing model is appropriate for CBTR system and can realize observing many GEO satellites in 1 day.

  10. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  11. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  12. The Group on Earth Observations (GEO) through 2025

    NASA Astrophysics Data System (ADS)

    Ryan, Barbara; Cripe, Douglas

    Ministers from the Group on Earth Observations (GEO) Member governments, meeting in Geneva, Switzerland in January 2014, unanimously renewed the mandate of GEO through 2025. Through a Ministerial Declaration, they reconfirmed that GEO’s guiding principles of collaboration in leveraging national, regional and global investments and in developing and coordinating strategies to achieve full and open access to Earth observations data and information in order to support timely and knowledge-based decision-making - are catalysts for improving the quality of life of people around the world, advancing global sustainability, and preserving the planet and its biodiversity. GEO Ministers acknowledged and valued the contributions of GEO Member governments and invited all remaining Member States of the United Nations to consider joining GEO. The Ministers also encouraged all Members to strengthen national GEO arrangements, and - of particular interest to COSPAR - they highlighted the unique contributions of Participating Organizations. In this regard, ten more organizations saw their applications approved by Plenary and joined the ranks along with COSPAR to become a Participating Organization in GEO, bringing the current total to 77. Building on the efforts of a Post-2015 Working Group, in which COSPAR participated, Ministers provided additional guidance for GEO and the evolution of its Global Earth Observation System of System (GEOSS) through 2025. Five key areas of activities for the next decade include the following: 1.) Advocating for the value of Earth observations and the need to continue improving Earth observation worldwide; 2.) Urging the adoption and implementation of data sharing principles globally; 3.) Advancing the development of the GEOSS information system for the benefit of users; 4.) Developing a comprehensive interdisciplinary knowledge base defining and documenting observations needed for all disciplines and facilitate availability and accessibility of

  13. Using GEO Optical Observations to Infer Orbit Populations

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Africano, John

    2002-01-01

    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit. When observing very dim objects with small field-of-view telescopes, though, the observations are generally too short to obtain accurate orbital elements. However, it is possible to use such observations to statistically characterize the small object environment. A telescope pointed at a particular spot could potentially see objects in a number of different orbits. Inevitably, when looking at one region for certain types of orbits, there are objects in other types of orbits that cannot be seen. Observation campaigns are designed with these limitations in mind and are set up to span a number of regions of the sky, making it possible to sample all potential orbits under consideration. Each orbit is not seen with the same probability, however, so there are observation biases intrinsic to any observation campaign. Fortunately, it is possible to remove such biases and reconstruct a meaningful estimate of the statistical orbit populations of small objects in GEO. This information, in turn, can be used to investigate the nature of debris sources and to characterize the risk to GEO spacecraft. This paper describes these statistical tools and presents estimates of small object GEO populations.

  14. Bi-static Optical Observations of GEO Objects

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Cowardin, Heather; Lederer, Susan M.; Buckalew, Brent

    2014-01-01

    A bi-static study of objects at Geosynchronous Earth Orbit (GEO) was conducted using two ground-based wide-field optical telescopes. The University of Michigan's 0.6-m MODEST (Michigan Orbital Debris Survey Telescope) located at the Cerro Tololo Inter- American Observatory in Chile was employed in a series of coordinated observations with the U.S. Naval Observatory's (USNO) 1.3-m telescope at the USNO Flagstaff Station near Flagstaff, Arizona, USA. The goals of this project are twofold: (1) Obtain optical distances to known and unknown objects at GEO from the difference in the observed topocentric position of objects measured with respect to a reference star frame. The distance can be derived directly from these measurements, and is independent of any orbital solution. The wide geographical separation of these two telescopes means that the parallax difference is larger than ten degrees, and (2) Compare optical photometry in similar filters of GEO objects taken during the same time period from the two sites. The object's illuminated surfaces presented different angles of reflected sunlight to the two telescopes.During a four hour period on the night.of 22 February 2014 (UT), coordinated observations were obtained for eight different GEO positions. Each coordinated observation sequence was started on the hour or half-hour, and was selected to ensure the same cataloged GEO object was available in the field of view of both telescopes during the thirty minute observing sequence. GEO objects were chosen to be both controlled and uncontrolled at a range of orbital inclinations, and the objects were not tracked. Instead both telescopes were operated with all drives off in GEO survey mode to discover un-cataloged objects at GEO. The initial results from this proof-of-concept observing run will be presented, with the intent of laying the foundation for future large-scale bi-static observing campaigns of the GEO regime.

  15. Towards the creation of a European Network of Earth Observation Networks within GEO. The ConnectinGEO project.

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; Menard, Lionel; Wald, Lucien; Nativi, Stefano; Plag, Hans-Peter; Jules-Plag, Shelley; Nüst, Daniel; Jirka, Simon; Pearlman, Jay; De Maziere, Martine

    2015-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is a new H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. ConnectinGEO aims to facilitate a broader and more accessible knowledge base to support the needs of GEO, its Societal Benefit Areas (SBAs) and the users of the Global Earth Observing System of Systems (GEOSS). A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. The project will generate a prioritized list of critical gaps within available observation data and models to translate observations into practice-relevant knowledge, based on stakeholder consultation and systematic analysis. Ultimately, it will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed by project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the space-based, airborne and in-situ observations European networks (e.g. EPOS, EMSO and GROOM, etc), representatives of the industry sector and European and national funding agencies, in particular those participating in the future ERA-PlaNET. At the beginning, the ENEON will be created and managed by the project. Then the management will be transferred to the network itself to ensure

  16. Graphics Processing Units (GPU) and the Goddard Earth Observing System atmospheric model (GEOS-5): Implementation and Potential Applications

    NASA Technical Reports Server (NTRS)

    Putnam, William M.

    2011-01-01

    Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions

  17. Scientific Contributions to GEO Global Earth Observation Priorities

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Ledrew, E.

    2009-12-01

    Numerous counties and non-governmental organizations have produced documents, held workshops, and published reports in the past decade that identify Earth observation needs to meet their particular objectives. The Group on Earth Observations (GEO) has conducted a review of these documents, workshops, and reports to identify the priority observations common to many societal benefit areas. GEO has made a concerted effort to include materials from a broad range of user types, including scientific researchers, resource managers, and policy makers. GEO has also sought an international breadth in the materials reviewed, including observation priorities from developing countries. The activity will help GEO optimize the observations in GEOSS that are most likely to provide societal benefits, and GEO members will use the results of this meta-analysis to support investment decisions. The Earth observations in GEOSS serve scientific research and applications endeavors. As a primary user of ground-based, airborne, in situ, and space-based observations of the Earth, the scientific community has a significant voice and vested interest in the observations offered through GEOSS. Furthermore, the science and technology community will have opportunities to identify critical scientific/technological advances needed to produce any observations that are needed yet not currently available. In this paper, we will discuss this GEO effort to identify Earth observations priorities. We will present initial findings for some societal benefit areas and the overall meta-analysis. We will also discuss possible roles for the science and technology community to contribute to those priorities, such as scientific advances needed to achieve the observations or to realize societal benefits from the observations.

  18. Pan-STARRRS Status and Geo Observations Results

    DTIC Science & Technology

    2011-09-01

    Earth Orbiting asteroids which may pose a threat. The final design includes four 1.8m telescopes each equipped with a giga- pixel camera and is...are relative to the rotation of the earth, the mount is commanded utilizing “stare mode” for all GEO observations. The belt is surveyed by...integration time the geo belt is observed M number of times. In order to detect an object it must be observed N number of times out of the possible M

  19. Technical report series on global modeling and data assimilation. Volume 4: Documentation of the Goddard Earth Observing System (GEOS) data assimilation system, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Pfaendtner, James; Bloom, Stephen; Lamich, David; Seablom, Michael; Sienkiewicz, Meta; Stobie, James; Dasilva, Arlindo

    1995-01-01

    This report describes the analysis component of the Goddard Earth Observing System, Data Assimilation System, Version 1 (GEOS-1 DAS). The general features of the data assimilation system are outlined, followed by a thorough description of the statistical interpolation algorithm, including specification of error covariances and quality control of observations. We conclude with a discussion of the current status of development of the GEOS data assimilation system. The main components of GEOS-1 DAS are an atmospheric general circulation model and an Optimal Interpolation algorithm. The system is cycled using the Incremental Analysis Update (IAU) technique in which analysis increments are introduced as time independent forcing terms in a forecast model integration. The system is capable of producing dynamically balanced states without the explicit use of initialization, as well as a time-continuous representation of non- observables such as precipitation and radiational fluxes. This version of the data assimilation system was used in the five-year reanalysis project completed in April 1994 by Goddard's Data Assimilation Office (DAO) Data from this reanalysis are available from the Goddard Distributed Active Center (DAAC), which is part of NASA's Earth Observing System Data and Information System (EOSDIS). For information on how to obtain these data sets, contact the Goddard DAAC at (301) 286-3209, EMAIL daac@gsfc.nasa.gov.

  20. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  1. Data Assimilation and verification based on GEO microwave observations

    NASA Astrophysics Data System (ADS)

    He, J.

    2017-12-01

    THE frequency band from 50 to 56 GHz has been used to retrieve atmospheric temperature profiles through radiometric measurements at and near absorption maxima. Sensors working around 50-56 GHz are now only available on low earth orbit (LEO), and are still lacked in the geostationary earth orbit (GEO) application. Compared with LEO sounding, sensors working in GEO orbit can continuously monitor the full earth disk and perform. The Geostationary Interferometric Microwave Sounder (GIMS) is a synthetic aperture microwave sounder working in time-sharing sampling mode with a rotating circular antenna array. Real-time forecasting for short-term meteorological phenomena such as tropical cyclones, which is one of the most important natural disasters that cause severe damage in coastal areas around the world. Furthermore, since information available in microwave band is different from that available in visible/ infrared frequency, microwave sensor in GEO orbit can complement the existing sensors in GEO orbit that work in visible/infrared frequency to determine vertical temperature distribution and thus help investigate inner structure of tropical cyclone. As we know, a lot of improvement of WRFDA has been realized, such as radar data and LEO microwave data. It has the ability of providing initial conditions for the WRF model and assessing observing system. However, one major constraint of WRFDA is the ability of assimilating GEO microwave observations into the assimilation model and verify how the GIMS sensor effect the output data of model, especially for synthetic aperture microwave sounder. So, for my group, we focus on surface pressure and precipitation in hurricane and typhoon areas based on WRF and WRFDA model, and also, combine polar-orbit observations and geostationary microwave simulations to improve the tracking accuracy.

  2. Towards a Global Wetland Observation System: The Geo-Wetlands Initiative

    NASA Astrophysics Data System (ADS)

    Strauch, Adrian; Geller, Gary; Grobicki, Ania; Hilarides, Lammert; Muro, Javier; Paganini, Marc; Weise, Kathrin

    2016-08-01

    Wetlands are hot spots of biodiversity and provide a wide range of valuable ecosystem services, but at the same time they globally are one of the fastest declining and most endangered ecosystems. The development of a Global Wetland Observation System (GWOS) that is supported by the Ramsar Convention on Wetlands since 2007 is seen as a step towards improved capabilities for global mapping, monitoring and assessment of wetland ecosystems and their services, status and trends. A newly proposed GEO-Wetlands initiative is taking up this effort and developing the necessary governance and management structures, a community of practice and the necessary scientific and technical outputs to set up this system and maintain it over the long term. This effort is aiming at directly supporting the needs of global conventions and monitoring frameworks as well as users of wetland information on all levels (local to global) to build a platform that provides a knowledge-hub as a baseline for informed ecosystem management and decision-making.

  3. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  4. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  5. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  6. Calculating Statistical Orbit Distributions Using GEO Optical Observations with the Michigan Orbital Debris Survey Telescope (MODEST)

    NASA Technical Reports Server (NTRS)

    Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.

    2006-01-01

    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.

  7. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  8. Technical report series on global modeling and data assimilation. Volume 1: Documentation of the Goddard Earth Observing System (GEOS) General Circulation Model, version 1

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Takacs, Lawrence L.; Molod, Andrea; Wang, Tina

    1994-01-01

    This technical report documents Version 1 of the Goddard Earth Observing System (GEOS) General Circulation Model (GCM). The GEOS-1 GCM is being used by NASA's Data Assimilation Office (DAO) to produce multiyear data sets for climate research. This report provides a documentation of the model components used in the GEOS-1 GCM, a complete description of model diagnostics available, and a User's Guide to facilitate GEOS-1 GCM experiments.

  9. The Small Size Debris Population at GEO from Optical Observations

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2017-01-01

    We have observed the geosynchronous orbit (GEO) debris population at sizes smaller than 10 cm using optical observations with the 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile. The IMACS f/2 imaging camera with a 0.5-degree diameter field of view has been used in small area surveys of the GEO regime to study the population of optically faint GEO debris. The goal is to estimate the population of GEO debris that is fainter than can be studied with 1-meter class telescopes. A significant population of objects fainter than R = 19th magnitude has been found. These objects have observed with angular rates consistent with circular orbits and orbital inclinations up to 15 degrees at GEO. A sizeable number of these objects have significant brightness variations ("flashes") during the 5-second exposure, which suggest rapid changes in the albedo-projected size product.

  10. Principles of data integration and interoperability in the GEO Biodiversity Observation Network

    NASA Astrophysics Data System (ADS)

    Saarenmaa, Hannu; Ó Tuama, Éamonn

    2010-05-01

    The goal of the Global Earth Observation System of Systems (GEOSS) is to link existing information systems into a global and flexible network to address nine areas of critical importance to society. One of these "societal benefit areas" is biodiversity and it will be supported by a GEOSS sub-system known as the GEO Biodiversity Observation Network (GEO BON). In planning the GEO BON, it was soon recognised that there are already a multitude of existing networks and initiatives in place worldwide. What has been lacking is a coordinated framework that allows for information sharing and exchange between the networks. Traversing across the various scales of biodiversity, in particular from the individual and species levels to the ecosystems level has long been a challenge. Furthermore, some of the major regions of the world have already taken steps to coordinate their efforts, but links between the regions have not been a priority until now. Linking biodiversity data to that of the other GEO societal benefit areas, in particular ecosystems, climate, and agriculture to produce useful information for the UN Conventions and other policy-making bodies is another need that calls for integration of information. Integration and interoperability are therefore a major theme of GEO BON, and a "system of systems" is very much needed. There are several approaches to integration that need to be considered. Data integration requires harmonising concepts, agreeing on vocabularies, and building ontologies. Semantic mediation of data using these building blocks is still not easy to achieve. Agreements on, or mappings between, the metadata standards that will be used across the networks is a major requirement that will need to be addressed early on. With interoperable metadata, service integration will be possible through registry of registries systems such as GBIF's forthcoming GBDRS and the GEO Clearinghouse. Chaining various services that build intermediate products using workflow

  11. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  12. Observation of GEO Satellite Above Thailand’s Sky

    NASA Astrophysics Data System (ADS)

    Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.

    2017-09-01

    The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.

  13. Strategies GeoCape Intelligent Observation Studies @ GSFC

    NASA Technical Reports Server (NTRS)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  14. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by

  15. A Geo-Label for Geo-Referenced Information as a Service for Data Users and a Tool for Facilitating Societal Benefits of Earth Observations

    NASA Astrophysics Data System (ADS)

    Plag, H.-P.

    2012-04-01

    Geo-referenced information is increasingly important for many scientific and societal applications. The availability of reliable and applicable spatial data and information is fundamental for addressing pressing problems such as food, water, and energy security; disaster risk reduction; climate change; environmental quality; pandemics; economic crises and wars; population migration; and, in a general sense, sustainability. Today, more than 70% of societal activities in developed countries depend directly or indirectly on geo-referenced information. The rapid development of analysis tools, such as Geographic Information Systems and web-based tools for viewing, accessing, and analyzing of geo-referenced information, and the growing abundance of openly available Earth observations (e.g., through the Global Earth Observation System of Systems, GEOSS) likely will increase the dependency of science and society on geo-referenced information. Increasingly, the tools allow the combination of data sets from various sources. Improvements of interoperability, promoted particularly by GEOSS, will strengthen this trend and lead to more tools for the combinations of data from different sources. What is currently lacking is a service-oriented infrastructure helping to ensure that data quality and applicability are not compromised through modifications and combinations. Most geo-referenced information comes without sufficient information on quality and applicability. The Group on Earth Observations (GEO) has embarked on establishing a so-called GEO Label that would provide easy-to-understand, globally available information on aspects of quality, user rating, relevance, and fit-for-usage of the products and services accessible through GEOSS (with the responsibility for the concept development delegated to Work Plan Task ID-03). In designing a service-oriented architecture that could support a GEO Label, it is important to understand the impact of the goals for the label on the

  16. Photometrical Observations "SBIRS GEO-2"

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P.; Karpenko, G. F.; Sukhov, K. P.; Kudak, V. I.

    2015-08-01

    Photometrical observations GSS "SBIRS GEO 2" in B,V,R filters were carried near the equinoxes 2014-2015. Used velocity electrophotometer based on the FEU-79 in the pulse-counting mode. Received more than 25 light curves. From the known dimensions are defined; effective reflecting area - Sγλ, the spectral reflectance index - γλ, periods of light variation. Color-indices showed that in the reflected light flux from the GSS prevails "red" component. In the light curves are periodically dips and specular flash. This shows that GSS orbit is not in a static position specified triaxial orientation as in dynamic motion. Assumed following dynamics of the satellite "SBIRS GEO 2" in orbit. Helical scanning the Earth's surface visible infrared sensors satellite occurs with a period P1 = 15.66 sec. and swinging of the GSS about the direction of the motion vector of the satellite in an orbit with P2 = 62.64 sec., from the northern to the southern pole. Thus, during the period of swinging GSS going on 2 scan the visible part of the northern and southern hemispheres. In some dates observations dynamics work satellite in orbit changed.

  17. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  18. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  19. Update on the NASA GEOS-5 Aerosol Forecasting and Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; da Silva, Arlindo; Aquila, Valentina; Bian, Huisheng; Buchard, Virginie; Castellanos, Patricia; Darmenov, Anton; Follette-Cook, Melanie; Govindaraju, Ravi; Keller, Christoph; hide

    2017-01-01

    GEOS-5 is the Goddard Earth Observing System model. GEOS-5 is maintained by the NASA Global Modeling and Assimilation Office. Core development is within GMAO,Goddard Atmospheric Chemistry and Dynamics Laboratory, and with external partners. Primary GEOS-5 functions: Earth system model for studying climate variability and change, provide research quality reanalyses for supporting NASA instrument teams and scientific community, provide near-real time forecasts of meteorology,aerosols, and other atmospheric constituents to support NASA airborne campaigns.

  20. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  1. The Impact of Withholding Observations from TOMS or SBUV Instruments on the GEOS Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.

  2. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  3. Geo-energy Test Beds: part of the European Plate Observing System

    NASA Astrophysics Data System (ADS)

    Stephenson, Michael; Schofield, David; Luton, Christopher; Haslinger, Florian; Henninges, Jan; Giardini, Domenico

    2016-04-01

    For 2020, the EU has committed to cutting its greenhouse gas emissions to 20% below 1990 levels and further cuts are being decided for 2050. This commitment is one of the headline targets of the Europe 2020 growth strategy and is being implemented through binding legislation. This decarbonisation of the EU economy is one dimension of an overall EU energy and climate framework that is mutually interlinked with the need to ensure energy security, promote a fully integrated energy market, promote energy efficiency and promote research innovation and competitiveness. Power generation will have to take a particularly large part in emissions reductions (-54 to -68% by 2030 and -93 to -99% by 2050), mainly by focussing on increasing surface renewables (wind, tidal and solar) but also on carbon capture and storage on fossil fuel and biofuel power plants, shale gas, nuclear and geothermal power. All the above generation technologies share common geological challenges around containment, safety and environmental sustainability. In a densely populated continent, this means that high levels of subsurface management are needed to fully realise the energy potential. In response to this need, across Europe, public and private sector funded, experimental test and monitoring facilities and infrastructures (Geo-energy Test Beds, GETB) are being developed. These GETB investigate the processes, technology and practices that facilitate the sustainable exploitation of Geo-energy resources and are of intense interest to the public and regulators alike. The vision of EPOS IP Work Package 17 (wp17) is to promote research and innovation in Geo-energy that reflects core European energy priorities through provision of virtual access to data and protocols and trans-national access to GETB experiments. This will be achieved through provision of access to continuous strategic observations, promotion of the integrated use of data and models from European GETB, development of underpinning research

  4. Technical Report Series on Global Modeling and Data Assimilation. Volume 14; A Comparison of GEOS Assimilated Data with FIFE Observations

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Suarez, Max J. (Editor); Schubert, Siegfried D.

    1998-01-01

    First ISLSCP Field Experiment (FIFE) observations have been used to validate the near-surface proper- ties of various versions of the Goddard Earth Observing System (GEOS) Data Assimilation System. The site- averaged FIFE data set extends from May 1987 through November 1989, allowing the investigation of several time scales, including the annual cycle, daily means and diurnal cycles. Furthermore, the development of the daytime convective planetary boundary layer is presented for several days. Monthly variations of the surface energy budget during the summer of 1988 demonstrate the affect of the prescribed surface soil wetness boundary conditions. GEOS data comes from the first frozen version of the assimilation system (GEOS-1 DAS) and two experimental versions of GEOS (v. 2.0 and 2.1) with substantially greater vertical resolution and other changes that influence the boundary layer. This report provides a baseline for future versions of the GEOS data assimilation system that will incorporate a state-of-the-art land surface parameterization. Several suggestions are proposed to improve the generality of future comparisons. These include the use of more diverse field experiment observations and an estimate of gridpoint heterogeneity from the new land surface parameterization.

  5. Mesoscale weather and climate modeling with the global non-hydrostatic Goddard Earth Observing System Model (GEOS-5) at cloud-permitting resolutions

    NASA Astrophysics Data System (ADS)

    Putman, W. M.; Suarez, M.

    2009-12-01

    The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.

  6. Simulated convective systems using a cloud resolving model: Impact of large-scale temperature and moisture forcing using observations and GEOS-3 reanalysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Hou, A.; Lin, X.

    2006-01-01

    The GCE (Goddard Cumulus Ensemble) model, which has been developed and improved at NASA Goddard Space Flight Center over the past two decades, is considered as one of the finer and state-of-the-art CRMs (Cloud Resolving Models) in the research community. As the chosen CRM for a NASA Interdisciplinary Science (IDS) Project, GCE has recently been successfully upgraded into an MPI (Message Passing Interface) version with which great improvement has been achieved in computational efficiency, scalability, and portability. By basically using the large-scale temperature and moisture advective forcing, as well as the temperature, water vapor and wind fields obtained from TRMM (Tropical Rainfall Measuring Mission) field experiments such as SCSMEX (South China Sea Monsoon Experiment) and KWAJEX (Kwajalein Experiment), our recent 2-D and 3-D GCE simulations were able to capture detailed convective systems typical of the targeted (simulated) regions. The GEOS-3 [Goddard EOS (Earth Observing System) Version-3] reanalysis data have also been proposed and successfully implemented for usage in the proposed/performed GCE long-term simulations (i.e., aiming at producing massive simulated cloud data -- Cloud Library) in compensating the scarcity of real field experimental data in both time and space (location). Preliminary 2-D or 3-D pilot results using GEOS-3 data have generally showed good qualitative agreement (yet some quantitative difference) with the respective numerical results using the SCSMEX observations. The first objective of this paper is to ensure the GEOS-3 data quality by comparing the model results obtained from several pairs of simulations using the real observations and GEOS-3 reanalysis data. The different large-scale advective forcing obtained from these two kinds of resources (i.e., sounding observations and GEOS-3 reanalysis) has been considered as a major critical factor in producing various model results. The second objective of this paper is therefore to

  7. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  8. A novel space-based observation strategy for GEO objects based on daily pointing adjustment of multi-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Yun-peng; Li, Ke-bo; Xu, Wei; Chen, Lei; Huang, Jian-yu

    2016-08-01

    Space-based visible (SBV) program has been proved to be with a large advantage to observe geosynchronous earth orbit (GEO) objects. With the development of SBV observation started from 1996, many strategies have come out for the purpose of observing GEO objects more efficiently. However it is a big challenge to visit all the GEO objects in a relatively short time because of the distribution characteristics of GEO belt and limited field of view (FOV) of sensor. And it's also difficult to keep a high coverage of the GEO belt every day in a whole year. In this paper, a space-based observation strategy for GEO objects is designed based on the characteristics of the GEO belt. The mathematical formula of GEO belt is deduced and the evolvement of GEO objects is illustrated. There are basically two kinds of orientation strategies for most observation satellites, i.e., earth-oriented and inertia-directional. Influences of both strategies to their own observation regions are analyzed and compared with each other. A passive optical instrument with daily attitude-adjusting strategies is proposed to increase the daily coverage rate of GEO objects in a whole year. Furthermore, in order to observe more GEO objects in a relatively short time, the strategy of a satellite with multi-sensors is proposed. The installation parameters between different sensors are optimized, more than 98% of GEO satellites can be observed every day and almost all the GEO satellites can be observed every two days with 3 sensors (FOV: 6° × 6°) on the satellite under the strategy of daily pointing adjustment in a whole year.

  9. GEO Water Cycle Activities and Plans

    NASA Astrophysics Data System (ADS)

    Lawford, R.; Koike, T.; Ishida, C.; Grabs, W.

    2008-12-01

    The Group on Earth Observations (GEO) consists of more than 70 countries and 40 international organizations which are working together to develop the Global Earth Observation System of Systems (GEOSS). Since its launch in 2004, GEO has stimulated a wide range of activities related to data systems and their architecture, the development of science and technology to support observational programs, user interactions and interfaces, and capacity building. GEO tasks directed at Water Resources Management, one of the nine GEO Societal Benefit areas, are an integral part of these developments. They draw heavily upon the activities of the Integrated Global Water Cycle Observations (IGWCO) theme and on the activities and infrastructure provided through GEO and its committees. Within the GEO framework the water related activities have been focused on four specific tasks namely integrated data set development; information for floods, droughts and water management; water quality, and capacity building. Currently these efforts are being facilitated by the IGWCO theme that was formed under the former Integrated Global Observing Strategy Partnership (IGOS-P). With the dissolution of this partnership, other mechanisms, including the GEO Water Cycle Community of Practice, are being considered as new opportunitites for coordinating the work of the theme and the water-related GEO tasks. This talk provides a description of the GEO water tasks and reviews the progress that has been made in addressing them. It also provides a perspective on new opportunities and briefly describes some of the mechanisms, such as the Water Cycle Community of Practice, that could be expanded to coordinate a more comprehensive set of water tasks and greater community involvement.

  10. Observations of GEO Debris with the Magellan 6.5-m Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Burkhardt, Andrew; Cardonna, Tommaso; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Optical observations of geosynchronous orbit (GEO) debris are important to address two questions: 1. What is the distribution function of objects at GEO as a function of brightness? With some assumptions, this can be used to infer a size distribution. 2. Can we determine what the likely composition of individual GEO debris pieces is from studies of the spectral reflectance of these objects? In this paper we report on optical observations with the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile that attempt to answer both questions. Imaging observations over a 0.5 degree diameter field-of-view have detected a significant population of optically faint debris candidates with R > 19th magnitude, corresponding to a size smaller than 20 cm assuming an albedo of 0.175. Many of these objects show brightness variations larger than a factor of 2, suggesting either irregular shapes or albedo variations or both. The object detection rate (per square degree per hour) shows an increase over the rate measured in the 0.6-m MODEST observations, implying an increase in the population at optically fainter levels. Assuming that the albedo distribution is the same for both samples, this corresponds to an increase in the population of smaller size debris. To study the second issue, calibrated reflectance spectroscopy has been obtained of a sample of GEO and near GEO objects with orbits in the public U.S. Space Surveillance Network catalog. With a 6.5-m telescope, the exposures times are short (30 seconds or less), and provide simultaneous wavelength coverage from 4500 to 8000 Angstroms. If the observed objects are tumbling, then simultaneous coverage and short exposure times are essential for a realistic assessment of the object fs spectral signature. We will compare the calibrated spectra with lab-based measurements of simple spacecraft surfaces composed of a single material.

  11. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  12. Optical Observations of GEO Debris with Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.

    2007-01-01

    For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full

  13. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): Progress, activities, and prospects

    USGS Publications Warehouse

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  14. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  15. Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data

    NASA Astrophysics Data System (ADS)

    Hillen, Florian; Höfle, Bernhard

    2015-08-01

    The reCAPTCHA concept provides a large amount of valuable information for various applications. First, it provides security, e.g., for a form on a website, by means of a test that only a human could solve. Second, the effort of the user for this test is used to generate additional information, e.g., digitization of books or identification of house numbers. In this work, we present a concept for adapting the reCAPTCHA idea to create user-generated geographic information from earth observation data, and the requirements during the conception and implementation are depicted in detail. Furthermore, the essential parts of a Geo-reCAPTCHA system are described, and afterwards transferred, to a prototype implementation. An empirical user study is conducted to investigate the Geo-reCAPTCHA approach, assessing time and quality of the resulting geographic information. Our results show that a Geo-reCAPTCHA can be solved by the users of our study on building digitization in a short amount of time (19.2 s on average) with an overall average accuracy of the digitizations of 82.2%. In conclusion, Geo-reCAPTCHA has the potential to be a reasonable alternative to the typical reCAPTCHA, and to become a new data-rich channel of crowdsourced geographic information.

  16. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  17. Surface Pressure Dependencies in the Geos-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  18. Global Earth Observation System of Systems (GEOSS): Initial Actions to Enhance Data Sharing to Meet Societal Needs

    NASA Astrophysics Data System (ADS)

    Adang, T.

    2006-05-01

    Over 60 nations and 50 participating organizations are working to make the Global Earth Observation System of Systems (GEOSS) a reality. The U.S. contribution to GEOSS is the Integrated Earth Observation System (IEOS), with a vision of enabling a healthy public, economy and planet through an integrated, comprehensive, and sustained Earth observation system. The international Group on Earth Observations (GEO) and the U.S. Group on Earth Observations have developed strategic plans for both GEOSS and IEOS, respectively, and are now working the first phases of implementation. Many of these initial actions are data architecture related and are being addressed by architecture and data working groups from both organizations - the GEO Architecture and Data Committee and the USGEO Architecture and Data Management Working Group. NOAA has actively participated in both architecture groups and has taken internal action to better support GEOSS and IEOS implementation by establishing the Global Earth Observation Integrated Data Environment (GEO IDE). GEO IDE provides a "system of systems" framework for effective and efficient integration of NOAA's many quasi-independent systems, which individually address diverse mandates in such areas resource management, weather forecasting, safe navigation, disaster response, and coastal mapping among others. GEO IDE will have a services oriented architecture, allowing NOAA Line Offices to retain a high level of independence in many of their data management decisions, and encouraging innovation in pursuit of their missions. Through GEO IDE, NOAA partners (both internal and external) will participate in a well-ordered, standards-based data and information infrastructure that will allow users to easily locate, acquire, integrate and utilize NOAA data and information. This paper describes the initial progress being made by GEO and USGEO architecture and data working groups, a status report on GEO IDE development within NOAA, and an assessment of

  19. An Observing System Simulation Experiment (OSSE) Investigating the OMI Aerosol Products Using Simulated Aerosol and Atmospheric Fields from the NASA GEOS-5 Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.

    2016-12-01

    Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.

  20. ENSO Prediction in the NASA GMAO GEOS-5 Seasonal Forecasting System

    NASA Astrophysics Data System (ADS)

    Kovach, R. M.; Borovikov, A.; Marshak, J.; Pawson, S.; Vernieres, G.

    2016-12-01

    Seasonal-to-Interannual coupled forecasts are conducted in near-real time with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model (AOGCM). A 30-year suite of 9-month hindcasts is available, initialized with the MERRA-Ocean, MERRA-Land, and MERRA atmospheric fields. These forecasts are used to predict the timing and magnitude of ENSO and other short-term climate variability. The 2015 El Niño peaked in November 2015 and was considered a "very strong" event with the Equatorial Pacific Ocean sea-surface-temperature (SST) anomalies higher than 2.0 °C. These very strong temperature anomalies began in Sep/Oct/Nov (SON) of 2015 and persisted through Dec/Jan/Feb (DJF) of 2016. The other two very strong El Niño events recently recorded occurred in 1981/82 and 1997/98. The GEOS-5 system began predicting a very strong El Niño for SON starting with the March 2015 forecast. At this time, the GMAO forecast was an outlier in both the NMME and IRI multi-model ensemble prediction plumes. The GMAO May 2015 forecast for the November 2015 peak in temperature anomaly in the Niño3.4 region was in excellent agreement with the real event, but in May this forecast was still one of the outliers in the multi-model forecasts. The GEOS-5 May 2015 forecast also correctly predicted the weakening of the Eastern Pacific (Niño1+2) anomalies for SON. We will present a summary of the NASA GMAO GEOS-5 Seasonal Forecast System skills based on historic hindcasts. Initial conditions, prediction of ocean surface and subsurface evolution for the 2015/16 El Niño will be compared to the 1998/97 event. GEOS-5 capability to predict the precipitation, i.e. to model the teleconnection patterns associated with El Niño will also be shown. To conclude, we will highlight some new developments in the GEOS forecasting system.

  1. Assessing the Impact of Advanced Satellite Observations in the NASA GEOS-5 Forecast System Using the Adjoint Method

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron; Liu, Emily; Sienkiewicz, Meta

    2011-01-01

    The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. In this talk, we present results from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. The tool has been running in various off-line configurations for some time, and is scheduled to run as a regular part of the real-time forecast suite beginning in autumn 20 I O. We focus on the impacts of the newest components of the satellite observing system, including AIRS, IASI and GPS. For AIRS and IASI, it is shown that the vast majority of the channels assimilated have systematic positive impacts (of varying magnitudes), although some channels degrade the forecast. Of the latter, most are moisture-sensitive or near-surface channels. The impact of GPS observations in the southern hemisphere is found to be a considerable overall benefit to the system. In addition, the spatial variability of observation impacts reveals coherent patterns of positive and negative impacts that may point to deficiencies in the use of certain observations over, for example, specific surface types. When performed in conjunction with selected observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies appears to pose a major challenge for optimizing the use of the current observational network and

  2. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  3. Representations of the Stratospheric Polar Vortices in Versions 1 and 2 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Stolarski, R.S.; Nielsen, J.E.; Perlwitz, J.; Oman, L.; Waugh, D.

    2009-01-01

    This study will document the behavior of the polar vortices in two versions of the GEOS CCM. Both versions of the model include the same stratospheric chemistry, They differ in the underlying circulation model. Version 1 of the GEOS CCM is based on the Goddard Earth Observing System, Version 4, general circulation model which includes the finite-volume (Lin-Rood) dynamical core and physical parameterizations from Community Climate Model, Version 3. GEOS CCM Version 2 is based on the GEOS-5 GCM that includes a different tropospheric physics package. Baseline simulations of both models, performed at two-degree spatial resolution, show some improvements in Version 2, but also some degradation, In the Antarctic, both models show an over-persistent stratospheric polar vortex with late breakdown, but the year-to-year variations that are overestimated in Version I are more realistic in Version 2. The implications of this for the interactions with tropospheric climate, the Southern Annular Mode, will be discussed. In the Arctic both model versions show a dominant dynamically forced variabi;ity, but Version 2 has a persistent warm bias in the low stratosphere and there are seasonal differences in the simulations. These differences will be quantified in terms of climate change and ozone loss. Impacts of model resolution, using simulations at one-degree and half-degree, and changes in physical parameterizations (especially the gravity wave drag) will be discussed.

  4. GEOS Atmospheric Model: Challenges at Exascale

    NASA Technical Reports Server (NTRS)

    Putman, William M.; Suarez, Max J.

    2017-01-01

    The Goddard Earth Observing System (GEOS) model at NASA's Global Modeling and Assimilation Office (GMAO) is used to simulate the multi-scale variability of the Earth's weather and climate, and is used primarily to assimilate conventional and satellite-based observations for weather forecasting and reanalysis. In addition, assimilations coupled to an ocean model are used for longer-term forecasting (e.g., El Nino) on seasonal to interannual times-scales. The GMAO's research activities, including system development, focus on numerous time and space scales, as detailed on the GMAO website, where they are tabbed under five major themes: Weather Analysis and Prediction; Seasonal-Decadal Analysis and Prediction; Reanalysis; Global Mesoscale Modeling, and Observing System Science. A brief description of the GEOS systems can also be found at the GMAO website. GEOS executes as a collection of earth system components connected through the Earth System Modeling Framework (ESMF). The ESMF layer is supplemented with the MAPL (Modeling, Analysis, and Prediction Layer) software toolkit developed at the GMAO, which facilitates the organization of the computational components into a hierarchical architecture. GEOS systems run in parallel using a horizontal decomposition of the Earth's sphere into processing elements (PEs). Communication between PEs is primarily through a message passing framework, using the message passing interface (MPI), and through explicit use of node-level shared memory access via the SHMEM (Symmetric Hierarchical Memory access) protocol. Production GEOS weather prediction systems currently run at 12.5-kilometer horizontal resolution with 72 vertical levels decomposed into PEs associated with 5,400 MPI processes. Research GEOS systems run at resolutions as fine as 1.5 kilometers globally using as many as 30,000 MPI processes. Looking forward, these systems can be expected to see a 2 times increase in horizontal resolution every two to three years, as well as

  5. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  6. Air Quality Side Event Proposal November 2016 GEO XIII ...

    EPA Pesticide Factsheets

    The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques. It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO Participating Organizations at the Side Event. It is an opportunity to share scientific and technological advances in this area and build partnerships and collaboration. The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques.  It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO P

  7. Assimilation of Sentinel-1 and SMAP observations to improve GEOS-5 soil moisture

    NASA Astrophysics Data System (ADS)

    Lievens, Hans; Reichle, Rolf; Wagner, Wolfgang; De Lannoy, Gabrielle; Liu, Qing; Verhoest, Niko

    2017-04-01

    The SMAP (Soil Moisture Active and Passive) mission carries an L-band radiometer that provides brightness temperature observations at a nominal resolution of 40 km. These radiance observations are routinely assimilated into GEOS-5 (Goddard Earth Observing System version 5) to generate the SMAP Level 4 Soil Moisture product. The use of C-band radar backscatter observations from Sentinel-1 has the potential to add value to the radiance assimilation by increasing the level of spatial detail. The specifications of Sentinel-1 are appealing, particularly its high spatial resolution (5 by 20 m in interferometric wide swath mode) and frequent revisit time (potentially every 3 days for the Sentinel-1A and Sentinel-1B constellation). However, the shorter wavelength of Sentinel-1 observations implies less sensitivity to soil moisture. This study investigates the value of Sentinel-1 data for hydrologic simulations by assimilating the radar observations into GEOS-5, either separately from or simultaneously with SMAP radiometer observations. The assimilation can be performed if either or both Sentinel-1 or SMAP observations are available, and is thus not restricted to synchronised overpasses. To facilitate the assimilation of the radar observations, GEOS-5 is coupled to the water cloud model, simulating the radar backscatter as observed by Sentinel-1. The innovations, i.e. differences between observations and simulations, are converted into increments to the model soil moisture state through an Ensemble Kalman Filter. The model runs are performed at 9-km spatial and 3-hourly temporal resolution, over the period from May 2015 to October 2016. The impact of the assimilation on surface and root-zone soil moisture simulations is assessed using in situ measurements from SMAP core validation sites and sparse networks. The assimilation of Sentinel-1 backscatter is found to consistently improve surface and root-zone soil moisture, relative to the open loop (no assimilation). However

  8. Geo Issue Tracking System

    NASA Astrophysics Data System (ADS)

    Khakpour, Mohammad; Paulik, Christoph; Hahn, Sebastian

    2016-04-01

    Communication about remote sensing data quality between data providers and users as well as between the users is often difficult. The users have a hard time figuring out if a product has known problems over their region of interest and data providers have to spend a lot of effort to make this information available, if it exists. Scientific publications are one tool for communicating with the users base but they are static and mostly one way. As a data provider it is also often difficult to make feedback, received from users, available to the complete user base. The Geo Issue Tracking System (GeoITS) is an Open Source Web Application which has been developed to mitigate these problems. GeoITS combines a mapping interface (Google Maps) with a simple wiki platform. It allows users to give region specific feedback on a remote sensing product by drawing a polygon on the map and describing the problems they had using the remote sensing product in this area. These geolocated wiki entries are then viewable by other users as well as the data providers which can modify and extend the entries. In this way the conversations between the users and the data provider are no longer hidden in e.g. emails but open for all users of the dataset. This new kind of communication platform can enable better cooperation between users and data providers. It will also provide data providers with the ability to track problems their dataset might have in certain areas and resolve them with new product releases. The source code is available via http://github.com/TUW-GEO/geoits_dev A running instance can be tried at https://geoits.herokuapp.com/

  9. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  10. Penn State geoPebble system: Design,Implementation, and Initial Results

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.

    2014-12-01

    The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and

  11. GeoEn -Research on Geo-Energy

    NASA Astrophysics Data System (ADS)

    Liebscher, A.; Scheck-Wenderoth, M.; GeoEn Research Group

    2012-04-01

    Axel Liebscher1, Magdalena Scheck-Wenderoth1 and the GeoEn Research Group1, 2,3 1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 2 University Potsdam, Germany 3 BTU Cottbus, Germany One of the pressing challenges for the 21st century is a secure, sustainable and economical energy supply at simultaneous mitigation of its climate impact. Besides a switch to renewable energy resources, the exploration and exploitation of new, unconventional energy resources will play a major role as will the further use of fossil fuels. With the switch to renewable energies the question of geological energy storage will become an important topic whereas further use of fossil fuels requires strategies like CCS to reduce its negative climate impacts. These different aspects of geo-energy make complementary or competitive demands on the subsurface and its use. It is therefore essential to treat the subsurface as a geo-resource of its own right. So far, geo-resource related research has often focused on specific resource systems, e.g. ore forming systems, hydrocarbon systems or geothermal systems, providing results largely applicable only to the restricted range of physicochemical properties of the respective geo-resource systems. However, with the increasing use of the subsurface as important geo-resource, the different geo-resource systems tend to overlap and interact and also become much more complex due to the additional use or presence of artificial and technical matter, as is the case in geological CO2 storage. On the other hand, the combined use of the subsurface for different purposes may also create synergetic effects. GeoEn is a joint research project explicitly addressing the fundamental questions related to the sustainable and holistic use of the geo-resource subsurface with a special focus on geo-energy. Project partners are the German Research Centre for Geosciences (GFZ), the University of Potsdam (UP) and the Brandenburg University of

  12. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  13. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  14. GeoChronos: An On-line Collaborative Platform for Earth Observation Scientists

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Kiddle, C.; Curry, R.; Markatchev, N.; Zonta-Pastorello, G., Jr.; Rivard, B.; Sanchez-Azofeifa, G. A.; Simmonds, R.; Tan, T.

    2009-12-01

    Recent advances in cyberinfrastructure are offering new solutions to the growing challenges of managing and sharing large data volumes. Web 2.0 and social networking technologies, provide the means for scientists to collaborate and share information more effectively. Cloud computing technologies can provide scientists with transparent and on-demand access to applications served over the Internet in a dynamic and scalable manner. Semantic Web technologies allow for data to be linked together in a manner understandable by machines, enabling greater automation. Combining all of these technologies together can enable the creation of very powerful platforms. GeoChronos (http://geochronos.org/), part of a CANARIE Network Enabled Platforms project, is an online collaborative platform that incorporates these technologies to enable members of the earth observation science community to share data and scientific applications and to collaborate more effectively. The GeoChronos portal is built on an open source social networking platform called Elgg. Elgg provides a full set of social networking functionalities similar to Facebook including blogs, tags, media/document sharing, wikis, friends/contacts, groups, discussions, message boards, calendars, status, activity feeds and more. An underlying cloud computing infrastructure enables scientists to access dynamically provisioned applications via the portal for visualizing and analyzing data. Users are able to access and run the applications from any computer that has a Web browser and Internet connectivity and do not need to manage and maintain the applications themselves. Semantic Web Technologies, such as the Resource Description Framework (RDF) are being employed for relating and linking together spectral, satellite, meteorological and other data. Social networking functionality plays an integral part in facilitating the sharing of data and applications. Examples of recent GeoChronos users during the early testing phase have

  15. The standard-based open workflow system in GeoBrain (Invited)

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial

  16. Time-resolved infrared spectrophotometric observations of high area to mass ratio (HAMR) objects in GEO

    NASA Astrophysics Data System (ADS)

    Skinner, Mark A.; Russell, Ray W.; Rudy, Richard J.; Gutierrez, David J.; Kim, Daryl L.; Crawford, Kirk; Gregory, Steve; Kelecy, Tom

    2011-12-01

    Optical surveys have identified a class of high area-to-mass ratio (HAMR) objects in the vicinity of the Geostationary Earth Orbit (GEO) ring [1]. The exact origin and nature of these objects are not well known, although their proximity to the GEO ring poses a hazard to active GEO satellites. Due to their high area-to-mass ratios, solar radiation pressure perturbs their orbits in ways that makes it difficult to predict their orbital trajectories over periods of time exceeding a week. To better understand these objects and their origins, observations that allow us to derive physical characteristics are required in order to improve the non-conservative force modeling for orbit determination and prediction. Information on their temperatures, areas, emissivities, and albedos may be obtained from thermal infrared, mid-wave infrared (MWIR), and visible measurements. Spectral features may help to identify the composition of the material, and thus possible origins for these objects. We have collected observational data on various HAMR objects from the AMOS observatory 3.6 m AEOS telescope. The thermal-IR spectra of these low-earth orbit objects acquired by the Broadband Array Spectrograph System (BASS) span wavelengths 3-13 μm and constitute a unique data set, providing a means of measuring, as a function of time, object fluxes. These, in turn, allow temperatures and emissivity-area products to be calculated. In some instances we have also collected simultaneous filtered visible photometric data on the observed objects. The multi-wavelength observations of the objects provide possible clues as to the nature of the observed objects. We describe briefly the nature and status of the instrumental programs used to acquire the data, our data of record, our data analysis techniques, and our current results, as well as future plans.

  17. Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad

    2018-01-01

    The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.

  18. GEO Carbon and GHG Initiative Task 3: Optimizing in-situ measurements of essential carbon cycle variables across observational networks

    NASA Astrophysics Data System (ADS)

    Durden, D.; Muraoka, H.; Scholes, R. J.; Kim, D. G.; Loescher, H. W.; Bombelli, A.

    2017-12-01

    The development of an integrated global carbon cycle observation system to monitor changes in the carbon cycle, and ultimately the climate system, across the globe is of crucial importance in the 21stcentury. This system should be comprised of space and ground-based observations, in concert with modelling and analysis, to produce more robust budgets of carbon and other greenhouse gases (GHGs). A global initiative, the GEO Carbon and GHG Initiative, is working within the framework of Group on Earth Observations (GEO) to promote interoperability and provide integration across different parts of the system, particularly at domain interfaces. Thus, optimizing the efforts of existing networks and initiatives to reduce uncertainties in budgets of carbon and other GHGs. This is a very ambitious undertaking; therefore, the initiative is separated into tasks to provide actionable objectives. Task 3 focuses on the optimization of in-situ observational networks. The main objective of Task 3 is to develop and implement a procedure for enhancing and refining the observation system for identified essential carbon cycle variables (ECVs) that meets user-defined specifications at minimum total cost. This work focuses on the outline of the implementation plan, which includes a review of essential carbon cycle variables and observation technologies, mapping the ECVs performance, and analyzing gaps and opportunities in order to design an improved observing system. A description of the gap analysis of in-situ observations that will begin in the terrestrial domain to address issues of missing coordination and large spatial gaps, then extend to ocean and atmospheric observations in the future, will be outlined as the subsequent step to landscape mapping of existing observational networks.

  19. Five-Year (2004-2009)Observations of Upper Tropospheric Water Vapor and Cloud Ice from MLS and Comparisons with GEOS-5 Analyses

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Su, Hui; Pawson, Steven; Liu, Hui-Chun; Read, William; Waters, Joe W.; Santee, Michelle; Wu, Dong L.; Schwartz, Michael; Lambert, Alyn; hide

    2009-01-01

    This paper gives an overview of August 2004 through July 2009 upper tropospheric (UT) water vapor (H2O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H2O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within approximately 15%) agreement in IWC at these altitudes, but GEOS-5 H2O is approximately 50% (215 hPa) to approximately 30% (147 hPa) larger than MLS, possibility due to its higher temperatures at these altitudes. GOES-5 produces a weaker intertropical convergence zone than MLS, while a seasonally-migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H2O and IWC. MLS and GEOS-5 both show spatial anti-correlation between IWC and H2O at 100 hPa, where less H2O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H2O in the tropics, and approximately 20% more H2O in the extra-tropics, than does MLS. Behavior of the 100 hPa H2O, which exhibits a quasi-biennial oscillation, appears consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H2O from approximately 147 hPa to approximately 10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H2O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Nino-Southern Oscillation.

  20. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    NASA Technical Reports Server (NTRS)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  1. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  2. GEO Supersites Data Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Lengert, W.; Popp, H.-J.; Gleyzes, J.-P.

    2012-04-01

    In the framework of the GEO Geohazard Supersite initiative, an international partnership of organizations and scientists involved in the monitoring and assessment of geohazards has been established. The mission is to advance the scientific understanding of geohazards by improving geohazard monitoring through the combination of in-situ and space-based data, and by facilitating the access to data relevant for geohazard research. The stakeholders are: (1) governmental organizations or research institutions responsible for the ground-based monitoring of earthquake and volcanic areas, (2) space agencies and satellite operators providing satellite data, (3) the global geohazard scientific community. The 10.000's of ESA's SAR products are accessible, since beginning 2008, using ESA's "Virtual Archive", a Cloud Computing assets, allowing the global community an utmost downloading performance of these high volume data sets for mass-market costs. In the GEO collaborative context, the management of ESA's "Virtual Archive" and the ordering of these large data sets is being performed by UNAVCO, who is also coordinating the data demand for the several hundreds of co-PIs. ESA is envisaging to provide scientists and developers access to a highly elastic operational e-infrastructure, providing interdisciplinary data on a large scale as well as tools ensuring innovation and a permanent evolution of the products. Consequently, this science environment will help in defining and testing new applications and technologies fostering innovation and new science findings. In Europe, the collaboration between EPOS, "European Plate Observatory System" lead by INGV, and ESA with support of DLR, ASI, and CNES are the main institutional stakeholders for the GEO Supersites contributing also to a unifying e-infrastructure. The overarching objective of the Geohazard Supersites is: "To implement a sustainable Global Earthquake Observation System and a Global Volcano Observation System as part of the

  3. Final Technical Report -- GEO-VI - USGEO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Leonard

    2009-11-30

    Representatives of US earth observations departments and agencies, other participating governments, NGOs and civil society participated in the Sixth Plenary Meeting of the Group on Earth Observations (GEO-VI), hosted by the United States in Washington, DC on November 17 and 18, 2009. The meeting was held in the Atrium Ballroom of the Ronald Reagan International Trade Center. Exhibitions of international Earth observation technology and programs were held concurrently in the same venue. A number of GEO committee meetings and side events were held in conjunction with the GEO-VI Plenary, including the GEO-IGOS Symposium on Earth observation science and applications, themore » GEOSS in the Americas Forum on Coastal Zones, and separate meetings of the GEO Communities of Practice on Carbon, Health, and Air Quality.« less

  4. A Geo-Distributed System Architecture for Different Domains

    NASA Astrophysics Data System (ADS)

    Moßgraber, Jürgen; Middleton, Stuart; Tao, Ran

    2013-04-01

    The presentation will describe work on the system-of-systems (SoS) architecture that is being developed in the EU FP7 project TRIDEC on "Collaborative, Complex and Critical Decision-Support in Evolving Crises". In this project we deal with two use-cases: Natural Crisis Management (e.g. Tsunami Early Warning) and Industrial Subsurface Development (e.g. drilling for oil). These use-cases seem to be quite different at first sight but share a lot of similarities, like managing and looking up available sensors, extracting data from them and annotate it semantically, intelligently manage the data (big data problem), run mathematical analysis algorithms on the data and finally provide decision support on this basis. The main challenge was to create a generic architecture which fits both use-cases. The requirements to the architecture are manifold and the whole spectrum of a modern, geo-distributed and collaborative system comes into play. Obviously, one cannot expect to tackle these challenges adequately with a monolithic system or with a single technology. Therefore, a system architecture providing the blueprints to implement the system-of-systems approach has to combine multiple technologies and architectural styles. The most important architectural challenges we needed to address are 1. Build a scalable communication layer for a System-of-sytems 2. Build a resilient communication layer for a System-of-sytems 3. Efficiently publish large volumes of semantically rich sensor data 4. Scalable and high performance storage of large distributed datasets 5. Handling federated multi-domain heterogeneous data 6. Discovery of resources in a geo-distributed SoS 7. Coordination of work between geo-distributed systems The design decisions made for each of them will be presented. These developed concepts are also applicable to the requirements of the Future Internet (FI) and Internet of Things (IoT) which will provide services like smart grids, smart metering, logistics and

  5. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    NASA Technical Reports Server (NTRS)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  6. GeoViQua: quality-aware geospatial data discovery and evaluation

    NASA Astrophysics Data System (ADS)

    Bigagli, L.; Papeschi, F.; Mazzetti, P.; Nativi, S.

    2012-04-01

    GeoViQua (QUAlity aware VIsualization for the Global Earth Observation System of Systems) is a recently started FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and evaluation tools, which will be integrated in the GEO-Portal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators, also contributing to the definition of a quality label (GEOLabel). GeoViQua proposed solutions will be assessed in several pilot case studies covering the whole Earth Observation chain, from remote sensing acquisition to data processing, to applications in the main GEOSS Societal Benefit Areas. This work presents the preliminary results of GeoViQua Work Package 4 "Enhanced geo-search tools" (WP4), started in January 2012. Its major anticipated technical innovations are search and evaluation tools that communicate and exploit data quality information from the GCI. In particular, GeoViQua will investigate a graphical search interface featuring a coherent and meaningful aggregation of statistics and metadata summaries (e.g. in the form of tables, charts), thus enabling end users to leverage quality constraints for data discovery and evaluation. Preparatory work on WP4 requirements indicated that users need the "best" data for their purpose, implying a high degree of subjectivity in judgment. This suggests that the GeoViQua system should exploit a combination of provider-generated metadata (objective indicators such as summary statistics), system-generated metadata (contextual

  7. The IS-GEO RCN: Fostering Collaborations for Intelligent Systems Research to Support Geosciences

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Pierce, S. A.

    2016-12-01

    Geoscience problems are complex and often involve data that changes across space and time. Frequently geoscience knowledge and understanding provides valuable information and insight for problems related to energy, water, climate, mineral resources, and our understanding of how the Earth evolves through time. Simultaneously, many grand challenges in the geosciences cannot be addressed without the aid of computational support and innovations. Intelligent and Information Systems (IS) research includes a broad range of computational methods and topics such as knowledge representation, information integration, machine learning, robotics, adaptive sensors, and intelligent interfaces. IS research has a very important role to play in accelerating the speed of scientific discovery in geosciences and thus in solving challenges in geosciences. Many aspects of geosciences (GEO) research pose novel open problems for intelligent systems researchers. To develop intelligent systems with sound knowledge of theory and practice, it is important that GEO and IS experts collaborate. The EarthCube Research Coordination Network for Intelligent Systems for Geosciences (IS-GEO RCN) represents an emerging community of interdisciplinary researchers producing fundamental new capabilities for understanding Earth systems. Furthermore, the educational component aims to identify new approaches to teaching students in this new interdisciplinary area, seeking to raise a new generation of scientists that are better able to apply IS methods and tools to geoscience challenges of the future. By providing avenues for IS and GEO researchers to work together, the IS-GEO RCN will serve as both a point of contact, as well as an avenue for educational outreach across the disciplines for the nascent community of research and practice. The initial efforts are focused on connecting the communities in ways that help researchers understand opportunities and challenges that can benefit from IS-GEO collaborations

  8. Supporting New Missions by Observing Simulation Experiments in WACCM-X/GEOS-5 and TIME-GCM: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Liu, H.; Solomon, S. C.; Immel, T. J.; Maute, A. I.; Burns, A. G.; Foster, B.; Wu, Q.; Goncharenko, L. P.

    2013-12-01

    We examine the capability of novel configurations of community models, WACCM-X and TIME-GCM, to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Mesosphere-Thermosphere-Ionosphere (MTI) system. In these configurations the lower atmosphere of WACCM-X is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of Global Modeling and Assimilation Office at NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics the simulations in the MTI are capable to reproduce observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. These 'terrestrial-weather' driven simulations with day-to-day variable solar and geomagnetic inputs can provide background state (first guess) and error statistics for the inverse algorithms of new NASA missions, ICON and GOLD at locations and time of observations in the MTI region. With two different viewing geometries (sun-synchronous and geostationary) of instruments, ICON and GOLD will provide complimentary global observations of temperature, winds and constituents to constrain the first-principle forecast models. This paper will discuss initial design of Observing Simulation Experiments (OSE) in WACCM-X/GEOS-5 and TIME-GCM. As recognized, OSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. They can guide on how to integrate/combine information from different instruments. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying tidal dynamics and their effects in models by combination of sun-synchronous and geostationary observations of ICON and GOLD. We will also discuss how correlative space

  9. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  10. GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Kovach, Robin; Marshak, Jelena

    2018-01-01

    The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.

  11. Precipitation Recycling in the NASA GEOS Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried; Molod, Andrea; Takacs, Lawrence L.

    1999-01-01

    Analysis of precipitation recycling can improve the understanding of regional hydrologic anomalies, especially their evolution and maintenance. Diagnostic models of the recycling of precipitation and are applied to 15 years of the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). Recycled precipitation is defined as the fraction of precipitation within a given region that originated as surface evaporation from the same region. The focus of the present work is on the interannual variability of the central United States hydrologic cycle and precipitation recycling. The extreme years of 1988 (drought) and 1993 (flood) are compared with the 15 year base period mean annual cycle. The results indicate that recycling ratio (the amount of precipitation with a local source relative to the total precipitation) is greater in 1988 than both the base period mean and the 1993 season (with 1993 recycling ratio less than the mean). On the other hand, both the summers of 1988 and 1993 show less total recycled precipitation than the mean. The results also show that precipitation recycling may have been more important in the spring of 1993, when the region was primed for flooding, than the summer, when the sever flooding occurred. The diagnostic approaches to precipitation recycling suffer from some weaknesses. Numerical simulations and assimilation using passive tracers have the potential to provide more accurate calculations of precipitation recycling and the remote sources of water. This ability is being incorporated into the latest GEOS data assimilation system, and some preliminary results will be presented.

  12. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  13. GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Collins, Gaemus E.; Hespanha, João P.

    2009-05-01

    Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara (UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned aircraft systems (UAS) to cooperatively locate and track ground targets. Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system. The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video tracking in low-powered computing platforms.

  14. The GEOSS Clearinghouse based on the GeoNetwork opensource

    NASA Astrophysics Data System (ADS)

    Liu, K.; Yang, C.; Wu, H.; Huang, Q.

    2010-12-01

    The Global Earth Observation System of Systems (GEOSS) is established to support the study of the Earth system in a global community. It provides services for social management, quick response, academic research, and education. The purpose of GEOSS is to achieve comprehensive, coordinated and sustained observations of the Earth system, improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behavior of the Earth system. In 2009, GEO called for a competition for an official GEOSS clearinghouse to be selected as a source to consolidating catalogs for Earth observations. The Joint Center for Intelligent Spatial Computing at George Mason University worked with USGS to submit a solution based on the open-source platform - GeoNetwork. In the spring of 2010, the solution is selected as the product for GEOSS clearinghouse. The GEOSS Clearinghouse is a common search facility for the Intergovernmental Group on Ea rth Observation (GEO). By providing a list of harvesting functions in Business Logic, GEOSS clearinghouse can collect metadata from distributed catalogs including other GeoNetwork native nodes, webDAV/sitemap/WAF, catalog services for the web (CSW)2.0, GEOSS Component and Service Registry (http://geossregistries.info/), OGC Web Services (WCS, WFS, WMS and WPS), OAI Protocol for Metadata Harvesting 2.0, ArcSDE Server and Local File System. Metadata in GEOSS clearinghouse are managed in a database (MySQL, Postgresql, Oracle, or MckoiDB) and an index of the metadata is maintained through Lucene engine. Thus, EO data, services, and related resources can be discovered and accessed. It supports a variety of geospatial standards including CSW and SRU for search, FGDC and ISO metadata, and WMS related OGC standards for data access and visualization, as linked from the metadata.

  15. Developing a Carbon Observing System

    NASA Astrophysics Data System (ADS)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  16. The GEOS-5 Neural Network Retrieval for AOD

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; da Silva, A. M., Jr.

    2017-12-01

    One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.

  17. An observational philosophy for GEOS-C satellite altimetry

    NASA Technical Reports Server (NTRS)

    Weiffenbach, G. C.

    1972-01-01

    The parameters necessary for obtaining a 10 cm accuracy for GEOS-C satellite altimetry are outlined. These data include oceanographic parameters, instrument calibration, pulse propagation, sea surface effects, and optimum design.

  18. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  19. CERES GEO Ed4 Available Data

    Atmospheric Science Data Center

    2017-10-11

    ... Spatial Resolution Temporal Coverage CER_GEO_Ed4_GOE08 Hourly 2-4km observation at nadir, subsampled every 8-9 km 2000-03-01 to 2003-04-01 CER_GEO_Ed4_GOE09 Hourly 2-4km observation at nadir, subsampled ...

  20. Earth Observations, Models and Geo-Design in Support of SDG Implementation and Monitoring

    NASA Astrophysics Data System (ADS)

    Plag, H. P.; Jules-Plag, S.

    2016-12-01

    Implementation and Monitoring of the United Nations' Sustainable Development Goals (SDGs) requires support from Earth observation and scientific communities. Applying a goal-based approach to determine the data needs to the Targets and Indicators associated with the SDGs demonstrates that integration of environmental with socio-economic and statistical data is required. Large data gaps exist for the built environment. A Geo-Design platform can provide the infrastructure and conceptual model for the data integration. The development of policies and actions to foster the implementation of SDGs in many cases requires research and the development of tools to answer "what if" questions. Here, agent-based models and model webs combined with a Geo-Design platform are promising avenues. This advanced combined infrastructure can also play a crucial role in the necessary capacity building. We will use the example of SDG 5 (Gender equality) to illustrate these approaches. SDG 11 (Sustainable Cities and Communities) is used to underline the cross-goal linkages and the joint benefits of Earth observations, data integration, and modeling tools for multiple SDGs.

  1. Comparison of BRDF-Predicted and Observed Light Curves of GEO Satellites

    NASA Astrophysics Data System (ADS)

    Ceniceros, A.; Dao, P.; Gaylor, D.; Rast, R.; Anderson, J.; Pinon, E., III

    Although the amount of light received by sensors on the ground from Resident Space Objects (RSOs) in geostationary orbit (GEO) is small, information can still be extracted in the form of light curves (temporal brightness or apparent magnitude). Previous research has shown promising results in determining RSO characteristics such as shape, size, reflectivity, and attitude by processing simulated light curve data with various estimation algorithms. These simulated light curves have been produced using one of several existing analytic Bidirectional Reflectance Distribution Function (BRDF) models. These BRDF models have generally come from researchers in computer graphics and machine vision and have not been shown to be realistic for telescope observations of RSOs in GEO. While BRDFs have been used for SSA analysis and characterization, there is a lack of research on the validation of BRDFs with regards to real data. In this paper, we compared telescope data provided by the Air Force Research Laboratory (AFRL) with predicted light curves from the Ashikhmin-Premoze BRDF and two additional popular illumination models, Ashikhmin-Shirley and Cook-Torrance. We computed predicted light curves based on two line mean elements (TLEs), shape model, attitude profile, observing ground station location, observation time and BRDF. The predicted light curves were then compared with AFRL telescope data. The selected BRDFS provided accurate apparent magnitude trends and behavior, but uncertainties due to lack of attitude information and deficiencies in our satellite model prevented us from obtaining a better match to the real data. The current findings present a foundation for ample future research.

  2. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of

  3. Design and Implementation of a New System for Large Bridge Monitoring—GeoSHM

    PubMed Central

    Xie, Yilin; Ince, Sean; Ye, Jun; Bhatia, Paul

    2018-01-01

    Structural Health Monitoring (SHM) is a relatively new branch of civil engineering that focuses on assessing the health status of infrastructure, such as long-span bridges. Using a broad range of in-situ monitoring instruments, the purpose of the SHM is to help engineers understand the behaviour of structures, ensuring their structural integrity and the safety of the public. Under the Integrated Applications Promotion (IAP) scheme of the European Space Agency (ESA), a feasibility study (FS) project that used the Global Navigation Satellite Systems (GNSS) and Earth Observation (EO) for Structural Health Monitoring of Long-span Bridges (GeoSHM) was initiated in 2013. The GeoSHM FS Project was led by University of Nottingham and the Forth Road Bridge (Scotland, UK), which is a 2.5 km long suspension bridge across the Firth of Forth connecting Edinburgh and the Northern part of Scotland, was selected as the test structure for the GeoSHM FS project. Initial results have shown the significant potential of the GNSS and EO technologies. With these successes, the FS project was further extended to the demonstration stage, which is called the GeoSHM Demo project where two other long-span bridges in China were included as test structures. Led by UbiPOS UK Ltd. (Nottingham, UK), a Nottingham Hi-tech company, this stage focuses on addressing limitations identified during the feasibility study and developing an innovative data strategy to process, store, and interpret monitoring data. This paper will present an overview of the motivation and challenges of the GeoSHM Demo Project, a description of the software and hardware architecture and a discussion of some primary results that were obtained in the last three years. PMID:29510534

  4. Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation

    NASA Astrophysics Data System (ADS)

    Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.

    2017-01-01

    This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.

  5. TASK ALLOCATION IN GEO-DISTRIBUTED CYBER-PHYSICAL SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Rachit; Smidts, Carol

    This paper studies the task allocation algorithm for a distributed test facility (DTF), which aims to assemble geo-distributed cyber (software) and physical (hardware in the loop components into a prototype cyber-physical system (CPS). This allows low cost testing on an early conceptual prototype (ECP) of the ultimate CPS (UCPS) to be developed. The DTF provides an instrumentation interface for carrying out reliability experiments remotely such as fault propagation analysis and in-situ testing of hardware and software components in a simulated environment. Unfortunately, the geo-distribution introduces an overhead that is not inherent to the UCPS, i.e. a significant time delay inmore » communication that threatens the stability of the ECP and is not an appropriate representation of the behavior of the UCPS. This can be mitigated by implementing a task allocation algorithm to find a suitable configuration and assign the software components to appropriate computational locations, dynamically. This would allow the ECP to operate more efficiently with less probability of being unstable due to the delays introduced by geo-distribution. The task allocation algorithm proposed in this work uses a Monte Carlo approach along with Dynamic Programming to identify the optimal network configuration to keep the time delays to a minimum.« less

  6. GeoGIS : phase III.

    DOT National Transportation Integrated Search

    2011-08-01

    GeoGIS is a web-based geotechnical database management system that is being developed for the Alabama : Department of Transportation (ALDOT). The purpose of GeoGIS is to facilitate the efficient storage and retrieval of : geotechnical documents for A...

  7. The GEOS-5 Neural Network Retrieval (NNR) for AOD

    NASA Technical Reports Server (NTRS)

    Castellanos, Patricia; Da Silva, Arlindo

    2017-01-01

    One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.

  8. Use of Combined A-Train Observations to Validate GEOS Model Simulated Dust Distributions During NAMMA

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.

    2007-01-01

    During August 2006, the NASA African Multidisciplinary Analyses Mission (NAMMA) field experiment was conducted to characterize the structure of African Easterly Waves and their evolution into tropical storms. Mineral dust aerosols affect tropical storm development, although their exact role remains to be understood. To better understand the role of dust on tropical cyclogenesis, we have implemented a dust source, transport, and optical model in the NASA Goddard Earth Observing System (GEOS) atmospheric general circulation model and data assimilation system. Our dust source scheme is more physically based scheme than previous incarnations of the model, and we introduce improved dust optical and microphysical processes through inclusion of a detailed microphysical scheme. Here we use A-Train observations from MODIS, OMI, and CALIPSO with NAMMA DC-8 flight data to evaluate the simulated dust distributions and microphysical properties. Our goal is to synthesize the multi-spectral observations from the A-Train sensors to arrive at a consistent set of optical properties for the dust aerosols suitable for direct forcing calculations.

  9. Comparison of Surface Ground Temperature from Satellite Observations and the Off-Line Land Surface GEOS Assimilation System

    NASA Technical Reports Server (NTRS)

    Yang, R.; Houser, P.; Joiner, J.

    1998-01-01

    The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.

  10. COSPAR Round Table on `How can GEO and COSPAR scientific community work together?'

    NASA Astrophysics Data System (ADS)

    Gobron, Nadine; Ollier, Gilles

    The Group on Earth Observations is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. GEO is a voluntary partnership of governments and inter-national organizations. It provides a framework within which these partners can develop new projects and coordinate their strategies and investments. The Science and Technology Commit-tee of GEO is working to strengthen this role by encouraging the wider scientific and technology community to participate as contributors to and benefactors of a sustained GEOSS. The proposed round table aims at discussing how are scientists and GEO currently working together, using specific examples and how do space agencies or data providers contribute to GEO? Round table participants are welcome to present their own vision on future actions to improve, if necessary, the relations between contributors and GEO. Meeting participants will also be offered the opportunity to intervene and ask questions to the panel. Moderators: • Dr. Nadine Gobron -EC-JRC -Chair of Commission A • Gilles Ollier -DG Research Participants: • Prof. José Achache -Director of GEO • Prof. Maurice Bonnet -President of COSPAR • Dr. Tamatsu Igarashi -JAXA EORC Manager • Dr. Stuart Minchin (CSIRO and member of GEO STC) TBC • Prof. Berrien Moore -Executive Director of Climate Central • Dr. Diane E. Wickland -NASA Headquarters • Dr. Stephen Briggs -ESA (TBC)

  11. An Overview of the GEOS-5 Aerosol Reanalysis

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Colarco, Peter Richard; Damenov, Anton Spasov; Buchard-Marchant, Virginie; Randles, Cynthia A.; Gupta, Pawan

    2011-01-01

    GEOS-5 is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) earth system model. GEOS-5 contains components for atmospheric circulation and composition (including data assimilation), ocean circulation and biogeochemistry, and land surface processes. In addition to traditional meteorological parameters, GEOS-5 includes modules representing the atmospheric composition, most notably aerosols and tropospheric/stratospheric chemical constituents, taking explicit account of the impact of these constituents on the radiative processes of the atmosphere. MERRA is a NASA meteorological reanalysis for the satellite era (1979-present) using GEOS-5. This project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales. As a first step towards an integrated Earth System Analysis (IESA), the GMAO is extending MERRA with reanalyses for other components of the earth system: land, ocean, bio-geochemistry and atmospheric constituents. In this talk we will present results from the MERRA-driven aerosol reanalysis covering the Aqua period (2003-present). The assimilation of Aerosol Optical Depth (AOD) in GEOS-5 involves very careful cloud screening and homogenization of the observing system by means of a Neural Net scheme that translates MODIS radiances into AERONET calibrated AOD. These measurements are further quality controlled using an adaptive buddy check scheme, and assimilated using the Local Displacement Ensemble (LDE) methodology. For this reanalysis, GEOS-5 runs at a nominal 50km horizontal resolution with 72 vertical layers (top at approx. 8Skm). GEOS-5 is driven by daily biomass burning emissions derived from MODIS fire radiative power retrievals. We will present a summary of our efforts to validate such dataset. The GEOS-5 assimilated aerosol fields are first validated by comparison to independent in-situ measurements (AERONET and PM2.5 surface concentrations). In order to asses aerosol

  12. GEO Label: User and Producer Perspectives on a Label for Geospatial Data

    NASA Astrophysics Data System (ADS)

    Lush, V.; Lumsden, J.; Masó, J.; Díaz, P.; McCallum, I.

    2012-04-01

    One of the aims of the Science and Technology Committee (STC) of the Group on Earth Observations (GEO) was to establish a GEO Label- a label to certify geospatial datasets and their quality. As proposed, the GEO Label will be used as a value indicator for geospatial data and datasets accessible through the Global Earth Observation System of Systems (GEOSS). It is suggested that the development of such a label will significantly improve user recognition of the quality of geospatial datasets and that its use will help promote trust in datasets that carry the established GEO Label. Furthermore, the GEO Label is seen as an incentive to data providers. At the moment GEOSS contains a large amount of data and is constantly growing. Taking this into account, a GEO Label could assist in searching by providing users with visual cues of dataset quality and possibly relevance; a GEO Label could effectively stand as a decision support mechanism for dataset selection. Currently our project - GeoViQua, - together with EGIDA and ID-03 is undertaking research to define and evaluate the concept of a GEO Label. The development and evaluation process will be carried out in three phases. In phase I we have conducted an online survey (GEO Label Questionnaire) to identify the initial user and producer views on a GEO Label or its potential role. In phase II we will conduct a further study presenting some GEO Label examples that will be based on Phase I. We will elicit feedback on these examples under controlled conditions. In phase III we will create physical prototypes which will be used in a human subject study. The most successful prototypes will then be put forward as potential GEO Label options. At the moment we are in phase I, where we developed an online questionnaire to collect the initial GEO Label requirements and to identify the role that a GEO Label should serve from the user and producer standpoint. The GEO Label Questionnaire consists of generic questions to identify whether

  13. US GeoData

    USGS Publications Warehouse

    ,

    1992-01-01

    US GeoData tapes are computer tapes which contain cartographic data in digital form. The 1:2,000,000-scale data are available in two forms. The graphic form can be used to generate computer-plotted maps. The content and scale of the maps can be varied to meet your needs. The topologically-structured form of US GeoData is suitable for input to geographic information systems for use in spatial analysis and geographic studies. Both forms must be used in conjunction with appropriate software. US GeoData tapes offer convenience, accuracy, flexibility, and cost effectiveness to many map users. Business, industry, and government users who are involved in network planning and analysis, transportation, demography, land use, or any activity where data can be related to, or plotted on a map will find US GeoData a valuable resource.

  14. Geo-neutrino results with Borexino

    NASA Astrophysics Data System (ADS)

    Roncin, R.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Schönert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    Borexino is a liquid scintillator detector primary designed to observe solar neutrinos. Due to its low background level as well as its position in a nuclear free country, Italy, Borexino is also sensitive to geo-neutrinos. Borexino is leading this interdisciplinary field of neutrino geoscience by studying electron antineutrinos which are emitted from the decay of radioactive isotopes present in the crust and the mantle of the Earth. With 2056 days of data taken between December 2007 and March 2015, Borexino observed 77 antineutrino candidates. If we assume a chondritic Th/U mass ratio of 3.9, the number of geo-neutrino events is found to be 23.7+6.5 -5.7(stat) +0.9-0.6 (syst). With this measurement, Borexino alone is able to reject the null geo-neutrino signal at 5.9σ, to claim a geo-neutrino signal from the mantle at 98% C.L. and to restrict the radiogenic heat production for U and Th between 23 and 36 TW.

  15. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  16. Similarity of markers identified from cancer gene expression studies: observations from GEO.

    PubMed

    Shi, Xingjie; Shen, Shihao; Liu, Jin; Huang, Jian; Zhou, Yong; Ma, Shuangge

    2014-09-01

    Gene expression profiling has been extensively conducted in cancer research. The analysis of multiple independent cancer gene expression datasets may provide additional information and complement single-dataset analysis. In this study, we conduct multi-dataset analysis and are interested in evaluating the similarity of cancer-associated genes identified from different datasets. The first objective of this study is to briefly review some statistical methods that can be used for such evaluation. Both marginal analysis and joint analysis methods are reviewed. The second objective is to apply those methods to 26 Gene Expression Omnibus (GEO) datasets on five types of cancers. Our analysis suggests that for the same cancer, the marker identification results may vary significantly across datasets, and different datasets share few common genes. In addition, datasets on different cancers share few common genes. The shared genetic basis of datasets on the same or different cancers, which has been suggested in the literature, is not observed in the analysis of GEO data. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Technical report series on global modeling and data assimilation. Volume 6: A multiyear assimilation with the GEOS-1 system: Overview and results

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Schubert, Siegfried; Rood, Richard; Park, Chung-Kyu; Wu, Chung-Yu; Kondratyeva, Yelena; Molod, Andrea; Takacs, Lawrence; Seablom, Michael; Higgins, Wayne

    1995-01-01

    The Data Assimilation Office (DAO) at Goddard Space Flight Center has produced a multiyear global assimilated data set with version 1 of the Goddard Earth Observing System Data Assimilation System (GEOS-1 DAS). One of the main goals of this project, in addition to benchmarking the GEOS-1 system, was to produce a research quality data set suitable for the study of short-term climate variability. The output, which is global and gridded, includes all prognostic fields and a large number of diagnostic quantities such as precipitation, latent heating, and surface fluxes. Output is provided four times daily with selected quantities available eight times per day. Information about the observations input to the GEOS-1 DAS is provided in terms of maps of spatial coverage, bar graphs of data counts, and tables of all time periods with significant data gaps. The purpose of this document is to serve as a users' guide to NASA's first multiyear assimilated data set and to provide an early look at the quality of the output. Documentation is provided on all the data archives, including sample read programs and methods of data access. Extensive comparisons are made with the corresponding operational European Center for Medium-Range Weather Forecasts analyses, as well as various in situ and satellite observations. This document is also intended to alert users of the data about potential limitations of assimilated data, in general, and the GEOS-1 data, in particular. Results are presented for the period March 1985-February 1990.

  18. Seasonal Predictions with the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Chang, Yehui; Suarez, Max

    1999-01-01

    A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed Surface Sea Temperature (SST) anomalies during boreal winter. The prediction experiments consist of nine forecasts starting from slightly different initial conditions for each year of the 15 year period 1981-95, employing version 2 of the Goddard Earth Observing System (GEOS) atmospheric Global Circulation Models (GCM). The initial conditions are obtained from the NASA GEOS-1 reanalysis data. Comparisons with a companion set of six long-term simulations with observed SST (starting in 1978, so they have no memory of the initial conditions for the periods of interest) are used to assess the relative contributions of the initial conditions and SST anomalies to forecast skill ranging from daily to seasonal time scales. The ensembles are used to isolate the signal, and to assess the nature of the inherent variability (noise) of the forecasts.

  19. PyGeoTess 0.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccarthy, Jonathan K.

    2016-07-28

    PyGeoTess is a Python interface module to the GeoTess gridding and earth model library from Sandia National Laboratories. It provides simplified access to a subset of the GeoTess C++ library, and takes advantage of Python's interactive interpreter and inline documentation system.

  20. Geo-spatial Informatics in International Public Health Nursing Education.

    PubMed

    Kerr, Madeleine J; Honey, Michelle L L; Krzyzanowski, Brittany

    2016-01-01

    This poster describes results of an undergraduate nursing informatics experience. Students applied geo-spatial methods to community assessments in two urban regions of New Zealand and the United States. Students used the Omaha System standardized language to code their observations during a brief community assessment activity and entered their data into a mapping program developed in Esri ArcGIS Online, a geographic information system. Results will be displayed in tables and maps to allow comparison among the communities. The next generation of nurses can employ geo-spatial informatics methods to contribute to innovative community assessment, planning and policy development.

  1. A GEOS-Based OSSE for the "MISTiC Winds" Concept

    NASA Technical Reports Server (NTRS)

    McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.; hide

    2018-01-01

    The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.

  2. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  3. GeoMod 2014 - Modelling in geoscience

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Oncken, Onno

    2016-08-01

    GeoMod is a biennial conference to review and discuss latest developments in analogue and numerical modelling of lithospheric and mantle deformation. GeoMod2014 took place at the GFZ German Research Centre for Geosciences in Potsdam, Germany. Its focus was on rheology and deformation at a wide range of temporal and spatial scales: from earthquakes to long-term deformation, from micro-structures to orogens and subduction systems. It also addressed volcanotectonics and the interaction between tectonics and surface processes (Elger et al., 2014). The conference was followed by a 2-day short course on "Constitutive Laws: from Observation to Implementation in Models" and a 1-day hands-on tutorial on the ASPECT numerical modelling software.

  4. GEO Population Estimates using Optical Survey Data

    NASA Technical Reports Server (NTRS)

    Barker, Edwin S.; Matney, Mark J.

    2007-01-01

    Optical survey data taken using the NASA Michigan Orbital Debris Survey Telescope (MODEST) gives us an opportunity to statistically sample faint object population in the Geosynchronous (GEO) and near-GEO environment. This paper will summarize the MODEST survey work that has been conducted by NASA since 2002, and will outline the techniques employed to arrive at the current population estimates in the GEO environment for dim objects difficult to detect and track using current systems in the Space Surveillance Network (SSN). Some types of orbits have a higher detection rate based on what parts of the GEO belt is being observed, a straightforward statistical technique is used to debias these observations to arrive at an estimate of the total population potentially visible to the telescope. The size and magnitude distributions of these fainter debris objects are markedly different from the catalogued population. GEO debris consists of at least two different populations, one which follows the standard breakup power law and one which has anomalously high Area-to-Mass Ratios (1 to approx. 30 square meters per kilogram; a sheet of paper = approx. 13 square meters per kilogram). The Inter-Agency Space Debris Coordination Committee (IADC) is investigating objects in GEO orbits with anomalously high Area-to-Mass Ratios (AMRs). The ESA Space Debris Telescope discovered this population and has and its properties of inclinations (0 to 30 degrees), changing eccentricities (0 and 0.6), and mean motions (approx. 1 rev), will be presented. The accepted interpretation of this orbital behavior is that solar radiation pressure drives the perturbations causing time varying inclinations and eccentricities. The orbital parameters are unstable for this population and thus difficult to predict. Their dim visual magnitudes and photometric variability make observations a challenge. The IADC has enlisted a series of observatories (participating institutions: University of Michigan

  5. Improved Estimation of Orbits and Physical Properties of Objects in GEO

    NASA Astrophysics Data System (ADS)

    Bradley, B.; Axelrad, P.

    2013-09-01

    Orbital debris is a major concern for satellite operators, both commercial and military. Debris in the geosynchronous (GEO) belt is of particular concern because this unique region is such a valuable, limited resource, and, from the ground we cannot reliably track and characterize GEO objects smaller than 1 meter in diameter. Space-based space surveillance (SBSS) is required to observe GEO objects without weather restriction and with improved viewing geometry. SBSS satellites have thus far been placed in Sun-synchronous orbits. This paper investigates the benefits to GEO orbit determination (including the estimation of mass, area, and shape) that arises from placing observing satellites in geosynchronous transfer orbit (GTO) and a sub-GEO orbit. Recently, several papers have reported on simulation studies to estimate orbits and physical properties; however, these studies use simulated objects and ground-based measurements, often with dense and long data arcs. While this type of simulation provides valuable insight into what is possible, as far as state estimation goes, it is not a very realistic observing scenario and thus may not yield meaningful accuracies. Our research improves upon simulations published to date by utilizing publicly available ephemerides for the WAAS satellites (Anik F1R and Galaxy 15), accurate at the meter level. By simulating and deliberately degrading right ascension and declination observations, consistent with these ephemerides, a realistic assessment of the achievable orbit determination accuracy using GTO and sub-GEO SBSS platforms is performed. Our results show that orbit accuracy is significantly improved as compared to a Sun-synchronous platform. Physical property estimation is also performed using simulated astrometric and photometric data taken from GTO and sub-GEO sensors. Simulations of SBSS-only as well as combined SBSS and ground-based observation tracks are used to study the improvement in area, mass, and shape estimation

  6. Worldwide biogenic soil NOx emission estimates from OMI NO2 observations and the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Vinken, Geert; Boersma, Folkert; Maasakkers, Bram; Martin, Randall

    2014-05-01

    Bacteria in soils are an important source of biogenic nitrogen oxides (NOx = NO + NO2), which are important precursors for ozone (O3) formation. Furthermore NOx emissions contribute to increased nitrogen deposition and particulate matter formation. Bottom-up estimates of global soil NOx emissions range from 4 to 27 Tg N / yr, reflecting our incomplete knowledge of emission factors and processes driving these emissions. In this study we used, for the first time, OMI NO2 columns on all continents to reduce the uncertainty in soil NOx emissions. Regions and months dominated by soil NOx emissions were identified using a filtering scheme in the GEOS-Chem chemistry transport model. Consequently, we compared OMI observed NO2 observed columns to GEOS-Chem simulated columns and provide constraints for these months in 11 regions. This allows us to provide a top-down emission inventory for 2005 for soil NOx emissions from all continents. Our total global soil NOx emission inventory amounts to 10 Tg N / yr. Our estimate is 4% higher than the GEOS-Chem a priori (Hudman et al., 2012), but substantial regional differences exist (e.g. +20% for Sahel and India; and -40% for mid-USA). We furthermore observed a stronger seasonal cycle in the Sahel region, indicating directions for possible future improvements to the parameterization currently used in GEOS-Chem. We validated NO2 concentrations simulated with this new top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. On the whole, we conclude that simulations with our new top-down inventory better agree with measurements. Our work shows that satellite retrieved NO2 columns can improve estimates of soil NOx emissions over sparsely monitored remote rural areas. We show that the range in previous estimates of soil NOx emissions is too large, and global emissions are most likely around 10 Tg N/yr, in agreement with the most recent parameterizations.

  7. VLBI Observations of Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  8. GeoEye(TradeMark) Corporate Overview

    NASA Technical Reports Server (NTRS)

    Jones, Dennis

    2007-01-01

    This viewgraph presentation gives a corporate overview of GeoEye, the world's largest commercial remote sensing company. The contents include: 1) About GeoEye; 2) GeoEye Mission; 3) The Company; 4) Com,pany Summary; 5) U.S. Government Commitment; 6) GeoEye Constellation; 7) Other Imaging Resources; 8) OrbView-3 & OrbView-2; 9) OrbView-3 System Architecture; 10) OrbView-3; 11) OrbView-2; 12) IKONOS; 13) Largest Image Archive in the World; 14) GeoEye-1; 15) Best-In-Class Development Team; 16) Highest Performance Available in the Commercial Market; and 17) Key Themes

  9. Geoinformation web-system for processing and visualization of large archives of geo-referenced data

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Okladnikov, I. G.; Titov, A. G.; Shulgina, T. M.

    2010-12-01

    Developed working model of information-computational system aimed at scientific research in area of climate change is presented. The system will allow processing and analysis of large archives of geophysical data obtained both from observations and modeling. Accumulated experience of developing information-computational web-systems providing computational processing and visualization of large archives of geo-referenced data was used during the implementation (Gordov et al, 2007; Okladnikov et al, 2008; Titov et al, 2009). Functional capabilities of the system comprise a set of procedures for mathematical and statistical analysis, processing and visualization of data. At present five archives of data are available for processing: 1st and 2nd editions of NCEP/NCAR Reanalysis, ECMWF ERA-40 Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, and NOAA-CIRES XX Century Global Reanalysis Version I. To provide data processing functionality a computational modular kernel and class library providing data access for computational modules were developed. Currently a set of computational modules for climate change indices approved by WMO is available. Also a special module providing visualization of results and writing to Encapsulated Postscript, GeoTIFF and ESRI shape files was developed. As a technological basis for representation of cartographical information in Internet the GeoServer software conforming to OpenGIS standards is used. Integration of GIS-functionality with web-portal software to provide a basis for web-portal’s development as a part of geoinformation web-system is performed. Such geoinformation web-system is a next step in development of applied information-telecommunication systems offering to specialists from various scientific fields unique opportunities of performing reliable analysis of heterogeneous geophysical data using approved computational algorithms. It will allow a wide range of researchers to work with geophysical data without specific programming

  10. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  11. The Major Stratospheric Sudden Warming of January 2013: Analyses and Forecasts in the GEOS-5 Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Pawson, Steven

    2014-01-01

    We examine the major stratosphere sudden warming (SSW) that occurred on 6 January 2013, using output from the NASA Global Modeling and Assimilation Office (GMAO) GEOS-5 (Goddard Earth Observing System) near-real-time data assimilation system (DAS). Results show that the major SSW of January 2013 falls into the vortex splitting type of SSW, with the initial planetary wave breaking occurring near 10 hPa. The vertical flux of wave activity at the tropopause responsible for the SSW occurred mainly in the Pacific Hemisphere, including the a pulse associated with the preconditioning of the polar vortex by wave 1 identified on 23 December 2012. While most of the vertical wave activity flux was in the Pacific Hemisphere, a rapidly developing tropospheric weather system over the North Atlantic on 28 December is shown to have produced a strong transient upward wave activity flux into the lower stratosphere coinciding with the peak of the SSW event. In addition, the GEOS-5 5-day forecasts accurately predicted the major SSW of January 2013 as well as the upper tropospheric disturbances responsible for the warming. The overall success of the 5-day forecasts provides motivation to produce regular 10-day forecasts with GEOS-5, to better support studies of stratosphere-troposphere interaction.

  12. Using the GeoFEST Faulted Region Simulation System

    NASA Technical Reports Server (NTRS)

    Parker, Jay W.; Lyzenga, Gregory A.; Donnellan, Andrea; Judd, Michele A.; Norton, Charles D.; Baker, Teresa; Tisdale, Edwin R.; Li, Peggy

    2004-01-01

    GeoFEST (the Geophysical Finite Element Simulation Tool) simulates stress evolution, fault slip and plastic/elastic processes in realistic materials, and so is suitable for earthquake cycle studies in regions such as Southern California. Many new capabilities and means of access for GeoFEST are now supported. New abilities include MPI-based cluster parallel computing using automatic PYRAMID/Parmetis-based mesh partitioning, automatic mesh generation for layered media with rectangular faults, and results visualization that is integrated with remote sensing data. The parallel GeoFEST application has been successfully run on over a half-dozen computers, including Intel Xeon clusters, Itanium II and Altix machines, and the Apple G5 cluster. It is not separately optimized for different machines, but relies on good domain partitioning for load-balance and low communication, and careful writing of the parallel diagonally preconditioned conjugate gradient solver to keep communication overhead low. Demonstrated thousand-step solutions for over a million finite elements on 64 processors require under three hours, and scaling tests show high efficiency when using more than (order of) 4000 elements per processor. The source code and documentation for GeoFEST is available at no cost from Open Channel Foundation. In addition GeoFEST may be used through a browser-based portal environment available to approved users. That environment includes semi-automated geometry creation and mesh generation tools, GeoFEST, and RIVA-based visualization tools that include the ability to generate a flyover animation showing deformations and topography. Work is in progress to support simulation of a region with several faults using 16 million elements, using a strain energy metric to adapt the mesh to faithfully represent the solution in a region of widely varying strain.

  13. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  14. GEOS satellite tracking corrections for refraction in the ionosphere

    NASA Technical Reports Server (NTRS)

    Berbert, J. H.; Parker, H. C.

    1970-01-01

    The analytic formulations at different elevation angles and at a frequency of 2-GHz for the ionospheric refraction corrections used on the GEOS satellite tracking data are compared. The formulas and ray trace results for elevations greater than 10 deg, where most satellite tracking is done, differ in elevation, range, and range rate by less than 0.4 millidegrees (1.4 arc-seconds), 12 meters, and 12 cm/sec, respectively. In comparison to most operational requirements, this is insignificant. However, for the GEOS Observation Systems Intercomparison Investigation, these differences are equivalent in size to observed differences in system biases for some of the best electronic geodetic tracking systems and are probably contributing to the observed biases. The ray trace results and most of the more detailed analytic correction formulas show that the ionospheric refraction correction for range rate on an overhead pass is a maximum for elevation angles between 15 deg and 30 deg and falls off rapidly for both higher and lower elevation angles, contrary to the effect of the troposphere and to some reports in the literature.

  15. High accuracy GNSS based navigation in GEO

    NASA Astrophysics Data System (ADS)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  16. GEO Satellite Characterization through Polarimetry using Simultaneous Observations from nearby Optical Sensors

    NASA Astrophysics Data System (ADS)

    Cegarra Polo, M.; Alenin, A.; Vaughn, I.; Lambert, A.

    2016-09-01

    Polarimetry has shown capacity for both geometry inference and material classification in recent years. By carefully selecting a polarimetric modality with higher contrast for the objects of interest, it becomes possible to discriminate those objects by leveraging the understanding of differing geometry, material characteristics, and its mapping into consequent polarisation measurements. Expansion of the measurement dimensionality increases the potential to discriminate unresolved objects, thereby widening the possible set of imaging tasks. The use of polarimetry as a technique to characterise non-resolved GEO satellites using telescopes of small aperture (less than 0.5 meters) is currently under study by the Space Research Group in UNSW Canberra. First experiments are currently being performed in order to evaluate the use of this technique to characterise GEO satellites. A comparison of both polarimetric and irradiance only acquisitions is being implemented. Two telescopes separated by 1000m are used for the experiments. One of them (USAFA funded Falcon Telescope Network) has the capability to be remote controlled and time tasks assigned, and the other can be operated on-site and is connected to a computer in a network which can control the former with known latency, both synchronised by the same GPS clock. A linear polariser is situated in a collimated beam section of the light path in one of the telescopes to capture polarised photometric measurements, while the other is acquiring the non-polarised photometric signature of the same GEO satellite under observation. The telescope detectors are to be radiometrically calibrated to one another in order to evaluate the photometric data at the same scale. We evaluate the polarised and non-polarised synchronous time photometric curves as a preliminary test to determine satellite signature and its variation over time. We report on the discrimination of unresolved satellites and the merit of including polarisation sensing

  17. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  18. Application of CCD drift-scan photoelectric technique on monitoring GEO satellites

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Zhao, Xiao-Fen; Luo, Hao; Mao, Yin-Dun; Tang, Zheng-Hong

    2018-05-01

    Geosynchronous Earth Orbit (GEO) satellites are widely used because of their unique characteristics of high-orbit and remaining permanently in the same area of the sky. Precise monitoring of GEO satellites can provide a key reference for the judgment of satellite operation status, the capture and identification of targets, and the analysis of collision warning. The observation using ground-based optical telescopes plays an important role in the field of monitoring GEO targets. Different from distant celestial bodies, there is a relative movement between the GEO target and the background reference stars, which makes the conventional observation method limited for long focal length telescopes. CCD drift-scan photoelectric technique is applied on monitoring GEO targets. In the case of parking the telescope, the good round images of the background reference stars and the GEO target at the same sky region can be obtained through the alternating observation of CCD drift-scan mode and CCD stare mode, so as to improve the precision of celestial positioning for the GEO target. Observation experiments of GEO targets were carried out with 1.56-meter telescope of Shanghai Astronomical Observatory. The results show that the application of CCD drift-scan photoelectric technique makes the precision of observing the GEO target reach the level of 0.2″, which gives full play to the advantage of the long focal length of the telescope. The effect of orbit improvement based on multi-pass of observations is obvious and the prediction precision of extrapolating to 72-h is in the order of several arc seconds in azimuth and elevation.

  19. CEOS Ocean Variables Enabling Research and Applications for Geo (COVERAGE)

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Vazquez, J.; Zlotnicki, V.

    2017-12-01

    The CEOS Ocean Variables Enabling Research and Applications for GEO (COVERAGE) initiative seeks to facilitate joint utilization of different satellite data streams on ocean physics, better integrated with biological and in situ observations, including near real-time data streams in support of oceanographic and decision support applications for societal benefit. COVERAGE aligns with programmatic objectives of CEOS (the Committee on Earth Observation Satellites) and the missions of GEO-MBON (Marine Biodiversity Observation Network) and GEO-Blue Planet, which are to advance and exploit synergies among the many observational programs devoted to ocean and coastal waters. COVERAGE is conceived of as 3 year pilot project involving international collaboration. It focuses on implementing technologies, including cloud based solutions, to provide a data rich, web-based platform for integrated ocean data delivery and access: multi-parameter observations, easily discoverable and usable, organized by disciplines, available in near real-time, collocated to a common grid and including climatologies. These will be complemented by a set of value-added data services available via the COVERAGE portal including an advanced Web-based visualization interface, subsetting/extraction, data collocation/matchup and other relevant on demand processing capabilities. COVERAGE development will be organized around priority use cases and applications identified by GEO and agency partners. The initial phase will be to develop co-located 25km products from the four Ocean Virtual Constellations (VCs), Sea Surface Temperature, Sea Level, Ocean Color, and Sea Surface Winds. This aims to stimulate work among the ocean VCs while developing products and system functionality based on community recommendations. Such products as anomalies from a time mean, would build on the theme of applications with a relevance to CEOS/GEO mission and vision. Here we provide an overview of the COVERAGE initiative with an

  20. An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Priester, R. W.

    1978-01-01

    The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.

  1. The GEOS-iODAS: Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.

    2012-01-01

    This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.

  2. Simulation of Telescope Detectivity for Geo Survey and Tracking

    NASA Astrophysics Data System (ADS)

    Richard, P.

    2014-09-01

    As the number of space debris on Earths Orbit increases steadily, the need to survey, track and catalogue them becomes of key importance. In this context, CNES has been using the TAROT Telescopes (Rapid Telescopes for Transient Objects owned and operated by CNRS) for several years to conduct studies about space surveillance and tracking. Today, two testbeds of services using the TAROT telescopes are running every night: one for GEO situational awareness and the second for debris tracking. Additionally to the CNES research activity on space surveillance and tracking domain, an operational collision avoidance service for LEO and GEO satellites is in place at CNES for several years. This service named CAESAR (Conjunction Analysis and Evaluation: Alerts and Recommendations) is used by CNES as well as by external customers. As the optical debris tracking testbed based on TAROT telescopes is the first step toward an operational provider of GEO measures that could be used by CAESAR, simulations have been done to help choosing the sites and types of telescopes that could be added in the GEO survey and debris tracking telescope network. One of the distinctive characteristics of the optical observation of space debris compared to traditional astronomic observation is the need to observe objects at low elevations. The two mains reasons for this are the need to observe the GEO belt from non-equatorial sites and the need to observe debris at longitudes far from the telescope longitude. This paper presents the results of simulations of the detectivity for GEO debris of various telescopes and sites, based on models of the GEO belt, the atmosphere and the instruments. One of the conclusions is that clever detection of faint streaks and spread sources by image processing is one of the major keys to improve the detection of debris on the GEO belt.

  3. UC Irvine CHRS Real-time Global Satellite Precipitation Monitoring System (G-WADI PERSIANN-CCS GeoServer) for Hydrometeorological Applications

    NASA Astrophysics Data System (ADS)

    Sorooshian, S.; Hsu, K. L.; Gao, X.; Imam, B.; Nguyen, P.; Braithwaite, D.; Logan, W. S.; Mishra, A.

    2015-12-01

    The G-WADI Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) GeoServer has been successfully developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine in collaboration with the UNESCO's International Hydrological Programme (IHP) and a number of its international centers. The system employs state-of-the-art technologies in remote sensing and artificial intelligence to estimate precipitation globally from satellite imagery in real-time and high spatiotemporal resolution (4km, hourly). It offers graphical tools and data service to help the user in emergency planning and management for natural disasters related to hydrological processes. The G-WADI PERSIANN-CCS GeoServer has been upgraded with new user-friendly functionalities. The precipitation data generated by the GeoServer is disseminated to the user community through support provided by ICIWaRM (The International Center for Integrated Water Resources Management), UNESCO and UC Irvine. Recently a number of new applications for mobile devices have been developed by our students. The RainMapper has been available on App Store and Google Play for the real-time PERSIANN-CCS observations. A global crowd sourced rainfall reporting system named iRain has also been developed to engage the public globally to provide qualitative information about real-time precipitation in their location which will be useful in improving the quality of the PERSIANN-CCS data. A number of recent examples of the application and use of the G-WADI PERSIANN-CCS GeoServer information will also be presented.

  4. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  5. File Specification for GEOS-5 FP (Forward Processing)

    NASA Technical Reports Server (NTRS)

    Lucchesi, R.

    2013-01-01

    The GEOS-5 FP Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The assimilation is performed at a horizontal resolution of 0.3125-degree longitude by 0.25- degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  6. Big Data challenges and solutions in building the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Nativi, Stefano; Santoro, Mattia; Boldrini, Enrico

    2014-05-01

    The Group on Earth Observation (GEO) is a voluntary partnership of governments and international organizations launched in response to calls for action by the 2002 World Summit on Sustainable Development and by the G8 (Group of Eight) leading industrialized countries. These high-level meetings recognized that international collaboration is essential for exploiting the growing potential of Earth observations to support decision making in an increasingly complex and environmentally stressed world. To this aim is constructing the Global Earth Observation System of Systems (GEOSS) on the basis of a 10-Year Implementation Plan for the period 2005 to 2015 when it will become operational. As a large-scale integrated system handling large datasets as those provided by Earth Observation, GEOSS needs to face several challenges related to big data handling and big data infrastructures management. Referring to the traditional multiple Vs characteristics of Big Data (volume, variety, velocity, veracity and visualization) it is evident how most of them can be found in data handled by GEOSS. In particular, concerning Volume, Earth Observation already generates a large amount of data which can be estimated in the range of Petabytes (1015 bytes), with Exabytes (1018) already targeted. Moreover, the challenge is related not only to the data size, but also to the large amount of datasets (not necessarily having a big size) that systems need to manage. Variety is the other main challenge since datasets coming from different sensors, processed for different use-cases are published with highly heterogeneous metadata and data models, through different service interfaces. Innovative multidisciplinary applications need to access and use those datasets in a harmonized way. Moreover Earth Observation data are growing in size and variety at an exceptionally fast rate and new technologies and applications, including crowdsourcing, will even increase data volume and variety in the next future

  7. Analyses of the solid earth and ocean tidal perturbations on the orbits of the Geos 1 and Geos 2 satellites

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Agreen, R. W.

    1976-01-01

    Perturbations in the inclination of the Geos 1 and Geos 2 satellite orbits have been analyzed for the solid earth and ocean tide contributions. Precision reduced camera and Tranet Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modeled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc sec (36 m) in the inclination of Geos 1 and 4.5 arc sec (135 m) for Geos 2. The solid earth tides were then modeled by using the Love number 0.30. The resulting inclination residuals were then analyzed for ocean tide spherical harmonic parameters.

  8. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  9. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    NASA Technical Reports Server (NTRS)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  10. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0

    NASA Technical Reports Server (NTRS)

    Suarez, Max J.; Rienecker, M. M.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H. C.; Gu, W.; Sienkiewicz, M.; Koster, R. D.; Gelaro, R.; hide

    2008-01-01

    This report documents the GEOS-5 global atmospheric model and data assimilation system (DAS), including the versions 5.0.1, 5.1.0, and 5.2.0, which have been implemented in products distributed for use by various NASA instrument team algorithms and ultimately for the Modem Era Retrospective analysis for Research and Applications (MERRA). The DAS is the integration of the GEOS-5 atmospheric model with the Gridpoint Statistical Interpolation (GSI) Analysis, a joint analysis system developed by the NOAA/National Centers for Environmental Prediction and the NASA/Global Modeling and Assimilation Office. The primary performance drivers for the GEOS DAS are temperature and moisture fields suitable for the EOS instrument teams, wind fields for the transport studies of the stratospheric and tropospheric chemistry communities, and climate-quality analyses to support studies of the hydrological cycle through MERRA. The GEOS-5 atmospheric model has been approved for open source release and is available from: http://opensource.gsfc.nasa.gov/projects/GEOS-5/GEOS-5.php.

  11. The Impact of British Airways Wind Observations on the Goddard Earth Observing System Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Rukhovets, Leonid; Sienkiewicz, M.; Tenenbaum, J.; Kondratyeva, Y.; Owens, T.; Oztunali, M.; Atlas, Robert (Technical Monitor)

    2001-01-01

    British Airways flight data recorders can provide valuable meteorological information, but they are not available in real-time on the Global Telecommunication System. Information from the flight recorders was used in the Global Aircraft Data Set (GADS) experiment as independent observations to estimate errors in wind analyses produced by major operational centers. The GADS impact on the Goddard Earth Observing System Data Assimilation System (GEOS DAS) analyses was investigated using GEOS-1 DAS version. Recently, a new Data Assimilation System (fvDAS) has been developed at the Data Assimilation Office, NASA Goddard. Using fvDAS , the, GADS impact on analyses and forecasts was investigated. It was shown the GADS data intensify wind speed analyses of jet streams for some cases. Five-day forecast anomaly correlations and root mean squares were calculated for 300, 500 hPa and SLP for six different areas: Northern and Southern Hemispheres, North America, Europe, Asia, USA These scores were obtained as averages over 21 forecasts from January 1998. Comparisons with scores for control experiments without GADS showed a positive impact of the GADS data on forecasts beyond 2-3 days for all levels at the most areas.

  12. Analysis of Faint Glints from Stabilized GEO Satellites

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2013-09-01

    Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.

  13. Determination of Exterior Orientation Parameters Through Direct Geo-Referencing in a Real-Time Aerial Monitoring System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Choi, K.; Lee, I.

    2012-07-01

    Rapid responses for emergency situations such as natural disasters or accidents often require geo-spatial information describing the on-going status of the affected area. Such geo-spatial information can be promptly acquired by a manned or unmanned aerial vehicle based multi-sensor system that can monitor the emergent situations in near real-time from the air using several kinds of sensors. Thus, we are in progress of developing such a real-time aerial monitoring system (RAMS) consisting of both aerial and ground segments. The aerial segment acquires the sensory data about the target areas by a low-altitude helicopter system equipped with sensors such as a digital camera and a GPS/IMU system and transmits them to the ground segment through a RF link in real-time. The ground segment, which is a deployable ground station installed on a truck, receives the sensory data and rapidly processes them to generate ortho-images, DEMs, etc. In order to generate geo-spatial information, in this system, exterior orientation parameters (EOP) of the acquired images are obtained through direct geo-referencing because it is difficult to acquire coordinates of ground points in disaster area. The main process, since the data acquisition stage until the measurement of EOP, is discussed as follows. First, at the time of data acquisition, image acquisition time synchronized by GPS time is recorded as part of image file name. Second, the acquired data are then transmitted to the ground segment in real-time. Third, by processing software for ground segment, positions/attitudes of acquired images are calculated through a linear interpolation using the GPS time of the received position/attitude data and images. Finally, the EOPs of images are obtained from position/attitude data by deriving the relationships between a camera coordinate system and a GPS/IMU coordinate system. In this study, we evaluated the accuracy of the EOP decided by direct geo-referencing in our system. To perform this

  14. Pole Position for 1980 Based on Doppler Observations of the GEOS-3 Satellite.

    DTIC Science & Technology

    1981-06-01

    1983 and 1984. The techniques include Very Long Base Line Interferometric observations of pulsars , lunar laser ranging, laser observations of artificial...8217. :9o’ l-0"-o’, -~ 0 m M1 q 000: C.) * >14 ) -4 0 : 00 L LO c 00-o-tO.g *1 O003 A 10 APPENDIX A ACCURACY OF COMPUTED ORBITS OF GEOS-III SATELLITE M. S...34% LO CUi C0 r 0 0 CU - LiJ Li- D C> =0 ED e E E E E Ii I- 01- 0 %0 Q~ U- cn cn = <i CD Lii c~l CU - CU CU CU L - C/-) - +1 + +1 +1 +1 +1 + CD U- 17

  15. Mobile service for open data visualization on geo-based images

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon; Kim, Kwangseob; Kang, Sanggoo

    2015-12-01

    Since the early 2010s, governments in most countries have adopted and promoted open data policy and open data platform. Korea are in the same situation, and government and public organizations have operated the public-accessible open data portal systems since 2011. The number of open data and data type have been increasing every year. These trends are more expandable or extensible on mobile environments. The purpose of this study is to design and implement a mobile application service to visualize various typed or formatted public open data with geo-based images on the mobile web. Open data cover downloadable data sets or open-accessible data application programming interface API. Geo-based images mean multi-sensor satellite imageries which are referred in geo-coordinates and matched with digital map sets. System components for mobile service are fully based on open sources and open development environments without any commercialized tools: PostgreSQL for database management system, OTB for remote sensing image processing, GDAL for data conversion, GeoServer for application server, OpenLayers for mobile web mapping, R for data analysis and D3.js for web-based data graphic processing. Mobile application in client side was implemented by using HTML5 for cross browser and cross platform. The result shows many advantageous points such as linking open data and geo-based data, integrating open data and open source, and demonstrating mobile applications with open data. It is expected that this approach is cost effective and process efficient implementation strategy for intelligent earth observing data.

  16. GeoChange Global Change Data

    USGS Publications Warehouse

    ,

    1997-01-01

    GeoChange is an online data system providing access to research results and data generated by the U.S. Geological Survey's Global Change Research Program. Researchers in this program study climate history and the causes of climatic variations, as well as providing baseline data sets on contemporary atmospheric chemistry, high-resolution meteorology, and dust deposition. Research results are packaged as data sets, groups of digital files containing scientific observations, documentation, and interpretation. The data sets are arranged in a consistent manner using standard file formats so that users of a variety of computer systems can access and use them.

  17. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  18. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    NASA Technical Reports Server (NTRS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  19. GeoCorps America

    NASA Astrophysics Data System (ADS)

    Dawson, M.

    2011-12-01

    GeoCorps America, a program of the Geological Society of America's (GSA) Education and Outreach Department, provides short-term geoscience jobs in America's most amazing public lands. These jobs are hosted on federal lands managed by GeoCorps' three partner agencies: the National Park Service (NPS), the U.S. Forest Service (USFS), and the Bureau of Land Management (BLM). Agency staff submit to GSA position descriptions that help meet their geoscience needs. GSA advertises the positions online, recruits applicants from its 24,000+ members, and coordinates the placement of the candidates selected by agency staff. The typical GeoCorps position lasts for three months, pays a stipend of $2,750, and provides either free housing or a housing allowance. Some GeoCorps positions are classified as "Guest Scientist" positions, which generally last longer, involve larger payments, and require a higher level of expertise. Most GeoCorps positions occur during the spring/summer, but an increasing number of positions are being offered during the fall/winter. GeoCorps positions are open to geoscientists of all levels, from undergraduates through retired professionals. GeoCorps projects involve field and laboratory-based geoscience research, but some projects focus on developing educational programs and materials for staff, volunteers, and the public. The subject areas covered by GeoCorps projects include geology, hydrology, paleontology, mapping/GIS, soils, geo-hazards, cave/karst science, and more. GeoCorps positions have taken place at over 125 different locations nationwide, including Grand Canyon National Park, Sierra National Forest, and Craters of the Moon National Monument. In 2011, GeoCorps began offering GeoCorps Diversity Internships and GeoCorps American Indian Internships. The introduction of these programs doubled the level of diversity among GeoCorps participants. This increase in diversity is helping GSA and its partner agencies in meeting its mutual goal of

  20. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  1. A method of constructing geo-object ontology in disaster system for prevention and decrease

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong; Wang, Zhenfeng

    2009-10-01

    A kind of formal system, which can express clearly a certain entity or information, is needed to express geographical concept. Besides, some rules explaining the interrelationship and action between different components are also required. Therefore, the conception of geo-object ontology is introduced. It is a shared formalization and display specification of conceptual knowledge system in the field of concrete application of spatial information science. It can constitute hierarchy structure, which derives from the concept classification system in the geographical area. Its concepts can be described by the property. Property sets can form a vector space with multi-dimensional characteristics. Geographic space is composed of different types of geographic entities. And its concept is formed by a series of geographic entities with the same properties and actions. Moreover, each of the geographic entities can be mapped to an object, and each object has its spatial property, time information and topology, semantic relationships associated with other objects. The biggest difference between ecumenical information ontology and geo-ontology is that the latter has the spatial characteristics. During the construction process of geo-object ontology, some important components, such as geographic type, spatial relation, spatial entity type and coordinates, time, should be included to make further research. Here, taking disaster as an example, by using Protégé and OWL, combined methods used by constructing the geo-object ontology in the form of being manual made by domanial experts and semi-automatic are investigated oriented to disaster to serve ultimately geographic information retrieval service driven by ontology.

  2. Connecting Satellite Observations with Water Cycle Variables Through Land Data Assimilation: Examples Using the NASA GEOS-5 LDAS

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Forman, Barton A.; Draper, Clara S.; Liu, Qing

    2013-01-01

    A land data assimilation system (LDAS) can merge satellite observations (or retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, satellite observations do not correspond directly to the water cycle variables of interest. The present paper addresses various aspects of this seeming mismatch using examples drawn from recent research with the ensemble-based NASA GEOS-5 LDAS. These aspects include (1) the assimilation of coarse-scale observations into higher-resolution land surface models, (2) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (3) the forward modeling of microwave brightness temperatures over land for radiance-based soil moisture and snow assimilation, and (4) the selection of the most relevant types of observations for the analysis of a specific water cycle variable that is not observed (such as root zone soil moisture). The solution to these challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  3. Geo-Space observation of atmospheric environmental effects associated with 2011 Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Hernandez-Pajares, Manuel; Hattori, Katsumi; Garcia-Rigo, Alberto

    2014-05-01

    Our approach of using multiple geo-space observation is based on the LAIC (Lithosphere- Atmosphere- Ionosphere Coupling) model and the gained experience during similar analysis of Three-Mile Island and Chernobyl accidents. We do collect a unique dataset of geophysical data for the period around the time of the most active phase of Fukushima explosions (from 12 March till 31 March, 71-90 DOY). We analyzed following data sets: (i) ground temperature and relative humidity data from the JMA network of Japan, (ii) satellite meteorological data and assimilative models to obtain the integrated water vapor chemical potential; (iii) the infrared emission on the top of atmosphere measured by NOAA and GEOS satellites estimated as Outgoing Longwave Radiation; and (iv) multiple ionospheric measurements , including ground based ionosondes, GPS vTEC from GEONET network, COSMIC/FORMOSAT constellation occultation data, JASON satellite TEC measurements, and tomography reconstruction technique to obtain 3D distribution of electron concentration around the Fukushima power plant. As a result we were able to detect the anomalies in different geophysical parameters representing the dynamics of the Fukushima nuclear accident development and the effects on the atmospheric environment. Their temporal evolution demonstrates the synergy in different atmospheric anomalies development what implies the existence of the common physical mechanism described by the LAIC model.

  4. Structure of the Upper Troposphere-Lower Stratosphere (UTLS) in GEOS-5

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2011-01-01

    This study examines the structure of the upper troposphere and lower stratosphere in the GEOS-5 data assimilation system. Near-real time analyses, with a horizontal resolution of one-half or one quarter degree and a vertical resolution of about 1km in the tropopause region are examined with an emphasis on spatial structures at and around the tropopause. The contributions of in-situ observations of temperature and microwave and infrared radiances to the analyses are discussed, with some focus on the interplay between these types of observations. For a historical analysis (Merra) performed with GEOS-5, the impacts of changing observations on the assimilation system are examined in some detail - this documents some aspects of the time dependence of analysis that must be taken into account in the isolation of true geophysical trends. Finally, some sensitivities of the ozone analyses to input data and correlated errors between temperature and ozone are discussed.

  5. GeoBrain for Facilitating Earth Science Education in Higher-Education Institutes--Experience and Lessons-learned

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2007-12-01

    Data integration and analysis are the foundation for the scientific investigation in Earth science. In the past several decades, huge amounts of Earth science data have been collected mainly through remote sensing. Those data have become the treasure for Earth science research. Training students how to discover and use the huge volume of Earth science data in research become one of the most important trainings for making a student a qualified scientist. Being developed by a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. Although still in development, the GeoBrain system has been operational since 2005. A number of education materials have been developed for facilitating the use of GeoBrain as a powerful education tool for Earth science education at both undergraduate and graduate levels. Thousands of online higher-education users worldwide have used GeoBrain services. A number of faculty members in multiple universities have been funded as GeoBrain education partners to explore the use of GeoBrain in the classroom teaching and student research. By summarizing and analyzing the feedbacks from the online users and the education partners, this presentation presents the user experiences on using GeoBrain in Earth science teaching and research. The feedbacks on classroom use of GeoBrain have demonstrated that GeoBrain is very useful for

  6. Development of an electronic emergency department-based geo-information injury surveillance system in Hong Kong.

    PubMed

    Chow, C B; Leung, M; Lai, Adela; Chow, Y H; Chung, Joanne; Tong, K M; Lit, Albert

    2012-06-01

    To describe the experience in the development of an electronic emergency department (ED)-based injury surveillance (IS) system in Hong Kong using data-mining and geo-spatial information technology (IT) for a Safe Community setup. This paper described the phased development of an emergency department-based IS system based on World Health Organization (WHO) injury surveillance Guideline to support safety promotion and injury prevention in a Safe Community in Hong Kong starting 2002. The initial ED data-based only collected data on name, sex, age, address, eight general categories of injury types (traffic, domestic, common assault, indecent assault, batter, industrial, self-harm and sports) and disposal from ED. Phase 1--manual data collection on International Classification of External Causes of Injury pre-event data; Phase 2--manual form was converted to electronic format using web-based data mining technology with built in data quality monitoring mechanism; Phase 3--integration of injury surveillance-data with in-patient hospital information; and Phase 4--geo-spatial information and body mapping were introduced to geo-code exact place of injury in an electronic map and site of injury on body map. It was feasible to develop a geo-spatial IS system at busy ED to collect valuable information for safety promotion and injury prevention at Safe Community setting. The keys for successful development and implementation involves engagement of all stakeholders at design and implementation of the system with injury prevention as ultimate goal, detail workflow planning at front end, support from the management, building on exiting system and appropriate utilisation of modern technology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. GeoGIS : phase II.

    DOT National Transportation Integrated Search

    2009-12-01

    A new web-based geotechnical Geographic Information System (GeoGIS) was developed and tested for the Alabama Department of Transportation (ALDOT) during Phase II of this research project. This web-based system stores geotechnical information about tr...

  8. Merging analytic and empirical GEO debris synchronization dynamics

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.; McKnight, Darren S.; Di Pentino, Frank; Schaub, Hanspeter

    2016-09-01

    The motion of abandoned satellites near the geostationary (GEO) region has been extensively studied, modeled, and compared to the motion of station-kept, operational satellites, providing insights into the evolution of uncontrolled orbits at GEO. Analytic developments produced a family of curves represented in the ascending node versus inclination space describing the long-term precession of the orbit plane at GEO, and forecasted the clustering of objects at the geopotential wells. However, recent investigations were undertaken to characterize apparent anomalistic behavior of GEO objects and classification of objects into related families. This paper provides a unifying summary of early bottom-up analytical theory with more recent top-down operational observations, highlighting the common linkage between these dimensions of GEO object behavior. This paper also identifies the relevance of these patterns of life tendencies for future operations at and near GEO, and discusses the long-term implications of these patterns of life for space situational awareness activities in this regime.

  9. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  10. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  11. Comparative Analysis of NOAA REFM and SNB3GEO Tools for the Forecast of the Fluxes of High-Energy Electrons at GEO

    NASA Technical Reports Server (NTRS)

    Balikhin, M. A.; Rodriguez, J. V.; Boynton, R. J.; Walker, S. N.; Aryan, Homayon; Sibeck, D. G.; Billings, S. A.

    2016-01-01

    Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB3GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB3GEO forecasts use solar wind density and interplanetary magnetic field B(sub z) observations at L1. The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB3GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB3GEO forecast.

  12. Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high-energy electrons at GEO.

    PubMed

    Balikhin, M A; Rodriguez, J V; Boynton, R J; Walker, S N; Aryan, H; Sibeck, D G; Billings, S A

    2016-01-01

    Reliable forecasts of relativistic electrons at geostationary orbit (GEO) are important for the mitigation of their hazardous effects on spacecraft at GEO. For a number of years the Space Weather Prediction Center at NOAA has provided advanced online forecasts of the fluence of electrons with energy >2 MeV at GEO using the Relativistic Electron Forecast Model (REFM). The REFM forecasts are based on real-time solar wind speed observations at L1. The high reliability of this forecasting tool serves as a benchmark for the assessment of other forecasting tools. Since 2012 the Sheffield SNB 3 GEO model has been operating online, providing a 24 h ahead forecast of the same fluxes. In addition to solar wind speed, the SNB 3 GEO forecasts use solar wind density and interplanetary magnetic field B z observations at L1.The period of joint operation of both of these forecasts has been used to compare their accuracy. Daily averaged measurements of electron fluxes by GOES 13 have been used to estimate the prediction efficiency of both forecasting tools. To assess the reliability of both models to forecast infrequent events of very high fluxes, the Heidke skill score was employed. The results obtained indicate that SNB 3 GEO provides a more accurate 1 day ahead forecast when compared to REFM. It is shown that the correction methodology utilized by REFM potentially can improve the SNB 3 GEO forecast.

  13. The UAH GeoIntegrator: A Web Mapping System for On-site Data Insertion and Viewing

    NASA Astrophysics Data System (ADS)

    He, M.; Hardin, D.; Sever, T.; Irwin, D.

    2005-12-01

    There is a growing need in the scientific community to combine data colleted in the field with maps, imagery and other layered sources. For example, a biologist, who has collected pollination data during a field study, may want to see his data presented on a regional map. There are many commercial web mapping tools available, but they are expensive, and may require advanced computer knowledge to operate. Researchers from the Information Technology and Systems Center at the University of Alabama in Huntsville are developing a web mapping system that will allow scientists to map their data in an easy way. This system is called the UAH GeoIntegrator. The UAH GeoIntegrator is built on top of three open-source components: the Apache web server, MapServer, and the Chameleon viewer. Chameleon allows developers to customize its map viewer interface by adding widgets. These widgets provide unique functionality focused to the specific needs of the researcher. The UAH GeoIntegrator utilizes a suite of widgets that bring new functionality focused on specific needs, to a typical web map viewer. Specifically, a common input text file format was defined and widgets developed to convert user's field collections into web map layers. These layers can then laid on top of other map layers to produce data products that are versatile, informative and easy to distribute via web services. The UAH GeoIntegrator is being developed as part of the SERVIR project. SERVIR (a Spanish acronym meaning to serve) is part of an international effort to preserve the remaining forested regions of Mesoamerica and to help establish sustainable development in the region. The National Aeronautics and Space Administration along with the World Bank, the United States Agency for International Development and the Central American Commission for Environment and Development are cooperating in this effort. The UAH GeoIntegrator is part of an advanced decision support system that will provide scientists, educators

  14. Study of key factors influencing dust emission: An assessment of GEOS-Chem and DEAD simulations with observations

    NASA Astrophysics Data System (ADS)

    Bartlett, Kevin S.

    Mineral dust aerosols can impact air quality, climate change, biological cycles, tropical cyclone development and flight operations due to reduced visibility. Dust emissions are primarily limited to the extensive arid regions of the world, yet can negatively impact local to global scales, and are extremely complex to model accurately. Within this dissertation, the Dust Entrainment And Deposition (DEAD) model was adapted to run, for the first known time, using high temporal (hourly) and spatial (0.3°x0.3°) resolution data to methodically interrogate the key parameters and factors influencing global dust emissions. The dependence of dust emissions on key parameters under various conditions has been quantified and it has been shown that dust emissions within DEAD are largely determined by wind speeds, vegetation extent, soil moisture and topographic depressions. Important findings were that grid degradation from 0.3ºx0.3º to 1ºx1º, 2ºx2.5º, and 4°x5° of key meteorological, soil, and surface input parameters greatly reduced emissions approximately 13% and 29% and 64% respectively, as a result of the loss of sub grid detail within these key parameters at coarse grids. After running high resolution DEAD emissions globally for 2 years, two severe dust emission cases were chosen for an in-depth investigation of the root causes of the events and evaluation of the 2°x2.5° Goddard Earth Observing System (GEOS)-Chem and 0.3°x0.3° DEAD model capabilities to simulate the events: one over South West Asia (SWA) in June 2008 and the other over the Middle East in July 2009. The 2 year lack of rain over SWA preceding June 2008 with a 43% decrease in mean rainfall, yielded less than normal plant growth, a 28% increase in Aerosol Optical Depth (AOD), and a 24% decrease in Meteorological Aerodrome Report (METAR) observed visibility (VSBY) compared to average years. GEOS-Chem captured the observed higher AOD over SWA in June 2008. More detailed comparisons of GEOS

  15. Teaching Introductory Mineralogy With the GeoWall

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Haymon, R. M.

    2003-12-01

    Mineralogy, like many topics in Earth Sciences, contains inherently three-dimensional topics that are difficult to teach. Concepts such as crystal symmetry and forms, Miller indices, the polymerization of silica tetrahedra and resulting structures of silicate mineral groups, and the interaction of light and minerals are particularly difficult. Two-dimensional diagrams are limited in their effectiveness, and physical models, while effective, are expensive and do not work as well in large class settings. The GeoWall system brings the effectiveness of physical models to the large classroom. In Fall 2003, we will integrate the GeoWall into our introductory mineralogy classes at UCSB using a combination of commercial software, atomic structure models available on the web, and custom content created in-house. The commercial software SHAPE (www.shapesoftware.com) allows users to build and display crystal shapes and their symmetry. Though not designed for the GeoWall, the software's stereopair display mode works perfectly on the system. Using the Chime web browser plug-in (www.mdl.com), computer models of silicate minerals available from the Virtual Museum of Minerals and Molecules (www.soils.umn.eduvirtual_museum) provide an interactive display of silicate mineral structure that illustrates the tetrahedral framework. Again, while not developed for the GeoWall, the Chime plug-in works seamlessly with the GeoWall hardware. 3-D GeoWall images that display light paths through minerals, and reveal relationships between crystal symmetry and optical indicatrix properties, have been developed in-house using a combination of SHAPE and 3D modeling software. The 3-D GeoWall images should convey in an instant these difficult concepts that students historically have struggled to visualize. Initial assessment of the GeoWall's effectiveness as a mineralogy teaching aid at UCSB in Fall 2003 will come from the instructor's impressions and by comparing test scores with classes from

  16. Building a Global Earth Observation System of Systems (GEOSS) and Its Interoperability Challenges

    NASA Astrophysics Data System (ADS)

    Ryan, B. J.

    2015-12-01

    Launched in 2005 by industrialized nations, the Group on Earth Observations (GEO) began building the Global Earth Observation System of Systems (GEOSS). Consisting of both a policy framework, and an information infrastructure, GEOSS, was intended to link and/or integrate the multitude of Earth observation systems, primarily operated by its Member Countries and Participating Organizations, so that users could more readily benefit from global information assets for a number of society's key environmental issues. It was recognized that having ready access to observations from multiple systems was a prerequisite for both environmental decision-making, as well as economic development. From the very start, it was also recognized that the shear complexity of the Earth's system cannot be captured by any single observation system, and that a federated, interoperable approach was necessary. While this international effort has met with much success, primarily in advancing broad, open data policies and practices, challenges remain. In 2014 (Geneva, Switzerland) and 2015 (Mexico City, Mexico), Ministers from GEO's Member Countries, including the European Commission, came together to assess progress made during the first decade (2005 to 2015), and approve implementation strategies and mechanisms for the second decade (2016 to 2025), respectively. The approved implementation strategies and mechanisms are intended to advance GEOSS development thereby facilitating the increased uptake of Earth observations for informed decision-making. Clearly there are interoperability challenges that are technological in nature, and several will be discussed in this presentation. There are, however, interoperability challenges that can be better characterized as economic, governmental and/or political in nature, and these will be discussed as well. With the emergence of the Sustainable Development Goals (SDGs), the World Conference on Disaster Risk Reduction (WCDRR), and the United Nations

  17. Optimization and throughput estimation of optical ground networks for LEO-downlinks, GEO-feeder links and GEO-relays

    NASA Astrophysics Data System (ADS)

    Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.

  18. Cloud and Sun-glint statistics derived from GOES and MODIS observations over the Intra-Americas Sea for GEO-CAPE mission planning

    NASA Astrophysics Data System (ADS)

    Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.

    2017-02-01

    Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (Ncf) for solar zenith angle θo < 80° was estimated for each 0.1° location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day (Nsg) was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest Ncf (<2.4) in all climatological months, and highest Ncf was observed in the Gulf of Mexico (GoM) and Caribbean (>4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Tmax). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are >10% higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

  19. Committee on Earth Observation Satellites (CEOS) perspectives about the GEO Supersite initiative

    NASA Astrophysics Data System (ADS)

    Lengert, Wolfgang; Zoffoli, Simona; Giguere, Christine; Hoffmann, Joern; Lindsay, Francis; Seguin, Guy

    2014-05-01

    This presentation is outlining the effort of the Committee on Earth Observation Satellites (CEOS) using its global collaboration structure to support implementing the GEO priority action DI-01 Informing Risk Management and Disaster Reduction addressing the component: C2 Geohazards Monitoring, Alert, and Risk Assessment. A CEOS Supersites Coordination Team (SCT) has been established in order to make best use of the CEOS global satellite resources. For this, the CEOS SCT has taken a holistic view on the science data needs and availability of resources, considering the constraints and exploitation potentials of synergies. It is interfacing with the Supersites Science Advisory Group and the Principle Investigators to analyze how the satellite data associated with seismic and Global Navigation Satellite System (GNSS) data can support national authorities and policy makers in risk assessment and the development of mitigation strategies. CEOS SCT aims to support the establishment of a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. The three Supersites projects which are funded under the EC FP7 action, namely (i) FUTUREVOLC: A European volcanological supersite in Iceland: a monitoring system and network for the future Geohazards Monitoring, Alert, and Risk Assessment, (ii) MARsite: New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, (iii) MED-SUV: MEDiterranean Volcanoes and related seismic risks, have been examined as a vehicle to fulfill these ambitious objectives. FUTUREVOLC has already been granted CEOS support. This presentation will outline CEOS agreed process and criteria applied by the Supersites Coordination Team (SCT), for selecting these Supersites in the context of the GSNL initiative, as

  20. Design and application analysis of prediction system of geo-hazards based on GIS in the Three Gorges Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Deying; Yin, Kunlong; Gao, Huaxi; Liu, Changchun

    2009-10-01

    Although the project of the Three Gorges Dam across the Yangtze River in China can utilize this huge potential source of hydroelectric power, and eliminate the loss of life and damage by flood, it also causes environmental problems due to the big rise and fluctuation of the water, such as geo-hazards. In order to prevent and predict geo-hazards, the establishment of prediction system of geo-hazards is very necessary. In order to implement functions of hazard prediction of regional and urban geo-hazard, single geo-hazard prediction, prediction of landslide surge and risk evaluation, logical layers of the system consist of data capturing layer, data manipulation and processing layer, analysis and application layer, and information publication layer. Due to the existence of multi-source spatial data, the research on the multi-source transformation and fusion data should be carried on in the paper. Its applicability of the system was testified on the spatial prediction of landslide hazard through spatial analysis of GIS in which information value method have been applied aims to identify susceptible areas that are possible to future landslide, on the basis of historical record of past landslide, terrain parameter, geology, rainfall and anthropogenic activity. Detailed discussion was carried out on spatial distribution characteristics of landslide hazard in the new town of Badong. These results can be used for risk evaluation. The system can be implemented as an early-warning and emergency management tool by the relevant authorities of the Three Gorges Reservoir in the future.

  1. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  2. A Portable Regional Weather and Climate Downscaling System Using GEOS-5, LIS-6, WRF, and the NASA Workflow Tool

    NASA Astrophysics Data System (ADS)

    Kemp, E. M.; Putman, W. M.; Gurganus, J.; Burns, R. W.; Damon, M. R.; McConaughy, G. R.; Seablom, M. S.; Wojcik, G. S.

    2009-12-01

    We present a regional downscaling system (RDS) suitable for high-resolution weather and climate simulations in multiple supercomputing environments. The RDS is built on the NASA Workflow Tool, a software framework for configuring, running, and managing computer models on multiple platforms with a graphical user interface. The Workflow Tool is used to run the NASA Goddard Earth Observing System Model Version 5 (GEOS-5), a global atmospheric-ocean model for weather and climate simulations down to 1/4 degree resolution; the NASA Land Information System Version 6 (LIS-6), a land surface modeling system that can simulate soil temperature and moisture profiles; and the Weather Research and Forecasting (WRF) community model, a limited-area atmospheric model for weather and climate simulations down to 1-km resolution. The Workflow Tool allows users to customize model settings to user needs; saves and organizes simulation experiments; distributes model runs across different computer clusters (e.g., the DISCOVER cluster at Goddard Space Flight Center, the Cray CX-1 Desktop Supercomputer, etc.); and handles all file transfers and network communications (e.g., scp connections). Together, the RDS is intended to aid researchers by making simulations as easy as possible to generate on the computer resources available. Initial conditions for LIS-6 and GEOS-5 are provided by Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis data stored on DISCOVER. The LIS-6 is first run for 2-4 years forced by MERRA atmospheric analyses, generating initial conditions for the WRF soil physics. GEOS-5 is then initialized from MERRA data and run for the period of interest. Large-scale atmospheric data, sea-surface temperatures, and sea ice coverage from GEOS-5 are used as boundary conditions for WRF, which is run for the same period of interest. Multiply nested grids are used for both LIS-6 and WRF, with the innermost grid run at a resolution sufficient for typical

  3. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  4. Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.

    PubMed

    Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S

    2015-10-21

    Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.

  5. Develop Direct Geo-referencing System Based on Open Source Software and Hardware Platform

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Liao, H. M.

    2015-08-01

    Direct geo-referencing system uses the technology of remote sensing to quickly grasp images, GPS tracks, and camera position. These data allows the construction of large volumes of images with geographic coordinates. So that users can be measured directly on the images. In order to properly calculate positioning, all the sensor signals must be synchronized. Traditional aerial photography use Position and Orientation System (POS) to integrate image, coordinates and camera position. However, it is very expensive. And users could not use the result immediately because the position information does not embed into image. To considerations of economy and efficiency, this study aims to develop a direct geo-referencing system based on open source software and hardware platform. After using Arduino microcontroller board to integrate the signals, we then can calculate positioning with open source software OpenCV. In the end, we use open source panorama browser, panini, and integrate all these to open source GIS software, Quantum GIS. A wholesome collection of data - a data processing system could be constructed.

  6. Technical Manual for the Geospatial Stream Flow Model (GeoSFM)

    USGS Publications Warehouse

    Asante, Kwabena O.; Artan, Guleid A.; Pervez, Md Shahriar; Bandaragoda, Christina; Verdin, James P.

    2008-01-01

    The monitoring of wide-area hydrologic events requires the use of geospatial and time series data available in near-real time. These data sets must be manipulated into information products that speak to the location and magnitude of the event. Scientists at the U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Center have implemented a hydrologic modeling system which consists of an operational data processing system and the Geospatial Stream Flow Model (GeoSFM). The data processing system generates daily forcing evapotranspiration and precipitation data from various remotely sensed and ground-based data sources. To allow for rapid implementation in data scarce environments, widely available terrain, soil, and land cover data sets are used for model setup and initial parameter estimation. GeoSFM performs geospatial preprocessing and postprocessing tasks as well as hydrologic modeling tasks within an ArcView GIS environment. The integration of GIS routines and time series processing routines is achieved seamlessly through the use of dynamically linked libraries (DLLs) embedded within Avenue scripts. GeoSFM is run operationally to identify and map wide-area streamflow anomalies. Daily model results including daily streamflow and soil water maps are disseminated through Internet map servers, flood hazard bulletins and other media.

  7. Advances and Directions for the Intelligent Systems for Geosciences Research Community: Updates and Opportunities from the NSF EarthCube IS-GEO RCN

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2017-12-01

    The Earthcube Intelligent Systems for Geosciences Research Collaboration Network (IS-GEO RCN) represents an emerging community of interdisciplinary researchers aiming to create fundamental new capabilities for understanding Earth systems. Collaborative efforts across IS-GEO fields of study offer opportunities to accelerate scientific discovery and understanding. The IS-GEO community has an active membership of approximately 65 researchers and includes researchers from across the US, international members, and an early career committee. Current working groups are open to new participants and are focused on four thematic areas with regular coordination meetings and upcoming sessions at professional conferences. (1) The Sensor-based data Collection and Integration Working group looks at techniques for analyzing and integrating of information from heterogeneous sources, with a possible application for early warning systems. (2) The Geoscience Case Studies Working group is creating benchmark data sets to enable new collaborations between geoscientists and data scientists. (3) The Geo-Simulations Working group is evaluating the state of the art in practices for parametrizations, scales, and model integration. (4) The Education Working group is gathering, organizing and collecting all the materials from the different IS-GEO courses. Innovative IS-GEO applications will help researchers overcome common challenges while will redefining the frontiers of discovery across fields and disciplines. (Visit IS-GEO.org for more information or to sign up for any of the working groups.)

  8. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    NASA Astrophysics Data System (ADS)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  9. System study of the carbon dioxide observational platform system (CO-OPS): Project overview

    NASA Technical Reports Server (NTRS)

    Stephens, J. Briscoe; Thompson, Wilbur E.

    1987-01-01

    The resulting options from a system study for a near-space, geo-stationary, observational monitoring platform system for use in the Department of Energy's (DOE) National Carbon Dioxide Observational Platform System (CO-OPS) on the greenhouse effect are discussed. CO-OPS is being designed to operate continuously for periods of up to 3 months in quasi-fixed position over most global regional targets of interest and could make horizon observations over a land-sea area of circular diameter up to about 600 to 800 statute miles. This affords the scientific and engineering community a low-cost means of operating their payloads for monitoring the regional parameters they deem relevant to their investigations of the carbon dioxide greenhouse effect at one-tenth the cost of most currently utilized comparable remote sensing techniques.

  10. A geovisual analytic approach to understanding geo-social relationships in the international trade network.

    PubMed

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly 'balkanized' (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above.

  11. A Geovisual Analytic Approach to Understanding Geo-Social Relationships in the International Trade Network

    PubMed Central

    Luo, Wei; Yin, Peifeng; Di, Qian; Hardisty, Frank; MacEachren, Alan M.

    2014-01-01

    The world has become a complex set of geo-social systems interconnected by networks, including transportation networks, telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics. We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial and social representations. We then apply it to an exploration of international trade networks in terms of the complex interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented) according to the geography of trading partners, and the geographical distance weighted by population within each network cluster has a positive relationship with the development level of countries. In addition to demonstrating the potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed above. PMID:24558409

  12. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  13. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  14. Chilean geo client application for disasters

    NASA Astrophysics Data System (ADS)

    Suárez, Rodrigo F.; Lovison, Lucia; Potters, Martinus

    2018-05-01

    The global network of the Group on Earth Observation, GEO, connects all kinds of professionals from public and private institutions with data providers, sharing information to face the challenges of global changes and human development and they are creating a Global Earth Observation System of Systems (GEOSS) to connect existing data infrastructures. A GEOSS Architecture Implementation Pilot Project for Disasters in Chile (AIP-8) was created as part of a capacity building initiative and representatives of different national agencies in Chile, along with international experts, formed a GEOSS Capacity Building Working Group (Lovison et al, 2016). Consistent with the objectives of GEOSS AIP-8 Chile, we developed and implemented a prototype service based on web services, mobile applications and other communication channels, which allows connecting different sources of information, aiming to reduce population vulnerability to natural disasters such as: earthquakes, flooding, wild fires and tsunamis, which is presented here. The GEO Chile client application is a JavaScript application using GEODAB brokering services, GIS technology and disaster information provided by national and international disaster services, including public and private organizations, where cartography becomes fundamental as a tool to provide realism and ubiquity to the information. Seven hotpots are targeted: Calbuco, Copahue and Villarrica volcanoes areas, Valparaíso city, which is frequently a victim of wildfires in the zone where population meets forest and Iquique, Illapel and Talcahuano, areas frequently struck by earthquakes and tsunamis.

  15. Supporting ITM Missions by Observing System Simulation Experiments: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Matsuo, T.; Wang, H.; Immel, T. J.; Eastes, R.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Liu, H.; Solomon, S. C.; Wu, Q.

    2014-12-01

    We review and discuss the capability of novel configurations of global community (WACCM-X and TIME-GCM) and planned-operational (WAM) models to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Ionosphere-Thermosphere-Mesosphere (ITM) system. In the specified meteorology model configuration of WACCM-X, the lower atmosphere is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of GMAO/NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics, WACCM-X simulations are capable to reproduce the observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent (2006-2013) stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. With assimilation of the NWP data in the troposphere and stratosphere the planned-operational configuration of WAM can also recreate the observed features of the ITM day-to-day variability. These "terrestrial-weather" driven whole atmosphere simulations, with day-to-day variable solar and geomagnetic inputs, can provide specification of the background state (first guess) and errors for the inverse algorithms of forthcoming NASA ITM missions, such as ICON and GOLD. With two different viewing geometries (sun-synchronous, for ICON and geostationary for GOLD) these missions promise to perform complimentary global observations of temperature, winds and constituents to constrain the first-principle space weather forecast models. The paper will discuss initial designs of Observing System Simulation Experiments (OSSE) in the coupled simulations of TIME-GCM/WACCM-X/GEOS5 and WAM/GIP. As recognized, OSSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges

  16. Cloud and Sun-Glint Statistics Derived from GOES and MODIS Observations Over the Intra-Americas Sea for GEO-CAPE Mission Planning

    NASA Technical Reports Server (NTRS)

    Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.

    2017-01-01

    Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (N(sub cf)) for solar zenith angle Theta(sub 0) less than 80 degrees was estimated for each 0.1 degree location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day [Ns(sub sg)] was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest N(sub cf) (less than 2.4) in all climatological months, and highest N(sub cf) was observed in the Gulf of Mexico (GoM) and Caribbean (greater than 4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Temperature maximum). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are greater than 10 degrees higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

  17. Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems

    USGS Publications Warehouse

    Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

    2011-01-01

    We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

  18. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    NASA Astrophysics Data System (ADS)

    Jourdain, L.; Kulawik, S. S.; Worden, H. M.; Pickering, K. E.; Worden, J.; Thompson, A. M.

    2010-01-01

    Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES) instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN) and the Long Range Lightning Detection Network (LRLDN) data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor) climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer) underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  19. SOIL Geo-Wiki: A tool for improving soil information

    NASA Astrophysics Data System (ADS)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  20. Variational Assimilation of Global Microwave Rainfall Retrievals: Physical and Dynamical Impact on GEOS Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Zhang, Sara Q.; Hou, Arthur Y.

    2006-01-01

    Global microwave rainfall retrievals from a 5-satellite constellation, including TMI from TRMM, SSWI from DMSP F13, F14 and F15, and AMSR-E from EOS-AQUA, are assimilated into the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS) using a 1-D variational continuous assimilation (VCA) algorithm. The physical and dynamical impact of rainfall assimilation on GEOS analyses and forecasts is examined at various temporal and spatial scales. This study demonstrates that the 1-D VCA algorithm, which was originally developed and evaluated for rainfall assimilations over tropical oceans, can effectively assimilate satellite microwave rainfall retrievals and improve GEOS analyses over both the Tropics and the extratropics where the atmospheric processes are dominated by different large-scale dynamics and moist physics, and also over the land, where rainfall estimates from passive microwave radiometers are believed to be less accurate. Results show that rainfall assimilation renders the GEOS analysis physically and dynamically more consistent with the observed precipitation at the monthly-mean and 6-hour time scales. Over regions where the model precipitation tends to misbehave in distinctly different rainy regimes, the 1-D VCA algorithm, by compensating for errors in the model s moist time-tendency in a 6-h analysis window, is able to bring the rainfall analysis closer to the observed. The radiation and cloud fields also tend to be in better agreement with independent satellite observations in the rainfall-assimilation m especially over regions where rainfall analyses indicate large improvements. Assimilation experiments with and without rainfall data for a midlatitude frontal system clearly indicates that the GEOS analysis is improved through changes in the thermodynamic and dynamic fields that respond to the rainfall assimilation. The synoptic structures of temperature, moisture, winds, divergence, and vertical motion, as well as vorticity are more

  1. Posterior uncertainty of GEOS-5 L-band radiative transfer model parameters and brightness temperatures after calibration with SMOS observations

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J.; Reichle, R. H.; Vrugt, J. A.

    2012-12-01

    Simulated L-band (1.4 GHz) brightness temperatures are very sensitive to the values of the parameters in the radiative transfer model (RTM). We assess the optimum RTM parameter values and their (posterior) uncertainty in the Goddard Earth Observing System (GEOS-5) land surface model using observations of multi-angular brightness temperature over North America from the Soil Moisture Ocean Salinity (SMOS) mission. Two different parameter estimation methods are being compared: (i) a particle swarm optimization (PSO) approach, and (ii) an MCMC simulation procedure using the differential evolution adaptive Metropolis (DREAM) algorithm. Our results demonstrate that both methods provide similar "optimal" parameter values. Yet, DREAM exhibits better convergence properties, resulting in a reduced spread of the posterior ensemble. The posterior parameter distributions derived with both methods are used for predictive uncertainty estimation of brightness temperature. This presentation will highlight our model-data synthesis framework and summarize our initial findings.

  2. Precontrol observations on lymphatic filariasis & geo-helminthiases in two coastal districts of rural Orrisa.

    PubMed

    Chhotray, G P; Ranjit, M R; Khuntia, H K; Acharya, A S

    2005-11-01

    Lymphatic filariasis (LF) is a major public health problem in India, accounting for 40 per cent of the global burden. The World Health Organization has launched a global programme to eliminate LF by 2020 and India is a signatory to it. Orissa, an eastern Indian State has long been known to be endemic for LF. Prior to implementation of mass drug administration programme it is important to collect baseline data on filariasis and geo-helminthiases in the State. The present cross-sectional survey was therefore carried out between February and December 2001 to obtain baseline information on both LF and geo-helminthiases before application of the control measures. The study was carried out in rural areas of Puri and Ganjam districts in two phases. In phase I, the distribution of microfilaraemia in two district was mapped out in randomly selected primary health centres (PHCs), and 12 microfilaraemic villages were identified in each district by cluster analysis for the phase II study. In phase II, detailed clinical and parasitological survey for LF and geo-helminthiases was carried out following the standard procedures. Wuchereria bancrofti was found to be widely prevalent in Puri district with certain pockets of Brugia malayi while W. bancrofti was the only species in Ganjam district. The microfilaraemia (Mf) rate was found to be 9.5 and 11.1 per cent; and circulating filarial antigenaemia (CFA) was 16.8 and 17.8 per cent in Puri and Ganjam respectively. The geometric mean intensity (GMI) of Mf per ml of blood among positive individuals was 387 in Puri and 454 in Ganjam. The overall disease rate in Puri was 7.9 and 8.9 per cent in Ganjam. The prevalence of chronic manifestations was found to be significantly higher (P<0.001) than the acute manifestations in both the districts. The prevalence of geo-helminthiases was 31.8 per cent in Puri and 42.1 per cent in Ganjam; and the heavy infection was found to be significantly higher (P<0.001) in Ganjam compared to Puri district

  3. Geo-material microfluidics at reservoir conditions for subsurface energy resource applications

    DOE PAGES

    Porter, Mark L.; Jiménez-Martínez, Joaquín; Martinez, Ricardo Martin; ...

    2015-08-20

    Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. In this paper, we have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works inmore » both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. Finally, the experiments include fracture–matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO 2 (scCO 2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO 2–brine–oil.« less

  4. Comparison of Orbital Parameters for GEO Debris Predicted by LEGEND and Observed by MODEST: Can Sources of Orbital Debris be Identified?

    NASA Technical Reports Server (NTRS)

    Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.

    2006-01-01

    Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and

  5. NASA GEOS-3/TRMM Re-analysis: Capturing Observed Tropical Rainfall Variability in Global Analysis for Climate Research

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2004-01-01

    recently produced a multi-year, 1 x 1 TRMM re-analysis , which assimilates 6-hourly TMI and SSM/I surface rain rates over tropical oceans using a ID variational continuous assimilation (VCA) procedure in the GEOS-3 global data assimilation system. The analysis period extends from 1 November 1997 through 3 1 December 2002. The goal is to produce a multi-year global analysis that is dynamically consistent with available tropical precipitation observations for the community to assess its utility in climate applications and identify areas for further improvements. A distinct feature of the GEOS-3RRMh4 re-analysis is that its precipitation analysis is not derived from a short-term forecast (as done in most operational systems) but is given by a time- continuous model integration constrained by precipitation observations within a 6-h analysis window, while the wind, temperature, and pressure fields are allowed to directly respond to the improved precipitation and associated latent heating structures within the same analysis window. In this talk, I will assess the impact VCA precipitation assimilation on analyses of climate signals ranging from a few weeks to interannual time scales and compare results against other operational and reanalysis products.

  6. Applied Astronomy: An Optical Survey for Space Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Abercromby, K.; Rodriquez, H.

    2007-01-01

    A viewgraph is presented to discuss space debris at Geosynchronous Earth Orbit (GEO). The topics include: 1) Syncom1 launched February 14, 1963 Failed on orbit insertion 1st piece of GEO debris!; 2) Example of recent GEO payload: XM-2 Rock satellite for direct broadcast radio; 3) MODEST Michigan Orbital DEbrisSurvey Telescope the telescope formerly known as the Curtis-Schmidt; 4) GEO Debris Survey; 5) Examples of Detections; 6) Brightness Variations Common; 7) Observed Angular Rates; 8) Two Populations at GEO; 9) High Area-to-Mass Ratio Material (A/M); 10) Examples of MLI; 11) Examples of MLI Release in LEO; 12) Liou & Weaver (2005) models; 13) ESA 1-m Telescope Survey; 14) Two Telescopes March 2007 Survey and Follow-up; 15) Final Eccentricity; and 16) How control Space Debris?

  7. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira J.; Rodriguez-Cowardin, Heather M.; Barker, Ed; Foreman, Gary; Horstman, Matt

    2009-01-01

    We report on optical observations of debris at geosynchronous Earth orbit (GEO) using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan s 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope s field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected with MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit and calibrated colors for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials.

  8. Application of geo-information science methods in ecotourism exploitation

    NASA Astrophysics Data System (ADS)

    Dong, Suocheng; Hou, Xiaoli

    2004-11-01

    Application of geo-information science methods in ecotourism development was discussed in the article. Since 1990s, geo-information science methods, which take the 3S (Geographic Information System, Global Positioning System, and Remote Sensing) as core techniques, has played an important role in resources reconnaissance, data management, environment monitoring, and regional planning. Geo-information science methods can easily analyze and convert geographic spatial data. The application of 3S methods is helpful to sustainable development in tourism. Various assignments are involved in the development of ecotourism, such as reconnaissance of ecotourism resources, drawing of tourism maps, dealing with mass data, and also tourism information inquire, employee management, quality management of products. The utilization of geo-information methods in ecotourism can make the development more efficient by promoting the sustainable development of tourism and the protection of eco-environment.

  9. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  10. File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams)

    NASA Technical Reports Server (NTRS)

    Lucchesi, R.

    2013-01-01

    The GEOS-5 FP-IT Atmospheric Data Assimilation System (GEOS-5 ADAS) uses an analysis developed jointly with NOAA's National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS-5 AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS-5 FP-IT incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS-5 ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS-5 system actively assimilates roughly 2 × 10(exp 6) observations for each analysis, including about 7.5 × 10(exp 5) AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS-5 FP-IT uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). More details of this procedure are given in Appendix A. The analysis is performed at a horizontal resolution of 0.625-degree longitude by 0.5-degree latitude and at 72 levels, extending to 0.01 hPa. All products are generated at the native resolution of the

  11. Surveillance for travel-related disease--GeoSentinel Surveillance System, United States, 1997-2011.

    PubMed

    Harvey, Kira; Esposito, Douglas H; Han, Pauline; Kozarsky, Phyllis; Freedman, David O; Plier, D Adam; Sotir, Mark J

    2013-07-19

    In 2012, the number of international tourist arrivals worldwide was projected to reach a new high of 1 billion arrivals, a 48% increase from 674 million arrivals in 2000. International travel also is increasing among U.S. residents. In 2009, U.S. residents made approximately 61 million trips outside the country, a 5% increase from 1999. Travel-related morbidity can occur during or after travel. Worldwide, 8% of travelers from industrialized to developing countries report becoming ill enough to seek health care during or after travel. Travelers have contributed to the global spread of infectious diseases, including novel and emerging pathogens. Therefore, surveillance of travel-related morbidity is an essential component of global public health surveillance and will be of greater importance as international travel increases worldwide. September 1997-December 2011. GeoSentinel is a clinic-based global surveillance system that tracks infectious diseases and other adverse health outcomes in returned travelers, foreign visitors, and immigrants. GeoSentinel comprises 54 travel/tropical medicine clinics worldwide that electronically submit demographic, travel, and clinical diagnosis data for all patients evaluated for an illness or other health condition that is presumed to be related to international travel. Clinical information is collected by physicians with expertise or experience in travel/tropical medicine. Data collected at all sites are entered electronically into a database, which is housed at and maintained by CDC. The GeoSentinel network membership program comprises 235 additional clinics in 40 countries on six continents. Although these network members do not report surveillance data systematically, they can report unusual or concerning diagnoses in travelers and might be asked to perform enhanced surveillance in response to specific health events or concerns. During September 1997-December 2011, data were collected on 141,789 patients with confirmed or

  12. Managing and delivering of 3D geo data across institutions has a web based solution - intermediate results of the project GeoMol.

    NASA Astrophysics Data System (ADS)

    Gietzel, Jan; Schaeben, Helmut; Gabriel, Paul

    2014-05-01

    The increasing relevance of geological information for policy and economy at transnational level has recently been recognized by the European Commission, who has called for harmonized information related to reserves and resources in the EU Member States. GeoMol's transnational approach responds to that, providing consistent and seamless 3D geological information of the Alpine Foreland Basins based on harmonized data and agreed methodologies. However, until recently no adequate tool existed to ensure full interoperability among the involved GSOs and to distribute the multi-dimensional information of a transnational project facing diverse data policy, data base systems and software solutions. In recent years (open) standards describing 2D spatial data have been developed and implemented in different software systems including production environments for 2D spatial data (like regular 2D-GI-Systems). Easy yet secured access to the data is of upmost importance and thus priority for any spatial data infrastructure. To overcome limitations conditioned by highly sophisticated and platform dependent geo modeling software packages functionalities of a web portals can be utilized. Thus, combining a web portal with a "check-in-check-out" system allows distributed organized editing of data and models but requires standards for the exchange of 3D geological information to ensure interoperability. Another major concern is the management of large models and the ability of 3D tiling into spatially restricted models with refined resolution, especially when creating countrywide models . Using GST ("Geosciences in Space and Time") developed initially at TU Bergakademie Freiberg and continuously extended by the company GiGa infosystems, incorporating these key issues and based on an object-relational data model, it is possible to check out parts or whole models for edits and check in again after modification. GST is the core of GeoMol's web-based collaborative environment designed to

  13. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    NASA Astrophysics Data System (ADS)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  14. LCTS on ALPHASAT and Sentinel 1a: in orbit status of the LEO to geo data relay system

    NASA Astrophysics Data System (ADS)

    Zech, H.; Heine, F.; Troendle, D.; Pimentel, P. M.; Panzlaff, K.; Motzigemba, M.; Meyer, R.; Philipp-May, S.

    2017-11-01

    The performance of sensors for Earth Observation Missions is constantly improving. This drives the need for a reliable, high-speed data transfer capability from a Low Earth Orbit (LEO) spacecraft (S/C) to ground. In addition, for the transfer of time-critical data to ground, a low latency between data generation in orbit and data reception at the respective mission control center is of high importance. Laser communication between Satellites for high data transmission in combination with a GEO data relay system for reducing the latency time addresses these requirements.

  15. Insight into unusual impurity absorbability of GeO(2) in GeO(2)∕Ge stacks.

    PubMed

    Ogawa, Shingo; Suda, Taichi; Yamamoto, Takashi; Kutsuki, Katsuhiro; Hideshima, Iori; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2011-10-03

    Adsorbed species and its diffusion behaviors in GeO(2)∕Ge stacks, which are future alternative metal-oxide-semiconductor (MOS) materials, have been investigated using various physical analyses. We clarified that GeO(2) rapidly absorbs moisture in air just after its exposure. After the absorbed moisture in GeO(2) reaches a certain limit, the GeO(2) starts to absorb some organic molecules, which is accompanied by a structural change in GeO(2) to form a partial carbonate or hydroxide. We also found that the hydrogen distribution in GeO(2) shows intrinsic characteristics, indicative of different diffusion behaviors at the surface and at the GeO(2)∕Ge interface. Because the impurity absorbability of GeO(2) has a great influence on the electrical properties in Ge-MOS devices, these results provide valuable information in realizing high quality GeO(2)∕Ge stacks for the actual use of Ge-MOS technologies.

  16. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  17. Systematic review for geo-authentic Lonicerae Japonicae Flos.

    PubMed

    Yang, Xingyue; Liu, Yali; Hou, Aijuan; Yang, Yang; Tian, Xin; He, Liyun

    2017-06-01

    In traditional Chinese medicine, Lonicerae Japonicae Flos is commonly used as anti-inflammatory, antiviral, and antipyretic herbal medicine, and geo-authentic herbs are believed to present the highest quality among all samples from different regions. To discuss the current situation and trend of geo-authentic Lonicerae Japonicae Flos, we searched Chinese Biomedicine Literature Database, Chinese Journal Full-text Database, Chinese Scientific Journal Full-text Database, Cochrane Central Register of Controlled Trials, Wanfang, and PubMed. We investigated all studies up to November 2015 pertaining to quality assessment, discrimination, pharmacological effects, planting or processing, or ecological system of geo-authentic Lonicerae Japonicae Flos. Sixty-five studies mainly discussing about chemical fingerprint, component analysis, planting and processing, discrimination between varieties, ecological system, pharmacological effects, and safety were systematically reviewed. By analyzing these studies, we found that the key points of geo-authentic Lonicerae Japonicae Flos research were quality and application. Further studies should focus on improving the quality by selecting the more superior of all varieties and evaluating clinical effectiveness.

  18. Evaluation of UTLS Carbon Monoxide Simulations in GMI and GEOS-Chem Chemical Transport Models using Aura MLS Observations

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Jiang, Jonathan H.; Murray, Lee T.; Damon, Megan R.; Su, Hui; Livesey, Nathaniel J.

    2016-01-01

    This study evaluates the distribution and variation of carbon monoxide (CO) in the upper troposphere and lower stratosphere (UTLS) during 2004-2012 as simulated by two chemical transport models, using the latest version of Aura Microwave Limb Sounder (MLS) observations. The simulated spatial distributions, temporal variations and vertical transport of CO in the UTLS region are compared with those observed by MLS. We also investigate the impact of surface emissions and deep convection on CO concentrations in the UTLS over different regions, using both model simulations and MLS observations. Global Modeling Initiative (GMI) and GEOS-Chem simulations of UTLS CO both show similar spatial distributions to observations. The global mean CO values simulated by both models agree with MLS observations at 215 and 147 hPa, but are significantly underestimated by more than 40% at 100 hPa. In addition, the models underestimate the peak CO values by up to 70% at 100 hPa, 60% at 147 hPa and 40% at 215 hPa, with GEOS-Chem generally simulating more CO at 100 hPa and less CO at 215 hPa than GMI. The seasonal distributions of CO simulated by both models are in better agreement with MLS in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH), with disagreements between model and observations over enhanced CO regions such as southern Africa. The simulated vertical transport of CO shows better agreement with MLS in the tropics and the SH subtropics than the NH subtropics. We also examine regional variations in the relationships among surface CO emission, convection and UTLS CO concentrations. The two models exhibit emission-convection- CO relationships similar to those observed by MLS over the tropics and some regions with enhanced UTLS CO.

  19. Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method

  20. Simultaneous Multi-Filter Optical Photometry of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira; Kelecy, Thomas

    2011-01-01

    Information on the physical characteristics of unresolved pieces of debris comes from an object's brightness, and how it changes with time and wavelength. True colors of tumbling, irregularly shaped objects can be accurately determined only if the intensity at all wavelengths is measured at the same time. In this paper we report on simultaneous photometric observations of objects at geosynchronous orbit (GEO) using two telescopes at Cerro Tololo Inter-American Observatory (CTIO). The CTIO/SMARTS 0.9-m observes in a Johnson B filter, while the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope) observes in a Cousins R filter. The two CCD cameras are electronically synchronized so that the exposure start time and duration are the same for both telescopes. Thus we obtain the brightness as a function of time in two passbands simultaneously, and can determine the true color of the object at any time. We will report here on such calibrated measurements made on a sample of GEO objects and what is the distribution of the observed B-R colors. In addition, using this data set, we will show what colors would be observed if the observations in different filters were obtained sequentially, as would be the case for conventional imaging observations with a single detector on a single telescope. Finally, we will compare our calibrated colors of GEO debris with colors determined in the laboratory of selected materials actually used in spacecraft construction.

  1. Users Manual for the Geospatial Stream Flow Model (GeoSFM)

    USGS Publications Warehouse

    Artan, Guleid A.; Asante, Kwabena; Smith, Jodie; Pervez, Md Shahriar; Entenmann, Debbie; Verdin, James P.; Rowland, James

    2008-01-01

    The monitoring of wide-area hydrologic events requires the manipulation of large amounts of geospatial and time series data into concise information products that characterize the location and magnitude of the event. To perform these manipulations, scientists at the U.S. Geological Survey Center for Earth Resources Observation and Science (EROS), with the cooperation of the U.S. Agency for International Development, Office of Foreign Disaster Assistance (USAID/OFDA), have implemented a hydrologic modeling system. The system includes a data assimilation component to generate data for a Geospatial Stream Flow Model (GeoSFM) that can be run operationally to identify and map wide-area streamflow anomalies. GeoSFM integrates a geographical information system (GIS) for geospatial preprocessing and postprocessing tasks and hydrologic modeling routines implemented as dynamically linked libraries (DLLs) for time series manipulations. Model results include maps that depicting the status of streamflow and soil water conditions. This Users Manual provides step-by-step instructions for running the model and for downloading and processing the input data required for initial model parameterization and daily operation.

  2. Performance of the GEOS-3/Terra Data Assimilation System in the Northern Stratospheric Winter 1999/2000

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Lamich, David; Ledvina, Andrea; Conaty, Austin; Newman, Paul A.; Lait, Leslie R.; Waugh, Darryn

    2000-01-01

    As part of NASA's support for the Terra satellite, which became operational in January 2000, the Data Assimilation Office introduced a new version of the GEOS data assimilation system (DAS) in November 1999. This system, GEOS-3/Terra, differs from its predecessor in several ways, notably through an increase in horizontal resolution (from 2-by-2.5 degrees to 1-by-1 degree), a slightly lower upper boundary (0.1 instead of 0.01hPa) with fewer levels (48 as opposed to 70), and substantial changes to the tropospheric physics package. This paper will address the performance of the GEOS-3/Terra DAS in the stratosphere. it focusses on the analyses (produced four times daily) and the five-day forecasts (produced twice daily). These were important for the meteorological support of the SAGE-3 Ozone Loss and Validation Experiment, based in Kiruna, Northern Sweden, in the winter of 1999/2000. It is shown that the analyses of basic meteorological fields (temperature, geopotential height, and horizontal wind) are in good agreement with those from other centers. The analyses captured the cold polar vortex which persisted through most of the winter. It is shown that forecasts (up to five days) tend to have a warm bias, which is important for the prediction of polar stratospheric clouds, which are triggered by temperatures of 195K (or lower). The importance of accurate upper tropospheric forecasts in predicting the stratospheric flow is highlighted in the context of the evolution of the shape of the stratospheric polar vortex. A prominent blocking high in the Atlantic region in January was an important factor determining the shape of the distorted lower stratospheric vortex; the predictive skill of these features was strongly coupled in the GEOS-3/Terra system.

  3. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  4. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  5. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    NASA Astrophysics Data System (ADS)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  6. Determining sea-ice boundaries and ice roughness using GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Dwyer, R. E.; Godin, R. H.

    1980-01-01

    The GEOS-3 satellite and radar altimeter instrumentation are described, detailing the ice boundary discrimination technique utilized and presenting an analyses of the GEOS-3 data with respect to satellite visual and IR imagery. A brief description of the GEOS-3 real time data system is also given.

  7. Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    NASA Technical Reports Server (NTRS)

    DeLannoy, Gabrielle J. M.; Reichle, Rolf H.; Vrugt, Jasper A.

    2013-01-01

    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO).

  8. The First Derivative of an Exponential Function with the "White Box/Black Box" Didactical Principle and Observations with GeoGebra

    ERIC Educational Resources Information Center

    Budinski, Natalija; Subramaniam, Stephanie

    2013-01-01

    This paper shows how GeoGebra--a dynamic mathematics software--can be used to experiment, visualize and connect various concepts such as function, first derivative, slope, and tangent line. Students were given an assignment to determine the first derivative of the exponential function that they solved while experimenting with GeoGebra. GeoGebra…

  9. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  10. Analysis of GEO spacecraft anomalies: Space weather relationships

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Sung; Lee, Jaejin; Cho, Kyung-Suk; Kwak, Young-Sil; Cho, Il-Hyun; Park, Young-Deuk; Kim, Yeon-Han; Baker, Daniel N.; Reeves, Geoffrey D.; Lee, Dong-Kyu

    2011-06-01

    While numerous anomalies and failures of spacecraft have been reported since the beginning of the space age, space weather effects on modern spacecraft systems have been emphasized more and more with the increase of their complexity and capability. However, the relationship between space weather and commercial satellite anomalies has not been studied extensively. In this paper, we investigate the geostationary Earth orbit (GEO) satellite anomalies archived by Satellite News Digest during 1997-2009 in order to search for possible influences of space weather on the anomaly occurrences. We analyze spacecraft anomalies for the Kp index, local time, and season and then compare them with the tendencies of charged particles observed by Los Alamos National Laboratory (LANL) satellites. We obtain the following results: (1) there are good relationships between geomagnetic activity (as measured by the Kp index) and anomaly occurrences of the GEO satellites; (2) the satellite anomalies occurred mainly in the midnight to morning sector; and (3) the anomalies are found more frequently in spring and fall than summer and winter. While we cannot fully explain how space weather is involved in producing such anomalies, our analysis of LANL data shows that low-energy (<100 keV) electrons have similar behaviors with spacecraft anomalies and implies the spacecraft charging might dominantly contribute to the GEO spacecraft anomalies reported in Satellite News Digest.

  11. Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity.

    PubMed

    Lei, Hong; Wei, Qiaonian; Wang, Qing; Su, Anxiang; Xue, Mei; Liu, Qin; Hu, Qiuhui

    2017-04-01

    To explore a novel kind of anti-bacterial composite material having the excellent antibacterial ability, stability and specific-targeting capability, palygorskite (PGS) was used as the carrier of ginger essential oil (GEO) and a novel kind of composite GEO-PGS was prepared by ion exchange process. The characterization and the antibacterial activity of GEO-PGS was investigated in this study. Results of FTIR, XPS, XRD,TG analysis and SEM observation demonstrated the combination of GEO and PGS, GEO was absorbed on the surface of PGS, and the content of GEO in the composite was estimated to be 18.66%. Results of minimal inhibitory concentration (MIC) analysis, growth curve and Gram staining analysis of Staphylococci aureus and Escherichia coli exposed to GEO-PGS showed that GEO-PGS had much higher antibacterial activity than GEO, and GEO-PGS had the specific-targeting antibacterial capability. Moreover, GEO-PGS showed the characteristics of thermo-stability, acidity and alkalinity-resistance in exerting its anti-bacteria activity. In conclusion, the novel composite GEO-PGS combined the bacteria-absorbent activity of PGS and the antibacterial activity of GEO, suggesting the great potential application of GEO-PGS as the novel composite substance with high antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  13. Balancing geo-privacy and spatial patterns in epidemiological studies.

    PubMed

    Chen, Chien-Chou; Chuang, Jen-Hsiang; Wang, Da-Wei; Wang, Chien-Min; Lin, Bo-Cheng; Chan, Ta-Chien

    2017-11-08

    To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker) intended to mask the residential locations of patients or cases in a geographic information system (GIS). To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool's performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100) were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals' spatial information.

  14. Population evolution in the GEO vicinity

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Bendisch, J.; Krag, H.; Stabroth, S.

    The geostationary orbit is now in use for nearly 40 years. Due to the absence of major energy dissipating mechanisms, the object population in the GEO environment steadily grew during this time. In mid 2001, a total of 762 known objects permanently resided within the GEO region (GEO +/-1000 km). Additionally, two explosion events are confirmed within the geostationary ring, which further enlarge the already existing population consisting of payloads and upper stages. Recent observation results obtained by the ESA Space Debris Telescope (SDT) at Tenerife show strong indications for even more fragment clouds. Since the geostationary ring can be seen as a unique resource, which is not protected by any significant selfcleaning effect, a monitoring of the object environment in the vicinity of this orbit is mandatory. In a first step, this paper characterizes the history and current state of the GEO environment. The evolution of fresh object clouds within and out of the ring is analysed to get a better understanding of the short- and mid-term impact of explosion events as well as Solid Rocket Motor (SRM) firings on the overall population. Next to explosion prevention, the transfer of satellites to a graveyard orbit about 300 km above the geostationary altitude is agreed to be the most effective mean to preserve GEO. Although this procedure is internationally recommended, only one third of the retiring spacecraft is in fact brought to a sufficiently high orbit. Another 30% performs a re-orbiting, but is ending up in an orbit in the direct vicinity of the GEO ring or even touching or crossing it. The reason for this low performance often can be found in insufficient fuel gauging or urgent need for several more months of operation. In the future, one possibility to mitigate the population growth by remo v - i n g those spacecraft could be a dedicated vehicle transferring several large objects to the graveyard area before retiring there on its own. The number and

  15. GEOS-3 phase B ground truth summary

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Goodman, L. R.

    1975-01-01

    Ground truth data collected during the experiment systems calibration and evaluation phase of the Geodynamics experimental Ocean Satellite (GEOS-3) experiment are summarized. Both National Weather Service analyses and aircraft sensor data are included. The data are structured to facilitate the use of the various data products in calibrating the GEOS-3 radar altimeter and in assessing the altimeter's sensitivity to geophysical phenomena. Brief statements are made concerning the quality and completeness of the included data.

  16. Specific Space Transportation Costs to GEO - Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  17. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  18. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  19. A New Pedagogical Design for Geo-Informatics Courses Using an E-Training Support System

    ERIC Educational Resources Information Center

    Eldin, Ahmed Sharaf; ElNahry, Alaa H.; Elsayed, Adel; Ibrahim, Rania Elsayed

    2014-01-01

    The current study seeks to introduce a new pedagogical design for geo-informatics courses using an e-training support system. Laurillard's conversational approach based on conceptual representation for both instructor and learner was used to form the framework. As the current study specifically interested in training as a special form for…

  20. Web catalog of oceanographic data using GeoNetwork

    NASA Astrophysics Data System (ADS)

    Marinova, Veselka; Stefanov, Asen

    2017-04-01

    Most of the data collected, analyzed and used by Bulgarian oceanographic data center (BgODC) from scientific cruises, argo floats, ferry boxes and real time operating systems are spatially oriented and need to be displayed on the map. The challenge is to make spatial information more accessible to users, decision makers and scientists. In order to meet this challenge, BgODC concentrate its efforts on improving dynamic and standardized access to their geospatial data as well as those from various related organizations and institutions. BgODC currently is implementing a project to create a geospatial portal for distributing metadata and search, exchange and harvesting spatial data. There are many open source software solutions able to create such spatial data infrastructure (SDI). Finally, the GeoNetwork open source is chosen, as it is already widespread. This software is free, effective and "cheap" solution for implementing SDI at organization level. It is platform independent and runs under many operating systems. Filling of the catalog goes through these practical steps: • Managing and storing data reliably within MS SQL spatial data base; • Registration of maps and data of various formats and sources in GeoServer (most popular open source geospatial server embedded with GeoNetwork) ; • Filling added meta data and publishing geospatial data at the desktop of GeoNetwork. GeoServer and GeoNetwork are based on Java so they require installing of a servlet engine like Tomcat. The experience gained from the use of GeoNetwork Open Source confirms that the catalog meets the requirements for data management and is flexible enough to customize. Building the catalog facilitates sustainable data exchange between end users. The catalog is a big step towards implementation of the INSPIRE directive due to availability of many features necessary for producing "INSPIRE compliant" metadata records. The catalog now contains all available GIS data provided by BgODC for Internet

  1. Examination of Observation Impacts derived from OSEs and Adjoint Models

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald

    2008-01-01

    With the adjoint of a data assimilation system, the impact of any or all assimilated observations on measures of forecast skill can be estimated accurately and efficiently. The approach allows aggregation of results in terms of individual data types, channels or locations, all computed simultaneously. In this study, adjoint-based estimates of observation impact are compared with results from standard observing system experiments (OSEs) in the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) GEOS-5 system. The two approaches are shown to provide unique, but complimentary, information. Used together, they reveal both redundancies and dependencies between observing system impacts as observations are added or removed. Understanding these dependencies poses a major challenge for optimizing the use of the current observational network and defining requirements for future observing systems.

  2. Development of the geoCamera, a System for Mapping Ice from a Ship

    NASA Astrophysics Data System (ADS)

    Arsenault, R.; Clemente-Colon, P.

    2012-12-01

    The geoCamera produces maps of the ice surrounding an ice-capable ship by combining images from one or more digital cameras with the ship's position and attitude data. Maps are produced along the ship's path with the achievable width and resolution depending on camera mounting height as well as camera resolution and lens parameters. Our system has produced maps up to 2000m wide at 1m resolution. Once installed and calibrated, the system is designed to operate automatically producing maps in near real-time and making them available to on-board users via existing information systems. The resulting small-scale maps complement existing satellite based products as well as on-board observations. Development versions have temporarily been deployed in Antarctica on the RV Nathaniel B. Palmer in 2010 and in the Arctic on the USCGC Healy in 2011. A permanent system has been deployed during the summer of 2012 on the USCGC Healy. To make the system attractive to other ships of opportunity, design goals include using existing ship systems when practical, using low costs commercial-off-the-shelf components if additional hardware is necessary, automating the process to virtually eliminate adding to the workload of ships technicians and making the software components modular and flexible enough to allow more seamless integration with a ships particular IT system.

  3. CzechGeo/EPOS - Building a national data portal

    NASA Astrophysics Data System (ADS)

    Zednik, J.; Hejda, P.

    2012-04-01

    CzechGeo/EPOS is the consortium of seven geoscience institutions in the Czech Republic (Institute of Geophysics AS CR Prague, Institute of Rock Structure and Mechanics AS CR Prague, Institute of Geonics AS CR Ostrava, Institute of Physics of the Earth, Masaryk University Brno, Faculty of Mathematics and Physics, Charles University Prague, Faculty of Science, Charles University Prague, and Research Institute of Geodesy, Cartography and Topography Zdiby). These institutions operate a distributed system of seismic, GPS, magnetic, gravimetric and geodynamic observatories. The operational and personal costs of CzechGeo/EPOS are mostly covered by the Ministry of education, sports and youth within the support of twelve large research infrastructures in the Czech Republic. Web pages of the project www.czechgeo.cz are being built as a data portal which should integrate all the data and services provided by the involved institutions and research infrastructures. Seismic portal offers selected portions of digital data from permanent, local and temporary seismic stations, locations of seismic events in the country and worldwide, daily seismograms from permanent observatories and local seismic network Webnet, seismic bulletins and catalogs, and macroseismic observations on the territory of the Czech Republic. Magnetic portal involves besides real-time magnetograms also recent state of geomagnetic activity and its forecast for the next day. GPS portal will provide preprocessed data from regional GPS stations. Building the national portal is closely related with the development of the Preparatory phase of the EPOS (European Plate Observing System) project.

  4. Initial Verification of GEOS-4 Aerosols Using CALIPSO and MODIS: Scene Classification

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Colarco, Peter R.; Hlavka, Dennis; Levy, Robert C.; Vaughan, Mark A.; daSilva, Arlindo

    2007-01-01

    A-train sensors such as MODIS and MISR provide column aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important because retrievals are often dependent upon selection of the right aerosol model. In addition, aerosol scene classification helps place the retrieved products in context for comparisons and analysis with aerosol transport models. The recent addition of CALIPSO to the A-train now provides a means of classifying aerosol distribution with altitude. CALIPSO level 1 products include profiles of attenuated backscatter at 532 and 1064 nm, and depolarization at 532 nm. Backscatter intensity, wavelength ratio, and depolarization provide information on the vertical profile of aerosol concentration, size, and shape. Thus similar estimates of aerosol type using MODIS or MISR are possible with CALIPSO, and the combination of data from all sensors provides a means of 3D aerosol scene classification. The NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-4) provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS-4 aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures along the flight track for NASA's Geoscience Laser Altimeter System (GLAS) satellite lidar. GLAS launched in 2003 and did not have the benefit of depolarization measurements or other sensors from the A-train. Aerosol typing from GLAS data alone was not possible, and the GEOS-4 aerosol classifier has been used to identify aerosol type and improve the retrieval of GLAS products. Here we compare 3D aerosol scene classification using CALIPSO and MODIS with the GEOS-4 aerosol classifier. Dust, smoke, and pollution examples will be discussed in the context of providing an initial verification of the 3D GEOS-4 aerosol products. Prior model verification has only been attempted with surface mass

  5. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  6. Decadal Prediction Skill in the GEOS-5 Forecast System

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Rienecker, Michael M.; Suarez, M.; Vikhliaev, Yury V.; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.

    2012-01-01

    A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office?s GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). The hindcasts are initialized every December from 1959 to 2010 following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multi-variate ensemble optimal interpolation ocean and sea-ice reanalysis, and from the atmospheric reanalysis (MERRA, the Modern-Era Retrospective Analysis for Research and Applications) generated using the GEOS-5 atmospheric model. The forecast skill of a three-member-ensemble mean is compared to that of an experiment without initialization but forced with observed CO2. The results show that initialization acts to increase the forecast skill of Northern Atlantic SST compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. The annual-mean Atlantic Meridional Overturning Circulation (AMOC) index is predictable up to a 5-year lead time, consistent with the predictable signal in upper ocean heat content over the Northern Atlantic. While the skill measured by Mean Squared Skill Score (MSSS) shows 50% improvement up to 10-year lead forecast over the subtropical and mid-latitude Atlantic, however, prediction skill is relatively low in the subpolar gyre, due in part to the fact that the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region appears to be unrealistic. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

  7. Observations of LHR noise with banded structure by the sounding rocket S29 barium-GEOS

    NASA Technical Reports Server (NTRS)

    Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.

    1983-01-01

    The measurement of electrostatic noise near the lower hybrid frequency made by the sounding rocket S29 barium-GEOS is reported. The noise is related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure a signal near the hydrogen cyclotron frequency is detected. This signal is also spin modulated. The character of the noise strongly suggests that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct, plasma wave experiments on other spacecrafts are expected to observe similar phenomena.

  8. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  9. Research on geo-ontology construction based on spatial affairs

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing

  10. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  11. A New Look at the GEO and Near-GEO Regimes: Operations, Disposals, and Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2011-01-01

    Since 1963 more than 900 spacecraft and more than 200 launch vehicle upper stages have been inserted into the vicinity of the geosynchronous regime. Equally important, more than 300 spacecraft have been maneuvered into disposal orbits at mission termination to alleviate unnecessary congestion in the finite GEO region. However, the number of GEO satellites continues to grow, and evidence exists of a substantial small debris population. In addition, the operational modes of an increasing number of GEO spacecraft differ from those of their predecessors of several decades ago, including more frequent utilization of inclined and eccentric geosynchronous orbits. Consequently, the nature of the GEO regime and its immediate surroundings is evolving from well-known classical characteristics. This paper takes a fresh look at the GEO satellite population and the near- and far-term environmental implications of the region, including the effects of national and international debris mitigation measures.

  12. The Grell-Freitas Convection Parameterization: Recent Developments and Applications Within the NASA GEOS Global Model

    NASA Technical Reports Server (NTRS)

    Freitas, Saulo R.; Grell, Georg; Molod, Andrea; Thompson, Matthew A.

    2017-01-01

    We implemented and began to evaluate an alternative convection parameterization for the NASA Goddard Earth Observing System (GEOS) global model. The parameterization is based on the mass flux approach with several closures, for equilibrium and non-equilibrium convection, and includes scale and aerosol awareness functionalities. Recently, the scheme has been extended to a tri-modal spectral size approach to simulate the transition from shallow, mid, and deep convection regimes. In addition, the inclusion of a new closure for non-equilibrium convection resulted in a substantial gain of realism in model simulation of the diurnal cycle of convection over the land. Here, we briefly introduce the recent developments, implementation, and preliminary results of this parameterization in the NASA GEOS modeling system.

  13. GeoGebra for Mathematical Statistics

    ERIC Educational Resources Information Center

    Hewson, Paul

    2009-01-01

    The GeoGebra software is attracting a lot of interest in the mathematical community, consequently there is a wide range of experience and resources to help use this application. This article briefly outlines how GeoGebra will be of great value in statistical education. The release of GeoGebra is an excellent example of the power of free software…

  14. Kinetic study of GeO disproportionation into a GeO{sub 2}/Ge system using x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shengkai; Department of Materials Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656; CREST, Japan Science and Technology Agency

    2012-08-06

    GeO disproportionation into GeO{sub 2} and Ge is studied through x-ray photoelectron spectroscopy. Direct evidence for the reaction 2GeO {yields} GeO{sub 2} + Ge after annealing in ultra-high vacuum is presented. Activation energy for GeO disproportionation is found to be about 0.7 {+-} 0.2 eV through kinetic and thermodynamic calculations. A kinetic model of GeO disproportionation is established by considering oxygen transfer in the GeO network. The relationship between GeO disproportionation and GeO desorption induced by GeO{sub 2}/Ge interfacial reaction is discussed, and the apparent contradiction between GeO desorption via interfacial redox reaction and GeO disproportionation into Ge and GeO{submore » 2} is explained by considering the oxygen vacancy.« less

  15. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  16. GEOS. User Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.

    2014-12-17

    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less

  17. Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans

    2011-01-01

    The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.

  18. Initial test results using the GEOS-3 engineering model altimeter

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Clary, J. B.

    1977-01-01

    Data from a series of experimental tests run on the engineering model of the GEOS 3 radar altimeter using the Test and Measurement System (TAMS) designed for preflight testing of the radar altimeter are presented. These tests were conducted as a means of preparing and checking out a detailed test procedure to be used in running similar tests on the GEOS 3 protoflight model altimeter systems. The test procedures and results are also included.

  19. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the

  20. Improving BeiDou precise orbit determination using observations of onboard MEO satellite receivers

    NASA Astrophysics Data System (ADS)

    Ge, Haibo; Li, Bofeng; Ge, Maorong; Shen, Yunzhong; Schuh, Harald

    2017-12-01

    In recent years, the precise orbit determination (POD) of the regional Chinese BeiDou Navigation Satellite System (BDS) has been a hot spot because of its special constellation consisting of five geostationary earth orbit (GEO) satellites and five inclined geosynchronous satellite orbit (IGSO) satellites besides four medium earth orbit (MEO) satellites since the end of 2012. GEO and IGSO satellites play an important role in regional BDS applications. However, this brings a great challenge to the POD, especially for the GEO satellites due to their geostationary orbiting. Though a number of studies have been carried out to improve the POD performance of GEO satellites, the result is still much worse than that of IGSO and MEO, particularly in the along-track direction. The major reason is that the geostationary characteristic of a GEO satellite results in a bad geometry with respect to the ground tracking network. In order to improve the tracking geometry of the GEO satellites, a possible strategy is to mount global navigation satellite system (GNSS) receivers on MEO satellites to collect the signals from GEO/IGSO GNSS satellites so as that these observations can be used to improve GEO/IGSO POD. We extended our POD software package to simulate all the related observations and to assimilate the MEO-onboard GNSS observations in orbit determination. Based on GPS and BDS constellations, simulated studies are undertaken for various tracking scenarios. The impact of the onboard GNSS observations is investigated carefully and presented in detail. The results show that MEO-onboard observations can significantly improve the orbit precision of GEO satellites from metres to decimetres, especially in the along-track direction. The POD results of IGSO satellites also benefit from the MEO-onboard data and the precision can be improved by more than 50% in 3D direction.

  1. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all

  2. A GEO Initiative to Support the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    The United Nations Agenda 2030 serves as a global development agenda for progress on economic, social and environmental sustainability. These Sustainable Development Goals (SDG) have a specific provision for the use of Earth observations and geospatial information to support progress. The international Group on Earth Observations, GEO, has a dedicated initiative focused on the SDGs. This initiative supports efforts to integrate Earth observations and geospatial information into national development and monitoring frameworks for the SDGs. It helps enables countries and stakeholders to leverage Earth observations to support the implementation, planning, measuring, monitoring, reporting, and evaluation of the SDGs. This paper will present an overview of the GEO initiative and ways that Earth observations support the development goals. It will address how information and knowledge can be shared on effective methods to apply Earth observations to the SDGs and their associated targets and indicators. It will also highlight some existing information sources and tools on the SDGs, which can help identify key approaches for developing a knowledge base.

  3. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    NASA Astrophysics Data System (ADS)

    Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.

    2016-12-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  4. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying

    2016-01-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  5. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    NASA Technical Reports Server (NTRS)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  6. Implementing marine organic aerosols into the GEOS-Chem model

    DOE PAGES

    Gantt, B.; Johnson, M. S.; Crippa, M.; ...

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore » predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  7. GeoNetwork powered GI-cat: a geoportal hybrid solution

    NASA Astrophysics Data System (ADS)

    Baldini, Alessio; Boldrini, Enrico; Santoro, Mattia; Mazzetti, Paolo

    2010-05-01

    To the aim of setting up a Spatial Data Infrastructures (SDI) the creation of a system for the metadata management and discovery plays a fundamental role. An effective solution is the use of a geoportal (e.g. FAO/ESA geoportal), that has the important benefit of being accessible from a web browser. With this work we present a solution based integrating two of the available frameworks: GeoNetwork and GI-cat. GeoNetwork is an opensource software designed to improve accessibility of a wide variety of data together with the associated ancillary information (metadata), at different scale and from multidisciplinary sources; data are organized and documented in a standard and consistent way. GeoNetwork implements both the Portal and Catalog components of a Spatial Data Infrastructure (SDI) defined in the OGC Reference Architecture. It provides tools for managing and publishing metadata on spatial data and related services. GeoNetwork allows harvesting of various types of web data sources e.g. OGC Web Services (e.g. CSW, WCS, WMS). GI-cat is a distributed catalog based on a service-oriented framework of modular components and can be customized and tailored to support different deployment scenarios. It can federate a multiplicity of catalogs services, as well as inventory and access services in order to discover and access heterogeneous ESS resources. The federated resources are exposed by GI-cat through several standard catalog interfaces (e.g. OGC CSW AP ISO, OpenSearch, etc.) and by the GI-cat extended interface. Specific components implement mediation services for interfacing heterogeneous service providers, each of which exposes a specific standard specification; such components are called Accessors. These mediating components solve providers data modelmultiplicity by mapping them onto the GI-cat internal data model which implements the ISO 19115 Core profile. Accessors also implement the query protocol mapping; first they translate the query requests expressed

  8. Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; McCarty, Will; El Akkraoui, Amal; Todling, Ricardo; Gelaro, Ron

    2018-01-01

    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit

  9. The application of decommissioned GEO satellites to CAPS

    NASA Astrophysics Data System (ADS)

    Fu, S. Y.; Wang, Z. R.; Shi, H. L.; Ma, L. H.

    2018-06-01

    To ensure the reliable service of geostationary earth orbiting (GEO) communication satellites during the period of in-orbit, the hardware design life of each system usually has some redundancies in contrast to the limited fuel used to keep the satellite position and attitude. After the brief analysis of the life of the satellite subsystems, the feasibility of turning the decommissioned GEO communication satellites into slightly inclined geosynchronous orbiting (SIGSO) satellites is proved. In addition, the role and the actual usage of SIGSO satellites in Chinese Area Positioning System (CAPS) are analysed and discussed, including the effect on the improvement of Position Dilution of Precision (PDOP) of the navigation constellation and the application to satellite communication system, thus the potential value of satellite material and devices is exploited.

  10. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  11. Full and Open Access to Data in the Global Earth Observing System of Systems (GEOSS): Implementing the GEOSS Data Sharing Principles

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Uhlir, P. F.; Gabrinowicz, J. I.

    2008-12-01

    Full and open access to data from remote sensing platforms and other sources can facilitate not only scientific research but also the more widespread and effective use of scientific data for the benefit of society. The Global Earth Observing System of Systems (GEOSS) is a major international initiative of the Group on Earth Observations (GEO) to develop "coordinated, comprehensive and sustained Earth observations and information." In 2005, GEO adopted the GEOSS Data Sharing Principles, which call for the "full and open exchange of data, metadata, and products shared within GEOSS, recognizing relevant international instruments and national policies and legislation." These Principles also note that "All shared data, metadata, and products will be made available with minimum time delay and at minimum cost" and that "All shared data, metadata, and products being free of charge or no more than cost of reproduction will be encouraged for research and education." GEOSS Task DA-06-01, aimed at developing a set of recommended implementation guidelines for the Principles, was established in 2006 under the leadership of CODATA, the Committee on Data for Science and Technology of the International Council for Science (ICSU). An international team of authors has developed a draft White Paper on the GEOSS Data Sharing Principles and a proposed set of implementation guidelines. These have been carefully reviewed by independent reviewers, various GEO Committees, and GEO National Members and Participating Organizations. It is expected that the proposed implementation guidelines will be discussed at the GEO-V Plenary in Budapest in November 2008. The current version of the proposed implementation guidelines recognizes the importance of good faith, voluntary adherence to the Principles by GEO National Members and Participating Organizations. It underscores the value of reuse and re-dissemination of GEOSS data with minimum restrictions, not only within GEOSS itself but on the part of

  12. Nuclear physics for geo-neutrino studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentini, Gianni; Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, I-44100 Ferrara; Ianni, Aldo

    2010-03-15

    Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results for the geo-neutrinos from {sup 214}Bi decay, a process that accounts for about one-half of the total geo-neutrino signal. The feeding probability of the lowest state of {sup 214}Bi--the most important for geo-neutrino signal--is found to be p{sub 0}=0.177+-0.004 (stat){sub -0.001}{sup +0.003} (sys), under the hypothesis of universal neutrino spectrum shape (UNSS). This value is consistent with the (indirect) estimate of the table of isotopes. Wemore » show that achievable larger statistics and reduction of systematics should allow for the testing of possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.« less

  13. GeoTools: An android phone application in geology

    NASA Astrophysics Data System (ADS)

    Weng, Yi-Hua; Sun, Fu-Shing; Grigsby, Jeffry D.

    2012-07-01

    GeoTools is an Android application that can carry out several tasks essential in geological field studies. By employing the accelerometer in the Android phone, the application turns the handset into a pocket transit compass by which users can measure directions, strike and dip of a bedding plane, or trend and plunge of a fold. The application integrates functionalities of photo taking, videotaping, audio recording, and note writing with GPS coordinates to track the location at which each datum was taken. A time-stamped file name is shared by the various types of data taken at the same location. Data collected at different locations are named in a chronological sequence. At the end of each set of operations, GeoTools also automatically generates an XML file to summarize the characteristics of data being collected corresponding to a specific location. In this way, GeoTools allows geologists to use a multimedia approach to document their field observations with a clear data organization scheme in one handy gadget.

  14. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area

    NASA Astrophysics Data System (ADS)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.

    2012-04-01

    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of

  15. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  16. [Brief introduction of geo-authentic herbs].

    PubMed

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2013-05-01

    The science of geo-authentic herbs is a characteristic discipline of traditional Chinese medicine established during thousands of years of clinical practices. It has a long history under the guidance of profound theories of traditional Chinese medicine. The words of "geo-authentic product" were derived from an administrative division unit in the ancient times, which layed stress on the good quality of products in particular regions. In ancient records of traditional Chinese medicine, the words of "geo-authentic product" were first found in Concise Herbal Foundation Compilation of the Ming dynasty, and the words of "geo-authentic herbs" were first discovered in Peony Pavilion of the late Ming dynasty. After all, clinical effect is the fundamental evaluation standard of geo-authentic herbs.

  17. Learning Fraction Comparison by Using a Dynamic Mathematics Software--GeoGebra

    ERIC Educational Resources Information Center

    Poon, Kin Keung

    2018-01-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  18. Learning fraction comparison by using a dynamic mathematics software - GeoGebra

    NASA Astrophysics Data System (ADS)

    Poon, Kin Keung

    2018-04-01

    GeoGebra is a mathematics software system that can serve as a tool for inquiry-based learning. This paper deals with the application of a fraction comparison software, which is constructed by GeoGebra, for use in a dynamic mathematics environment. The corresponding teaching and learning issues have also been discussed.

  19. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites

    PubMed Central

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-01-01

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13 and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly. PMID:29495506

  20. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Zhang, Zhe; Zhao, Kunjuan

    2018-02-27

    The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC 12 precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC 13 and much higher than VTEC 23 . Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly.

  1. Geo-Hydro Statistical Characterization of Preferential Flow and Transport Processes in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.; Macchiavelli, R. E.

    2011-12-01

    Karst groundwater systems are highly productive and provide an important fresh water resource for human development and ecological integrity. Their high productivity is often associated with conduit flow and high matrix permeability. The same characteristics that make these aquifers productive also make them highly vulnerable to contamination and a likely for contaminant exposure. Of particular interest are chlorinated organic contaminants and phthalates derived from industrial solvents and plastic by-products. These chemicals have been identified as potential precursors of pre-term birth, a leading cause of neonatal complications with a significant health and societal cost. The general objectives of this work are to: (1) develop fundamental knowledge and determine the processes controlling the release, mobility, persistence, and possible pathways of contaminants in karst groundwater systems, and (2) characterize transport processes in conduit and diffusion-dominated flow under base flow and storm flow conditions. The work presented herein focuses on the development of geo-hydro statistical tools to characterize flow and transport processes under different flow regimes. Multidimensional, laboratory-scale Geo-Hydrobed models were developed and tested for this purpose. The models consist of stainless-steel tanks containing karstified limestone blocks collected from the karst aquifer formation of northern Puerto Rico. The models a network of sampling wells to monitor flow, pressure, and solute concentrations temporally and spatially. Experimental work entailed making a series of point injections in wells while monitoring the hydraulic response in other wells. Statistical mixed models were applied to spatial probabilities of hydraulic response and weighted injected volume data, and were used to determinate the best spatial correlation structure to represent paths of preferential flow in the limestone units under different groundwater flow regimes. Preliminary testing

  2. Drifting Recovery Base Concept for GEO Derelict Object Capture

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2009-01-01

    Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.

  3. The geo-control system for station keeping and colocation of geostationary satellites

    NASA Technical Reports Server (NTRS)

    Montenbruck, O.; Eckstein, M. C.; Gonner, J.

    1993-01-01

    GeoControl is a compact but powerful and accurate software system for station keeping of single and colocated satellites, which has been developed at the German Space Operations Center. It includes four core modules for orbit determination (including maneuver estimation), maneuver planning, monitoring of proximities between colocated satellites, and interference and event prediction. A simple database containing state vector and maneuver information at selected epochs is maintained as a central interface between the modules. A menu driven shell utilizing form screens for data input serves as the central user interface. The software is written in Ada and FORTRAN and may be used on VAX workstations or mainframes under the VMS operating system.

  4. Geostationary Operational Environmental Statellite(GEOS-N report)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Advanced Missions Analysis Office (AMAO) of GSFC has completed a study of the Geostationary Operational Environmental Satellites (GOES-N) series. The feasibility, risks, schedules, and associated costs of advanced space and ground system concepts responsive to National Oceanic and Atmospheric Administration (NOAA) requirements were evaluated. The study is the first step in a multi-phased procurement effort that is expected to result in launch ready hardware in the post 2000 time frame. This represents the latest activity of GSFC in translating meteorological requirements of NOAA into viable space systems in geosynchronous earth orbits (GEO). GOES-N represents application of the latest spacecraft, sensor, and instrument technologies to enhance NOAA meteorological capabilities via remote and in-situ sensing from GEO. The GOES-N series, if successfully developed, could become another significant step in NOAA weather forecasting space systems, meeting increasingly complex emerging national needs for that agency's services.

  5. On the global geodetic observing system: Africa's preparedness and challenges

    NASA Astrophysics Data System (ADS)

    Botai, O. J.; Combrinck, Ludwig; Rautenbach, C. J. Hannes

    2013-02-01

    Space geodetic techniques and satellite missions play a crucial role in the determination and monitoring of geo-kinematics, Earth's rotation and gravity fields. These three pillars of geodesy provide the basis for determining the geodetic reference frames with high accuracy, spatial resolution and temporal stability. Space geodetic techniques have been used for the assessment of geo-hazards, anthropogenic hazards and in the design of early warning systems for hazard and disasters. In general, space geodesy provides products for Earth observation, science and influences many activities (e.g., building and management) in a modern society. In order to further promote the application of space geodetic methods to solving Earth science problems, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) was commissioned as an important geodetic infrastructure that integrates different geodetic techniques (such as Global Navigation Satellite Systems, Very Long Baseline Interferometry, Satellite Laser Ranging, Interferometric Synthetic Aperture Radar and Doppler Orbitography and Radio-positioning Integrated by Satellite), models and analysis techniques for the purpose of ensuring long-term, precise monitoring of geodetic observables vital for monitoring Earth system processes. Since its inception, there has been considerable progress made towards setting up the infrastructure necessary for the establishment of the GGOS database. While the challenges that beleaguer the GGOS are acknowledged (at least at global level), the assessment of an attuned GGOS infrastructure in the African context is necessary, yet lacking. In the present contribution, (a) the African preparedness and response to the observing system is assessed, and (b) the specific scientific and technological challenges of establishing a regional GGOS hub for Africa are reviewed. Currently only South Africa has a fundamental geodetic observatory located at Hartebeesthoek

  6. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  7. EuroGeoSurveys

    NASA Astrophysics Data System (ADS)

    Demicheli, L.; Ludden, J. N.; Robida, F.

    2012-04-01

    information and advice, EGS runs a number of Expert Groups in areas such as Carbon Capture and Storage, Earth Observation, Geochemistry, Spatial Information, Marine Geology, Mineral Resources, Water Resources, GeoEnergy, Natural Hazards, Soils Resources, as well as International Cooperation and Development or Communication to improve on external relations, dissemination and outreach. The Expert Groups consist of a panel of leading scientists from the member organisations of EGS who meet on a regular basis and provide technical support to the Secretariat. Having built its reputation as the leading source of European geological expertise to the European Institutions, EGS is now looking to develop their reputation in the private sector as well as their public profile through the Communication Strategy 2010-2016. EGS international profile, already consolidated through association with international geological organisations such as the International Union of Geological Sciences (IUGS) or as a participating organisation in the Global Earth Observation System of Systems (GEOSS), has recently gaining momentum through participation in outstanding projects (such as OneGeology). Most notably in 2010 agreements were signed for increased collaboration with the European Environment Agency (EEA) and the U.S. Geological Survey (USGS). Already consolidated EU priorities and emerging ones, such as those induced by globalization and the financial crisis, have opened a series of challenges for geosciences, forcing geological surveys to re-organise themselves. EGS is preparing to evolve again to even more successfully deal with those challenges. In this framework the cooperation with EPOS is being followed with much interest, as it is clear for EGS that only an open access data policy and the exploitation of synergies with other geoscientific bodies can reinforce our joint capacity to improve the security, health and wealth of European citizens.

  8. GEO Optical Data Association with Concurrent Metric and Photometric Information

    NASA Astrophysics Data System (ADS)

    Dao, P.; Monet, D.

    Data association in a congested area of the GEO belt with occasional visits by non-resident objects can be treated as a Multi-Target-Tracking (MTT) problem. For a stationary sensor surveilling the GEO belt, geosynchronous and near GEO objects are not completely motionless in the earth-fixed frame and can be observed as moving targets. In some clusters, metric or positional information is insufficiently accurate or up-to-date to associate the measurements. In the presence of measurements with uncertain origin, star tracks (residuals) and other sensor artifacts, heuristic techniques based on hard decision assignment do not perform adequately. In the MMT community, Bar-Shalom [2009 Bar-Shalom] was first in introducing the use of measurements to update the state of the target of interest in the tracking filter, e.g. Kalman filter. Following Bar-Shalom’s idea, we use the Probabilistic Data Association Filter (PDAF) but to make use of all information obtainable in the measurement of three-axis-stabilized GEO satellites, we combine photometric with metric measurements to update the filter. Therefore, our technique Concurrent Spatio- Temporal and Brightness (COSTB) has the stand-alone ability of associating a track with its identity –for resident objects. That is possible because the light curve of a stabilized GEO satellite changes minimally from night to night. We exercised COSTB on camera cadence data to associate measurements, correct mistags and detect non-residents in a simulated near real time cadence. Data on GEO clusters were used.

  9. Atmospheric Constituents in GEOS-5: Components for an Earth System Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah

    2011-01-01

    The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.

  10. Detection and Dynamic Analysis of Space Debris in the Geo Ring

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    There are different populations of space debris (SD) in the geostationary (GEO) region. It is of great interest to know their dynamics, in order to contribute to aspects such as alerts against possible collisions, repositioning of GEO satellites or placing those satellites that come into service. In this contribution we present a study about the detection and dynamic analysis of SD located in the GEO ring. Using the telescopes of the Venezuelan Obseratory National (VON), a large amount of astrometric observations have been acquired. A preliminary dynamic analysis of them has been carried out, which evidences the average relative motion of these orbiters with a mean absolute error for coordinates of ≍ 0.09 pix.

  11. An observation of LHR noise with banded structure by the sounding rocket S29 Barium-GEOS

    NASA Technical Reports Server (NTRS)

    Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.

    1982-01-01

    The measurement of electrostatic and obviously locally produced noise near the lower hybrid frequency made by the sounding rocket S29 Barium-GEOS is reported. The noise is strongly related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure, a signal near the hydrogen cyclotron frequency is detected. This signal is also spin related. The characteristics of the noise suggest that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct we expect plasma wave experiments on other spacecrafts, e.g., the space shuttle to observe similar phenomena.

  12. Remote Sensing Systems Optimization for Geobase Enhancement

    DTIC Science & Technology

    2003-03-01

    through feedback from base users, as well as the researcher’s observations. 3.1 GeoBase and GIS Learning GeoBase and Geographic Information System ...Abstract The U.S. Air Force is in the process of implementing GeoBase, a geographic information system (GIS), throughout its worldwide installations...Geographic Information System (GIS). A GIS is a computer database that contains geo-spatial information . It is the principal tool used to input, view

  13. Nighttime Medium-Scale Traveling Ionospheric Disturbances From Airglow Imager and Global Navigation Satellite Systems Observations

    NASA Astrophysics Data System (ADS)

    Huang, Fuqing; Lei, Jiuhou; Dou, Xiankang; Luan, Xiaoli; Zhong, Jiahao

    2018-01-01

    In this study, coordinated airglow imager, GPS total electron content (TEC), and Beidou geostationary orbit (GEO) TEC observations for the first time are used to investigate the characteristics of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) over central China. The results indicated that the features of nighttime MSTIDs from three types of observations are generally consistent, whereas the nighttime MSTID features from the Beidou GEO TEC are in better agreement with those from airglow images as compared with the GPS TEC, given that the nighttime MSTID characteristics from GPS TEC are significantly affected by Doppler effect due to satellite movement. It is also found that there are three peaks in the seasonal variations of the occurrence rate of nighttime MSTIDs in 2016. Our study revealed that the Beidou GEO satellites provided fidelity TEC observations to study the ionospheric variability.

  14. THE TEACHING OF GEO SCIENCE IN MALAWI SECONDARY SCHOOLS: The case of the Solar System and beyond

    NASA Astrophysics Data System (ADS)

    Chasukwa Mwalwenje, Yvonne; Chasukwa, Fidel

    2016-04-01

    Malawi secondary school curriculum has been offering Geo sciences Education since the dawn of independence from the British rule in 1964. Qualified primary and secondary school teachers are responsible for the teaching of Geo sciences. The assumption is that trained teachers are more likely to produce successful students thus making geoscience a successful subject. To make the subject more relevant and captivating to stakeholders, the government revised Geo science curriculum and incorporated other topics. Among additional topic was the solar system that was covered in great detail in secondary school. The solar system is a Geo science concept taught in Geography curriculum from primary school for 8 years and in secondary school for 4 years. Despite the solar system being one of the traditional topics in Malawi school curriculum and Government's effort to revise the curriculum in the interest of learners and improving the pass rate, number of students conversant with the topic has been failing sharply over the years. The disparity between the input in terms of effort to improve familiarity with solar system among learners and the outcomes is of great concern and worth hard investigation to inform education policy and curriculum revision decisions. Based on empirical data collected through qualitative research design, the paper establishes that regardless of imploring such interventions, there are still indicators that students continue to fail in solar system related subjects. Malawi National Examination report (2015) reveals that Geography at Malawi School Certificate Examinations pass rate has been going down ranging from 69.49 to 60.78 per cent from 2009 to 2014. The report advances that lack of instruction materials across the schools have contributed to deteriorating knowledge in solar system education. For instance, the school may have no simple models such as globes that clarify the shape of the earth better. As such, the teacher may improvise by getting an

  15. Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, K. M.; da Silva, A.

    2010-01-01

    The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.

  16. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  17. GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka

    2004-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.

  18. Development and Performance of the Modularized, High-performance Computing and Hybrid-architecture Capable GEOS-Chem Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Yantosca, R.; Nielsen, J.; Linford, J. C.; Keller, C. A.; Payer Sulprizio, M.; Jacob, D. J.

    2014-12-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been reengineered to serve as a platform for a range of computational atmospheric chemistry science foci and applications. Development included modularization for coupling to general circulation and Earth system models (ESMs) and the adoption of co-processor capable atmospheric chemistry solvers. This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of GEOS-Chem scientific code to permit seamless transition from the GEOS-Chem stand-alone serial CTM to deployment as a coupled ESM module. In this manner, the continual stream of updates contributed by the CTM user community is automatically available for broader applications, which remain state-of-science and directly referenceable to the latest version of the standard GEOS-Chem CTM. These developments are now available as part of the standard version of the GEOS-Chem CTM. The system has been implemented as an atmospheric chemistry module within the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for weak and strong scalability and performance with a tropospheric oxidant-aerosol simulation. Results confirm that the GEOS-Chem chemical operator scales efficiently for any number of processes. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemical operator means that the relative cost goes down with increasing number of processes, making fine-scale resolution simulations possible.

  19. In-Space Transportation for GEO Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Martin, James A.; Donnahue, Benjamin B.; Henley, Mark W.

    1999-01-01

    This report summarizes results of study tasks to evaluate design options for in-space transportation of geostationary Space Solar Power Satellites. Referring to the end-to-end architecture studies performed in 1988, this current activity focuses on transportation of Sun Tower satellite segments from an initial low Earth orbit altitude to a final position in geostationary orbit (GEO; i.e., 35,786 km altitude, circular, equatorial orbit). This report encompasses study activity for In-Space Transportation of GEO Space Solar Power (SSP) Satellites including: 1) assessment of requirements, 2) design of system concepts, 3) comparison of alternative system options, and 4) assessment of potential derivatives.

  20. Benefits of using Open Geo-spatial Data for valorization of Cultural Heritage: GeoPan app

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Previtali, Mattia; Barazzetti, Luigi; Brumana, Raffaella

    2017-04-01

    Experts evaluate the spatial data to be one of the categories of Public Sector Information (PSI), of which the exchange is particularly important. On the other side an initiative with a great vision such as Digital Agenda for Europe, emphasizes on intelligent processing of information as essential factor for tackling the challenges of the contemporary society. In such context, the Open Data are considered to be crucial in addressing, environmental pressures, energy efficiency issues, land use and climate change, pollution and traffic management. Furthermore, Open Data are thought to have an important impact on more informed decision making and policy creation for multiple domains that could be addressed even through "apps" of our smart devices. Activities performed in ENERGIC OD project - "European NEtwork for Redistributing Geospatial Information to user Communities - Open Data" have led to some first conclusions on the use and re-use of geo-spatial Open Data by means of Virtual Hubs - an innovative method for brokering of geo-spatial information. This paper illustrates some main benefits of using Open Geo-spatial Data for valorisation of Cultural Heritage through a case of an innovative app called "GeoPan Atl@s". GeoPan, inserted in a dynamic policy context described, aims to provide all information valuable for a sustainable territorial development in a common platform, in particular the material that regards history and changes of the cultural landscapes in Lombardy region. Furthermore, this innovative app is used as a test-bed to facilitate and encourage a more active exchange and exploitation of open geo-spatial information for purposes of valorisation of cultural heritage and landscapes. The aim of this practice is also to achieve a more active participation of experts, VGI communities and citizens and a higher awareness of the multiple use-possibilities of historic and contemporary geo-spatial information for smarter decision making.

  1. Geo-demographic analysis of fatal motorcycle crashes

    DOT National Transportation Integrated Search

    2001-01-01

    The objective of this study is to analyze the combined motor vehicle crash data from the Fatality Analysis Reporting System (FARS) with the Claritas geo-demographic database from the lifestyle perspective to determine the appropriate media to use in ...

  2. GeoSciML version 3: A GML application for geologic information

    NASA Astrophysics Data System (ADS)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  3. New NASA SEE LEO Spacecraft Charging Design Guidelines: How to Survive in LEO Rather Than GEO

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    2003-01-01

    It has been almost two solar cycles since the 1984 GEO Guidelines of Purvis, Garrett, Whittlesey, and Stevens were published. In that time, interest in high voltage LEO systems has increased. Correct and conventional wisdom has been that LEO conditions are sufficiently different from GEO that the GEO Guidelines (and other GEO and POLAR documents produced since then) should not be used for LEO spacecraft. Because of significant recent GEO spacecraft failures that have been shown in ground testing to be likely to also occur on LEO spacecraft, the SEE program commissioned the production of the new LEO Spacecraft Charging Design Guidelines. Now available in CD-ROM form, the LEO Guidelines highlight mitigation techniques to prevent spacecraft arcing on LEO solar arrays and other systems. We compare and contrast the mitigation techniques for LEO and GEO in this paper. We also discuss the extensive bibliography included in the LEO Guidelines, so results can be found in their primary sources.

  4. New NASA SEE LEO Spacecraft Charging Design Guidelines: How to Survive in LEO Rather than GEO

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    2004-01-01

    It has been almost two solar cycles since the GEO Guidelines of Purvis et al (1984) were published. In that time, interest in high voltage LEO systems has increased. The correct and conventional wisdom has been that LEO conditions are sufficiently different from GEO that the GEO Guidelines (and other GEO and POLAR documents produced since then) should not be used for LEO spacecraft. Because of significant recent GEO spacecraft failures that have been shown in ground testing to be likely to also occur on LEO spacecraft, the SEE program commissioned the production of the new LEO Spacecraft Charging Design Guidelines (hereafter referred to as the LEO Guidelines). Now available in CD-ROM form, the LEO Guidelines highlight mitigation techniques to prevent spacecraft arcing on LEO solar arrays and other systems. We compare and contrast the mitigation techniques for LEO and GEO in this paper. We also discuss the extensive bibliography included in the LEO Guidelines, so results can be found in their primary sources.

  5. Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data.

    NASA Astrophysics Data System (ADS)

    Glaves, Helen; Graham, Colin

    2010-05-01

    Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data. Helen Glaves1 and Colin Graham2 on behalf of the Geo-Seas consortium The Geo-Seas project will create a network of twenty six European marine geoscience data centres from seventeen coastal countries including six from the Baltic Sea area. This will be achieved through the development of a pan-European infrastructure for the exchange of marine geoscientific data. Researchers will be able to locate and access harmonised and federated marine geological and geophysical datasets and data products held by the data centres through the Geo-Seas data portal, using a common data catalogue. The new infrastructure, an expansion of the exisiting SeaDataNet, will create an infrastructure covering oceanographic and marine geoscientific data. New data products and services will be developed following consultations with users on their current and future research requirements. Common data standards will be implemented across all of the data centres and other geological and geophysical organisations will be encouraged to adopt the protocols, standards and tools which are developed as part of the Geo-Seas project. Oceanographic and marine data include a wide range of variables, an important category of which are the geological and geophysical data sets. This data includes raw observational and analytical data as well as derived data products from seabed sediment samples, boreholes, geophysical surveys (seismic, gravity etc) and sidescan sonar surveys. All of which are essential in order to produce a complete interpretation of seabed geology. Despite there being a large volume of geological and geophysical data available for the marine environment it is currently very difficult to use these datasets in an integrated way between organisations due to different nomenclatures, formats, scales and coordinate systems being used within different organisations and also within different

  6. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  7. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    NASA Astrophysics Data System (ADS)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (<< 1 μrad) are required, which are the major challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  8. Photometrical research geostationary satellite "SBIRS GEO-2"

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.

    The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.

  9. ISCCP-D2like-GEO Ed3A

    Atmospheric Science Data Center

    2018-05-16

    ISCCP-D2like-GEO Ed3A Project Title:  CERES Discipline:  ... Order Data Guide Documents:  GEO Description/Abstract Detailed CERES ISCCP-D2like Product ... Data Products Catalog:  DPC_ISCCP-D2like-GEO_R5V3  (PDF) Readme Files:  Readme GEO R5-987 ...

  10. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earths Radiation Budget

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.

  11. Water vapor retrieval by LEO and GEO SAR: techniques and performance evaluation.

    NASA Astrophysics Data System (ADS)

    Fermi, Alessandro; Silvio Marzano, Frank; Monti Guarnieri, Andrea; Pierdicca, Nazzareno; Realini, Eugenio; Venuti, Giovanna

    2016-04-01

    The millimetric sensitivity of SAR interferometry has been proved fruitful in estimating water-vapor maps, that can then be processed into higher level ZWD and PWV products. In the paper, we consider two different SAR surveys: Low Earth Orbiting (LEO) SAR, like ESA Sentinel-1, and Geosynchronous Earth Orbiting SAR. The two system are complementary, where LEO coverage is world-wide, while GEO is regional. On the other hand, LEO revisit is daily-to weekly, whereas GEO provides images in minutes to hours. Finally, LEO synthetic aperture is so short, less than a second, that the water-vapor is mostly frozen, whereas in the long GEO aperture the atmospheric phase screen would introduce a total decorrelation, if not compensated for. In the paper, we first review the Differential Interferometric techniques to get differential delay maps - to be then converted into water-vapor products, and then evaluate the quality in terms of geometric resolution, sensitivity, percentage of scene coverage, revisit, by referring to L and C band system, for both LEO and GEO. Finally, we discuss an empirical model for time-space variogram, and show a preliminary validation by campaign conducted with Ground Based Radar, as a proxy of GEO-SAR, capable of continuous scanning wide areas (up to 15 km) with metric resolution.

  12. PREFACE: WMO/GEO Expert Meeting On An International Sand And Dust Storm Warning System

    NASA Astrophysics Data System (ADS)

    Pérez, C.; Baldasano, J. M.

    2009-03-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the WMO/GEO Expert Meeting on an International Sand and Dust Storm Warning System hosted by the Barcelona Supercomputing Center - Centro Nacional de Supercomputación in Barcelona (Spain) on 7-9 November 2007 (http://www.bsc.es/wmo). A sand and dust storm (SDS) is a meteorological phenomenon common in arid and semi-arid regions and arises when a gust front passes or when the wind force exceeds the threshold value where loose sand and dust are removed from the dry surface. After aeolian uptake, SDS reduce visibility to a few meters in and near source regions, and dust plumes are transported over distances as long as thousands of kilometres. Aeolian dust is unique among aerosol phenomena: (1) with the possible exception of sea-salt aerosol, it is globally the most abundant of all aerosol species, (2) it appears as the dominating component of atmospheric aerosol over large areas of the Earth, (3) it represents a serious hazard for life, health, property, environment and economy (occasionally reaching the grade of disaster or catastrophic event) and (4) its influence, impacts, complex interactions and feedbacks within the Earth System span a wide range of spatial and temporal scales. From a political and societal point of view, the concern for SDS and the need for international cooperation were reflected after a survey conducted in 2005 by the World Meteorological Organization (WMO) in which more than forty WMO Member countries expressed their interest for creating or improving capacities for SDS warning advisory and assessment. In this context, recent major advances in research - including, for example, the development and implementation of advanced observing systems, the theoretical understanding of the mechanisms responsible for sand and dust storm generation and the development of global and regional dust models - represent the basis for

  13. GEO2Enrichr: browser extension and server app to extract gene sets from GEO and analyze them for biological functions.

    PubMed

    Gundersen, Gregory W; Jones, Matthew R; Rouillard, Andrew D; Kou, Yan; Monteiro, Caroline D; Feldmann, Axel S; Hu, Kevin S; Ma'ayan, Avi

    2015-09-15

    Identification of differentially expressed genes is an important step in extracting knowledge from gene expression profiling studies. The raw expression data from microarray and other high-throughput technologies is deposited into the Gene Expression Omnibus (GEO) and served as Simple Omnibus Format in Text (SOFT) files. However, to extract and analyze differentially expressed genes from GEO requires significant computational skills. Here we introduce GEO2Enrichr, a browser extension for extracting differentially expressed gene sets from GEO and analyzing those sets with Enrichr, an independent gene set enrichment analysis tool containing over 70 000 annotated gene sets organized into 75 gene-set libraries. GEO2Enrichr adds JavaScript code to GEO web-pages; this code scrapes user selected accession numbers and metadata, and then, with one click, users can submit this information to a web-server application that downloads the SOFT files, parses, cleans and normalizes the data, identifies the differentially expressed genes, and then pipes the resulting gene lists to Enrichr for downstream functional analysis. GEO2Enrichr opens a new avenue for adding functionality to major bioinformatics resources such GEO by integrating tools and resources without the need for a plug-in architecture. Importantly, GEO2Enrichr helps researchers to quickly explore hypotheses with little technical overhead, lowering the barrier of entry for biologists by automating data processing steps needed for knowledge extraction from the major repository GEO. GEO2Enrichr is an open source tool, freely available for installation as browser extensions at the Chrome Web Store and FireFox Add-ons. Documentation and a browser independent web application can be found at http://amp.pharm.mssm.edu/g2e/. avi.maayan@mssm.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Field-based Information Technology in Geology Education: GeoPads

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; van der Pluijm, B.

    2004-12-01

    During the past two summers, we have successfully incorporated a field-based information technology component into our senior-level, field geology course (GS-440) at the University of Michigan's Camp Davis Geology Field Station, near Jackson, WY. Using GeoPads -- rugged TabletPCs equipped with electronic notebook software, GIS, GPS, and wireless networking -- we have significantly enhanced our field mapping exercises and field trips. While fully retaining the traditional approaches and advantages of field instruction, GeoPads offer important benefits in the development of students' spatial reasoning skills. GeoPads enable students to record observations and directly create geologic maps in the field, using a combination of an electronic field notebook (Microsoft OneNote) tightly integrated with pen-enabled GIS software (ArcGIS-ArcMap). Specifically, this arrangement permits students to analyze and manipulate their data in multiple contexts and representations -- while still in the field -- using both traditional 2-D map views, as well as richer 3-D contexts. Such enhancements provide students with powerful exploratory tools that aid the development of spatial reasoning skills, allowing more intuitive interactions with 2-D representations of our 3-D world. Additionally, field-based GIS mapping enables better error-detection, through immediate interaction with current observations in the context of both supporting data (e.g., topographic maps, aerial photos, magnetic surveys) and students' ongoing observations. The overall field-based IT approach also provides students with experience using tools that are increasingly relevant to their future academic or professional careers.

  15. Framework 'interstitial' oxygen in La(10)(GeO(4))(5-)(GeO(5))O(2) apatite electrolyte.

    PubMed

    Pramana, Stevin S; Klooster, Wim T; White, T J

    2007-08-01

    Oxygen conduction at low temperatures in apatites make these materials potentially useful as electrolytes in solid-oxide fuel cells, but our understanding of the defect structures enabling ion migration is incomplete. While conduction along [001] channels is dominant, considerable inter-tunnel mobility has been recognized. Using neutron powder diffraction of stoichiometric 'La(10)(GeO(4))(6)O(3)', it has been shown that this compound is more correctly described as an La(10)(GeO(4))(5-)(GeO(5))O(2) apatite, in which high concentrations of interstitial oxygen reside within the channel walls. It is suggested that these framework interstitial O atoms provide a reservoir of ions that can migrate into the conducting channels of apatite, via a mechanism of inter-tunnel oxygen diffusion that transiently converts GeO(4) tetrahedra to GeO(5) distorted trigonal bipyramids. This structural modification is consistent with known crystal chemistry and may occur generally in oxide apatites.

  16. Geo-infrastructure damage assessment, repair and mitigation strategies.

    DOT National Transportation Integrated Search

    2013-09-01

    The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge : abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in : cl...

  17. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from

  18. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume Rene Jean; Kovach, Robin M.; Keppenne, Christian L.; Akella, Santharam; Brucker, Ludovic; Dinnat, Emmanuel Phillippe

    2014-01-01

    Ocean salinity and temperature differences drive thermohaline circulations. These properties also play a key role in the ocean-atmosphere coupling. With the availability of L-band space-borne observations, it becomes possible to provide global scale sea surface salinity (SSS) distribution. This study analyzes globally the along-track (Level 2) Aquarius SSS retrievals obtained using both passive and active L-band observations. Aquarius alongtrack retrieved SSS are assimilated into the ocean data assimilation component of Version 5 of the Goddard Earth Observing System (GEOS-5) assimilation and forecast model. We present a methodology to correct the large biases and errors apparent in Version 2.0 of the Aquarius SSS retrieval algorithm and map the observed Aquarius SSS retrieval into the ocean models bulk salinity in the topmost layer. The impact of the assimilation of the corrected SSS on the salinity analysis is evaluated by comparisons with insitu salinity observations from Argo. The results show a significant reduction of the global biases and RMS of observations-minus-forecast differences at in-situ locations. The most striking results are found in the tropics and southern latitudes. Our results highlight the complementary role and problems that arise during the assimilation of salinity information from in-situ (Argo) and space-borne surface (SSS) observations

  19. Geospatial Multi-Agency Coordination (GeoMAC) wildland fire perimeters, 2008

    USGS Publications Warehouse

    Walters, Sandra P.; Schneider, Norma J.; Guthrie, John D.

    2011-01-01

    The Geospatial Multi-Agency Coordination (GeoMAC) has been collecting and storing data on wildland fire perimeters since August 2000. The dataset presented via this U.S. Geological Survey Data Series product contains the GeoMAC wildland fire perimeter data for the calendar year 2008, which are based upon input from incident intelligence sources, Global Positioning System (GPS) data, and infrared (IR) imagery. Wildland fire perimeter data are obtained from the incidents, evaluated for completeness and accuracy, and processed to reflect consistent field names and attributes. After a quality check, the perimeters are loaded to GeoMAC databases, which support the GeoMAC Web application for access by wildland fire managers and the public. The wildland fire perimeters are viewed through the Web application. The data are subsequently archived according to year and state and are made available for downloading through the Internet in shapefile and Keyhole Markup Language (KML) format. These wildland fire perimeter data are also retained for historical, planning, and research purposes. The datasets that pertain to this report can be found on the Rocky Mountain Geographic Science Center HTTP site at http://rmgsc.cr.usgs.gov/outgoing/GeoMAC/historic_fire_data/. The links are also provided on the sidebar.

  20. An Integrated Global Atmospheric Composition Observing System: Progress and Impediments

    NASA Astrophysics Data System (ADS)

    Keating, T. J.

    2016-12-01

    In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.

  1. Preliminary Observing System Simulation Experiments for Doppler Wind Lidars Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kemp, E.; Jacob, J.; Rosenberg, R.; Jusem, J. C.; Emmitt, G. D.; Wood, S.; Greco, L. P.; Riishojgaard, L. P.; Masutani, M.; Ma, Z.; hide

    2013-01-01

    NASA Goddard Space Flight Center's Software Systems Support Office (SSSO) is participating in a multi-agency study of the impact of assimilating Doppler wind lidar observations on numerical weather prediction. Funded by NASA's Earth Science Technology Office, SSSO has worked with Simpson Weather Associates to produce time series of synthetic lidar observations mimicking the OAWL and WISSCR lidar instruments deployed on the International Space Station. In addition, SSSO has worked to assimilate a portion of these observations those drawn from the NASA fvGCM Nature Run into the NASA GEOS-DAS global weather prediction system in a series of Observing System Simulation Experiments (OSSEs). These OSSEs will complement parallel OSSEs prepared by the Joint Center for Satellite Data Assimilation and by NOAA's Atlantic Oceanographic and Meteorological Laboratory. In this talk, we will describe our procedure and provide available OSSE results.

  2. Water Cycle Extremes: from Observations to Decisions

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.; Unninayar, S.; Berod, D.

    2015-12-01

    Extremes in the water cycle (droughts and floods) pose major challenges for water resource managers and emergency services. These challenges arise from observational and prediction systems, advisory services, impact reduction strategies, and cleanup and recovery operations. The Group on Earth Observations (GEO) through its Water Strategy ("GEOSS Water Strategy: from observations to decisions") is seeking to provide systems that will enable its members to more effectively meet their information needs prior to and during an extreme event. This presentation reviews the wide range of impacts that arise from extremes in the water cycle and the types of data and information needed to plan for and respond to these extreme events. It identifies the capabilities and limitations of current observational and analysis systems in defining the scale, timing, intensity and impacts of water cycle extremes and in directing society's response to them. This summary represents an early preliminary assessment of the global and regional information needs of water resource managers and begins to outline a strategy within GEO for using Earth Observations and ancillary information to address these needs.

  3. Fly-ash geo-polymer foamed concrete

    NASA Astrophysics Data System (ADS)

    Kargin, Aleksey; Baev, Vladimir; Mashkin, Nikolay

    2017-01-01

    In recent years, the interest of researchrs in using fly-ash as a raw material for the geo-polymer synthesis is increasing. Kuzbass region (in Russia) has a large amount of ash wastes generated, which defined the relevace of the study performed in this paper. Results of investigating load-bearing capacity of structural insulating material produced by geo-polymerization of fly-ash of Kemerovo hydro-electric power plant with the addition of complex activator are described in the paper. Hydrogen peroxide solution was used as the foaming agent. The activation time, the temperature of isothermal holding and hardening in normal conditions for all samples were constant. The compressive strength and the mean density of geo-polymer foamed concrete were determined. The influence of the material composition on its properties was revealed. It is found that of the geo-polymer foamed concrete with the optimum composition has hardness of 1,1-3,5 MPa at the density of 400 to 900 kg/m3. Thus, the production of the fly-ash geo-polymer concretes and mortars is feasible, justified and promising.

  4. Why Geo-Humanities

    NASA Astrophysics Data System (ADS)

    Graells, Robert Casals i.; Sibilla, Anna; Bohle, Martin

    2016-04-01

    Anthropogenic global change is a composite process. It consists of societal processes (in the 'noosphere') and natural processes (in the 'bio-geosphere'). The 'noosphere' is the ensemble of social, cultural or political insights ('shared subjective mental concepts') of people. Understanding the composite of societal and natural processes ('human geo-biosphere intersections'), which shapes the features of anthropogenic global change, would benefit from a description that draws equally on natural sciences, social sciences and humanities. To that end it is suggested to develop a concept of 'geo-humanities': This essay presents some aspects of its scope, discussing "knowledge that is to manage", "intentions that are to shape", "choices that are to justify" and "complexity that is to handle". Managing knowledge: That people understand anthropogenic global change requires their insights into how 'human geosphere intersections' function. Insights are formed ('processed') in the noosphere by means of interactions between people. Understanding how 'human geosphere intersections' functions combines scientific, engineering and economic studies with studies of the dynamics of the noosphere. Shaping intentions: During the last century anthropogenic global change developed as the collateral outcome of humankind's accumulated actions. It is caused by the number of people, the patterns of their consumption of resources, and the alterations of their environments. Nowadays, anthropogenic global chance is either an intentional negligence or a conscious act. Justifying choices: Humanity has alternatives how to alter Earth at planetary scale consciously. For example, there is a choice to alter the geo-biosphere or to adjust the noosphere. Whatever the choice, it will depend on people's world-views, cultures and preferences. Thus beyond issues whether science and technology are 'sound' overarching societal issues are to tackle, such as: (i) how to appropriate and distribute natural

  5. Knowledge-Based Instructional Gaming: GEO.

    ERIC Educational Resources Information Center

    Duchastel, Philip

    1989-01-01

    Describes the design and development of an instructional game, GEO, in which the user learns elements of Canadian geography. The use of knowledge-based artificial intelligence techniques is discussed, the use of HyperCard in the design of GEO is explained, and future directions are suggested. (15 references) (Author/LRW)

  6. The Case for GEO Hosted SSA Payloads

    NASA Astrophysics Data System (ADS)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  7. GeoWorks Considered. Part I: A GUI for the Rest of Us. Part II: Doing Windows Right.

    ERIC Educational Resources Information Center

    Flanders, Bruce; Lewis, Paul

    1991-01-01

    Describes GeoWorks, a new graphical user interface (GUI) that works on older, less powerful IBM PCs and compatibles. The PC/GEOS (PC/Graphical Environment Operating System) is explained, user friendliness is emphasized, comparisons are made to Microsoft Windows, and GeoWorks applications software is described. (LRW)

  8. A Simple Model for the Orbital Debris Environment in GEO

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.

    The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic

  9. Automatic Extraction of Small Spatial Plots from Geo-Registered UAS Imagery

    NASA Astrophysics Data System (ADS)

    Cherkauer, Keith; Hearst, Anthony

    2015-04-01

    Accurate extraction of spatial plots from high-resolution imagery acquired by Unmanned Aircraft Systems (UAS), is a prerequisite for accurate assessment of experimental plots in many geoscience fields. If the imagery is correctly geo-registered, then it may be possible to accurately extract plots from the imagery based on their map coordinates. To test this approach, a UAS was used to acquire visual imagery of 5 ha of soybean fields containing 6.0 m2 plots in a complex planting scheme. Sixteen artificial targets were setup in the fields before flights and different spatial configurations of 0 to 6 targets were used as Ground Control Points (GCPs) for geo-registration, resulting in a total of 175 geo-registered image mosaics with a broad range of geo-registration accuracies. Geo-registration accuracy was quantified based on the horizontal Root Mean Squared Error (RMSE) of targets used as checkpoints. Twenty test plots were extracted from the geo-registered imagery. Plot extraction accuracy was quantified based on the percentage of the desired plot area that was extracted. It was found that using 4 GCPs along the perimeter of the field minimized the horizontal RMSE and enabled a plot extraction accuracy of at least 70%, with a mean plot extraction accuracy of 92%. The methods developed are suitable for work in many fields where replicates across time and space are necessary to quantify variability.

  10. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  11. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model

    NASA Astrophysics Data System (ADS)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.

    2012-04-01

    GeoSciML version 3.0 (http://www.geosciml.org), released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical

  12. Electric Propulsion Performance from Geo-transfer to Geosynchronous Orbits

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Carpenter, Christian B.

    2007-01-01

    For near-Earth application, solar electric propulsion advocates have focused on Low Earth Orbit (LEO) to Geosynchronous (GEO) low-thrust transfers because of the significant improvement in capability over chemical alternatives. While the performance gain attained from starting with a lower orbit is large, there are also increased transfer times and radiation exposure risk that has hindered the commercial advocacy for electric propulsion stages. An incremental step towards electric propulsion stages is the use of integrated solar electric propulsion systems (SEPS) for GTO to GEO transfer. Thorough analyses of electric propulsion systems options and performance are presented. Results are based on existing or near-term capabilities of Arcjets, Hall thrusters, and Gridded Ion engines. Parametric analyses based on "rubber" thruster and launch site metrics are also provided.

  13. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  14. INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...

  15. Encoding of Geological knowledge in the GeoPiemonte Map Data Base

    NASA Astrophysics Data System (ADS)

    Piana, Fabrizio; Lombardo, Vincenzo; Mimmo, Dario; Barale, Luca; Irace, Andrea; Mulazzano, Elia

    2017-04-01

    In modern digital geological maps and geo-database, namely those devoted to interactive WebGIS services, there is the need to make explicit the geological assumptions in the process of the design and compilation of the Map Geodatabase. The Geodatabase of the Piemonte Geological Map, which consists of several thousands of Geologic Units and Geologic Structures, was designed in a way suitable for linking the knowledge of the geological domain at hand to more general levels of knowledge, represented in existing Earth Sciences ontologies and in a domain ontology (OntoGeonous), specifically designed for the project, though with a wide applicability in mind. The Geologic Units and Geologic Structures of the GeoPiemonte Map have been spatially correlated through the whole region, referring to a non-formal hierarchical scheme, which gives the parental relations between several orders of Geologic Units, putting them in relations with some main Geologic Events. The scheme reports the subdivisions we did on the Alps-Apennines orogenic belt (which constitutes the Piemonte geological framework) on which the architecture of the GeoDB relied. This contribution describes how the two different knowledge levels (specific domain vs. general knowledge) are assimilated within the GeoPiemonte informative system, providing relations between the contents of the geodatabase and the encoded concepts of the reference ontologies. Initiatives such as GeoScience Markup Language (GeoSciML 4.01, 2016 (1) and INSPIRE "Data Specification on Geology" (an operative simplification of GeoSciML, last version is 3.0, 2013) (2), as well as the recent terminological shepherding of the Geoscience Terminology Working Group (GTWG), provided us the authoritative standard geological source for knowledge encoding. Consistency and interoperability of geological data were thus sought, by classifying geologic features in an ontology-driven Data Model, while objects were described using GeoSciML controlled

  16. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  17. A Technical Survey on Optimization of Processing Geo Distributed Data

    NASA Astrophysics Data System (ADS)

    Naga Malleswari, T. Y. J.; Ushasukhanya, S.; Nithyakalyani, A.; Girija, S.

    2018-04-01

    With growing cloud services and technology, there is growth in some geographically distributed data centers to store large amounts of data. Analysis of geo-distributed data is required in various services for data processing, storage of essential information, etc., processing this geo-distributed data and performing analytics on this data is a challenging task. The distributed data processing is accompanied by issues in storage, computation and communication. The key issues to be dealt with are time efficiency, cost minimization, utility maximization. This paper describes various optimization methods like end-to-end multiphase, G-MR, etc., using the techniques like Map-Reduce, CDS (Community Detection based Scheduling), ROUT, Workload-Aware Scheduling, SAGE, AMP (Ant Colony Optimization) to handle these issues. In this paper various optimization methods and techniques used are analyzed. It has been observed that end-to end multiphase achieves time efficiency; Cost minimization concentrates to achieve Quality of Service, Computation and reduction of Communication cost. SAGE achieves performance improvisation in processing geo-distributed data sets.

  18. Advancing the Vision of the Global Earth Observation System of Systems: a European Perspective

    NASA Astrophysics Data System (ADS)

    Edwards, A. W.; Craglia, M.; Nativi, S.

    2012-12-01

    The purpose of the Global Earth Observation System of Systems (GEOSS), a network of Earth observation and information systems, contributed on a voluntary basis by Members and Participating Organisations of the intergovernmental Group on Earth Observations (GEO), is to achieve comprehensive, coordinated and sustained observations of the Earth system, in order to improve monitoring of the state of the Earth, increase understanding of Earth processes, and enhance prediction of the behaviour of the Earth system. Such a global research effort requires an integrated multi-disciplinary effort that is underpinned by a cyber-infrastructure which is able to discover and access vast quantities of data across heterogeneous information systems and many disciplines. As GEO develops and the implementation of the GEOSS gathers pace, it is becoming common practice for groups to be organised at national, regional and international level to address critical issues. In many cases these groups evolve to become "communities", organising themselves to carry out tasks of interest to that community. In most cases, communities develop their own "community portal" to provide a focal point on the web for their activities. The data and information held by the members of a specific community can normally be discovered via their particular "community portal". There is now a clear recognition that the many thematic community initiatives, each with their own information system and portal, need to be fully connected into the overall GEOSS architecture. With the introduction of a brokering capability this becomes possible. The value of the brokering approach has been demonstrated within the European Union funded EuroGEOSS research project. The EuroGEOSS brokering capability has now been incorporated into the GEOSS information system, (known as the GEOSS Common Infrastructure, or GCI) and renamed the GEOSS Discovery and Access Broker. In a matter of a few months the GEOSS DAB has enabled the GEOSS to

  19. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events.

    PubMed

    Faruque, Fazlay S; Li, Hui; Williams, Worth B; Waller, Lance A; Brackin, Bruce T; Zhang, Lei; Grimes, Kim A; Finley, Richard W

    2014-12-01

    Air pollutants, such as particulate matter with a diameter ≤2.5 microns (PM2.5) and ozone (O3), are known to exacerbate asthma and other respiratory diseases. An integrated surveillance system that tracks such air pollutants and associated disease incidence can assist in risk assessment, healthcare preparedness and public awareness. However, the implementation of such an integrated environmental health surveillance system is a challenge due to the disparate sources of many types of data and the implementation becomes even more complicated for a spatial and real-time system due to lack of standardised technological components and data incompatibility. In addition, accessing and utilising health data that are considered as Protected Health Information (PHI) require maintaining stringent protocols, which have to be supported by the system. This paper aims to illustrate the development of a spatial surveillance system (GeoMedStat) that is capable of tracking daily environmental pollutants along with both daily and historical patient encounter data. It utilises satellite data and the groundmonitor data from the US National Aeronautics and Space Administration (NASA) and the US Environemental Protection Agenecy (EPA), rspectively as inputs estimating air pollutants and is linked to hospital information systems for accessing chief complaints and disease classification codes. The components, developmental methods, functionality of GeoMedStat and its use as a real-time environmental health surveillance system for asthma and other respiratory syndromes in connection with with PM2.5 and ozone are described. It is expected that the framework presented will serve as an example to others developing real-time spatial surveillance systems for pollutants and hospital visits.

  20. GEOS-5 During ORACLES: Status Update

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Longo, Karla

    2017-01-01

    In this talk we summarize the GEOS-5 capabilities to be deployed during the ORACLES 2016 Campaign. We describe model configuration, data products and web services available. We also discuss the measurement and flight requirements for the GEOS-5 Team.

  1. Publicly Available Geosynchronous (GEO) Space Object Catalog for Future Space Situational Awareness (SSA) Studies

    NASA Astrophysics Data System (ADS)

    Koblick, D. C.; Shankar, P.; Xu, S.

    Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.

  2. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  3. Documentation of Heritage Structures Through Geo-Crowdsourcing and Web-Mapping

    NASA Astrophysics Data System (ADS)

    Dhonju, H. K.; Xiao, W.; Shakya, B.; Mills, J. P.; Sarhosis, V.

    2017-09-01

    Heritage documentation has become increasingly urgent due to both natural impacts and human influences. The documentation of countless heritage sites around the globe is a massive project that requires significant amounts of financial and labour resources. With the concepts of volunteered geographic information (VGI) and citizen science, heritage data such as digital photographs can be collected through online crowd participation. Whilst photographs are not strictly geographic data, they can be geo-tagged by the participants. They can also be automatically geo-referenced into a global coordinate system if collected via mobile phones which are now ubiquitous. With the assistance of web-mapping, an online geo-crowdsourcing platform has been developed to collect and display heritage structure photographs. Details of platform development are presented in this paper. The prototype is demonstrated with several heritage examples. Potential applications and advancements are discussed.

  4. Geosynchronous SAR for Terrain & Atmosphere with short Revisit (GeoSTARe)

    NASA Astrophysics Data System (ADS)

    Monti-Guarnieri, Andrea; Recchia, Andrea; Rocca, Fabio; Bombaci, Ornella; Germani, Chiara; Broquetas, Antoni; Wadge, Geoff; Hobbs, Steve

    2016-08-01

    GeoSTARe would be a mission combining the continuous view capabilities from geostationary orbits of super-continental areas with the all-day, all-weather imaging capabilities of Synthetic Aperture Radar. It would complement Copernicus Sentinel-1 bringing the repeat time from days down to hours.In that, it would provide novel and unique observations. The well proven potentials of Radar in sensing roughness, deformations, and moisture, combined with the short time to get any image, from minutes to an hour, and the immediate data download and exploitation (thanks to the geostationary orbit) makes GeoSTARe a game changer in those fields where hourly-to-daily monitoring is a must.

  5. Dynamic sea surface topography from GEOS-3 altimetry - Determination of some dominant parameters

    NASA Technical Reports Server (NTRS)

    Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.

    1979-01-01

    The second, third and fourth degree zonal harmonics of the quasi-stationary dynamic sea surface topography can be recovered from the GEOS-3 altimetry despite the adverse levels of noise indicated by the crossover discrepancies generated from the best orbits available at the end of 1977 and the GEOS-3 altimetry. Techniques for modelling the global sea surface topography are discussed along with methods for signal recovery in the presence of significant levels of noise. The analysis also provides a means of defining the geocentricity of the system of reference used in preparing the GEOS-3 ephemeris.

  6. Constraints on Eurasian ship NOx emissions using OMI NO2 observations and GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Vinken, Geert C. M.; Boersma, Folkert; van Donkelaar, Aaron; Zhang, Lin

    2013-04-01

    Ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Ships burn low-grade marine heavy fuel due to the limited regulations that exist for the maritime sector in international waters. Previous studies showed that global ship NOx emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NOx emissions), with most emissions close to land and affecting air quality in densely populated coastal regions. Bottom-up inventories depend on the extrapolation of a relatively small number of measurements that are often unable to capture annual emission changes and can suffer from large uncertainties. Satellites provide long-term, high-resolution retrievals that can be used to improve emission estimates. In this study we provide top-down constraints on ship NOx emissions in major European ship routes, using observed NO2 columns from the Ozone Monitoring Instrument (OMI) and NO2 columns simulated with the nested (0.5°×0.67°) version of the GEOS-Chem chemistry transport model. We use a plume-in-grid treatment of ship NOx emissions to account for in-plume chemistry in our model. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO2 profiles as a priori. We find evidence that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km and biased high by a factor of 4 as compared to the most recent (EMEP) ship emission inventory. Better agreement is found over the shipping lane between Spain and the English Channel. We extend our approach and also provide constraints for major ship routes in the Red Sea and Indian Ocean. Using the full benefit of the long-term retrieval record of OMI, we present a new Eurasian ship emission inventory for the years 2005 to 2010, based on the EMEP and AMVER-ICOADS inventories, and top-down constraints from the satellite retrievals. Our work shows that satellite retrievals can

  7. Comparison of Observation Impacts in Two Forecast Systems using Adjoint Methods

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Langland, Rolf; Todling, Ricardo

    2009-01-01

    An experiment is being conducted to compare directly the impact of all assimilated observations on short-range forecast errors in different operational forecast systems. We use the adjoint-based method developed by Langland and Baker (2004), which allows these impacts to be efficiently calculated. This presentation describes preliminary results for a "baseline" set of observations, including both satellite radiances and conventional observations, used by the Navy/NOGAPS and NASA/GEOS-5 forecast systems for the month of January 2007. In each system, about 65% of the total reduction in 24-h forecast error is provided by satellite observations, although the impact of rawinsonde, aircraft, land, and ship-based observations remains significant. Only a small majority (50- 55%) of all observations assimilated improves the forecast, while the rest degrade it. It is found that most of the total forecast error reduction comes from observations with moderate-size innovations providing small to moderate impacts, not from outliers with very large positive or negative innovations. In a global context, the relative impacts of the major observation types are fairly similar in each system, although regional differences in observation impact can be significant. Of particular interest is the fact that while satellite radiances have a large positive impact overall, they degrade the forecast in certain locations common to both systems, especially over land and ice surfaces. Ongoing comparisons of this type, with results expected from other operational centers, should lead to more robust conclusions about the impacts of the various components of the observing system as well as about the strengths and weaknesses of the methodologies used to assimilate them.

  8. Making the Case for GeoSTEM Education

    NASA Astrophysics Data System (ADS)

    Moore, John

    2014-05-01

    As the national Science-Technology-Engineering-Mathematics (STEM) education policy makers in the United States work through reports, findings, forums, workshops, etc., there emerges an opportunity to present the strong case of why and how the role of the Geosciences community can and should be at the forefront of these discussions. Currently existing within the Geosciences scientific and educational community are policies, frameworks, guidance, innovative technology, and unique interdisciplinary Earth System data sets that will establish a pathway to the role of the Geosciences in the classroom, in the 21st Century workforce, and in society. The question may be raised, "Why GeoSTEM?" But the real question should be … "Why not?" Over the past several years the Geosciences have dominated the news cycle in the United States. As we face future natural and human generated hazards and disasters such as the Gulf Oil Spill, not to mention issues confronting society such as Climate Change, Sustainability and Energy, the Geosciences have a critical role in the public awareness, safety, and national security of our nation. In the past year we have experienced volcanic eruptions, earth¬quakes, tsunamis, hurricanes, tornadoes, wildfires, severe drought and flooding, outbreaks of severe weather. Planet Earth will be monitored, observed, and studied as an Earth System, in real or near real time. Policy-makers, decision-makers, scientists, teachers, students, and citizens will not only participate in the process, but come to use such information and data routinely in their daily lives. 3-D data visualizations, virtual field trips, and interactive imagery from space all will contribute to the doing of real science in real time. Policy-Makers have linked Science, Technology, Engineering, and Mathematics (STEM) Education to United States' future economy and national security. The GeoSTEM community can deliver added value through leveraging current and future Geoscience

  9. The GeoEye Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Dial, Gene; Cole, Aaron; Lutes, James; McKune, John; Martinez, Mike; Rao, R. S.; Taylor, Martin

    2007-01-01

    The GeoEye Constellation consists of: a) IKONOS and OrbView-3 for high resolution; b) GeoEye with higher resolution 1Q2007; c) RESOUCESAT-1 for global crop assessment; d) OrbView-2 for ocean research and fish. IKONOS performance in 2005 included stable image quality, radiometry and geometric accuracy. reliability is 80% to 2008. Demonstrated capacity for high-volume, quick-response collection and production.

  10. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  11. Analysis of the 2015-16 El Niño Event Using NASA's GEOS Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Pawson, S.; Lim, Y. K.; Kovach, R. M.; Vernieres, G.

    2016-12-01

    The strong El Niño event that occurred in 2015/2016 is analyzed using atmospheric and oceanic analyses produced using the Goddard Earth Observing System (GEOS) systems. A theme of the work is to compare and contrast this event with two other strong El Niños, in 1982/1983 and 1997/1998, that are included in the satellite-data era of the MERRA and MERRA-2 reanalyses produced using the GEOS system. Distribution of the maximum anomalies of tropical sea-surface temperature (SST), precipitation, Walker circulation, and cloud fraction indicate that 2015/2016 is a Central Pacific (CP) El Niño. The event had an early onset compared to the 1997/1998 El Niño, with extremely strong warming and precipitation over the Central Pacific, and was the strongest in terms of central Pacific SST anomalies. The large region of warm temperature anomalies over most of the Pacific and Indian Ocean in the 2015-2016 event were due to the accumulative impacts of the El Niño event along with a positive phase of the Pacific Decadal Oscillation and a decadal warming trend over the western Pacific, Maritime Continent, and Indian Ocean. The relatively weak development of the 2015/2016 El Niño event over the Eastern Pacific was likely due to weaker westerly wind bursts and Madden-Julian Oscillation during spring, which in 1997/1998 served to drive the warm anomalies further East towards South America, making that event the strongest Eastern Pacific El Niño (in the recent data record). This is reflected in the 2015/2016 event having a shallower thermocline over the Eastern Pacific, with a weaker zonal gradient of sub-surface water temperatures along the equatorial Pacific. The major extra-tropical teleconnections associated with the El Niño in 2015/2016 are at least comparable to those in the 1982/1983 and 1997/1998 El Niño events. Specifically, the Pacific North American (PNA) teleconnection in 2015/2016 is the strongest of these three El Niño events, leading to larger extra

  12. Optical Studies of Orbital Debris at GEO Using Two Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Abercromby, K. J.; Rodriquez,H. M.; Barker, E.

    2008-01-01

    Beginning in March, 2007, optical observations of debris at geosynchronous orbit (GEO) were commenced using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan's 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope's field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected on MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope then follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. Objects fainter than 15th are largely uncataloged and have a completely different angular rate distribution than brighter objects. Combining the information obtained for both faint and bright objects yields a more complete picture of the debris environment rather than just concentrating on the faint debris. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. This paper reports on results from two 14 night runs with both telescopes: in March and November 2007: (1) A significant fraction of objects fainter than

  13. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doveton, John H.; Watney, W. Lynn

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  14. GeoInquiries: Addressing a Grand Challenge for Teaching with GIS in Schools

    NASA Astrophysics Data System (ADS)

    DiBiase, D.; Baker, T.

    2016-12-01

    According to the National Research Council (2006), geographic information systems (GIS) is a powerful tool for expanding students' abilities to think spatially, a critical skill for future STEM professionals. However, educators in mainstream subjects in U.S. education have struggled for decades to use GIS effectively in classrooms. GeoInquiries are no cost, standards-based (NGSS or AP), Creative Commons-licensed instructional activities that guide inquiry around map-based concepts found in key subjects like Earth and environmental science. Web maps developed for GeoInquiries expand upon printed maps in leading textbooks by taking advantage of 21st GIS capabilities. GeoInquiry collections consist of 15 activities, each chosen to offer a map-based activity every few weeks throughout the school year. GeoInquiries use a common inquiry instructional framework, learned by many educators during their teacher preparation coursework. GeoInquiries are instructionally flexible - acting as much like building blocks for crafting custom activities as finished instructional materials. Over a half million geoinquiries will be accessed in the next twelve months - serving an anticipated 15 million students. After a generation of outreach to the educators, GIS is finally finding its way the mainstream.

  15. Quantifying the Aerosol Semi-Direct Effect in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Randles, Cynthia A.; Colarco, Peter R.; daSilva, Arlindo

    2011-01-01

    Aerosols such as black carbon, dust, and some organic carbon species both scatter and absorb incoming solar radiation. This direct aerosol radiative forcing (DARF) redistributes solar energy both by cooling the surface and warming the atmosphere. As a result, these aerosols affect atmospheric stability and cloud cover (the semi-direct effect, or SDE). Furthermore, in regions with persistent high loadings of absorbing aerosols (e.g. Asia), regional circulation patterns may be altered, potentially resulting in changes in precipitation patterns. Here we investigate aerosol-climate coupling using the NASA Goddard Earth Observing System model version 5 (GEOS-5) atmospheric general circulation model (AGCM), in which we have implemented an online version of the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) model. GOCART includes representations of the sources, sinks, and chemical transformation of externally mixed dust, sea salt, sulfate, and carbonaceous aerosols. We examine a series of free-running ensemble climate simulations of the present-day period (2000-2009) forced by observed sea surface temperatures to determine the impact of aerosols on the model climate. The SDE and response of each simulation is determined by differencing with respect to the control simulation (no aerosol forcing). In a free-running model, any estimate of the SDE includes changes in clouds due both to atmospheric heating from aerosols and changes in circulation. To try and quantify the SDE without these circulation changes we then examine the DARF and SDE in GEOS-5 with prescribed meteorological analyses introduced by the MERRA analysis. By doing so, we are able to examine changes in model clouds that occur on shorter scales (six hours). In the GEOS-5 data assimilation system (DAS), the analysis is defined as the best estimate of the atmospheric state at any given time, and it is determined by optimally combining a first-guess short-term GCM forecast with all available

  16. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  17. Forward Modeling of Atmospheric Carbon Dioxide in GEOS-5: Uncertainties Related to Surface Fluxes and Sub-Grid Transport

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris; hide

    2011-01-01

    Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"

  18. Vision-Based Geo-Monitoring - A New Approach for an Automated System

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Reiterer, A.; Wasmeier, P.; Rieke-Zapp, D.; Wunderlich, T.

    2012-04-01

    The necessity for monitoring geo-risk areas such as rock slides is growing due to the increasing probability of such events caused by environmental change. Life with threat becomes to a calculable risk by geodetic deformation monitoring. An in-depth monitoring concept with modern measurement technologies allows the estimation of the hazard potential and the prediction of life-threatening situations. The movements can be monitored by sensors, placed in the unstable slope area. In most cases, it is necessary to enter the regions at risk in order to place the sensors and maintain them. Using long-range monitoring systems (e.g. terrestrial laser scanners, total stations, ground based synthetic aperture radar) allows avoiding this risk. To close the gap between the existing low-resolution, medium-accuracy sensors and conventional (co-operative target-based) surveying methods, image-assisted total stations (IATS) are a suggestive solution. IATS offer the user (e.g. metrology expert) an image capturing system (CCD/CMOS camera) in addition to 3D point measurements. The images of the telescope's visual field are projected onto the camera's chip. With appropriate calibration, these images are accurately geo-referenced and oriented since the horizontal and vertical angles of rotation are continuously recorded. The oriented images can directly be used for direction measurements with no need for object control points or further photogrammetric orientation processes. IATS are able to provide high density deformation fields with high accuracy (down to mm range), in all three coordinate directions. Tests have shown that with suitable image processing measurements a precision of 0.05 pixel ± 0.04·σ is possible (which corresponds to 0.03 mgon ± 0.04·σ). These results have to be seen under the consideration that such measurements are image-based only. For measuring in 3D object space the precision of pointing has to be taken into account. IATS can be used in two different ways

  19. Geo-mapping of caries risk in children and adolescents - a novel approach for allocation of preventive care.

    PubMed

    Strömberg, Ulf; Magnusson, Kerstin; Holmén, Anders; Twetman, Svante

    2011-09-26

    Dental caries in children is unevenly distributed within populations with a higher burden in low socio-economy groups. Thus, tools are needed to allocate resources and establish evidence-based programs that meet the needs of those at risk. The aim of the study was to apply a novel concept for presenting epidemiological data based on caries risk in the region of Halland in southwest Sweden, using geo-maps. The study population consisted of 46,536 individuals between 3-19 years of age (75% of the eligible population) from whom caries data were reported in 2010. Reported dmfs/DMFS>0 for an individual was considered as the primary caries outcome. Each study individual was geo-coded with respect to his/her residence parish. A parish-specific relative risk (RR) was calculated as the observed-to-expected ratio, where the expected number of individuals with dmfs/DMFS>0 was obtained from the age- and sex-specific caries (dmfs/DMFS>0) rates for the total study population. Smoothed caries risk geo-maps, along with corresponding statistical certainty geo-maps, were produced by using the free software Rapid Inquiry Facility and the ESRI® ArcGIS system. The geo-maps of preschool children (3-6 years), schoolchildren (7-11 years) and adolescents (12-19 years) displayed obvious geographical variations in caries risk, albeit most marked among the preschoolers. Among the preschool children the smoothed relative risk (SmRR) varied from 0.33 to 2.37 in different parishes. With increasing age, the contrasts seemed to diminish although the gross geographical risk pattern persisted also among the adolescents (SmRR range 0.75-1.20). Geo-maps based on caries risk may provide a novel option to allocate resources and tailor supportive and preventive measures within regions with sections of the population with relatively high caries rates.

  20. Designing GeoGebra Applets to Maximize Student Engagement

    ERIC Educational Resources Information Center

    Paoletti, Teo; Monahan, Ceire; Vishnubhotla, Madhavi

    2017-01-01

    GeoGebra is a free tool that has the potential to change both how and what is taught in mathematics. GeoGebra allows teachers and students to explore various mathematical ideas either through the full applet (https://www.geogebra.org/graphing) or by sharing applets via GeoGebra's Materials site (https://www.geogebra. org/materials/). It has many…

  1. Facilitating Geoscience Education in Higher-Education Institutes Worldwide With GeoBrain -- An Online Learning and Research Environment for Classroom Innovations

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2006-12-01

    Higher education in geosciences has imminent goals to prepare students with modern geoscience knowledge and skills to meet the increased demand on trained professionals for working on the big challenges faced by geoscience disciplines, such as the global environmental change, world energy supplies, sustainable development, etc. In order to reach the goal, the geoscience education in post-secondary institutes worldwide has to attract and retain enough students and to train students with knowledge and skills needed by the society. The classroom innovations that can encourage and support student investigations and research activities are key motivation mechanisms that help to reach the goal. This presentation describes the use of GeoBrain, an innovative geospatial knowledge system, as a powerful educating tool for motivating and facilitating innovative undergraduate and graduate teaching and research in geosciences. Developed in a NASA funded project, the GeoBrain system has adopted and implemented the latest Web services and knowledge management technologies for providing innovative methods in publishing, accessing, visualizing, and analyzing geospatial data and in building/sharing geoscience knowledge. It provides a data-rich online learning and research environment enabled by wealthy data and information available at NASA Earth Observing System (EOS) Data and Information System (EOSDIS). Students, faculty members, and researchers from institutes worldwide can easily access, analyze, and model with the huge amount of NASA EOS data just like they possess such vast resources locally at their desktops. The online environment provided by GeoBrain has brought significant positive changes to geosciences education in higher-education institutes because of its new concepts and technologies, motivation mechanisms, free exploration resources, and advanced geo- processing capabilities. With the system, the used-to-be very challenging or even impossible teaching tasks has

  2. GeoLab: A Geological Workstation for Future Missions

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  3. Using GeoMapApp in the Classroom

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2017-12-01

    The GeoMapApp tool has been updated with enhanced functionality that is useful in the classroom. Hosted as a service of the IEDA Facility at Columbia University, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. It includes earthquake and volcano data, geological maps, plate tectonic data sets, and a high-resolution topography/bathymetry base map. Users can also import and analyse their own data files. Layering and transparency capabilities allow users to compare multiple data sets at once. The GeoMapApp interface presents data in its proper geospatial context, helping students more easily gain insight and understanding from the data. Simple tools for data manipulation allow students to analyse the data in different ways such as generating profiles and producing visualisations for reports. The new Save Session capability is designed to assist in the classroom: The educator saves a pre-loaded state of GeoMapApp. When shared with the class, the saved session file allows students to open GeoMapApp with exactly the same data sets loaded and the same display parameters chosen thus freeing up valuable time in which students can explore the data. In this presentation, activities related to plate tectonics will be highlighted. One activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Educators report that using GeoMapApp in the classroom lowers the barriers to data accessibility for students; fosters an increased sense of data "ownership" - GeoMapApp presents the same data in the same tool used by researchers; allows engagement with authentic geoscience data; promotes STEM skills and

  4. A bibliometric and visual analysis of global geo-ontology research

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Yu; Zhu, Haihong; Ying, Shen; Luo, Qinyao; Luo, Heng; Kuai, Xi; Xia, Hui; Shen, Hang

    2017-02-01

    In this paper, the results of a bibliometric and visual analysis of geo-ontology research articles collected from the Web of Science (WOS) database between 1999 and 2014 are presented. The numbers of national institutions and published papers are visualized and a global research heat map is drawn, illustrating an overview of global geo-ontology research. In addition, we present a chord diagram of countries and perform a visual cluster analysis of a knowledge co-citation network of references, disclosing potential academic communities and identifying key points, main research areas, and future research trends. The International Journal of Geographical Information Science, Progress in Human Geography, and Computers & Geosciences are the most active journals. The USA makes the largest contributions to geo-ontology research by virtue of its highest numbers of independent and collaborative papers, and its dominance was also confirmed in the country chord diagram. The majority of institutions are in the USA, Western Europe, and Eastern Asia. Wuhan University, University of Munster, and the Chinese Academy of Sciences are notable geo-ontology institutions. Keywords such as "Semantic Web," "GIS," and "space" have attracted a great deal of attention. "Semantic granularity in ontology-driven geographic information systems, "Ontologies in support of activities in geographical space" and "A translation approach to portable ontology specifications" have the highest cited centrality. Geographical space, computer-human interaction, and ontology cognition are the three main research areas of geo-ontology. The semantic mismatch between the producers and users of ontology data as well as error propagation in interdisciplinary and cross-linguistic data reuse needs to be solved. In addition, the development of geo-ontology modeling primitives based on OWL (Web Ontology Language)and finding methods to automatically rework data in Semantic Web are needed. Furthermore, the topological

  5. Building Climate Service Capacities in Eastern Africa with CHIRP and GeoCLIM

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Magadzire, T.; Funk, C. C.; Verdin, J. P.; Peterson, P.; Landsfeld, M.; Husak, G. J.

    2013-12-01

    In developing countries there is a great need for capacity building within national and regional climate agencies to develop and analyze historical and real time gridded rainfall datasets. These datasets are of key importance for monitoring climate and agricultural food production at decadal and seasonal time scales, and for informing local decision makers. The Famine Early Warning Systems Network (FEWS NET), working together with the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) of the University of California Santa Barbara, has developed an integrated set of data products and tools to support the development of African climate services. The core data product is the Climate Hazards Group Infrared Precipitation (CHIRP) dataset. The CHIRP is a new rainfall dataset resulting from the blending of satellite estimated precipitation with high resolution precipitation climatology. The CHIRP depicts rainfall on five day totals at 5km spatial resolution from 1981 to present. The CHG is developing and deploying a standalone tool - the GeoCLIM - which will allow national and regional meteorological agencies to blend the CHIRP with station observations, run simple crop water balance models, and conduct climatological, trend, and time series analysis. Blending satellite estimates and gauge data helps overcome limited in situ observing networks. Furthermore, the GeoCLIM combines rainfall, soil, and evapotranspiration data with crop hydrological requirements to calculate agricultural water balance, presented as the Water Requirement Satisfaction Index (WRSI). The WRSI is a measurement of the degree in which a crop's hydrological requirements have been satisfied by rainfall. We present the results of a training session for personnel of the East African Intergovernmental Authority on Development Climate Prediction and Applications Center. The two week training program included the use of the GeoCLIM to improve CHIRP using station data, and to calculate and

  6. NCBI GEO: archive for functional genomics data sets—update

    PubMed Central

    Barrett, Tanya; Wilhite, Stephen E.; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F.; Tomashevsky, Maxim; Marshall, Kimberly A.; Phillippy, Katherine H.; Sherman, Patti M.; Holko, Michelle; Yefanov, Andrey; Lee, Hyeseung; Zhang, Naigong; Robertson, Cynthia L.; Serova, Nadezhda; Davis, Sean; Soboleva, Alexandra

    2013-01-01

    The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data. PMID:23193258

  7. NCBI GEO: archive for functional genomics data sets--update.

    PubMed

    Barrett, Tanya; Wilhite, Stephen E; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Holko, Michelle; Yefanov, Andrey; Lee, Hyeseung; Zhang, Naigong; Robertson, Cynthia L; Serova, Nadezhda; Davis, Sean; Soboleva, Alexandra

    2013-01-01

    The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.

  8. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  9. GeoDash: Assisting Visual Image Interpretation in Collect Earth Online by Leveraging Big Data on Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Markert, Kel; Ashmall, William; Johnson, Gary; Saah, David; Mollicone, Danilo; Diaz, Alfonso Sanchez-Paus; Anderson, Eric; Flores, Africa; Griffin, Robert

    2017-01-01

    Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.

  10. GeoDash: Assisting Visual Image Interpretation in Collect Earth Online by Leveraging Big Data on Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Markert, K. N.; Ashmall, W.; Johnson, G.; Saah, D. S.; Anderson, E.; Flores Cordova, A. I.; Díaz, A. S. P.; Mollicone, D.; Griffin, R.

    2017-12-01

    Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.

  11. How best to geo-reference farms? A case study from Cornwall, England.

    PubMed

    Durr, P A; Froggatt, A E A

    2002-11-29

    The commonest way of geo-referencing farms as single points is using the location of the farmhouse as either read off a map or approximated by its postcode. While these two methods may be adequate for small farms, they are unlikely to be satisfactory for large ones, or alternatively when they are comprised of several discrete units or holdings. In order to investigate the best representation of the total farm polygon(s) by a single point, we undertook a study using nearly 500 actual farm boundaries in the county of Cornwall, England. For each farm, the farm boundaries were digitised, and its area and centroid determined using ArcView 3.2. A variety of point geo-referencing systems were tested to find the best single point location for a farm, as judged by the proportion of farm area captured. Whilst the centroid was found to capture the largest area, the main farm building was judged to be the best geo-referencing method for practical purposes. In contrast, the various systems of geo-coding using the farm postal address performed relatively poorly. Where there are separate parcels of land managed together in a single parish, they may be identified as a single unit, but if there are separate parcels in different parishes they should be identified as separate units.The implications of these results for Great Britain's national animal health information system (VETNET) are discussed.

  12. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2010-05-01

    )#, S. Direito(6)#, S. Voute (15)#, A. Olmedo-Soler(17)#, T. E. Zegers(1, 15)#, D. Scheer(12)#, K. Bickert(12)#, D. Schildhammer(12)#, B. Jantscher(1, 11, 12)#, MECA Team(6)#, ExoGeoLab ILEWG ExoHab teams(1,4,11) EuroGeoMars team(1,4,5); 1)ESTEC/SRE-S Postbus 299, 2200 AG Noordwijk, NL, 2)NASA Ames , 3)Delft TU , 4)ESTEC TEC Technology Dir., 5)ESTEC HSF Human Spaceflight, 6)VU Amsterdam, 7)ESTEC Education Office, 8)FU Berlin, 9)Max Planck Goettingen, 10)Leiden/GWU , 11)ILEWG ExoHab Team, 12)Austrian Space Forum (OEWF Innsbruck); 14) Ecole de l'Air, Salons de Provence, 15) Utrecht U., 16) MECA Team, 17) Olmedo Knowledge Systems S.L.; * EuroGeoMars Utah crew , # ILEWG Eifel crew, EuroMoonMars/DOMMEX Utah crew.

  13. High Astrometric Precision in the Calculation of the Coordinates of Orbiters in the GEO Ring

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Hernández-Pérez, F.; Casanova, D.; Tresaco, E.

    2018-04-01

    We present an astrometric method for the calculation of the positions of orbiters in the GEO ring with a high precision, through a rigorous astrometric treatment of observations with a 1-m class telescope, which are part of the CIDA survey of the GEO ring. We compute the distortion pattern to correct for the systematic errors introduced by the optics and electronics of the telescope, resulting in absolute mean errors of 0.16″ and 0.12″ in right ascension and declination, respectively. These correspond to ≍25 m at the mean distance of the GEO ring, and are thus good quality results.

  14. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  15. Assimilation of SBUV Version 8 Radiances into the GEOS Ozone DAS

    NASA Technical Reports Server (NTRS)

    Mueller, Martin D.; Stajner, Ivanka; Bhartia, Pawan K.

    2004-01-01

    In operational weather forecasting, the assimilation of brightness temperatures from satellite sounders, instead of assimilation of 1D-retrievals has become increasingly common practice over the last two decades. Compared to these systems, assimilation of trace gases is still at a relatively early stage of development, and efforts to directly assimilate radiances instead of retrieved products have just begun a few years ago, partially because it requires much more computation power due to the employment of a radiative transport forward model (FM). This paper will focus on a method to assimilate SBUV/2 radiances (albedos) into the Global Earth Observation System Ozone Data Assimilation Scheme (GEOS-03DAS). While SBUV-type instruments cannot compete with newer sensors in terms of spectral and horizontal resolution, they feature a continuous data record back to 1978, which makes them very valuable for trend studies. Assimilation can help spreading their ground coverage over the whole globe, as has been previously demonstrated with the GEOS-03DAS using SBUV Version 6 ozone profiles. Now, the DAS has been updated to use the newly released SBUV Version 8 data. We will compare pre]lmlnarv results of SBUV radiance assimilation with the assimilation of retrieved ozone profiles, discuss methods to deal with the increased computational load, and try to assess the error characteristics and future potential of the new approach.

  16. Evaluating the Potential of the GeoWall for Geographic Education

    ERIC Educational Resources Information Center

    Slocum, Terry A.; Dunbar, Matthew D.; Egbert, Stephen L.

    2007-01-01

    This article discusses modern stereoscopic displays for geographic education, focusing on a large-format display--the GeoWall. To evaluate the potential of the GeoWall, geography instructors were asked to express their reactions to images viewed on the GeoWall during a focus group experiment. Instructors overwhelmingly supported using the GeoWall,…

  17. Optical Reflection Spectroscopy of GEO Objects

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald

    2013-01-01

    We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.

  18. GeoCARB design maturity and geostationary heritage

    NASA Astrophysics Data System (ADS)

    Sawyer, Kevin; Clark, Charles; Katz, Noah; Kumar, Jack; Nast, Ted; Palmer, Alice

    2013-09-01

    Our companion paper `Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): geostationary greenhouse gas (GHG) application' describes geoCARB performance and science. Here we describe a geoCARB instrument design study leading to near PDR maturity. It is based on heritage geostationary (AIA and HMI on SDO, SBIRS GEO-1 and upcoming GLM on GOES-R as examples) and other (IRIS and NIRcam) flight instrumentation. Heritage work includes experience and well developed specifications for near a-thermal carbon fiber honeycomb composite optical benches and optical element mounting design forms that utilize a "family" of mounts for nearly any type of optical element. The geoCARB approach utilizes composite optical benches and bipod flexures to kinematically mount optics. Tooling for alignment and staking of all elements is integral to the design and is "removed before flight" for mass minimization. GeoCARB requires a cryogenic region for focal planes and spectrometers but front end optics and main structure are designed to run much warmer. A star tracker is used for geoCARB posteriori geolocation including pseudo-diurnal thermal distortion characterization. It is kinematically mounted by low conductance thermal isolators directly on to the low expansion high stiffness composite bench that defines the master optical surfaces including the scanning mirrors. The thermal load from the camera heads is routed away from the bench heat pipes. Use of kinematic mounting is advantageous for low thermal conduction designs. Honeycomb composites enable the design's low thermal mechanical distortions.

  19. Measurement of Geo-neutrinos with KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Satoru

    2011-11-23

    Radioactive isotopes inside the Earth produce geo-neutrinos through beta decays. Geo-neutrinos could be direct probes to investigate the interior of the Earth as a supplement to the current geophysical survey that mainly relies on an indirect seismic approach. After the Kamioka liquid scintillator antineutrino detector (KamLAND) reported the first indication of geo-neutrinos in 2005, we have accumulated data for a total of 2,135 days of live-time and achieved a lower background level by purifying liquid scintillator. The number of obtained geo-neutrino events is 106{sub -28}{sup +29} corresponding to an electron antineutrino flux of 4.3{sub -1.1}{sup +1.2}x10{sup 6} cm{sup -2} s{supmore » -1} from {sup 238}U and {sup 232}Th series at the Earth's surface. The null hypothesis for the existence of geo-neutrinos is excluded at the 99.997% confidence level. We combined this precise result with that of the Borexino experiment to obtain 20.0{sub -8.6}{sup +8.8} TW as a contribution of {sup 238}U and {sup 232}Th to the Earth heat flow.« less

  20. Next Generation of Air Quality Measurements from Geo Orbits: Breaking The Temporal Barrier

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Levy, R. C.; Mattoo, S.; Remer, L.; Heidinger, A.

    2017-12-01

    NASA's dark target (DT) aerosol algorithm provides operational retrieval of atmospheric aerosols from multiple polar orbiting satellites. The DT algorithm, initially developed for MODIS observations, has been continuously improved since the first MODIS launch in early 2000. Now, we are adapting the DT algorithm to retrieve on new-generation geostationary (GEO) sensors, including the Advanced Himawari Imager (AHI) on Japan's Himawari-8 (H8) satellite and Advanced Baseline Imager (ABI) on NOAA's GOES-16 (or GOES-R). H8 is a weather geostationary satellite operating since July 2015, and AHI observes earth-atmosphere system over the Asia-Pacific region at spatial resolutions of 1km or less. GOES-R is launched in Nov 2016 and provides high temporal resolution observations over Americas. With 16 spectral channels, including 7 bands that observe similar wavelengths as the MODIS bands used for DT aerosol retrieval. Most exciting, however, is that both ABI and AHI provides full disk observations every 10-15 minutes and zoom mode observations every 30 second to 2.5 minutes. Therefore, spectral, spatial and temporal resolution observations from these GEO satellites provide opportunity to monitor atmospheric aerosols in the region, plus a new capability to monitor aerosol transport and aerosol/cloud diurnal cycles. In this paper, we will introduce retrieval results from AHI using the DT algorithm during the KORUS-AQ field campaign during summer 2016. These results are evaluated against surface measurements (e.g. AERONET). . We will also discuss, its potential applications in monitoring diurnal cycles of urban pollution, smoke and dust in the region. The same DT algorithm will also be adapted to retrieve aerosol properties using GOES-16 over Americas.

  1. Defining Essential Biodiversity Variables (EBVs) as a contribution to Essential Ocean Variables (EOVs): A Core Task of the Marine Biodiversity Observation Network (MBON) to Accelerate Integration of Biological Observations in the Global Ocean Observing System (GOOS)

    NASA Astrophysics Data System (ADS)

    Pearlman, J.; Muller-Karger, F. E.; Sousa Pinto, I.; Costello, M. J.; Duffy, J. E.; Appeltans, W.; Fischer, A. S.; Canonico, G.; Klein, E.; Obura, D.; Montes, E.; Miloslavich, P.; Howard, M.

    2017-12-01

    The Marine Biodiversity Observation Network (MBON) is a networking effort under the umbrella of the Group on Earth Observations Biodiversity Observation Network (GEO BON). The objective of the MBON is to link existing groups engaged in ocean observation and help define practical indices to deploy in an operational manner to track changes in the number of marine species, the abundance and biomass of marine organisms, the diverse interactions between organisms and the environment, and the variability and change of specific habitats of interest. MBON serves as the biodiversity arm of Blue Planet, the initiative of the Group on Earth Observations (GEO) for the benefit of society. The Global Ocean Observing System (GOOS) was established under the auspices of the Intergovernmental Oceanographic Commission (IOC) in 1991 to organize international ocean observing efforts. The mission of the GOOS is to support monitoring to improve the management of marine and coastal ecosystems and resources, and to enable scientific research. GOOS is engaged in a continuing, rigorous process of identifying Essential Ocean Variables (EOVs). MBON is working with GOOS and the Ocean Biogeographic Information System (OBIS, also under the IOC) to define Essential Biodiversity Variables (EBVs) as those Essential Ocean Variables (EOVs) that have explicit taxonomic records associated with them. For practical purposes, EBVs are a subset of the EOVs. The focus is to promote the integration of biological EOVs including EBVs into the existing and planned national and international ocean observing systems. The definition avoids a proliferation of 'essential' variables across multiple organizations. MBON will continue to advance practical and wide use of EBVs and related EOV. This is an effective way to contribute to several UN assessments (e.g., from IPBES, IPCC, and the World Ocean Assessment under the UN Regular Process), UN Sustainable Development Goals, and to address targets and goals defined under

  2. GEO Collisional Risk Assessment Based on Analysis of NASA-WISE Data and Modeling

    NASA Astrophysics Data System (ADS)

    Howard, S.; Murray-Krezan, J.; Dao, P.; Surka, D.

    From December 2009 thru 2011 the NASA Wide-Field Infrared Survey Explorer (WISE) gathered radiometrically exquisite measurements of debris in near Earth orbits, substantially augmenting the current catalog of known debris. The WISE GEO-belt debris population adds approximately 2,000 previously uncataloged objects. This paper describes characterization of the WISE GEO-belt orbital debris population in terms of location, epoch, and size. The WISE GEO-belt debris population characteristics are compared with the publically available U.S. catalog and previous descriptions of the GEO-belt debris population. We found that our results differ from previously published debris distributions, suggesting the need for updates to collision probability models and a better measurement-based understanding of the debris population. Previous studies of collisional rate in GEO invoke the presence of a large number of debris in the regime of sizes too small to track, i.e. not in the catalog, but large enough to cause significant damage and fragmentation in a collision. A common approach is to estimate that population of small debris by assuming that it is dominated by fragments and therefore should follow trends observed in fragmentation events or laboratory fragmentation tests. In other words, the population of debris can be extrapolated from trackable sizes to small sizes using an empirically determined trend of population as a function of size. We use new information suggested by the analysis of WISE IR measurements to propose an updated relationship. Our trend is an improvement because we expect that an IR emissive signature is a more reliable indicator of physical size. Based on the revised relationship, we re-estimate the total collisional rate in the GEO belt with the inclusion of projected uncatalogued debris and applying a conjunction assessment technique. Through modeling, we evaluate the hot spots near the geopotential wells and the effects of fragmentation in the GEO

  3. Automatic Earth observation data service based on reusable geo-processing workflow

    NASA Astrophysics Data System (ADS)

    Chen, Nengcheng; Di, Liping; Gong, Jianya; Yu, Genong; Min, Min

    2008-12-01

    A common Sensor Web data service framework for Geo-Processing Workflow (GPW) is presented as part of the NASA Sensor Web project. This framework consists of a data service node, a data processing node, a data presentation node, a Catalogue Service node and BPEL engine. An abstract model designer is used to design the top level GPW model, model instantiation service is used to generate the concrete BPEL, and the BPEL execution engine is adopted. The framework is used to generate several kinds of data: raw data from live sensors, coverage or feature data, geospatial products, or sensor maps. A scenario for an EO-1 Sensor Web data service for fire classification is used to test the feasibility of the proposed framework. The execution time and influences of the service framework are evaluated. The experiments show that this framework can improve the quality of services for sensor data retrieval and processing.

  4. High performance geospatial and climate data visualization using GeoJS

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Beezley, J. D.

    2015-12-01

    GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring

  5. Research on presentation and query service of geo-spatial data based on ontology

    NASA Astrophysics Data System (ADS)

    Li, Hong-wei; Li, Qin-chao; Cai, Chang

    2008-10-01

    The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.

  6. Liquid-liquid phase transition and anomalous diffusion in simulated liquid GeO 2

    NASA Astrophysics Data System (ADS)

    Hoang, Vo Van; Anh, Nguyen Huynh Tuan; Zung, Hoang

    2007-03-01

    We perform molecular dynamics (MD) simulation of diffusion in liquid GeO 2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm 3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO 2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid-liquid phase transition in simulated liquid GeO 2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO 2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm 3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

  7. Evaluation of Sulfur Dioxide (SO2) Simulations with the GEOS-5/ GOCART Model during the Frostburg/DISCOVER-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Buchard-Marchant, V.; da Silva, A.; Colarco, P. R.; Krotkov, N. A.; Dickerson, R. R.; Stehr, J. W.; Spinei, E.; Mount, G. H.; Krask, D.

    2011-12-01

    Sulfur dioxide (SO2) is a major atmospheric pollutant, with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements are essential to ascertain the credibility of these models and to guide model improvements. In this study the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5) model is used to simulate aerosol and SO2 concentrations. The global GEOS-5 system runs at a nominal 25 km horizontal resolution with 72 vertical levels; a comprehensive atmospheric data assimilation system is used to constrain the meteorological state of the model. Data taken over Maryland in the UM's Frostburg (November 2010) and NASA DISCOVER-AQ (July 2011) field campaigns are used to evaluate the GEOS-5 SO2 concentrations. In this presentation we show comparisons of simulated and measured SO2 concentration, using airborne and ground-based data sets, as well as data from the space-based OMI instrument. Preliminary data analysis indicated the model's overestimation of SO2 concentration at the surface, leading to a close examination of mixing processes in the model and the specification of SO2 anthropogenic emission rates. As a result of this analysis, we have implemented a revision of anthropogenic emission inventories in GEOS-5, and updated the vertical placement of SO2 sources. In this presentation we show how these revisions improve the model agreement with observations not only locally but also in regions outside the area of these field campaigns. In particular, we use the ground

  8. The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Pawson, Steven; Olsen, Mark A.; Witte, Jacquelyn C.; Douglass, Anne R.; Ziemke, Jerald R.; Strahan, Susan E.; Nielsen, J. Eric

    2015-01-01

    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause.

  9. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  10. Evaluation of GEOS-5 Sulfur Dioxide Simulations During the Frostburg, MD 2010 Field Campaign.

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A. M.; Colarco, P.; Krotkov, N.; Dickerson, R. R.; Stehr, J. W.; Mount, G.; Spenei, E.; Arkinson, H. L.; He, H.

    2013-01-01

    Sulfur dioxide (SO2) is a major atmospheric pollutant with a strong anthropogenic component mostly produced by the combustion of fossil fuel and other industrial activities. As a precursor of sulfate aerosols that affect climate, air quality, and human health, this gas needs to be monitored on a global scale. Global climate and chemistry models including aerosol processes along with their radiative effects are important tools for climate and air quality research. Validation of these models against in-situ and satellite measurements is essential to ascertain the credibility of these models and to guide model improvements. In this study the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running on-line inside the Goddard Earth Observing System version 5 (GEOS-5) model is used to simulate aerosol and SO2 concentrations. Data taken in November 2010 over Frostburg, Maryland during an SO2 field campaign involving ground instrumentation and aircraft are used to evaluate GEOS-5 simulated SO2 concentrations. Preliminary data analysis indicated the model overestimated surface SO2 concentration, which motivated the examination of mixing processes in the model and the specification of SO2 anthropogenic emission rates. As a result of this analysis, a revision of anthropogenic emission inventories in GEOS-5 was implemented, and the vertical placement of SO2 sources was updated. Results show that these revisions improve the model agreement with observations locally and in regions outside the area of this field campaign. In particular, we use the ground-based measurements collected by the United States Environmental Protection Agency (US EPA) for the year 2010 to evaluate the revised model simulations over North America.

  11. Assessment of State-of-the-Art Dust Emission Scheme in GEOS

    NASA Technical Reports Server (NTRS)

    Darmenov, Anton; Liu, Xiaohong; Prigent, Catherine

    2017-01-01

    The GEOS modeling system has been extended with state of the art parameterization of dust emissions based on the vertical flux formulation described in Kok et al 2014. The new dust scheme was coupled with the GOCART and MAM aerosol models. In the present study we compare dust emissions, aerosol optical depth (AOD) and radiative fluxes from GEOS experiments with the standard and new dust emissions. AOD from the model experiments are also compared with AERONET and satellite based data. Based on this comparative analysis we concluded that the new parameterization improves the GEOS capability to model dust aerosols originating from African sources, however it lead to overestimation of dust emissions from Asian and Arabian sources. Further regional tuning of key parameters controlling the threshold friction velocity may be required in order to achieve more definitive and uniform improvement in the dust modeling skill.

  12. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  13. Retrieved Products from Simulated Hyperspectral Observations of a Hurricane

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.

  14. NCBI GEO: archive for high-throughput functional genomic data.

    PubMed

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Rudnev, Dmitry; Evangelista, Carlos; Kim, Irene F; Soboleva, Alexandra; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Edgar, Ron

    2009-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  15. Geo-electromagnetic research aids geo-hazard mitigation

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; Carmisciano, C.; Faggioni, O.

    Some 100 Earth scientists from nine different nations recently gathered in Lerici, Italy; for the Second International Workshop on Geo-Electro-Magnetism. While this was not a thematic meeting, most of the 40 papers presented focused on applications of electromagnetic methods to natural or man-made hazards such as known faults, seismically active regions, volcanoes, landslides, and environmental or civil engineering problems. Anomaly and main field studies, both field investigations and theoretical techniques, were also well represented.

  16. A National contribution to the GEO Science and Technology roadmap: GIIDA Project

    NASA Astrophysics Data System (ADS)

    Nativi, Stefano; Mazzetti, Paolo; Guzzetti, Fausto; Oggioni, Alessandro; Pirrone, Nicola; Santolieri, Rosalia; Viola, Angelo; Tartari, Gianni; Santoro, Mattia

    2010-05-01

    The GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali) project is an initiative of the Italian National Research Council (CNR) launched in 2008 as an inter-departmental project, aiming to design and develop a multidisciplinary e-infrastructure (cyber-infrastructure) for the management, processing, and evaluation of Earth and Environmental resources -i.e. data, services, models, sensors, best practices. GIIDA has been contributing to the implementation of the GEO (Group of Earth Observation) Science and Technology (S&T) roadmap by: (a) linking relevant S&T communities to GEOSS (GEO System of Systems); (b) ensuring that GEOSS is built based on state-of-the-art science and technology. GIIDA co-ordinates the CNR's digital infrastructure development for Earth Observation resources sharing and cooperates with other national agencies and existing projects pursuing the same objective. For the CNR, GIIDA provides an interface to European and international interoperability programmes (e.g. INSPIRE, and GMES). It builds a national network for dialogue and resolution of issues at varying scientific and technical levels. To achieve such goals, GIIDA introduced a set of guidance principles: • To shift from a "traditional" data centric approach to a more advanced service-based solution for Earth System Science and Environmental information. • To shift the focus from Data to Information Spatial Infrastructures in order to support decision-making. • To be interoperable with analogous National (e.g. SINAnet, and the INSPIRE National Infrastructure) and international initiatives (e.g. INSPIRE, GMES, SEIS, and GEOSS). • To reinforce the Italian presence in the European and international programmes concerning digital infrastructures, geospatial information, and the Mega-Science approach. • To apply the National and International Information Technology (IT) standards for achieving multi-disciplinary interoperability in the Earth and Space Sciences (e.g. ISO, OGC

  17. New Results from the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Astrophysics Data System (ADS)

    Robock, A.; Kravitz, B.

    2013-12-01

    The Geoengineering Model Intercomparison Project (GeoMIP) was designed to determine robust climate system model responses to Solar Radiation Management (SRM). While mitigation (reducing greenhouse gases emissions) is the most effective way of reducing future climate change, SRM (the deliberate modification of incoming solar radiation) has been proposed as a means of temporarily alleviating some of the effects of global warming. For society to make informed decisions as to whether SRM should ever be implemented, information is needed on the benefits, risks, and side effects, and GeoMIP seeks to aid in that endeavor. GeoMIP has organized four standardized climate model simulations involving reduction of insolation or increased amounts of stratospheric sulfate aerosols to counteract increasing greenhouse gases. Thirteen comprehensive atmosphere-ocean general circulation models have participated in the project so far. GeoMIP is a 'CMIP Coordinated Experiment' as part of the Climate Model Intercomparison Project 5 (CMIP5) and has been endorsed by SPARC (Stratosphere-troposphere Processes And their Role in Climate). GeoMIP has held three international workshops and has produced a number of recent journal articles. GeoMIP has found that if increasing greenhouse gases could be counteracted with insolation reduction, the global average temperature could be kept constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform. The tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without SRM. If SRM were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. SRM combined with CO2 fertilization would have small impacts on rice production in China, but would increase maize production

  18. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  19. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    NASA Astrophysics Data System (ADS)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  20. GeoCSV: tabular text formatting for geoscience data

    NASA Astrophysics Data System (ADS)

    Stults, M.; Arko, R. A.; Davis, E.; Ertz, D. J.; Turner, M.; Trabant, C. M.; Valentine, D. W., Jr.; Ahern, T. K.; Carbotte, S. M.; Gurnis, M.; Meertens, C.; Ramamurthy, M. K.; Zaslavsky, I.; McWhirter, J.

    2015-12-01

    The GeoCSV design was developed within the GeoWS project as a way to provide a baseline of compatibility between tabular text data sets from various sub-domains in geoscience. Funded through NSF's EarthCube initiative, the GeoWS project aims to develop common web service interfaces for data access across hydrology, geodesy, seismology, marine geophysics, atmospheric science and other areas. The GeoCSV format is an essential part of delivering data via simple web services for discovery and utilization by both humans and machines. As most geoscience disciplines have developed and use data formats specific for their needs, tabular text data can play a key role as a lowest common denominator useful for exchanging and integrating data across sub-domains. The design starts with a core definition compatible with best practices described by the W3C - CSV on the Web Working Group (CSVW). Compatibility with CSVW is intended to ensure the broadest usability of data expressed as GeoCSV. An optional, simple, but limited metadata description mechanism was added to allow inclusion of important metadata with comma separated data, while staying with the definition of a "dialect" by CSVW. The format is designed both for creating new datasets and to annotate data sets already in a tabular text format such that they are compliant with GeoCSV.

  1. OntoFire: an ontology-based geo-portal for wildfires

    NASA Astrophysics Data System (ADS)

    Kalabokidis, K.; Athanasis, N.; Vaitis, M.

    2011-12-01

    With the proliferation of the geospatial technologies on the Internet, the role of geo-portals (i.e. gateways to Spatial Data Infrastructures) in the area of wildfires management emerges. However, keyword-based techniques often frustrate users when looking for data of interest in geo-portal environments, while little attention has been paid to shift from the conventional keyword-based to navigation-based mechanisms. The presented OntoFire system is an ontology-based geo-portal about wildfires. Through the proposed navigation mechanisms, the relationships between the data can be discovered, which would otherwise not be possible when using conventional querying techniques alone. End users can use the browsing interface to find resources of interest by using the navigation mechanisms provided. Data providers can use the publishing interface to submit new metadata, modify metadata or removing metadata in/from the catalogue. The proposed approach can improve the discovery of valuable information that is necessary to set priorities for disaster mitigation and prevention strategies. OntoFire aspires to be a focal point of integration and management of a very large amount of information, contributing in this way to the dissemination of knowledge and to the preparedness of the operational stakeholders.

  2. Multi-fluid renewable geo-energy systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buscheck, Thomas A.

    A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portionmore » of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.« less

  3. Orbit determination and prediction of GEO satellite of BeiDou during repositioning maneuver

    NASA Astrophysics Data System (ADS)

    Cao, Fen; Yang, XuHai; Li, ZhiGang; Sun, BaoQi; Kong, Yao; Chen, Liang; Feng, Chugang

    2014-11-01

    In order to establish a continuous GEO satellite orbit during repositioning maneuvers, a suitable maneuver force model has been established associated with an optimal orbit determination method and strategy. A continuous increasing acceleration is established by constructing a constant force that is equivalent to the pulse force, with the mass of the satellite decreasing throughout maneuver. This acceleration can be added to other accelerations, such as solar radiation, to obtain the continuous acceleration of the satellite. The orbit determination method and strategy are illuminated, with subsequent assessment of the orbit being determined and predicted accordingly. The orbit of the GEO satellite during repositioning maneuver can be determined and predicted by using C-Band pseudo-range observations of the BeiDou GEO satellite with COSPAR ID 2010-001A in 2011 and 2012. The results indicate that observations before maneuver do affect orbit determination and prediction, and should therefore be selected appropriately. A more precise orbit and prediction can be obtained compared to common short arc methods when observations starting 1 day prior the maneuver and 2 h after the maneuver are adopted in POD (Precise Orbit Determination). The achieved URE (User Range Error) under non-consideration of satellite clock errors is better than 2 m within the first 2 h after maneuver, and less than 3 m for further 2 h of orbit prediction.

  4. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  5. Variational Continuous Assimilation of TMI and SSM/I Rain Rates: Impact on GEOS-3 Hurricane Analyses and Forecasts

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; Reale, Oreste

    2003-01-01

    We describe a variational continuous assimilation (VCA) algorithm for assimilating tropical rainfall data using moisture and temperature tendency corrections as the control variable to offset model deficiencies. For rainfall assimilation, model errors are of special concern since model-predicted precipitation is based on parameterized moist physics, which can have substantial systematic errors. This study examines whether a VCA scheme using the forecast model as a weak constraint offers an effective pathway to precipitation assimilation. The particular scheme we exarnine employs a '1+1' dimension precipitation observation operator based on a 6-h integration of a column model of moist physics from the Goddard Earth Observing System (GEOS) global data assimilation system DAS). In earlier studies, we tested a simplified version of this scheme and obtained improved monthly-mean analyses and better short-range forecast skills. This paper describes the full implementation ofthe 1+1D VCA scheme using background and observation error statistics, and examines how it may improve GEOS analyses and forecasts of prominent tropical weather systems such as hurricanes. Parallel assimilation experiments with and without rainfall data for Hurricanes Bonnie and Floyd show that assimilating 6-h TMI and SSM/I surfice rain rates leads to more realistic storm features in the analysis, which, in turn, provide better initial conditions for 5-day storm track prediction and precipitation forecast. These results provide evidence that addressing model deficiencies in moisture tendency may be crucial to making effective use of precipitation information in data assimilation.

  6. Recent Updates to the GEOS-5 Linear Model

    NASA Technical Reports Server (NTRS)

    Holdaway, Dan; Kim, Jong G.; Errico, Ron; Gelaro, Ronald; Mahajan, Rahul

    2014-01-01

    Global Modeling and Assimilation Office (GMAO) is close to having a working 4DVAR system and has developed a linearized version of GEOS-5.This talk outlines a series of improvements made to the linearized dynamics, physics and trajectory.Of particular interest is the development of linearized cloud microphysics, which provides the framework for 'all-sky' data assimilation.

  7. [Causes for change in producing areas of geo-authentic herbs].

    PubMed

    Liang, Fei; Li, Jian; Zhang, Wei; Zhang, Rui-Xian

    2013-05-01

    Geo-authentic herbs lay stress on their producing areas. The producing areas of most geo-authentic herbs have never changed since the ancient times. However, many other geo-authentic herbs have experienced significant changes in the long history. There are two main causes for the change in producing areas of herbs-change of natural environment and development of human society, which are restricted by each other and play a great role throughout the development process of geo-authentic herbs.

  8. Understanding Subsurface Colloid Behavior: A New Visualization Technique and the Application of Geo-Centrifuge Modeling

    NASA Astrophysics Data System (ADS)

    Yoon, J. S.; Culligan, P. J.; Germaine, J. T.

    2003-12-01

    Subsurface colloid behavior has recently drawn attention because colloids are suspected of enhancing contaminant transport in groundwater systems. To better understand the processes by which colloids move through the subsurface, and in particular the vadose zone, a new technique that enables real-time visualization of colloid particles as they move through a porous medium has been developed. This visualization technique involves the use of laser induced fluorescent particles and digital image processing to directly observe particles moving through a porous medium consisting of soda-lime glass beads and water in a transparent experimental box of 10.0cm\\x9D27.9cm\\x9D2.38cm. Colloid particles are simulated using commercially available micron sized particles that fluoresce under argon-ion laser light. The fluorescent light given off from the particles is captured through a camera filter, which lets through only the emitted wavelength of the colloid particles. The intensity of the emitted light is proportional to the colloid particle concentration. The images of colloid movement are captured by a MagnaFire digital camera; a cooled CCD digital camera produced by Optronics. This camera enables real-time capture of images to a computer, thereby allowing the images to be processed immediately. The images taken by the camera are analyzed by the ImagePro software from Media Cybernetics, which contains a range of counting, sizing, measuring, and image enhancement tools for image processing. Laboratory experiments using the new technique have demonstrated the existence of both irreversible and reversible sites for colloid entrapment during uniform saturated flow in a homogeneous porous medium. These tests have also shown a dependence of colloid entrapment on velocity. Models for colloid transport currently available in the literature have proven to be inadequate predictors for the experimental observations, despite the simplicity of the system studied. To further extend the

  9. GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal; hide

    2017-01-01

    A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.

  10. GeoWall Experiences in K-12 Education

    NASA Astrophysics Data System (ADS)

    Johnson, A. E.

    2003-12-01

    Since the mid 1990s the Electronic Visualization Laboratory at the University of Illinois at Chicago has been investigating how advanced visualization technology such as CAVEs, ImmersaDesks, PCs, and plasma panels can be used effectively in K-12 education. The creation of the GeoWall has given us more flexibility in deploying these technologies, and conducting these investigations outside the laboratory. Over the two years we have been using GeoWalls in a variety of educational settings around the Chicago area. Since the Fall of 2002, the SciTech Museum in Aurora, IL has used a GeoWall to show a variety of educational content. In February 2002 the Museum of Science and Industry in Chicago, IL set up a GeoWall to show 'Virtual Harlem' which allowed museum patrons to walk the streets of Harlem NY in the 1930s to learn about the place and the people. Since 1999 we have been working with Abraham Lincoln Elementary School in Oak Park, IL using a variety of display devices to teach the scientific method and investigate the use of multiple perspectives in learning. We began using a GeoWall there in the spring of 2002 and in the spring of 2003 we expanded our work in Oak Park to include Gwendolyn Brooks Middle School.

  11. Behaviors of Zn2GeO4 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shu-Wen, Yang; Fang, Peng; Wen-Tao, Li; Qi-Wei, Hu; Xiao-Zhi, Yan; Li, Lei; Xiao-Dong, Li; Duan-Wei, He

    2016-07-01

    The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature. Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

  12. The GeoCitizen-approach: community-based spatial planning – an Ecuadorian case study

    PubMed Central

    Atzmanstorfer, Karl; Resl, Richard; Eitzinger, Anton; Izurieta, Xiomara

    2014-01-01

    Over the last years, geospatial web platforms, social media, and volunteered geographic information (VGI) have opened a window of opportunity for traditional Public Participatory GIS (PPGIS) to usher in a new era. Taking advantage of these technological achievements, this paper presents a new approach for a citizen-orientated framework of spatial planning that aims at integrating participatory community work into existing decision-making structures. One major cornerstone of the presented approach is the application of a social geoweb platform (the GeoCitizen platform) that combines geo-web technologies and social media in one single tool allowing citizens to collaboratively report observations, discuss ideas, solve, and monitor problems in their living environment at a local level. This paper gives an account of an ongoing participatory land-zoning process in the Capital District of Quito, Ecuador, where the GeoCitizen platform is applied in a long-term study. PMID:27019644

  13. Concept of a spatial data infrastructure for web-mapping, processing and service provision for geo-hazards

    NASA Astrophysics Data System (ADS)

    Weinke, Elisabeth; Hölbling, Daniel; Albrecht, Florian; Friedl, Barbara

    2017-04-01

    Geo-hazards and their effects are distributed geographically over wide regions. The effective mapping and monitoring is essential for hazard assessment and mitigation. It is often best achieved using satellite imagery and new object-based image analysis approaches to identify and delineate geo-hazard objects (landslides, floods, forest fires, storm damages, etc.). At the moment, several local/national databases and platforms provide and publish data of different types of geo-hazards as well as web-based risk maps and decision support systems. Also, the European commission implemented the Copernicus Emergency Management Service (EMS) in 2015 that publishes information about natural and man-made disasters and risks. Currently, no platform for landslides or geo-hazards as such exists that enables the integration of the user in the mapping and monitoring process. In this study we introduce the concept of a spatial data infrastructure for object delineation, web-processing and service provision of landslide information with the focus on user interaction in all processes. A first prototype for the processing and mapping of landslides in Austria and Italy has been developed within the project Land@Slide, funded by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program ASAP. The spatial data infrastructure and its services for the mapping, processing and analysis of landslides can be extended to other regions and to all types of geo-hazards for analysis and delineation based on Earth Observation (EO) data. The architecture of the first prototypical spatial data infrastructure includes four main areas of technical components. The data tier consists of a file storage system and the spatial data catalogue for the management of EO-data, other geospatial data on geo-hazards, as well as descriptions and protocols for the data processing and analysis. An interface to extend the data integration from external sources (e.g. Sentinel-2 data) is planned

  14. GeoSciML and EarthResourceML Update, 2012

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Commissionthe Management; Application Inte, I.

    2012-12-01

    CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.

  15. Characterizing GEO Titan IIIC Transtage Fragmentations using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Anz-Meador, Phillip; Reyes, Jacqueline A.

    2017-01-01

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  16. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-based and Telescopic Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Anz-Meador, P.; Reyes, J. A.

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  17. Arcing in Leo and Geo Simulated Environments: Comparative Analysis

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Galofaro, Joel TY.

    2006-01-01

    Comprehensive tests of two solar array samples in simulated Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) environments have demonstrated that the arc inception voltage was 2-3 times lower in the LEO plasma than in the GEO vacuum. Arc current pulse wave forms are also essentially different in these environments. Moreover, the wide variations of pulse forms do not allow introducing the definition of a "standard arc wave form" even in GEO conditions. Visual inspection of the samples after testing in a GEO environment revealed considerable damage on coverglass surfaces and interconnects. These harmful consequences can be explained by the discharge energy being one order of magnitude higher in vacuum than in background plasma. The tests also revealed a potential danger of powerful electrostatic discharges that could be initiated on the solar array surface of a satellite in GEO during the ignition of an arcjet thruster.

  18. Mining microarray data at NCBI's Gene Expression Omnibus (GEO)*.

    PubMed

    Barrett, Tanya; Edgar, Ron

    2006-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  19. GeoChip 3.0: A High Throughput Tool for Analyzing Microbial Community, Composition, Structure, and Functional Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhili; Deng, Ye; Nostrand, Joy Van

    2010-05-17

    Microarray-based genomic technology has been widely used for microbial community analysis, and it is expected that microarray-based genomic technologies will revolutionize the analysis of microbial community structure, function and dynamics. A new generation of functional gene arrays (GeoChip 3.0) has been developed, with 27,812 probes covering 56,990 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance, and organic contaminant degradation. Those probes were derived from 2,744, 140, and 262 species for bacteria, archaea, and fungi, respectively. GeoChip 3.0 has several other distinct features, such as a common oligomore » reference standard (CORS) for data normalization and comparison, a software package for data management and future updating, and the gyrB gene for phylogenetic analysis. Our computational evaluation of probe specificity indicated that all designed probes had a high specificity to their corresponding targets. Also, experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036percent-0.025percent false positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which demonstrated that the structure, composition, and potential activity of soil microbial communities significantly changed with the plant species diversity. All results indicate that GeoChip 3.0 is a high throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning. To our knowledge, GeoChip 3.0 is the most comprehensive microarrays currently available for studying microbial communities associated with geobiochemical cycling, global climate change

  20. Teaching GeoEthics Across the Geoscience Curriculum

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Geissman, J. W.; Kieffer, S. W.; Reidy, M.; Taylor, S.; Vallero, D. A.; Bruckner, M. Z.

    2014-12-01

    security; (4) GeoEthics and Earth: explicating geoscientists' responsibilities to provide stewardship towards of the Earth based on their knowledge of Earth's composition, architecture, history, dynamic processes, and complex systems. Workshop resources can be accessed at serc.carleton.edu/geoethics/

  1. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  2. A Conceptual Framework for Assessment of the Benefits of a Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Fritz, S.; Scholes, R. J.; Obersteiner, M.; Bouma, J.

    2007-12-01

    The aim of the Global Earth Observation System of Systems (GEOSS) is to contribute to human wellbeing though improving the information available to decision-makers at all levels relating to human health and safety, protection of the global environment, the reduction of losses from natural disasters, and achieving sustainable development. Specifically, GEOSS proposes that better international co-operation in the collection, interpretation and sharing of Earth Observation information is an important and cost-effective mechanism for achieving this aim. While there is a widespread intuition that this proposition is correct, at some point the following question needs to be answered: how much additional investment in Earth Observation (and specifically, in its international integration) is enough? This leads directly to some challenging subsidiary questions, such as how can the benefits of Earth Observation be assessed? What are the incremental costs of GEOSS? Are there societal benefit areas where the return on investment is higher than in others? The Geo-Bene project has developed a `benefit chain' concept as a framework for addressing these questions. The basic idea is that an incremental improvement in the observing system (including its data collection, interpretation and information-sharing aspects) will result in an improvement in the quality of decisions based on that information. This will in turn lead to better societal outcomes, which have a value. This incremental value must be judged against the incremental cost of the improved observation system. Since in many cases there will be large uncertainties in the estimation of both the costs and the benefits, and it may not be possible to express one or both of them in monetary terms, we show how order-of-magnitude approaches and a qualitative understanding of the shape of the cost-benefit curves can help guide rational investment decision in Earth Observation systems.

  3. Decadal Prediction Skill in the GEOS-5 Forecast System

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Rienecker, Michele M.; Suarez, Max J.; Vikhliaev, Yury; Zhao, Bin; Marshak, Jelena; Vernieres, Guillaume; Schubert, Siegfried D.

    2013-01-01

    A suite of decadal predictions has been conducted with the NASA Global Modeling and Assimilation Office's (GMAO's) GEOS-5 Atmosphere-Ocean general circulation model. The hind casts are initialized every December 1st from 1959 to 2010, following the CMIP5 experimental protocol for decadal predictions. The initial conditions are from a multivariate ensemble optimal interpolation ocean and sea-ice reanalysis, and from GMAO's atmospheric reanalysis, the modern-era retrospective analysis for research and applications. The mean forecast skill of a three-member-ensemble is compared to that of an experiment without initialization but also forced with observed greenhouse gases. The results show that initialization increases the forecast skill of North Atlantic sea surface temperature compared to the uninitialized runs, with the increase in skill maintained for almost a decade over the subtropical and mid-latitude Atlantic. On the other hand, the initialization reduces the skill in predicting the warming trend over some regions outside the Atlantic. The annual-mean Atlantic meridional overturning circulation index, which is defined here as the maximum of the zonally-integrated overturning stream function at mid-latitude, is predictable up to a 4-year lead time, consistent with the predictable signal in upper ocean heat content over the North Atlantic. While the 6- to 9-year forecast skill measured by mean squared skill score shows 50 percent improvement in the upper ocean heat content over the subtropical and mid-latitude Atlantic, prediction skill is relatively low in the sub-polar gyre. This low skill is due in part to features in the spatial pattern of the dominant simulated decadal mode in upper ocean heat content over this region that differ from observations. An analysis of the large-scale temperature budget shows that this is the result of a model bias, implying that realistic simulation of the climatological fields is crucial for skillful decadal forecasts.

  4. Incorporation of the Mass Concentration and the New Snow Albedo Schemes into the Global Forecasting Model, GEOS-5 and the Impact of the New Schemes over Himalayan Glaciers

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei

    2012-01-01

    Recently the issue on glacier retreats comes up and many factors should be relevant to the issue. The absorbing aerosols such as dust and black carbon (BC) are considered to be one of the factors. After they deposited onto the snow surface, it will reduce snow albedo (called snow darkening effect) and probably contribute to further melting of glacier. The Goddard Earth Observing System version 5 (GEOS-5) has developed at NASA/GSFC. However, the original snowpack model used in the land surface model in the GEOS-5 did not consider the snow darkening effect. Here we developed the new snow albedo scheme which can consider the snow darkening effect. In addition, another scheme on calculating mass concentrations on the absorbing aerosols in snowpack was also developed, in which the direct aerosol depositions from the chemical transport model in the GEOS-5 were used. The scheme has been validated with the observed data obtained at backyard of the Institute of Low Temperature Science, Hokkaido University, by Dr. Teruo Aoki (Meteorological Research Institute) et aL including me. The observed data was obtained when I was Ph.D. candidate. The original GEOS-5during 2007-2009 over the Himalayas and Tibetan Plateau region showed more reductions of snow than that of the new GEOS-5 because the original one used lower albedo settings. On snow cover fraction, the new GEOS-5 simulated more realistic snow-covered area comparing to the MODIS snow cover fraction. The reductions on snow albedo, snow cover fraction, and snow water equivalent were seen with statistically significance if we consider the snow darkening effect comparing to the results without the snow darkening effect. In the real world, debris cover, inside refreezing process, surface flow of glacier, etc. affect glacier mass balance and the simulated results immediately do not affect whole glacier retreating. However, our results indicate that some surface melting over non debris covered parts of the glacier would be

  5. The GeoViz Toolkit: Using component-oriented coordination methods for geographic visualization and analysis

    PubMed Central

    Hardisty, Frank; Robinson, Anthony C.

    2010-01-01

    In this paper we present the GeoViz Toolkit, an open-source, internet-delivered program for geographic visualization and analysis that features a diverse set of software components which can be flexibly combined by users who do not have programming expertise. The design and architecture of the GeoViz Toolkit allows us to address three key research challenges in geovisualization: allowing end users to create their own geovisualization and analysis component set on-the-fly, integrating geovisualization methods with spatial analysis methods, and making geovisualization applications sharable between users. Each of these tasks necessitates a robust yet flexible approach to inter-tool coordination. The coordination strategy we developed for the GeoViz Toolkit, called Introspective Observer Coordination, leverages and combines key advances in software engineering from the last decade: automatic introspection of objects, software design patterns, and reflective invocation of methods. PMID:21731423

  6. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines

  7. Geo-Spatial Social Network Analysis of Social Media to Mitigate Disasters

    NASA Astrophysics Data System (ADS)

    Carley, K. M.

    2017-12-01

    Understanding the spatial layout of human activity can afford a better understanding many phenomena - such as local cultural, the spread of ideas, and the scope of a disaster. Today, social media is one of the key sensors for acquiring information on socio-cultural activity, some with cues as to the geo-location. We ask, What can be learned by putting such data on maps? For example, are people who chat on line more likely to be near each other? Can Twitter data support disaster planning or early warning? In this talk, such issues are examined using data collected via Twitter and analyzed using ORA. ORA is a network analysis and visualization system. It supports not just social networks (who is interacting with whom), but also high dimensional networks with many types of nodes (e.g. people, organizations, resources, activities …) and relations, geo-spatial network analysis, dynamic network analysis, & geo-temporal analysis. Using ORA lessons learned from five case studies are considered: Arab Spring, Tsunami warning in Padang Indonesia, Twitter around Fukushima in Japan, Typhoon Haiyan (Yolanda), & regional conflict. Using Padang Indonesia data, we characterize the strengths and limitations of social media data to support disaster planning & early warning, identify at risk areas & issues of concern, and estimate where people are and which areas are impacted. Using Fukushima Japanese data, social media is used to estimate geo-spatial regularities in movement and communication that can inform disaster response and risk estimation. Using Arab Spring data, we find that the spread of bots & extremists varies by country and time, to the extent that using twitter to understand who is important or what ideas are critical can be compromised. Bots and extremists can exploit disaster messaging to create havoc and facilitate criminal activity e.g. human trafficking. Event discovery mechanisms support isolating geo-epi-centers for key events become crucial. Spatial inference

  8. Stereoscopic observations from meteorological satellites

    NASA Astrophysics Data System (ADS)

    Hasler, A. F.; Mack, R.; Negri, A.

    The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated. Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the

  9. Large Diffractive Optics for GEo-Based Earth Surveillance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R A

    2003-09-11

    The natural vantage point for performing Earth-centric operations from space is geosynchronous orbit (GEO); a platform there moves at the same rate as the Earth's surface, so appears to continually ''hover'' over a fixed site on the Earth. Unlike spacecraft in other orbits, which rapidly fly-over targets, a GEO-based platform remains in-position all the time. In order to insure continual access to sites using low earth orbit (LEO) platforms, one needs a large enough constellation ({approx} 50) of spacecraft so that one is always overhead; in contrast, a single GEO platform provides continuous coverage over sites throughout Euro-Asia. This permanentmore » coverage comes, unfortunately, with a stiff price-tag; geosynchronous orbit is 36,000 km high, so space platforms there must operate at ranges roughly 100 times greater than ones located in LEO. For optical-based applications, this extreme range is difficult to deal with; for surveillance the price is a 100-fold loss of resolution, for laser weapons it is a 10,000-fold loss in flux-on-target. These huge performance penalties are almost always unacceptable, preventing us from successfully using GEO-based platforms. In practice, we are forced to either settle for brief, infrequent access to targets, or, if we demand continuous coverage, to invest in large, many-satellite, constellations. There is, fortunately, a way to use GEO-based optical platforms without incurring the huge, range-dependent, performance penalties; one must simply use bigger optics. As long as the aperture of a platform's optics increases as much as its operating range, then its performance (resolution and/or flux) does not suffer; the price for operating from GEO is simply 100-fold larger optics. This is, of course, a very stiff price; while meter-class optics may suffice for many low-earth-orbit applications, 100 meter apertures are needed in order to achieve similar performance from GEO. Since even the largest Earth-based telescope is only 10

  10. Using Geo-Spatial Technologies for Field Applications in Higher Geography Education

    ERIC Educational Resources Information Center

    Karatepe, Akif

    2012-01-01

    Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…

  11. Towards a web-based GIS for teaching geo-informatics at under-graduate level in developing countries: a case study of Iran

    NASA Astrophysics Data System (ADS)

    Mobasheri, A.; Vahidi, H.; Guan, Q.

    2014-04-01

    In developing countries, the number of experts and students in geo-informatics domain are very limited compared to experts and students of sciences that could benefit from geo-informatics. In this research, we study the possibility of providing an online education system for teaching geo-informatics at under-graduate level. The hypothesis is that in developing countries, such as Iran, a web-based geo-education system can greatly improve the quantity and quality of knowledge of students in undergraduate level, which is an important step that has to be made in regard of the famous "Geo for all" motto. As a technology for conducting natural and social studies, geo-informatics offers new ways of viewing, representing and analysing information for transformative learning and teaching. Therefore, we design and present a conceptual framework of an education system and elaborate its components as well as the free and open source services and software packages that could be used in this framework for a specific case study: the Web GIS course. The goal of the proposed framework is to develop experimental GI-services in a service-oriented platform for education purposes. Finally, the paper ends with concluding remarks and some tips for future research direction.

  12. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  13. GeoVision Exploration Task Force Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, Christine; Dobson, Patrick F.; Wall, Anna

    potential to dramatically reduce exploration and geothermal development costs, forming the basis of the GeoVision Technology Improvement (TI) scenario. These modeling topics are covered in detail in Potential to Penetration task force report. Most of the research contained herein has been published in peer-reviewed papers or conference proceedings and are cited and referenced accordingly. The sections that follow provide a central repository for all of the research findings of the Exploration and Confirmation Task Force. In summary, it provides a comprehensive discussion of Engineered Geothermal Systems (EGS) and associated technology challenges, the risks and costs of conducting geothermal exploration, a review of existing government efforts to date in advancing early-stage R&D in both exploration and EGS technologies, as well as a discussion of promising and innovative technologies and implementation of blue-sky concepts that could significantly reduce costs, lower risks, and shorten the time needed to explore and develop geothermal resources of all types.« less

  14. Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them

    NASA Astrophysics Data System (ADS)

    Astankova, K. N.; Kozhukhov, A. S.; Azarov, I. A.; Gorokhov, E. B.; Sheglov, D. V.; Latyshev, A. V.

    2018-04-01

    The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe-substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera-Mott model for large times. The initial growth rate of the oxide ( R 0) significantly increases and the time of starting the oxidation ( t 0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.

  15. GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System

    NASA Astrophysics Data System (ADS)

    Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.

    2017-12-01

    A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.

  16. Evaluation of GeO desorption behavior in the metalGeO(2)Ge structure and its improvement of the electrical characteristics.

    PubMed

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-06-15

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metalGeO(2)Ge capacitors fabricated by thermal oxidation has been investigated. In the metalGeO(2)Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metalGeO(2)Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO(2)Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface.

  17. A new empirical solar radiation pressure model for BeiDou GEO satellites

    NASA Astrophysics Data System (ADS)

    Liu, Junhong; Gu, Defeng; Ju, Bing; Shen, Zhen; Lai, Yuwang; Yi, Dongyun

    2016-01-01

    Two classic empirical solar radiation pressure (SRP) models, the Extended Center for Orbit Determination in Europe (CODE) Orbit Model ECOM 5 and ECOM 9 have been widely used for Global Positioning System (GPS) Medium Earth Orbit (MEO) satellites precise orbit determination (POD). However, these two models are not suitable for BeiDou Geostationary Earth Orbit (GEO) satellites due to their special attitude control mode. With the experimental design method this paper proposes a new empirical SRP model for BeiDou GEO satellites, which is featured by three constant terms in DYX directions, two sine terms in DX directions and one cosine term in the Y direction. It is the first time to reveal that the periodic terms in the D direction are more important than those in YX directions for BeiDou GEO satellites. Compared with ECOM 5 and ECOM 9, the BeiDou GEO satellite orbits are significantly stabilized with the new SRP force model. The average orbit overlapping root mean square (RMS) achieved by the proposed model is 7.5 cm in the radial component, which is evidently improved over those of 37.4 and 13.2 cm for ECOM 5 and ECOM 9, respectively. In addition, the correlation coefficients between GEO orbit overlaps precision and the elevation angle of the Sun have been decreased to -0.12, 0.21, and -0.03 in radial, along-track and cross-track components by using the proposed model, while they are -0.94, -0.79 and -0.29 for ECOM 5 and -0.70, 0.21 and 0.10 for ECOM 9. Moreover, the standard deviation (STD) of Satellite Laser Ranging (SLR) data residuals for the GEO satellite C01 is reduced by 37.4% and 16.1% compared with those of ECOM 5 and ECOM 9 SRP models.

  18. Airborne mapping of Seoul's atmosphere: Trace gas measurements from GeoTASO during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Al-Saadi, J. A.; Castellanos, P.; Chance, K.; Gonzalez Abad, G.; Janz, S. J.; Judd, L.; Kowalewski, M. G.; Liu, X.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a pushbroom airborne remote sensing instrument capable of making measurements of air quality and ocean color using backscattered UV and visible light. GeoTASO is an airborne test-bed for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, which will measure air quality over North America and Asia, respectively. GeoTASO also acts as a satellite analogue during field campaigns. GeoTASO flew on the NASA Langley Research Center UC-12 aircraft during the Korea-United States Air Quality Study in May-June 2016, collecting spectra over South Korea during 30 flights over 19 flight days. These observations can be used to derive 2-D maps of tropospheric trace gases including ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, nitrous acid and glyoxal below the aircraft at spatial resolutions between 250 m x 250 m and 1 km x 1 km, depending on the gas. We present spatially resolved trace gas retrievals over Seoul and its surrounding industrial regions, and comparisons with correlative satellite and campaign data.

  19. NCBI GEO: archive for functional genomics data sets—10 years on

    PubMed Central

    Barrett, Tanya; Troup, Dennis B.; Wilhite, Stephen E.; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F.; Tomashevsky, Maxim; Marshall, Kimberly A.; Phillippy, Katherine H.; Sherman, Patti M.; Muertter, Rolf N.; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20 000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/. PMID:21097893

  20. NCBI GEO: archive for functional genomics data sets--10 years on.

    PubMed

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20,000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  1. Prediction and Predictability of the Madden Julian Oscillation in the NASA GEOS-5 Seasonal-to-Subseasonal System

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Koster, Randal; Marshak, Jelena; Schubert, Siegfried; Molod, Andrea

    2018-01-01

    In this study, we examine the prediction skill and predictability of the Madden Julian Oscillation (MJO) in a recent version of the NASA GEOS-5 atmosphere-ocean coupled model run at at 1/2 degree horizontal resolution. The results are based on a suite of hindcasts produced as part of the NOAA SubX project, consisting of seven ensemble members initialized every 5 days for the period 1999-2015. The atmospheric initial conditions were taken from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the ocean and the sea ice were taken from a GMAO ocean analysis. The land states were initialized from the MERRA-2 land output, which is based on observation-corrected precipitation fields. We investigated the MJO prediction skill in terms of the bivariate correlation coefficient for the real-time multivariate MJO (RMM) indices. The correlation coefficient stays at or above 0.5 out to forecast lead times of 26-36 days, with a pronounced increase in skill for forecasts initialized from phase 3, when the MJO convective anomaly is located in the central tropical Indian Ocean. A corresponding estimate of the upper limit of the predictability is calculated by considering a single ensemble member as the truth and verifying the ensemble mean of the remaining members against that. The predictability estimates fall between 35-37 days (taken as forecast lead when the correlation reaches 0.5) and are rather insensitive to the initial MJO phase. The model shows slightly higher skill when the initial conditions contain strong MJO events compared to weak events, although the difference in skill is evident only from lead 1 to 20. Similar to other models, the RMM-index-based skill arises mostly from the circulation components of the index. The skill of the convective component of the index drops to 0.5 by day 20 as opposed to day 30 for circulation fields. The propagation of the MJO anomalies over the Maritime Continent does not appear problematic in

  2. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2.

    NASA Technical Reports Server (NTRS)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio

    2014-01-01

    The Modern-Era Retrospective Analysis for Research and Applications-2 (MERRA2) version of the GEOS-5 (Goddard Earth Observing System Model - 5) Atmospheric General Circulation Model (AGCM) is currently in use in the NASA Global Modeling and Assimilation Office (GMAO) at a wide range of resolutions for a variety of applications. Details of the changes in parameterizations subsequent to the version in the original MERRA reanalysis are presented here. Results of a series of atmosphere-only sensitivity studies are shown to demonstrate changes in simulated climate associated with specific changes in physical parameterizations, and the impact of the newly implemented resolution-aware behavior on simulations at different resolutions is demonstrated. The GEOS-5 AGCM presented here is the model used as part of the GMAO's MERRA2 reanalysis, the global mesoscale "nature run", the real-time numerical weather prediction system, and for atmosphere-only, coupled ocean-atmosphere and coupled atmosphere-chemistry simulations. The seasonal mean climate of the MERRA2 version of the GEOS-5 AGCM represents a substantial improvement over the simulated climate of the MERRA version at all resolutions and for all applications. Fundamental improvements in simulated climate are associated with the increased re-evaporation of frozen precipitation and cloud condensate, resulting in a wetter atmosphere. Improvements in simulated climate are also shown to be attributable to changes in the background gravity wave drag, and to upgrades in the relationship between the ocean surface stress and the ocean roughness. The series of "resolution aware" parameters related to the moist physics were shown to result in improvements at higher resolutions, and result in AGCM simulations that exhibit seamless behavior across different resolutions and applications.

  3. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    PubMed

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  4. Making Room: Integrating Geo-Technologies into Teacher Education

    ERIC Educational Resources Information Center

    Gatrell, Jay D.

    2004-01-01

    Geo-educators focus on content standards, particularly the 1994 "Geography for Life" standards, as the primary rationale for integrating geo-spatial technologies into preservice teacher education programs. In this paper, an alternative framework is proposed to infuse GIS and GIScience into existing teacher education programs. Specifically, the…

  5. Activities for Plate Tectonics using GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2016-12-01

    The concept of plate tectonics is a fundamental component of our understanding of how Earth works yet authentic, high-quality geoscience data related to plate tectonics may not be readily available to all students. To compound matters, when data is accessible, students may not possess the skills or resources necessary to explore and analyse it. As a result, much emphasis at federal and state level is now placed upon encouraging students to work with more data and more technology more often and more rigourously. Easy-to-use digital platforms offer much potential for promoting inquiry-based learning at all levels of education. GeoMapApp is one such tool. Developed at Columbia University's Lamont-Doherty Earth Observatory, GeoMapApp (http://www.geomapapp.org) is a free resource that integrates a wide range of research-grade geoscience data in one intuitive map-based interface. Simple strategies for data manipulation, visualisation and presentation allow uses to explore the data in meaningful ways. Layering and transparency capabilities further allow learners to use GeoMapApp to compare multiple data sets at once, and high-impact Save Session functionality allows a GeoMapApp project to be saved for sharing or later use. In this presentation, activities related to plate tectonics will be highlighted. One GeoMapApp activity helps students investigate plate boundaries by exploring earthquake and volcano locations. Another requires students to calculate the rate of seafloor spreading using crustal age data in various ocean basins. A third uses the GeoMapApp layering technique to explore the influence of geological forces in shaping the landscape. Each activity shown can be done by students on an individual basis, as pairs, or as groups. Educators report that student use of GeoMapApp fosters an increased sense of data "ownership" amongst students, promotes STEM skills, and provides them with access to authentic research-grade geoscience data using the same cutting

  6. Geo-Caching: Place-Based Discovery of Virginia State Parks and Museums

    ERIC Educational Resources Information Center

    Gray, Howard Richard

    2007-01-01

    The use of Global Positioning Systems (GPS) units has exploded in recent years along with the computer technology to access this data-based information. Geo-caching is an exciting game using GPS that provides place-based information regarding the public lands, facilities and cultural heritage programs within the Virginia Parks and Museum system.…

  7. Improving GEOS-5 seven day forecast skill by assimilation of quality controlled AIRS temperature profiles

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Rosenberg, R. I.

    2016-12-01

    The GEOS-5 Data Assimilation System (DAS) generates a global analysis every six hours by combining the previous six hour forecast for that time period with contemporaneous observations. These observations include in-situ observations as well as those taken by satellite borne instruments, such as AIRS/AMSU on EOS Aqua and CrIS/ATMS on S-NPP. Operational data assimilation methodology assimilates observed channel radiances Ri for IR sounding instruments such as AIRS and CrIS, but only for those channels i in a given scene whose radiances are thought to be unaffected by clouds. A limitation of this approach is that radiances in most tropospheric sounding channels are affected by clouds under partial cloud cover conditions, which occurs most of the time. The AIRS Science Team Version-6 retrieval algorithm generates cloud cleared radiances (CCR's) for each channel in a given scene, which represent the radiances AIRS would have observed if the scene were cloud free, and then uses them to determine quality controlled (QC'd) temperature profiles T(p) under all cloud conditions. There are potential advantages to assimilate either AIRS QC'd CCR's or QC'd T(p) instead of Ri in that the spatial coverage of observations is greater under partial cloud cover. We tested these two alternate data assimilation approaches by running three parallel data assimilation experiments over different time periods using GEOS-5. Experiment 1 assimilated all observations as done operationally, Experiment 2 assimilated QC'd values of AIRS CCRs in place of AIRS radiances, and Experiment 3 assimilated QC'd values of T(p) in place of observed radiances. Assimilation of QC'd AIRS T(p) resulted in significant improvement in seven day forecast skill compared to assimilation of CCR's or assimilation of observed radiances, especially in the Southern Hemisphere Extra-tropics.

  8. DSCOVR: A New Perspective for Earth Observations from Space. Synergism and Complementarity with Existing Platforms

    NASA Astrophysics Data System (ADS)

    Valero, F. P.

    2011-12-01

    The Sun-Earth Lagrange points L-1 and L-2 mark positions where the gravitational pull of the Earth and Sun precisely equals the centripetal force required to rotate with the Earth about the Sun with the same orbital period as the Earth. Therefore, a satellite maintained at one of these Lagrange points would keep the same relative position to the Sun and the Earth and be able to observe most points on the planet as the Earth rotates during the day. L-1 and L-2 are of particular interest because a satellite at either location can easily be maintained near the Sun-Earth line and views the entire daytime hemisphere from L-1 and the entire nighttime hemisphere from L-2. Since L-1 and L-2 are in the ecliptic plane, synoptic, high temporal-resolution observations would be obtained as every point on the planet, including both polar regions, transits from sunrise to sunset (L-1) or from sunset to sunrise (L-2). In summary, a pair of deep-space observatories, one at L-1 (daytime) and one at L-2 (nighttime), could acquire minute by minute climate quality data for essentially every point on Earth, all observations simultaneously for the whole planet. Such unique attributes are incorporated in the Deep Space Climate Observatory (DSCOVR) that will systematically observe climate drivers (radiation, aerosols, ozone, clouds, oxygen A-band) from L-1 in ways not possible but synergistically complementary with platforms in Low Earth Orbit (LEO) or Geostationary Earth Orbit (GEO). The combination of Solar Lagrange Points (located in the ecliptic plane) GEO (located in the equatorial plane) and LEO platforms would certainly provide a powerful observational tool as well as enriched data sets for Earth sciences. Such synergism is greatly enhanced when one considers the potential of utilizing LEO, GEO, and Lagrange point satellites as components of an integrated observational system. For example, satellites at L-1 and L-2 will view the Earth plus the Moon while simultaneously having in

  9. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    NASA Astrophysics Data System (ADS)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  10. GeoBus: sharing science research with schools

    NASA Astrophysics Data System (ADS)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  11. Mashup of Geo and Space Science Data Provided via Relational Databases in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Ritschel, B.; Seelus, C.; Neher, G.; Iyemori, T.; Koyama, Y.; Yatagai, A. I.; Murayama, Y.; King, T. A.; Hughes, J. S.; Fung, S. F.; Galkin, I. A.; Hapgood, M. A.; Belehaki, A.

    2014-12-01

    The use of RDBMS for the storage and management of geo and space science data and/or metadata is very common. Although the information stored in tables is based on a data model and therefore well organized and structured, a direct mashup with RDF based data stored in triple stores is not possible. One solution of the problem consists in the transformation of the whole content into RDF structures and storage in triple stores. Another interesting way is the use of a specific system/service, such as e.g. D2RQ, for the access to relational database content as virtual, read only RDF graphs. The Semantic Web based -proof of concept- GFZ ISDC uses the triple store Virtuoso for the storage of general context information/metadata to geo and space science satellite and ground station data. There is information about projects, platforms, instruments, persons, product types, etc. available but no detailed metadata about the data granuals itself. Such important information, as e.g. start or end time or the detailed spatial coverage of a single measurement is stored in RDBMS tables of the ISDC catalog system only. In order to provide a seamless access to all available information about the granuals/data products a mashup of the different data resources (triple store and RDBMS) is necessary. This paper describes the use of D2RQ for a Semantic Web/SPARQL based mashup of relational databases used for ISDC data server but also for the access to IUGONET and/or ESPAS and further geo and space science data resources. RDBMS Relational Database Management System RDF Resource Description Framework SPARQL SPARQL Protocol And RDF Query Language D2RQ Accessing Relational Databases as Virtual RDF Graphs GFZ ISDC German Research Centre for Geosciences Information System and Data Center IUGONET Inter-university Upper Atmosphere Global Observation Network (Japanese project) ESPAS Near earth space data infrastructure for e-science (European Union funded project)

  12. Earth Observation in Environmental and Societal Impacts of Mineral Resources Exploitation

    NASA Astrophysics Data System (ADS)

    Chevrel, Stephane

    environmental observa-tion systems into the 9 GEOSS Societal Benefit Areas, identifying EO-MINERS contributions to existing GEOSS targets and defining new, EO-MINERS activities in support of GEOSS. EO-MINERS will run a minerals workshop with GEO members and/or the GEO Secretariat.

  13. Evaluation of GeO desorption behavior in the metal∕GeO2∕Ge structure and its improvement of the electrical characteristics

    PubMed Central

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-01-01

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metal∕GeO2∕Ge capacitors fabricated by thermal oxidation has been investigated. In the metal∕GeO2∕Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metal∕GeO2∕Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO2∕Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface. PMID:20644659

  14. The use of NASA GEOS Global Analysis in MM5/WRF Initialization: Current Studies and Future Applications

    NASA Technical Reports Server (NTRS)

    Pu, Zhao-Xia; Tao, Wei-Kuo

    2004-01-01

    An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.

  15. Defining geo-habitats for groundwater ecosystem assessments: an example from England and Wales (UK)

    NASA Astrophysics Data System (ADS)

    Weitowitz, Damiano C.; Maurice, Louise; Lewis, Melinda; Bloomfield, John P.; Reiss, Julia; Robertson, Anne L.

    2017-12-01

    Groundwater ecosystems comprising micro-organisms and metazoans provide an important contribution to global biodiversity. Their complexity depends on geology, which determines the physical habitat available, and the chemical conditions within it. Despite this, methods of classifying groundwater habitats using geological data are not well established and researchers have called for higher resolution habitat frameworks. A novel habitat typology for England and Wales (UK) is proposed, which distinguishes 11 geological habitats (geo-habitats) on hydrogeological principles and maps their distribution. Hydrogeological and hydrochemical data are used to determine the characteristics of each geo-habitat, and demonstrate their differences. Using these abiotic parameters, a new method to determine abiotic habitat quality is then developed. The geo-habitats had significantly different characteristics, validating the classification system. All geo-habitats were highly heterogeneous, containing both high quality habitat patches that are likely to be suitable for fauna, and areas of low quality that may limit faunal distributions. Karstic and porous habitats generally were higher quality than fractured habitats. Overall, 70% of England and Wales are covered by lower quality fractured habitats, with only 13% covered by higher quality habitats. The main areas of high quality habitats occur in central England as north-south trending belts, possibly facilitating dispersal along this axis. They are separated by low quality geo-habitats that may prevent east-west dispersal of fauna. In south-west England and Wales suitable geo-habitats occur as small isolated patches. Overall, this paper provides a new national-scale typology that is adaptable for studies in other geographic areas.

  16. Optimizing Societal Benefit using a Systems Engineering Approach for Implementation of the GEOSS Space Segment

    NASA Technical Reports Server (NTRS)

    Killough, Brian D., Jr.; Sandford, Stephen P.; Cecil, L DeWayne; Stover, Shelley; Keith, Kim

    2008-01-01

    The Group on Earth Observations (GEO) is driving a paradigm shift in the Earth Observation community, refocusing Earth observing systems on GEO Societal Benefit Areas (SBA). Over the short history of space-based Earth observing systems most decisions have been made based on improving our scientific understanding of the Earth with the implicit assumption that this would serve society well in the long run. The space agencies responsible for developing the satellites used for global Earth observations are typically science driven. The innovation of GEO is the call for investments by space agencies to be driven by global societal needs. This paper presents the preliminary findings of an analysis focused on the observational requirements of the GEO Energy SBA. The analysis was performed by the Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO) which is responsible for facilitating the development of implementation plans that have the maximum potential for success while optimizing the benefit to society. The analysis utilizes a new taxonomy for organizing requirements, assesses the current gaps in spacebased measurements and missions, assesses the impact of the current and planned space-based missions, and presents a set of recommendations.

  17. geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling

    NASA Astrophysics Data System (ADS)

    Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.

    2015-12-01

    The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from

  18. Global-scale Observations of the Limb and Disk (GOLD) Mission - Observing Forcing of the Thermosphere-Ionosphere System from Above and Below

    NASA Astrophysics Data System (ADS)

    Eastes, Richard; McClintock, William; Burns, Alan

    2015-04-01

    The GOLD mission will provide unprecedented imaging of the Earth’s space environment and its response to forcing from the Sun and the lower atmosphere. The mission will fly a far ultraviolet imaging spectrograph and is scheduled for launch into geostationary (GEO) orbit in October 2017 as a hosted payload on a commercial communications satellite flying over eastern South America. From this vantage point GOLD will repeatedly image the American hemisphere at a thirty-minute cadence. Fundamental parameters that will be derived from these measurements include composition (O/N2) and temperature of the neutral atmosphere on the dayside disk. Imaging of atmospheric composition, at only a daily cadence, has already provided many new insights into the behavior of the Thermosphere-Ionosphere (T-I) system. Combining composition with simultaneous temperature images will provide revolutionary insights into the behavior of the T-I system and its response to external forcing. Since GOLD will repeatedly observe the same geographic locations, it can distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. GOLD’s measurements and observing approach will give the scientific community a new understanding of the T-I system.

  19. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  20. The Distributed Geothermal Market Demand Model (dGeo): Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Mooney, Meghan E; Sigrin, Benjamin O

    The National Renewable Energy Laboratory (NREL) developed the Distributed Geothermal Market Demand Model (dGeo) as a tool to explore the potential role of geothermal distributed energy resources (DERs) in meeting thermal energy demands in the United States. The dGeo model simulates the potential for deployment of geothermal DERs in the residential and commercial sectors of the continental United States for two specific technologies: ground-source heat pumps (GHP) and geothermal direct use (DU) for district heating. To quantify the opportunity space for these technologies, dGeo leverages a highly resolved geospatial database and robust bottom-up, agent-based modeling framework. This design is consistentmore » with others in the family of Distributed Generation Market Demand models (dGen; Sigrin et al. 2016), including the Distributed Solar Market Demand (dSolar) and Distributed Wind Market Demand (dWind) models. dGeo is intended to serve as a long-term scenario-modeling tool. It has the capability to simulate the technical potential, economic potential, market potential, and technology deployment of GHP and DU through the year 2050 under a variety of user-defined input scenarios. Through these capabilities, dGeo can provide substantial analytical value to various stakeholders interested in exploring the effects of various techno-economic, macroeconomic, financial, and policy factors related to the opportunity for GHP and DU in the United States. This report documents the dGeo modeling design, methodology, assumptions, and capabilities.« less

  1. A centralized platform for geo-distributed PACS management.

    PubMed

    Silva, Luís A Bastião; Pinho, Renato; Ribeiro, Luís S; Costa, Carlos; Oliveira, José Luís

    2014-04-01

    Picture Archive and Communication System (PACS) is a globally adopted concept and plays a fundamental role in patient care flow within healthcare institutions. However, the deployment of medical imaging repositories over multiple sites still brings several practical challenges namely related to operation and management (O&M). This paper describes a Web-based centralized console that provides remote monitoring, testing, and management over multiple geo-distributed PACS. The system allows the PACS administrator to define any kind of service or operation, reducing the need for local technicians and providing a 24/7 monitoring solution.

  2. Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.

    PubMed

    Rahaman, Badiur; Saha-Dasgupta, T

    2007-07-25

    We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.

  3. Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO)*

    PubMed Central

    Barrett, Tanya; Edgar, Ron

    2006-01-01

    Summary The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:16888359

  4. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  5. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    NASA Astrophysics Data System (ADS)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  6. Mapping Isoprene Emissions over North America using Formaldehyde Column Observations from Space

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Fiore, Arlene M.; Martin, Randall V.; Chance, Kelly; Kurosu, Thomas P.

    2004-01-01

    I] We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. lsoprene is the dominant HCHO precursor over North America in summer, and its lifetime (approx. = 1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r(sup 2) = 0.69, n = 756, bias = +l1 %) and the in situ summertime HCHO measurements over North America (r(sup 2) = 0.47, n = 10, bias = -3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U S . EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements thaneitherGEIAorBEIS2 (r(sup 2) = 0.71,n= 10, bias = -10 %).

  7. SemantGeo: Powering Ecological and Environment Data Discovery and Search with Standards-Based Geospatial Reasoning

    NASA Astrophysics Data System (ADS)

    Seyed, P.; Ashby, B.; Khan, I.; Patton, E. W.; McGuinness, D. L.

    2013-12-01

    , these hierarchies are constrained based on polygon selection, where the corresponding polygons of the contained features are visually rendered to assist exploration. Once measurement sites are plotted based on initial search, subsequent searches using JsTree selections can extend the previous based on nearby waterbodies in some semantic relationship of interest. For example, ';tributary of' captures water bodies that flow into the current one, and extending the original search to include tributaries of the observed water body is useful to environmental scientists for isolating the source of characteristic levels, including pollutants. Ultimately any SemantEco module can leverage SemantGeo's underlying APIs, leveraged in a deployment of SemantEco that combines EPA and USGS water quality data, and one customized for searching data available from the Darrin Freshwater Institute. Future work will address generating RDF geometry data from shape files, aligning RDF data sources to better leverage qualitative and spatial relationships, and validating newly generated RDF data adhering to the GeoSPARQL standard.

  8. Design, Implementation and Applications of 3d Web-Services in DB4GEO

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Kuper, P. V.; Dittrich, A.; Wild, P.; Butwilowski, E.; Al-Doori, M.

    2013-09-01

    The object-oriented database architecture DB4GeO was originally designed to support sub-surface applications in the geo-sciences. This is reflected in DB4GeO's geometric data model as well as in its import and export functions. Initially, these functions were designed for communication with 3D geological modeling and visualization tools such as GOCAD or MeshLab. However, it soon became clear that DB4GeO was suitable for a much wider range of applications. Therefore it is natural to move away from a standalone solution and to open the access to DB4GeO data by standardized OGC web-services. Though REST and OGC services seem incompatible at first sight, the implementation in DB4GeO shows that OGC-based implementation of web-services may use parts of the DB4GeO-REST implementation. Starting with initial solutions in the history of DB4GeO, this paper will introduce the design, adaptation (i.e. model transformation), and first steps in the implementation of OGC Web Feature (WFS) and Web Processing Services (WPS), as new interfaces to DB4GeO data and operations. Among its capabilities, DB4GeO can provide data in different data formats like GML, GOCAD, or DB3D XML through a WFS, as well as its ability to run operations like a 3D-to-2D service, or mesh-simplification (Progressive Meshes) through a WPS. We then demonstrate, an Android-based mobile 3D augmented reality viewer for DB4GeO that uses the Web Feature Service to visualize 3D geo-database query results. Finally, we explore future research work considering DB4GeO in the framework of the research group "Computer-Aided Collaborative Subway Track Planning in Multi-Scale 3D City and Building Models".

  9. Nitrogen dioxide observations from the Geostationary Trace ...

    EPA Pesticide Factsheets

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with prelim

  10. Mathematical Understanding of the Underprivileged Students through GeoGebra

    NASA Astrophysics Data System (ADS)

    Amam, A.; Fatimah, A. T.; Hartono, W.; Effendi, A.

    2017-09-01

    A student’s mathematical understanding in high school from poor families in the district of Ciamis is still low. After reviews the various literature and earlier research, consequently, researchers convince that learning mathematics with GeoGebra can help students improve for the better understanding. Our long-term goal of this research is to support the implementation of new curriculum, namely ICT-based learning mathematics. Another goal is to give a basic mastery skill regarding mathematics software to students from underprivileged families. Moreover, the specific objective of this study is to examine the students’ mathematical understanding from underprivileged families after the implementation of learning with GeoGebra. We use a quantitative comparative research method to determine differences in the mathematical understanding of students’ from underprivileged families before and after mathematics learning with GeoGebra. Accordingly, the students of senior high school from underprivileged family in Baregbeg, Ciamis district, are the population of this study. This research is using purposive sampling. The instrument is in the form of a test question, which is the test of mathematical understanding. Research results show that the mathematical understanding students’ from underprivileged families after the mathematics learning with GeoGebra becomes better than before. The novelty of this research is that students understand the material of trigonometry through the use of modules, aided by GeoGebra in learning activities. Thus, the understanding has an impact on improving students’ mathematical understanding. Students also master the use of GeoGebra Software. Implementing these two things will be very useful for the next lesson.

  11. Optical Properties of High Area-to-Mass Objects at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Schildknecht, Thomas; Musci, Reto; Flohrer, Tim; Barker, Ed; Stansbery, Eugene; Agapov, Vladimir; Rumyantsev, Vasilij; Biryukov, Vadym; Abercromby, Kira; hide

    2007-01-01

    There exists at GEO a significant population of faint debris (R > 15th magnitude) with high area-to-mass ratios (AMR) (1 to 30 sq m/kg). Their orbital elements (particularly eccentricity and inclination) are observed to change on the time-scale of a week. The consensus is that these objects may be fragments of multi-layer insulation (MLI) blankets. Their orbits are primarily perturbed by solar radiation pressure. In this paper we will report preliminary results from an international collaboration to investigate the unresolved optical properties of these objects. This population was originally discovered by the ESA Space Debris Telescope, and the bulk of the objects to be described here are based on discoveries made with this telescope. Additional objects were supplied by both Russia and the US Air Force. Follow-up optical observations were obtained for a sample of a dozen objects by MODEST (the Michigan Orbital DEbris Survey Telescope) located at Cerro Tololo Inter-American Observatory in Chile. Sequences of calibrated observations in filters B, V, Broad R, and I were obtained under photometric conditions. Multi-color photometric observations in B, V, R, and I band of the same objects were also acquired at the Zimmerwald 1-meter telescope, located near Bern, Switzerland. Light curves of selected high AMR objects will be shown with a temporal resolution of a few seconds and typically span about 10 minutes. Photometric observations of these objects were acquired at the Crimean Astrophysical Observatory (CrAO). This data set includes light curves of objects having high variability of brightness and observed with 2.6 m and 0.64 m class instruments. We will present an analysis of the observed magnitudes and colors, and their correlations (or lack of correlation) with orbital elements, and with predicted values for MLI fragments. This represents the first such collaborative observational program on faint debris at GEO.

  12. The GMAO Hybrid Ensemble-Variational Atmospheric Data Assimilation System: Version 2.0

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; El Akkraoui, Amal

    2018-01-01

    This document describes the implementation and usage of the Goddard Earth Observing System (GEOS) Hybrid Ensemble-Variational Atmospheric Data Assimilation System (Hybrid EVADAS). Its aim is to provide comprehensive guidance to users of GEOS ADAS interested in experimenting with its hybrid functionalities. The document is also aimed at providing a short summary of the state-of-science in this release of the hybrid system. As explained here, the ensemble data assimilation system (EnADAS) mechanism added to GEOS ADAS to enable hybrid data assimilation applications has been introduced to the pre-existing machinery of GEOS in the most non-intrusive possible way. Only very minor changes have been made to the original scripts controlling GEOS ADAS with the objective of facilitating its usage by both researchers and the GMAO's near-real-time Forward Processing applications. In a hybrid scenario two data assimilation systems run concurrently in a two-way feedback mode such that: the ensemble provides background ensemble perturbations required by the ADAS deterministic (typically high resolution) hybrid analysis; and the deterministic ADAS provides analysis information for recentering of the EnADAS analyses and information necessary to ensure that observation bias correction procedures are consistent between both the deterministic ADAS and the EnADAS. The nonintrusive approach to introducing hybrid capability to GEOS ADAS means, in particular, that previously existing features continue to be available. Thus, not only is this upgraded version of GEOS ADAS capable of supporting new applications such as Hybrid 3D-Var, 3D-EnVar, 4D-EnVar and Hybrid 4D-EnVar, it remains possible to use GEOS ADAS in its traditional 3D-Var mode which has been used in both MERRA and MERRA-2. Furthermore, as described in this document, GEOS ADAS also supports a configuration for exercising a purely ensemble-based assimilation strategy which can be fully decoupled from its variational component. We

  13. Seasonal Prediction with the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Suarez, Max; Schubert, S.; Chang, Y.

    1999-01-01

    A number of ensembles of seasonal forecasts have recently been completed as part of NASA's Seasonal to Interannual Prediction Project (NSIPP). The focus is on the extratropical response of the atmosphere to observed SST anomalies during boreal winter. Each prediction consists of nine forecasts starting from slightly different initial conditions. Forecasts are done for every winter from 1981 to 1995 using Version 2 of the GEOS GCM. Comparisons with six long-term integrations (1978-1995) using the same model are used to separate the contributions of initial and boundary conditions to forecast skill. The forecasts also allow us to isolate the SSt forced response (the signal) from the atmosphere's natural variability (the noise).

  14. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  15. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Luan, Y.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R.; Steele, L. P.; Kort, E. A.; Wofsy, S. C.; Umezawa, T.

    2015-07-01

    We describe a new 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint, and apply this framework in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples aboard a commercial aircraft (CARIBIC), and quasi-continuous measurements from an airborne pole-to-pole sampling campaign (HIPPO). For a two-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the two-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate of the inverse Hessian for the inversion to evaluate the spatial resolution of emission

  16. Evaluation of the 7-km GEOS-5 Nature Run

    NASA Technical Reports Server (NTRS)

    Gelaro, Ronald; Putman, William M.; Pawson, Steven; Draper, Clara; Molod, Andrea; Norris, Peter M.; Ott, Lesley; Prive, Nikki; Reale, Oreste; Achuthavarier, Deepthi; hide

    2015-01-01

    This report documents an evaluation by the Global Modeling and Assimilation Office (GMAO) of a two-year 7-km-resolution non-hydrostatic global mesoscale simulation produced with the Goddard Earth Observing System (GEOS-5) atmospheric general circulation model. The simulation was produced as a Nature Run for conducting observing system simulation experiments (OSSEs). Generation of the GEOS-5 Nature Run (G5NR) was motivated in part by the desire of the OSSE community for an improved high-resolution sequel to an existing Nature Run produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which has served the community for several years. The intended use of the G5NR in this context is for generating simulated observations to test proposed observing system designs regarding new instruments and their deployments. Because NASA's interest in OSSEs extends beyond traditional weather forecasting applications, the G5NR includes, in addition to standard meteorological components, a suite of aerosol types and several trace gas concentrations, with emissions downscaled to 10 km using ancillary information such as power plant location, population density and night-light information. The evaluation exercise described here involved more than twenty-five GMAO scientists investigating various aspects of the G5NR performance, including time mean temperature and wind fields, energy spectra, precipitation and the hydrological cycle, the representation of waves, tropical cyclones and midlatitude storms, land and ocean surface characteristics, the representation and forcing effects of clouds and radiation, dynamics of the stratosphere and mesosphere, and the representation of aerosols and trace gases. Comparisons are made with observational data sets when possible, as well as with reanalyses and other long model simulations. The evaluation is broad in scope, as it is meant to assess the overall realism of basic aspects of the G5NR deemed relevant to the conduct of OSSEs

  17. Atlantic Tropical Cyclogenetic Processes During SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia

    2009-01-01

    This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors

  18. Towards Complete, Geo-Referenced 3d Models from Crowd-Sourced Amateur Images

    NASA Astrophysics Data System (ADS)

    Hartmann, W.; Havlena, M.; Schindler, K.

    2016-06-01

    Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a few "canonical" viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≍ 10 %) do possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models; the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference. We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only based on image correspondence.

  19. GeoDataspaces: Simplifying Data Management Tasks with Globus

    NASA Astrophysics Data System (ADS)

    Malik, T.; Chard, K.; Tchoua, R. B.; Foster, I.

    2014-12-01

    Data and its management are central to modern scientific enterprise. Typically, geoscientists rely on observations and model output data from several disparate sources (file systems, RDBMS, spreadsheets, remote data sources). Integrated data management solutions that provide intuitive semantics and uniform interfaces, irrespective of the kind of data source are, however, lacking. Consequently, geoscientists are left to conduct low-level and time-consuming data management tasks, individually, and repeatedly for discovering each data source, often resulting in errors in handling. In this talk we will describe how the EarthCube GeoDataspace project is improving this situation for seismologists, hydrologists, and space scientists by simplifying some of the existing data management tasks that arise when developing computational models. We will demonstrate a GeoDataspace, bootstrapped with "geounits", which are self-contained metadata packages that provide complete description of all data elements associated with a model run, including input/output and parameter files, model executable and any associated libraries. Geounits link raw and derived data as well as associating provenance information describing how data was derived. We will discuss challenges in establishing geounits and describe machine learning and human annotation approaches that can be used for extracting and associating ad hoc and unstructured scientific metadata hidden in binary formats with data resources and models. We will show how geounits can improve search and discoverability of data associated with model runs. To support this model, we will describe efforts related towards creating a scalable metadata catalog that helps to maintain, search and discover geounits within the Globus network of accessible endpoints. This talk will focus on the issue of creating comprehensive personal inventories of data assets for computational geoscientists, and describe a publishing mechanism, which can be used to

  20. Estimating Ground-Level PM2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach

    NASA Astrophysics Data System (ADS)

    Li, Tongwen; Shen, Huanfeng; Yuan, Qiangqiang; Zhang, Xuechen; Zhang, Liangpei

    2017-12-01

    Fusing satellite observations and station measurements to estimate ground-level PM2.5 is promising for monitoring PM2.5 pollution. A geo-intelligent approach, which incorporates geographical correlation into an intelligent deep learning architecture, is developed to estimate PM2.5. Specifically, it considers geographical distance and spatiotemporally correlated PM2.5 in a deep belief network (denoted as Geoi-DBN). Geoi-DBN can capture the essential features associated with PM2.5 from latent factors. It was trained and tested with data from China in 2015. The results show that Geoi-DBN performs significantly better than the traditional neural network. The out-of-sample cross-validation R2 increases from 0.42 to 0.88, and RMSE decreases from 29.96 to 13.03 μg/m3. On the basis of the derived PM2.5 distribution, it is predicted that over 80% of the Chinese population live in areas with an annual mean PM2.5 of greater than 35 μg/m3. This study provides a new perspective for air pollution monitoring in large geographic regions.

  1. Around the World in 1,475 Salmonella Geo-serotypes

    PubMed Central

    Le Hello, Simon; de Jong, Birgitta; Rolfhamre, Per; Faensen, Daniel; Weill, François-Xavier; Giesecke, Johan

    2016-01-01

    It’s easy to remember Salmonella serotypes names, isn’t it? Surely, this is because the naming system of Salmonella serotypes is by far the most scientist friendly. Traditionally, most Salmonella serotypes have been named after geographic locations. We decided to explore the geographic locations to which Salmonella serotypes refer and describe some unexpected twists in the naming scheme. We found that 93% (n = 1,475) of the 1,585 serotypes could be categorized as geo-serotypes; that is, the name refers to a geographic location. The 3 countries with the most geo-serotypes are Germany, the United Kingdom, and the United States. Other serotype names refer to the name of a person, animal, tribe, or food item or are a composite of symptoms and host. The Salmonella serotypes naming scheme has had a valuable effect on public health microbiology, and in the current era of fast development of whole-genome sequencing, it should remain a reference.

  2. The SCARLET{trademark} array for high power GEO satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, B.R.; Jones, P.A.; Eskenazi, M.I.

    1997-12-31

    The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less

  3. Using Geo-Data Corporately on the Response Phase of Emergency Management

    NASA Astrophysics Data System (ADS)

    Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.

    2015-08-01

    Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.

  4. Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Nebert, D. D.; Huang, Q.; Yang, C.

    2013-12-01

    The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This

  5. Leveraging GeoTIFF Compatibility for Visualizing a New EASE-Grid 2.0 Global Satellite Passive Microwave Climate Record

    NASA Astrophysics Data System (ADS)

    Paget, A. C.; Brodzik, M. J.; Long, D. G.; Hardman, M.

    2016-02-01

    The historical record of satellite-derived passive microwave brightness temperatures comprises data from multiple imaging radiometers (SMMR, SSM/I-SSMIS, AMSR-E), spanning nearly 40 years of Earth observations from 1978 to the present. Passive microwave data are used to monitor time series of many climatological variables, including ocean wind speeds, cloud liquid water and sea ice concentrations and ice velocity. Gridded versions of passive microwave data have been produced using various map projections (polar stereographic, Lambert azimuthal equal-area, cylindrical equal-area, quarter-degree Platte-Carree) and data formats (flat binary, HDF). However, none of the currently available versions can be rendered in the common visualization standard, geoTIFF, without requiring cartographic reprojection. Furthermore, the reprojection details are complicated and often require expert knowledge of obscure software package options. We are producing a consistently calibrated, completely reprocessed data set of this valuable multi-sensor satellite record, using EASE-Grid 2.0, an improved equal-area projection definition that will require no reprojection for translation into geoTIFF. Our approach has been twofold: 1) define the projection ellipsoid to match the reference datum of the satellite data, and 2) include required file-level metadata for standard projection software to correctly render the data in the geoTIFF standard. The Calibrated, Enhanced Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR), leverages image reconstruction techniques to enhance gridded spatial resolution to 3 km and uses newly available intersensor calibrations to improve the quality of derived geophysical products. We expect that our attention to easy geoTIFF compatibility will foster higher-quality analysis with the CETB product by enabling easy and correct intercomparison with other gridded and in situ data.

  6. Thallium pollution in China: A geo-environmental perspective.

    PubMed

    Xiao, Tangfu; Yang, Fei; Li, Shehong; Zheng, Baoshan; Ning, Zengping

    2012-04-01

    It is well known that thallium (Tl) is a non-essential and toxic metal to human health, but less is known about the geo-environmentally-induced Tl pollution and its associated health impacts. High concentrations of Tl that are primarily associated with the epithermal metallogenesis of sulfide minerals have the potential of producing Tl pollution in the environment, which has been recognized as an emerging pollutant in China. This paper aims to review the research progress in China on Tl pollution in terms of the source, mobility, transportation pathway, and health exposure of Tl and to address the environmental concerns on Tl pollution in a geo-environmental perspective. Tl associated with the epithermal metallogenesis of sulfide minerals has been documented to disperse readily and accumulate through the geo-environmental processes of soil enrichment, water transportation and food crop growth beyond a mineralized zone. The enrichments of Tl in local soil, water, and crops may result in Tl pollution and consequent adverse health effects, e.g. chronic Tl poisoning. Investigation of the baseline Tl in the geo-environment, proper land use and health-related environmental planning and regulation are critical to prevent the Tl pollution. Examination of the human urinary Tl concentration is a quick approach to identify exposure of Tl pollution to humans. The experiences of Tl pollution in China can provide important lessons for many other regions in the world with similar geo-environmental contexts because of the high mobility and toxicity of Tl. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Overview of battery usage in NASA/GSFC LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Yi, Thomas

    1989-01-01

    In July, 1989, Cosmic Background Explorer (COBE) will be launched from a Delta rocket to study the big bang theory. The COBE, which is in a LEO/Polar orbit, will have two 20 Ah NiCd batteries, and 18 cells per battery, made by McDonnell Douglas Company. In December, 1989, National Oceanic and Atmospheric Administration (NOAA-D) will be launched from an Atlas rocket for weather observation purposes. NOAA-D, which is in a LEO/Polar morning orbit, will have two 26.5 Ah NiCd batteries, and 17 cells per battery, made by Ge-Astro East Windor. NOAA-I, which is scheduled for May, 1991 launch in a LEO/Polar afternoon orbit, will have three 26.5 Ah NiCd batteries, 17 cells per battery, made by GE-Astro East Windor. In April, 1990, Gamma Ray Observatory (GRO) will be launched from STS37 to study the gamma ray radiation phenomenon. GRO, which is in a LEO orbit, will have two modular power systems (MPS) made by McDonnell Douglas, each MPS consisting of three 50 Ah NiCd batteries, 22 cells per battery. In July, 1990, Geostationary Operational Environmental Satellite (GOES-I) will be launched from an Atlas I rocket for weather observation purposes. GOES-I, which is in a GEO orbit, will have two 12 Ah NiCd batteries, 28 cells per battery, made by Ford Aerospace and Communications Company. In December, 1990, Tracking and Data Relay Satellite (TDRS-E) will be launched from STS43 for communication purposes. TDRS-E, which is in a GEO orbit, will have three 40 Ah NiCd batteries, 24 cells per battery, made by TRW. In August, 1991, Extreme Ultraviolet Explorer (EUVE) will be launched from a Delta rocket. EUVE, which is in a LEO orbit, will have one modular power system (MPS) made by McDonnell Douglas. In December, 1991, Upper Atmosphere Research Satellite (UARS) will be launched from STS50 to study the Earth's ozone layer and other environmental concerns. UARS, which is in a 56 deg inclination LEO orbit, will have one modular power systems (MPS) made by McDonnell Douglas.

  8. Analysis of Faint Glints from Stabilized GEO Satellites

    DTIC Science & Technology

    2013-09-01

    this regard temporal photometry (i.e., measurements of whole-object brightness as a function of time ) can be very valuable. For instance, GEO satellite ...INTRODUCTION Ground-based optical and radar sites routinely acquire resolved images of satellites , yielding a great deal of knowledge about orbiting...spacecraft. However, the important population of GEO satellites often cannot be resolved , and must be characterized using methods other than imagery. In

  9. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Luan, Y.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R.; Steele, L. P.; Kort, E. A.; Wofsy, S. C.; Umezawa, T.

    2015-10-01

    We describe a new 4D-Var inversion framework for nitrous oxide (N2O) based on the GEOS-Chem chemical transport model and its adjoint, and apply it in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples onboard a commercial aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; CARIBIC), and quasi-continuous measurements from the airborne HIAPER Pole-to-Pole Observations (HIPPO) campaigns. For a 2-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the 2-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a

  10. GeoRePORT Input Spreadsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Onge, Melinda

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated basedmore » on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.« less

  11. Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Jin, Rui; Kutoglu, H.

    2017-06-01

    The most intense geomagnetic storm in solar cycle 24 occurred on March 17, 2015, and the detailed ionospheric storm morphologies are difficultly obtained from traditional observations. In this paper, the Geostationary Earth Orbit (GEO) observations of BeiDou Navigation Satellite System (BDS) are for the first time used to investigate the ionospheric responses to the geomagnetic storm. Using BDS GEO and GIMs TEC series, negative and positive responses to the March 2015 storm are found at local and global scales. During the main phase, positive ionospheric storm is the main response to the geomagnetic storm, while in the recovery phase, negative phases are pronounced at all latitudes. Maximum amplitudes of negative and positive phases appear in the afternoon and post-dusk sectors during both main and recovery phases. Furthermore, dual-peak positive phases in main phase and repeated negative phase during the recovery are found from BDS GEO observations. The geomagnetic latitudes corresponding to the maximum disturbances during the main and recovery phases show large differences, but they are quasi-symmetrical between southern and northern hemispheres. No clear zonal propagation of traveling ionospheric disturbances is detected in the GNSS TEC disturbances at high and low latitudes. The thermospheric composition variations could be the dominant source of the observed ionospheric storm effect from GUVI [O]/[N2] ratio data as well as storm-time electric fields. Our study demonstrates that the BDS (especially the GEO) observations are an important data source to observe ionospheric responses to the geomagnetic storm.

  12. A data delivery system for IMOS, the Australian Integrated Marine Observing System

    NASA Astrophysics Data System (ADS)

    Proctor, R.; Roberts, K.; Ward, B. J.

    2010-09-01

    The Integrated Marine Observing System (IMOS, www.imos.org.au), an AUD 150 m 7-year project (2007-2013), is a distributed set of equipment and data-information services which, among many applications, collectively contribute to meeting the needs of marine climate research in Australia. The observing system provides data in the open oceans around Australia out to a few thousand kilometres as well as the coastal oceans through 11 facilities which effectively observe and measure the 4-dimensional ocean variability, and the physical and biological response of coastal and shelf seas around Australia. Through a national science rationale IMOS is organized as five regional nodes (Western Australia - WAIMOS, South Australian - SAIMOS, Tasmania - TASIMOS, New SouthWales - NSWIMOS and Queensland - QIMOS) surrounded by an oceanic node (Blue Water and Climate). Operationally IMOS is organized as 11 facilities (Argo Australia, Ships of Opportunity, Southern Ocean Automated Time Series Observations, Australian National Facility for Ocean Gliders, Autonomous Underwater Vehicle Facility, Australian National Mooring Network, Australian Coastal Ocean Radar Network, Australian Acoustic Tagging and Monitoring System, Facility for Automated Intelligent Monitoring of Marine Systems, eMarine Information Infrastructure and Satellite Remote Sensing) delivering data. IMOS data is freely available to the public. The data, a combination of near real-time and delayed mode, are made available to researchers through the electronic Marine Information Infrastructure (eMII). eMII utilises the Australian Academic Research Network (AARNET) to support a distributed database on OPeNDAP/THREDDS servers hosted by regional computing centres. IMOS instruments are described through the OGC Specification SensorML and where-ever possible data is in CF compliant netCDF format. Metadata, conforming to standard ISO 19115, is automatically harvested from the netCDF files

  13. LEO-to-GEO low thrust chemical propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1980-01-01

    One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.

  14. Advanced propulsion for LEO and GEO platforms

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Pidgeon, David J.

    1990-01-01

    Mission requirements and mass savings applicable to specific low earth orbit and geostationary earth orbit platforms using three highly developed propulsion systems are described. Advanced hypergolic bipropellant thrusters and hydrazine arcjets can provide about 11 percent additional instrument payload to 14,000 kg LEO platforms. By using electric propulsion on a 8,000 kg class GEO platform, mass savings in excess of 15 percent of the beginning-of-life platform mass are obtained. Effects of large, advanced technology solar arrays and antennas on platform propulsion requirements are also discussed.

  15. Via GeoAlpina - an international project of IYPE (Invited)

    NASA Astrophysics Data System (ADS)

    Piller, W. E.

    2009-12-01

    Mountainous areas show geological features in a very conspicuous, frequently even in a spectacular way. Because of the general perception of the beauty of mountains many mountainous regions are well developed in terms of touristic infrastructure and accessibility. Therefore, mountains are a key area to bring earth sciences closer to people. In many mountain chains all over the world (e.g., Alps, Pyrenees, Andes, Rocky Mountains, Himalayas) far-ranging walking and hiking trails are developed to serve a broad spectrum of activists. To supply this audience with basic information about geological phenomena and processes along such trails the project “Via Geo...” was born as an international activity within the International Year of Planet Earth. This approach may and should be applied in different parts of the world. The Alps have been selected to act in a pilot project with six Alpine nations participating in “Via GeoAlpina”: Austria, France, Germany, Italy, Slovenia, and Switzerland. This is due to the fact that a wealth of well maintained trails and touristic infrastructure exists all over the Alps. Some of these are included in the project “Via Alpina” bridging the entire mountain system from the Adriatic Sea at Trieste (Italy) to Monte Carlo (Monaco) in the Western Mediterranean. The idea of Via GeoAlpina is to point at geological attractions along the trails of Via Alpina or in their vicinity and to offer simple but clear-cut information on these features. Various earth science fields will be covered, such as geology, geophysics, paleontology, mineralogy, hydrogeology, pedology, climatology, and geomorphology. In addition, particular topics on applied earth science aspects, e.g, mineral recourses and geological hazards, which are of particular importance for society, will be addressed. This information is primarily web-based and trail descriptions can be accessed and downloaded from the Via GeoAlpina website (http://www.viageoalpina.org). In 2009

  16. Geo-portal as a planning instrument: supporting decision making and fostering market potential of Energy efficiency in buildings

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Brumana, Raffaella; Oreni, Daniela; Iannaccone, Giuliana; Sesana, Marta Maria

    2014-03-01

    Steady technological progress has led to a noticeable advancement in disciplines associated with Earth observation. This has enabled information transition regarding changing scenarios, both natural and urban, to occur in (almost) real time. In particular, the need for integration on a local scale with the wider territorial framework has occurred in analysis and monitoring of built environments over the last few decades. The progress of Geographic Information (GI) science has provided significant advancements when it comes to spatial analysis, while the almost free availability of the internet has ensured a fast and constant exchange of geo-information, even for everyday users' requirements. Due to its descriptive and semantic nature, geo-spatial information is capable of providing a complete overview of a certain phenomenon and of predicting the implications within the natural, social and economic context. However, in order to integrate geospatial data into decision making processes, it is necessary to provide a specific context, which is well supported by verified data. This paper investigates the potentials of geo-portals as planning instruments developed to share multi-temporal/multi-scale spatial data, responding to specific end-users' demands in the case of Energy efficiency in Buildings (EeB) across European countries. The case study regards the GeoCluster geo-portal and mapping tool (Project GE2O, FP7), built upon a GeoClustering methodology for mapping of indicators relevant for energy efficiency technologies in the construction sector.

  17. GeoPad: Innovative Applications of Information Technology in Field Science Education

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; van der Pluijm, B.

    2003-12-01

    A core requirement for most undergraduate degrees in the Earth sciences is a course in field geology, which provides students with training in field science methodologies, including geologic mapping. The University of Michigan Geological Sciences' curriculum includes a seven-week, summer field course, GS-440, based out of the university's Camp Davis Geologic Field Station, near Jackson, WY. Such field-based courses stand to benefit tremendously from recent innovations in Information Technology \\(IT\\), especially in the form of increasing portability, new haptic interfaces for personal computers, and advancements in Geographic Information System \\(GIS\\) software. Such innovations are enabling in-the-field, real-time access to powerful data collection, analysis, visualization, and interpretation tools. The benefits of these innovations, however, can only be realized on a broad basis when the IT reaches a level of maturity at which users can easily employ it to enhance their learning experience and scientific activities, rather than the IT itself being a primary focus of the curriculum or a constraint on field activities. The GeoPad represents a combination of these novel technologies that achieves that goal. The GeoPad concept integrates a ruggedized Windows XP TabletPC equipped with wireless networking, a portable GPS receiver, digital camera, microphone-headset, voice-recognition software, GIS, and supporting, digital, geo-referenced data-sets. A key advantage of the GeoPad is enabling field-based usage of visualization software and data focusing on \\(3D\\) geospatial relationships \\(developed as part of the complementary GeoWall initiative\\), which provides a powerful new tool for enhancing and facilitating undergraduate field geology education, as demonstrated during the summer 2003 session of GS-440. In addition to an education in field methodologies, students also gain practical experience using IT that they will encounter during their continued

  18. Geo-Distinctive Comorbidity Networks of Pediatric Asthma.

    PubMed

    Shin, Eun Kyong; Shaban-Nejad, Arash

    2018-01-01

    Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.

  19. Estimation of Untracked Geosynchronous Population from Short-Arc Angles-Only Observations

    NASA Technical Reports Server (NTRS)

    Healy, Liam; Matney, Mark

    2017-01-01

    Telescope observations of the geosynchronous regime will observe two basic types of objects --- objects related to geosynchronous earth orbit (GEO) satellites, and objects in highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure angular rates, the GTO can occasionally mimic the motion of GEO objects over short arcs. A GEO census based solely on short arc telescope observations may be affected by these ``interlopers''. A census that includes multiple angular rates can get an accurate statistical estimate of the GTO population, and that then can be used to correct the estimate of the geosynchronous earth orbit population.

  20. Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice

    NASA Astrophysics Data System (ADS)

    Jackson, L. S.; Crook, J. A.; Forster, P.; Jarvis, A.; Leedal, D.; Ridgwell, A. J.; Vaughan, N.

    2013-12-01

    The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain 'observations' from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the 'geo-engineers' until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 'real world'. We found that doubts in the minds of the 'geo-engineers' of the effectiveness and the side effects of their past intervention, and the veracity of the models