Sample records for obtain accurate predictions

  1. Obtaining Accurate Probabilities Using Classifier Calibration

    ERIC Educational Resources Information Center

    Pakdaman Naeini, Mahdi

    2016-01-01

    Learning probabilistic classification and prediction models that generate accurate probabilities is essential in many prediction and decision-making tasks in machine learning and data mining. One way to achieve this goal is to post-process the output of classification models to obtain more accurate probabilities. These post-processing methods are…

  2. Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models

    USGS Publications Warehouse

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.

  3. Uncertainty propagation for statistical impact prediction of space debris

    NASA Astrophysics Data System (ADS)

    Hoogendoorn, R.; Mooij, E.; Geul, J.

    2018-01-01

    Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.

  4. Regge calculus and observations. II. Further applications.

    NASA Astrophysics Data System (ADS)

    Williams, Ruth M.; Ellis, G. F. R.

    1984-11-01

    The method, developed in an earlier paper, for tracing geodesies of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarzschild geometry. It is possible to obtain accurate predictions of light bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession, and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly.

  5. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  6. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozirov, Farhod, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com; Stachów, Michał, E-mail: michal.stachow@gmail.com; Kupka, Teobald, E-mail: teobaldk@gmail.com, E-mail: farhod.nozirov@gmail.com

    2014-04-14

    A theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis- and trans-1,2-difluoroethylenes is reported. The results obtained using density functional theory (DFT) combined with large basis sets and gauge-independent atomic orbital calculations were critically compared with experiment and conventional, higher level correlated electronic structure methods. Accurate structural, vibrational, and NMR parameters of difluoroethylenes were obtained using several density functionals combined with dedicated basis sets. B3LYP/6-311++G(3df,2pd) optimized structures of difluoroethylenes closely reproduced experimental geometries and earlier reported benchmark coupled cluster results, while BLYP/6-311++G(3df,2pd) produced accurate harmonic vibrational frequencies. The most accurate vibrations were obtained using B3LYP/6-311++G(3df,2pd)more » with correction for anharmonicity. Becke half and half (BHandH) density functional predicted more accurate {sup 19}F isotropic shieldings and van Voorhis and Scuseria's τ-dependent gradient-corrected correlation functional yielded better carbon shieldings than B3LYP. A surprisingly good performance of Hartree-Fock (HF) method in predicting nuclear shieldings in these molecules was observed. Inclusion of zero-point vibrational correction markedly improved agreement with experiment for nuclear shieldings calculated by HF, MP2, CCSD, and CCSD(T) methods but worsened the DFT results. The threefold improvement in accuracy when predicting {sup 2}J(FF) in 1,1-difluoroethylene for BHandH density functional compared to B3LYP was observed (the deviations from experiment were −46 vs. −115 Hz)« less

  7. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  8. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    NASA Technical Reports Server (NTRS)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  9. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Sadus, Richard J.

    2017-06-01

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  10. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.

    PubMed

    Vlasiuk, Maryna; Sadus, Richard J

    2017-06-28

    The ability of ab initio interatomic potentials to accurately predict vapor-liquid phase equilibria is investigated. Monte Carlo simulations are reported for the vapor-liquid equilibria of argon and krypton using recently developed accurate ab initio interatomic potentials. Seventeen interatomic potentials are studied, formulated from different combinations of two-body plus three-body terms. The simulation results are compared to either experimental or reference data for conditions ranging from the triple point to the critical point. It is demonstrated that the use of ab initio potentials enables systematic improvements to the accuracy of predictions via the addition of theoretically based terms. The contribution of three-body interactions is accounted for using the Axilrod-Teller-Muto plus other multipole contributions and the effective Marcelli-Wang-Sadus potentials. The results indicate that the predictive ability of recent interatomic potentials, obtained from quantum chemical calculations, is comparable to that of accurate empirical models. It is demonstrated that the Marcelli-Wang-Sadus potential can be used in combination with accurate two-body ab initio models for the computationally inexpensive and accurate estimation of vapor-liquid phase equilibria.

  11. Three-dimensional computed tomographic volumetry precisely predicts the postoperative pulmonary function.

    PubMed

    Kobayashi, Keisuke; Saeki, Yusuke; Kitazawa, Shinsuke; Kobayashi, Naohiro; Kikuchi, Shinji; Goto, Yukinobu; Sakai, Mitsuaki; Sato, Yukio

    2017-11-01

    It is important to accurately predict the patient's postoperative pulmonary function. The aim of this study was to compare the accuracy of predictions of the postoperative residual pulmonary function obtained with three-dimensional computed tomographic (3D-CT) volumetry with that of predictions obtained with the conventional segment-counting method. Fifty-three patients scheduled to undergo lung cancer resection, pulmonary function tests, and computed tomography were enrolled in this study. The postoperative residual pulmonary function was predicted based on the segment-counting and 3D-CT volumetry methods. The predicted postoperative values were compared with the results of postoperative pulmonary function tests. Regarding the linear correlation coefficients between the predicted postoperative values and the measured values, those obtained using the 3D-CT volumetry method tended to be higher than those acquired using the segment-counting method. In addition, the variations between the predicted and measured values were smaller with the 3D-CT volumetry method than with the segment-counting method. These results were more obvious in COPD patients than in non-COPD patients. Our findings suggested that the 3D-CT volumetry was able to predict the residual pulmonary function more accurately than the segment-counting method, especially in patients with COPD. This method might lead to the selection of appropriate candidates for surgery among patients with a marginal pulmonary function.

  12. Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype

    NASA Astrophysics Data System (ADS)

    Boscheri, G.; Kacira, M.; Patterson, L.; Giacomelli, G.; Sadler, P.; Furfaro, R.; Lobascio, C.; Lamantea, M.; Grizzaffi, L.

    2012-10-01

    Models are required to accurately predict mass and energy balances in a bioregenerative life support system. A modified energy cascade model was used to predict outputs of a multi-crop (tomatoes, potatoes, lettuce and strawberries) Lunar greenhouse prototype. The model performance was evaluated against measured data obtained from several system closure experiments. The model predictions corresponded well to those obtained from experimental measurements for the overall system closure test period (five months), especially for biomass produced (0.7% underestimated), water consumption (0.3% overestimated) and condensate production (0.5% overestimated). However, the model was less accurate when the results were compared with data obtained from a shorter experimental time period, with 31%, 48% and 51% error for biomass uptake, water consumption, and condensate production, respectively, which were obtained under more complex crop production patterns (e.g. tall tomato plants covering part of the lettuce production zones). These results, together with a model sensitivity analysis highlighted the necessity of periodic characterization of the environmental parameters (e.g. light levels, air leakage) in the Lunar greenhouse.

  13. Comparison of photon attenuation coefficients (2-150 KeV) for diagnostic imaging simulations

    NASA Astrophysics Data System (ADS)

    Dodge, Charles W., III; Flynn, Michael J.

    2004-05-01

    The Radiology Research Laboratory at the Henry Ford Hospital has been involved in modeling x-ray units in order to predict image quality. A critical part of that modeling process is the accurate choice of interaction coefficients. This paper serves as a review and comparison of existing interaction models. Our objective was to obtain accurate and easily calculated interaction coefficients, at diagnostically relevant energies. We obtained data from: McMaster, Lawrence Berkeley Lab data (LBL), XCOM and FFAST Data from NIST, and the EPDL-97 database via LLNL. Our studies involve low energy photons; therefore, comparisons were limited to Coherent (Rayleigh), Incoherent (Compton) and Photoelectric effects, which were summed to determine a total interaction cross section. Without measured data, it becomes difficult to definitively choose the most accurate method. However, known limitations in the McMaster data and smoothing of photo-edge transitions can be used as a guide to establish more valid approaches. Each method was compared to one another graphically and at individual points. We found that agreement between all methods was excellent when away from photo-edges. Near photo-edges and at low energies, most methods were less accurate. Only the Chanter (FFAST) data seems to have consistently and accurately predicted the placement of edges (through M-shell), while minimizing smoothing errors. The EPDL-97 data by LLNL was the best over method in predicting coherent and incoherent cross sections.

  14. Research on the Wire Network Signal Prediction Based on the Improved NNARX Model

    NASA Astrophysics Data System (ADS)

    Zhang, Zipeng; Fan, Tao; Wang, Shuqing

    It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.

  15. Ternary isocratic mobile phase optimization utilizing resolution Design Space based on retention time and peak width modeling.

    PubMed

    Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa

    2013-01-18

    An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed procedure. Consequently, the procedure to search the optimal range of ternary solvent strength achieving an appropriate separation is provided by using the resolution Design Space based on accurate prediction. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Control surface hinge moment prediction using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Simpson, Christopher David

    The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.

  17. Ultrasonic prediction of term birth weight in Hispanic women. Accuracy in an outpatient clinic.

    PubMed

    Nahum, Gerard G; Pham, Krystle Q; McHugh, John P

    2003-01-01

    To investigate the accuracy of ultrasonic fetal biometric algorithms for estimating term fetal weight. Ultrasonographic fetal biometric assessments were made in 74 Hispanic women who delivered at 37-42 weeks of gestation. Measurements were taken of the fetal biparietal diameter, head circumference, abdominal circumference and femur length. Twenty-seven standard fetal biometric algorithms were assessed for their accuracy in predicting fetal weight. Results were compared to those obtained by merely guessing the mean term birth weight in each case. The correlation between ultrasonically predicted and actual birth weights ranged from 0.52 to 0.79. The different ultrasonic algorithms estimated fetal weight to within +/- 8.6-15.0% (+/- 295-520 g) of actual birth weight as compared with +/- 13.6% (+/- 449 g) for guessing the mean birth weight in each case (mean +/- SD). The mean absolute prediction errors for 17 of the ultrasonic equations (63%) were superior to those obtained by guessing the mean birth weight by 3.2-5.0% (96-154 g) (P < .05). Fourteen algorithms (52%) were more accurate for predicting fetal weight to within +/- 15%, and 20 algorithms (74%) were more accurate for predicting fetal weight to within +/- 10% of actual birth weight than simply guessing the mean birth weight (P < .05). Ten ultrasonic equations (37%) showed significant utility for predicting fetal weight > 4,000 g (likelihood ratio > 5.0). Term fetal weight predictions using the majority of sonographic fetal biometric equations are more accurate, by up to 154 g and 5%, than simply guessing the population-specific mean birth weight.

  18. Fine Particulate Matter and Cardiovascular Disease: Comparison of Assessment Methods for Long-term Exposure

    EPA Science Inventory

    Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however...

  19. Mortality of atomic bomb survivors predicted from laboratory animals

    NASA Technical Reports Server (NTRS)

    Carnes, Bruce A.; Grahn, Douglas; Hoel, David

    2003-01-01

    Exposure, pathology and mortality data for mice, dogs and humans were examined to determine whether accurate interspecies predictions of radiation-induced mortality could be achieved. The analyses revealed that (1) days of life lost per unit dose can be estimated for a species even without information on radiation effects in that species, and (2) accurate predictions of age-specific radiation-induced mortality in beagles and the atomic bomb survivors can be obtained from a dose-response model for comparably exposed mice. These findings illustrate the value of comparative mortality analyses and the relevance of animal data to the study of human health effects.

  20. The Utility of Maze Accurate Response Rate in Assessing Reading Comprehension in Upper Elementary and Middle School Students

    ERIC Educational Resources Information Center

    McCane-Bowling, Sara J.; Strait, Andrea D.; Guess, Pamela E.; Wiedo, Jennifer R.; Muncie, Eric

    2014-01-01

    This study examined the predictive utility of five formative reading measures: words correct per minute, number of comprehension questions correct, reading comprehension rate, number of maze correct responses, and maze accurate response rate (MARR). Broad Reading cluster scores obtained via the Woodcock-Johnson III (WJ III) Tests of Achievement…

  1. State-space prediction of spring discharge in a karst catchment in southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Liu, Meixian; Li, Xuezhang; Zhang, Rongfei; Wang, Kelin; Xu, Chaohao

    2017-06-01

    Southwest China represents one of the largest continuous karst regions in the world. It is estimated that around 1.7 million people are heavily dependent on water derived from karst springs in southwest China. However, there is a limited amount of water supply in this region. Moreover, there is not enough information on temporal patterns of spring discharge in the area. In this context, it is essential to accurately predict spring discharge, as well as understand karst hydrological processes in a thorough manner, so that water shortages in this area could be predicted and managed efficiently. The objectives of this study were to determine the primary factors that govern spring discharge patterns and to develop a state-space model to predict spring discharge. Spring discharge, precipitation (PT), relative humidity (RD), water temperature (WD), and electrical conductivity (EC) were the variables analyzed in the present work, and they were monitored at two different locations (referred to as karst springs A and B, respectively, in this paper) in a karst catchment area in southwest China from May to November 2015. Results showed that a state-space model using any combinations of variables outperformed a classical linear regression, a back-propagation artificial neural network model, and a least square support vector machine in modeling spring discharge time series for karst spring A. The best state-space model was obtained by using PT and RD, which accounted for 99.9% of the total variation in spring discharge. This model was then applied to an independent data set obtained from karst spring B, and it provided accurate spring discharge estimates. Therefore, state-space modeling was a useful tool for predicting spring discharge in karst regions in southwest China, and this modeling procedure may help researchers to obtain accurate results in other karst regions.

  2. Relationship between the Prediction Accuracy of Tsunami Inundation and Relative Distribution of Tsunami Source and Observation Arrays: A Case Study in Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Takagawa, T.

    2017-12-01

    A rapid and precise tsunami forecast based on offshore monitoring is getting attention to reduce human losses due to devastating tsunami inundation. We developed a forecast method based on the combination of hierarchical Bayesian inversion with pre-computed database and rapid post-computing of tsunami inundation. The method was applied to Tokyo bay to evaluate the efficiency of observation arrays against three tsunamigenic earthquakes. One is a scenario earthquake at Nankai trough and the other two are historic ones of Genroku in 1703 and Enpo in 1677. In general, rich observation array near the tsunami source has an advantage in both accuracy and rapidness of tsunami forecast. To examine the effect of observation time length we used four types of data with the lengths of 5, 10, 20 and 45 minutes after the earthquake occurrences. Prediction accuracy of tsunami inundation was evaluated by the simulated tsunami inundation areas around Tokyo bay due to target earthquakes. The shortest time length of accurate prediction varied with target earthquakes. Here, accurate prediction means the simulated values fall within the 95% credible intervals of prediction. In Enpo earthquake case, 5-minutes observation is enough for accurate prediction for Tokyo bay, but 10-minutes and 45-minutes are needed in the case of Nankai trough and Genroku, respectively. The difference of the shortest time length for accurate prediction shows the strong relationship with the relative distance from the tsunami source and observation arrays. In the Enpo case, offshore tsunami observation points are densely distributed even in the source region. So, accurate prediction can be rapidly achieved within 5 minutes. This precise prediction is useful for early warnings. Even in the worst case of Genroku, where less observation points are available near the source, accurate prediction can be obtained within 45 minutes. This information can be useful to figure out the outline of the hazard in an early stage of reaction.

  3. Microarray-based cancer prediction using soft computing approach.

    PubMed

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  4. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Gilissen, Ron A; Mackie, Claire E; Nijsen, Marjoleen J

    2007-04-01

    The aim of this study was to assess a physiologically based modeling approach for predicting drug metabolism, tissue distribution, and bioavailability in rat for a structurally diverse set of neutral and moderate-to-strong basic compounds (n = 50). Hepatic blood clearance (CL(h)) was projected using microsomal data and shown to be well predicted, irrespective of the type of hepatic extraction model (80% within 2-fold). Best predictions of CL(h) were obtained disregarding both plasma and microsomal protein binding, whereas strong bias was seen using either blood binding only or both plasma and microsomal protein binding. Two mechanistic tissue composition-based equations were evaluated for predicting volume of distribution (V(dss)) and tissue-to-plasma partitioning (P(tp)). A first approach, which accounted for ionic interactions with acidic phospholipids, resulted in accurate predictions of V(dss) (80% within 2-fold). In contrast, a second approach, which disregarded ionic interactions, was a poor predictor of V(dss) (60% within 2-fold). The first approach also yielded accurate predictions of P(tp) in muscle, heart, and kidney (80% within 3-fold), whereas in lung, liver, and brain, predictions ranged from 47% to 62% within 3-fold. Using the second approach, P(tp) prediction accuracy in muscle, heart, and kidney was on average 70% within 3-fold, and ranged from 24% to 54% in all other tissues. Combining all methods for predicting V(dss) and CL(h) resulted in accurate predictions of the in vivo half-life (70% within 2-fold). Oral bioavailability was well predicted using CL(h) data and Gastroplus Software (80% within 2-fold). These results illustrate that physiologically based prediction tools can provide accurate predictions of rat pharmacokinetics.

  5. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    NASA Technical Reports Server (NTRS)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  6. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    NASA Astrophysics Data System (ADS)

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  7. Anthropometry and physical activity level in the prediction of metabolic syndrome in children.

    PubMed

    Andaki, Alynne Christian Ribeiro; Tinôco, Adelson Luiz Araújo; Mendes, Edmar Lacerda; Andaki Júnior, Roberto; Hills, Andrew P; Amorim, Paulo Roberto S

    2014-10-01

    To evaluate the effectiveness of anthropometric measures and physical activity level in the prediction of metabolic syndrome (MetS) in children. Cross-sectional study with children from public and private schools. Children underwent an anthropometric assessment, blood pressure measurement and biochemical evaluation of serum for determination of TAG, HDL-cholesterol and glucose. Physical activity level was calculated and number of steps per day obtained using a pedometer for seven consecutive days. Viçosa, south-eastern Brazil. Boys and girls (n 187), mean age 9·90 (SD 0·7) years. Conicity index, sum of four skinfolds, physical activity level and number of steps per day were accurate in predicting MetS in boys. Anthropometric indicators were accurate in predicting MetS for girls, specifically BMI, waist circumference measured at the narrowest point and at the level of the umbilicus, four skinfold thickness measures evaluated separately, the sum of subscapular and triceps skinfold thickness, the sum of four skinfolds and body fat percentage. The sum of four skinfolds was the most accurate method in predicting MetS in both genders.

  8. New higher-order Godunov code for modelling performance of two-stage light gas guns

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1995-01-01

    A new quasi-one-dimensional Godunov code for modeling two-stage light gas guns is described. The code is third-order accurate in space and second-order accurate in time. A very accurate Riemann solver is used. Friction and heat transfer to the tube wall for gases and dense media are modeled and a simple nonequilibrium turbulence model is used for gas flows. The code also models gunpowder burn in the first-stage breech. Realistic equations of state (EOS) are used for all media. The code was validated against exact solutions of Riemann's shock-tube problem, impact of dense media slabs at velocities up to 20 km/sec, flow through a supersonic convergent-divergent nozzle and burning of gunpowder in a closed bomb. Excellent validation results were obtained. The code was then used to predict the performance of two light gas guns (1.5 in. and 0.28 in.) in service at the Ames Research Center. The code predictions were compared with measured pressure histories in the powder chamber and pump tube and with measured piston and projectile velocities. Very good agreement between computational fluid dynamics (CFD) predictions and measurements was obtained. Actual powder-burn rates in the gun were found to be considerably higher (60-90 percent) than predicted by the manufacturer and the behavior of the piston upon yielding appears to differ greatly from that suggested by low-strain rate tests.

  9. Predicting hospital accounting costs

    PubMed Central

    Newhouse, Joseph P.; Cretin, Shan; Witsberger, Christina J.

    1989-01-01

    Two alternative methods to Medicare Cost Reports that provide information about hospital costs more promptly but less accurately are investigated. Both employ utilization data from current-year bills. The first attaches costs to utilization data using cost-charge ratios from the previous year's cost report; the second uses charges from current year's bills. The first method is the more accurate of the two, but even using it, only 40 percent of hospitals had predicted costs within plus or minus 5 percent of actual costs. The feasibility and cost of obtaining cost reports from a small, fast-track sample of hospitals should be investigated. PMID:10313352

  10. Rapid and accurate prediction of degradant formation rates in pharmaceutical formulations using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Darrington, Richard T; Jiao, Jim

    2004-04-01

    Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  12. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  13. Energy prediction equations are inadequate for obese Hispanic youth.

    PubMed

    Klein, Catherine J; Villavicencio, Stephan A; Schweitzer, Amy; Bethepu, Joel S; Hoffman, Heather J; Mirza, Nazrat M

    2011-08-01

    Assessing energy requirements is a fundamental activity in clinical dietetics practice. A study was designed to determine whether published linear regression equations were accurate for predicting resting energy expenditure (REE) in fasted Hispanic children with obesity (aged 7 to 15 years). REE was measured using indirect calorimetry; body composition was estimated with whole-body air displacement plethysmography. REE was predicted using four equations: Institute of Medicine for healthy-weight children (IOM-HW), IOM for overweight and obese children (IOM-OS), Harris-Benedict, and Schofield. Accuracy of the prediction was calculated as the absolute value of the difference between the measured and predicted REE divided by the measured REE, expressed as a percentage. Predicted values within 85% to 115% of measured were defined as accurate. Participants (n=58; 53% boys) were mean age 11.8±2.1 years, had 43.5%±5.1% body fat, and had a body mass index of 31.5±5.8 (98.6±1.1 body mass index percentile). Measured REE was 2,339±680 kcal/day; predicted REE was 1,815±401 kcal/day (IOM-HW), 1,794±311 kcal/day (IOM-OS), 1,151±300 kcal/day (Harris-Benedict), and, 1,771±316 kcal/day (Schofield). Measured REE adjusted for body weight averaged 32.0±8.4 kcal/kg/day (95% confidence interval 29.8 to 34.2). Published equations predicted REE within 15% accuracy for only 36% to 40% of 58 participants, except for Harris-Benedict, which did not achieve accuracy for any participant. The most frequently accurate values were obtained using IOM-HW, which predicted REE within 15% accuracy for 55% (17/31) of boys. Published equations did not accurately predict REE for youth in the study sample. Further studies are warranted to formulate accurate energy prediction equations for this population. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  14. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas

    Treesearch

    Bettina Ohse; Falk Huettmann; Stefanie M. Ickert-Bond; Glenn P. Juday

    2009-01-01

    Most wilderness areas still lack accurate distribution information on tree species. We met this need with a predictive GIS modeling approach, using freely available digital data and computer programs to efficiently obtain high-quality species distribution maps. Here we present a digital map with the predicted distribution of white spruce (Picea glauca...

  15. Comparison of Decision Assist and Clinical Judgment of Experts for Prediction of Lifesaving Interventions

    DTIC Science & Technology

    2015-03-01

    min of pulse oximeter photopletysmograph waveforms and extracted features to predict LSIs. We compared this with clinical judgment of LSIs by...Curve (AUROC). We obtained clinical judgment of need for LSI from 405 expert clinicians in135 trauma patients. The pulse oximeter algorithm...15 min of pulse oximeter waveforms predicts the need for LSIs during initial trauma resuscitation as accurately as judgment of expert trauma

  16. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    PubMed Central

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  17. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  18. Increasing Efficiency and Effectiveness in Predicting Second-Grade Achievement Using a Kindergarten Screening Battery.

    ERIC Educational Resources Information Center

    Gordon, Roberta R.

    1988-01-01

    Investigation into the most effective use of a kindergarten screening battery to predict second-grade reading and mathematics achievement found that a combination of 10 readiness subtests resulted in the same degree of accuracy as that obtained using the entire battery. However, neither version was accurate enough to be useful. (Author/CB)

  19. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  1. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330

  2. Vesicular stomatitis forecasting based on Google Trends

    PubMed Central

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  3. Disease prevention versus data privacy: using landcover maps to inform spatial epidemic models.

    PubMed

    Tildesley, Michael J; Ryan, Sadie J

    2012-01-01

    The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock.

  4. Disease Prevention versus Data Privacy: Using Landcover Maps to Inform Spatial Epidemic Models

    PubMed Central

    Tildesley, Michael J.; Ryan, Sadie J.

    2012-01-01

    The availability of epidemiological data in the early stages of an outbreak of an infectious disease is vital for modelers to make accurate predictions regarding the likely spread of disease and preferred intervention strategies. However, in some countries, the necessary demographic data are only available at an aggregate scale. We investigated the ability of models of livestock infectious diseases to predict epidemic spread and obtain optimal control policies in the event of imperfect, aggregated data. Taking a geographic information approach, we used land cover data to predict UK farm locations and investigated the influence of using these synthetic location data sets upon epidemiological predictions in the event of an outbreak of foot-and-mouth disease. When broadly classified land cover data were used to create synthetic farm locations, model predictions deviated significantly from those simulated on true data. However, when more resolved subclass land use data were used, moderate to highly accurate predictions of epidemic size, duration and optimal vaccination and ring culling strategies were obtained. This suggests that a geographic information approach may be useful where individual farm-level data are not available, to allow predictive analyses to be carried out regarding the likely spread of disease. This method can also be used for contingency planning in collaboration with policy makers to determine preferred control strategies in the event of a future outbreak of infectious disease in livestock. PMID:23133352

  5. Predicting the future trend of popularity by network diffusion.

    PubMed

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  6. Predicting the future trend of popularity by network diffusion

    NASA Astrophysics Data System (ADS)

    Zeng, An; Yeung, Chi Ho

    2016-06-01

    Conventional approaches to predict the future popularity of products are mainly based on extrapolation of their current popularity, which overlooks the hidden microscopic information under the macroscopic trend. Here, we study diffusion processes on consumer-product and citation networks to exploit the hidden microscopic information and connect consumers to their potential purchase, publications to their potential citers to obtain a prediction for future item popularity. By using the data obtained from the largest online retailers including Netflix and Amazon as well as the American Physical Society citation networks, we found that our method outperforms the accurate short-term extrapolation and identifies the potentially popular items long before they become prominent.

  7. Time-Accurate Numerical Prediction of Free Flight Aerodynamics of a Finned Projectile

    DTIC Science & Technology

    2005-09-01

    develop (with fewer dollars) more lethal and effective munitions. The munitions must stay abreast of the latest technology available to our...consuming. Computer simulations can and have provided an effective means of determining the unsteady aerodynamics and flight mechanics of guided projectile...Recently, the time-accurate technique was used to obtain improved results for Magnus moment and roll damping moment of a spinning projectile at transonic

  8. Study and classification of the abdominal adiposity throughout the application of the two-dimensional predictive equation Garaulet et al., in the clinical practice.

    PubMed

    Piernas Sánchez, C M; Morales Falo, E M; Zamora Navarro, S; Garaulet Aza, M

    2010-01-01

    The excess of visceral abdominal adipose tissue is one of the major concerns in obesity and its clinical treatment. To apply the two-dimensional predictive equation proposed by Garaulet et al. to determine the abdominal fat distribution and to compare the results with the body composition obtained by multi-frequency bioelectrical impedance analysis (M-BIA). We studied 230 women, who underwent anthropometry and M-BIA. The predictive equation was applied. Multivariate lineal and partial correlation analyses were performed with control for BMI and % body fat, using SPSS 15.0 with statistical significance P < 0.05. Overall, women were considered as having subcutaneous distribution of abdominal fat. Truncal fat, regional fat and muscular mass were negatively associated with VA/SA(predicted), while the visceral index obtained by M-BIA was positively correlated with VA/SA(predicted). The predictive equation may be useful in the clinical practice to obtain an accurate, costless and safe classification of abdominal obesity.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3more » Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.« less

  10. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1992-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  11. A comparison of the calculated and experimental off-design performance of a radial flow turbine

    NASA Technical Reports Server (NTRS)

    Tirres, Lizet

    1991-01-01

    Off design aerodynamic performance of the solid version of a cooled radial inflow turbine is analyzed. Rotor surface static pressure data and other performance parameters were obtained experimentally. Overall stage performance and turbine blade surface static to inlet total pressure ratios were calculated by using a quasi-three dimensional inviscid code. The off design prediction capability of this code for radial inflow turbines shows accurate static pressure prediction. Solutions show a difference of 3 to 5 points between the experimentally obtained efficiencies and the calculated values.

  12. Accurate interatomic force fields via machine learning with covariant kernels

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro

    2017-06-01

    We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.

  13. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture.

    PubMed

    Chen, Yingyi; Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies.

  14. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    NASA Astrophysics Data System (ADS)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.

  15. A link prediction approach to cancer drug sensitivity prediction.

    PubMed

    Turki, Turki; Wei, Zhi

    2017-10-03

    Predicting the response to a drug for cancer disease patients based on genomic information is an important problem in modern clinical oncology. This problem occurs in part because many available drug sensitivity prediction algorithms do not consider better quality cancer cell lines and the adoption of new feature representations; both lead to the accurate prediction of drug responses. By predicting accurate drug responses to cancer, oncologists gain a more complete understanding of the effective treatments for each patient, which is a core goal in precision medicine. In this paper, we model cancer drug sensitivity as a link prediction, which is shown to be an effective technique. We evaluate our proposed link prediction algorithms and compare them with an existing drug sensitivity prediction approach based on clinical trial data. The experimental results based on the clinical trial data show the stability of our link prediction algorithms, which yield the highest area under the ROC curve (AUC) and are statistically significant. We propose a link prediction approach to obtain new feature representation. Compared with an existing approach, the results show that incorporating the new feature representation to the link prediction algorithms has significantly improved the performance.

  16. Formulation of a General Technique for Predicting Pneumatic Attenuation Errors in Airborne Pressure Sensing Devices

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1988-01-01

    Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.

  17. User's Manual for Downscaler Fusion Software

    EPA Science Inventory

    Recently, a series of 3 papers has been published in the statistical literature that details the use of downscaling to obtain more accurate and precise predictions of air pollution across the conterminous U.S. This downscaling approach combines CMAQ gridded numerical model output...

  18. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  19. New Objective Refraction Metric Based on Sphere Fitting to the Wavefront

    PubMed Central

    Martínez-Finkelshtein, Andreí

    2017-01-01

    Purpose To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. Methods A sphere is fitted to the ocular wavefront at the center and at a variable distance, t. The optimal fitting distance, topt, is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r0, and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. Results For pupil radii r0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size. PMID:29104804

  20. New Objective Refraction Metric Based on Sphere Fitting to the Wavefront.

    PubMed

    Jaskulski, Mateusz; Martínez-Finkelshtein, Andreí; López-Gil, Norberto

    2017-01-01

    To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. A sphere is fitted to the ocular wavefront at the center and at a variable distance, t . The optimal fitting distance, t opt , is obtained empirically from a dataset of 308 eyes as a function of objective refraction pupil radius, r 0 , and used to define the formula of a new wavefront refraction metric (MTR). The metric is tested in another, independent dataset of 200 eyes. For pupil radii r 0 ≤ 2 mm, the new metric predicts the equivalent sphere with similar accuracy (<0.1D), however, for r 0 > 2 mm, the mean error of traditional metrics can increase beyond 0.25D, and the MTR remains accurate. The proposed metric allows clinicians to obtain an accurate clinical spherical equivalent value without rescaling/refitting of the wavefront coefficients. It has the potential to be developed into a metric which will be able to predict full spherocylindrical refraction for the desired illumination conditions and corresponding pupil size.

  1. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  2. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network

    PubMed Central

    Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong

    2015-01-01

    In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896

  3. A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong

    2017-11-01

    Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.

  4. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    PubMed

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  5. Neural and Hybrid Modeling: An Alternative Route to Efficiently Predict the Behavior of Biotechnological Processes Aimed at Biofuels Obtainment

    PubMed Central

    Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved. PMID:24516363

  6. Prediction of human pharmacokinetics using physiologically based modeling: a retrospective analysis of 26 clinically tested drugs.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Nijsen, Marjoleen J; Mackie, Claire E; Gilissen, Ron A H J

    2007-10-01

    The aim of this study was to evaluate different physiologically based modeling strategies for the prediction of human pharmacokinetics. Plasma profiles after intravenous and oral dosing were simulated for 26 clinically tested drugs. Two mechanism-based predictions of human tissue-to-plasma partitioning (P(tp)) from physicochemical input (method Vd1) were evaluated for their ability to describe human volume of distribution at steady state (V(ss)). This method was compared with a strategy that combined predicted and experimentally determined in vivo rat P(tp) data (method Vd2). Best V(ss) predictions were obtained using method Vd2, providing that rat P(tp) input was corrected for interspecies differences in plasma protein binding (84% within 2-fold). V(ss) predictions from physicochemical input alone were poor (32% within 2-fold). Total body clearance (CL) was predicted as the sum of scaled rat renal clearance and hepatic clearance projected from in vitro metabolism data. Best CL predictions were obtained by disregarding both blood and microsomal or hepatocyte binding (method CL2, 74% within 2-fold), whereas strong bias was seen using both blood and microsomal or hepatocyte binding (method CL1, 53% within 2-fold). The physiologically based pharmacokinetics (PBPK) model, which combined methods Vd2 and CL2 yielded the most accurate predictions of in vivo terminal half-life (69% within 2-fold). The Gastroplus advanced compartmental absorption and transit model was used to construct an absorption-disposition model and provided accurate predictions of area under the plasma concentration-time profile, oral apparent volume of distribution, and maximum plasma concentration after oral dosing, with 74%, 70%, and 65% within 2-fold, respectively. This evaluation demonstrates that PBPK models can lead to reasonable predictions of human pharmacokinetics.

  7. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.

  8. Prediction of hearing loss among the noise-exposed workers in a steel factory using artificial intelligence approach.

    PubMed

    Aliabadi, Mohsen; Farhadian, Maryam; Darvishi, Ebrahim

    2015-08-01

    Prediction of hearing loss in noisy workplaces is considered to be an important aspect of hearing conservation program. Artificial intelligence, as a new approach, can be used to predict the complex phenomenon such as hearing loss. Using artificial neural networks, this study aims to present an empirical model for the prediction of the hearing loss threshold among noise-exposed workers. Two hundred and ten workers employed in a steel factory were chosen, and their occupational exposure histories were collected. To determine the hearing loss threshold, the audiometric test was carried out using a calibrated audiometer. The personal noise exposure was also measured using a noise dosimeter in the workstations of workers. Finally, data obtained five variables, which can influence the hearing loss, were used for the development of the prediction model. Multilayer feed-forward neural networks with different structures were developed using MATLAB software. Neural network structures had one hidden layer with the number of neurons being approximately between 5 and 15 neurons. The best developed neural networks with one hidden layer and ten neurons could accurately predict the hearing loss threshold with RMSE = 2.6 dB and R(2) = 0.89. The results also confirmed that neural networks could provide more accurate predictions than multiple regressions. Since occupational hearing loss is frequently non-curable, results of accurate prediction can be used by occupational health experts to modify and improve noise exposure conditions.

  9. Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.

  10. Electrochemical carbon dioxide concentrator: Math model

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Schubert, F. H.; Carlson, J. N.

    1973-01-01

    A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.

  11. Prediction for a Four-Neutron Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  12. Prediction for a Four-Neutron Resonance

    DOE PAGES

    Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...

    2016-10-28

    Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.

  13. A new solar power output prediction based on hybrid forecast engine and decomposition model.

    PubMed

    Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando

    2018-06-12

    Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Probability based remaining capacity estimation using data-driven and neural network model

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2016-05-01

    Since large numbers of lithium-ion batteries are composed in pack and the batteries are complex electrochemical devices, their monitoring and safety concerns are key issues for the applications of battery technology. An accurate estimation of battery remaining capacity is crucial for optimization of the vehicle control, preventing battery from over-charging and over-discharging and ensuring the safety during its service life. The remaining capacity estimation of a battery includes the estimation of state-of-charge (SOC) and state-of-energy (SOE). In this work, a probability based adaptive estimator is presented to obtain accurate and reliable estimation results for both SOC and SOE. For the SOC estimation, an n ordered RC equivalent circuit model is employed by combining an electrochemical model to obtain more accurate voltage prediction results. For the SOE estimation, a sliding window neural network model is proposed to investigate the relationship between the terminal voltage and the model inputs. To verify the accuracy and robustness of the proposed model and estimation algorithm, experiments under different dynamic operation current profiles are performed on the commercial 1665130-type lithium-ion batteries. The results illustrate that accurate and robust estimation can be obtained by the proposed method.

  15. Hyperspectral scattering profiles for prediction of the microbial spoilage of beef

    NASA Astrophysics Data System (ADS)

    Peng, Yankun; Zhang, Jing; Wu, Jianhu; Hang, Hui

    2009-05-01

    Spoilage in beef is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. There is still no technology for the rapid, accurate and non-destructive detection of bacterially spoiled or contaminated beef. In this study, hyperspectral imaging technique was exploited to measure biochemical changes within the fresh beef. Fresh beef rump steaks were purchased from a commercial plant, and left to spoil in refrigerator at 8°C. Every 12 hours, hyperspectral scattering profiles over the spectral region between 400 nm and 1100 nm were collected directly from the sample surface in reflection pattern in order to develop an optimal model for prediction of the beef spoilage, in parallel the total viable count (TVC) per gram of beef were obtained by classical microbiological plating methods. The spectral scattering profiles at individual wavelengths were fitted accurately by a two-parameter Lorentzian distribution function. TVC prediction models were developed, using multi-linear regression, on relating individual Lorentzian parameters and their combinations at different wavelengths to log10(TVC) value. The best predictions were obtained with r2= 0.96 and SEP = 0.23 for log10(TVC). The research demonstrated that hyperspectral imaging technique is a valid tool for real-time and non-destructive detection of bacterial spoilage in beef.

  16. A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture

    PubMed Central

    Yu, Huihui; Cheng, Yanjun; Cheng, Qianqian; Li, Daoliang

    2018-01-01

    A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content prediction model based on a radial basis function (RBF) neural network, K-means and subtractive clustering was developed and named the subtractive clustering (SC)-K-means-RBF model. In this modeling process, K-means and subtractive clustering methods were employed to enhance the hyperparameters required in the RBF neural network model. The comparison of the predicted results of different traditional models validated the effectiveness and accuracy of the proposed hybrid SC-K-means-RBF model for three-dimensional prediction of dissolved oxygen content. Consequently, the proposed model can effectively display the three-dimensional distribution of dissolved oxygen content and serve as a guide for feeding and future studies. PMID:29466394

  17. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    PubMed

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.

  18. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  19. BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences

    PubMed Central

    Gao, Jianzhao; Faraggi, Eshel; Zhou, Yaoqi; Ruan, Jishou; Kurgan, Lukasz

    2012-01-01

    Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and accurate sequence-based solution. Our BEST (B-cell Epitope prediction using Support vector machine Tool) method predicts epitopes from antigen sequences, in contrast to some method that predict only from short sequence fragments, using a new architecture based on averaging selected scores generated from sliding 20-mers by a Support Vector Machine (SVM). The SVM predictor utilizes a comprehensive and custom designed set of inputs generated by combining information derived from the chain, sequence conservation, similarity to known (training) epitopes, and predicted secondary structure and relative solvent accessibility. Empirical evaluation on benchmark datasets demonstrates that BEST outperforms several modern sequence-based B-cell epitope predictors including ABCPred, method by Chen et al. (2007), BCPred, COBEpro, BayesB, and CBTOPE, when considering the predictions from antigen chains and from the chain fragments. Our method obtains a cross-validated area under the receiver operating characteristic curve (AUC) for the fragment-based prediction at 0.81 and 0.85, depending on the dataset. The AUCs of BEST on the benchmark sets of full antigen chains equal 0.57 and 0.6, which is significantly and slightly better than the next best method we tested. We also present case studies to contrast the propensity profiles generated by BEST and several other methods. PMID:22761950

  20. Experimental evaluation of a recursive model identification technique for type 1 diabetes.

    PubMed

    Finan, Daniel A; Doyle, Francis J; Palerm, Cesar C; Bevier, Wendy C; Zisser, Howard C; Jovanovic, Lois; Seborg, Dale E

    2009-09-01

    A model-based controller for an artificial beta cell requires an accurate model of the glucose-insulin dynamics in type 1 diabetes subjects. To ensure the robustness of the controller for changing conditions (e.g., changes in insulin sensitivity due to illnesses, changes in exercise habits, or changes in stress levels), the model should be able to adapt to the new conditions by means of a recursive parameter estimation technique. Such an adaptive strategy will ensure that the most accurate model is used for the current conditions, and thus the most accurate model predictions are used in model-based control calculations. In a retrospective analysis, empirical dynamic autoregressive exogenous input (ARX) models were identified from glucose-insulin data for nine type 1 diabetes subjects in ambulatory conditions. Data sets consisted of continuous (5-minute) glucose concentration measurements obtained from a continuous glucose monitor, basal insulin infusion rates and times and amounts of insulin boluses obtained from the subjects' insulin pumps, and subject-reported estimates of the times and carbohydrate content of meals. Two identification techniques were investigated: nonrecursive, or batch methods, and recursive methods. Batch models were identified from a set of training data, whereas recursively identified models were updated at each sampling instant. Both types of models were used to make predictions of new test data. For the purpose of comparison, model predictions were compared to zero-order hold (ZOH) predictions, which were made by simply holding the current glucose value constant for p steps into the future, where p is the prediction horizon. Thus, the ZOH predictions are model free and provide a base case for the prediction metrics used to quantify the accuracy of the model predictions. In theory, recursive identification techniques are needed only when there are changing conditions in the subject that require model adaptation. Thus, the identification and validation techniques were performed with both "normal" data and data collected during conditions of reduced insulin sensitivity. The latter were achieved by having the subjects self-administer a medication, prednisone, for 3 consecutive days. The recursive models were allowed to adapt to this condition of reduced insulin sensitivity, while the batch models were only identified from normal data. Data from nine type 1 diabetes subjects in ambulatory conditions were analyzed; six of these subjects also participated in the prednisone portion of the study. For normal test data, the batch ARX models produced 30-, 45-, and 60-minute-ahead predictions that had average root mean square error (RMSE) values of 26, 34, and 40 mg/dl, respectively. For test data characterized by reduced insulin sensitivity, the batch ARX models produced 30-, 60-, and 90-minute-ahead predictions with average RMSE values of 27, 46, and 59 mg/dl, respectively; the recursive ARX models demonstrated similar performance with corresponding values of 27, 45, and 61 mg/dl, respectively. The identified ARX models (batch and recursive) produced more accurate predictions than the model-free ZOH predictions, but only marginally. For test data characterized by reduced insulin sensitivity, RMSE values for the predictions of the batch ARX models were 9, 5, and 5% more accurate than the ZOH predictions for prediction horizons of 30, 60, and 90 minutes, respectively. In terms of RMSE values, the 30-, 60-, and 90-minute predictions of the recursive models were more accurate than the ZOH predictions, by 10, 5, and 2%, respectively. In this experimental study, the recursively identified ARX models resulted in predictions of test data that were similar, but not superior, to the batch models. Even for the test data characteristic of reduced insulin sensitivity, the batch and recursive models demonstrated similar prediction accuracy. The predictions of the identified ARX models were only marginally more accurate than the model-free ZOH predictions. Given the simplicity of the ARX models and the computational ease with which they are identified, however, even modest improvements may justify the use of these models in a model-based controller for an artificial beta cell. 2009 Diabetes Technology Society.

  1. A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status

    PubMed Central

    Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell

    2013-01-01

    Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637

  2. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  3. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  4. Delamination Analysis Of Composite Curved Bars

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1990-01-01

    Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.

  5. Multiple-Instance Regression with Structured Data

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.

  6. Remote sensing techniques for prediction of watershed runoff

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Hydrologic parameters of watersheds for use in mathematical models and as design criteria for flood detention structures are sometimes difficult to quantify using conventional measuring systems. The advent of remote sensing devices developed in the past decade offers the possibility that watershed characteristics such as vegetative cover, soils, soil moisture, etc., may be quantified rapidly and economically. Experiments with visible and near infrared data from the LANDSAT-1 multispectral scanner indicate a simple technique for calibration of runoff equation coefficients is feasible. The technique was tested on 10 watersheds in the Chickasha area and test results show more accurate runoff coefficients were obtained than with conventional methods. The technique worked equally as well using a dry fall scene. The runoff equation coefficients were then predicted for 22 subwatersheds with flood detention structures. Predicted values were again more accurate than coefficients produced by conventional methods.

  7. Towards seasonal Arctic shipping route predictions

    NASA Astrophysics Data System (ADS)

    Melia, N.; Haines, K.; Hawkins, E.; Day, J. J.

    2017-08-01

    The continuing decline in Arctic sea-ice will likely lead to increased human activity and opportunities for shipping in the region, suggesting that seasonal predictions of route openings will become ever more important. Here we present results from a set of ‘perfect model’ experiments to assess the predictability characteristics of the opening of Arctic sea routes. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts show lower skill before a May ‘predictability barrier’. We demonstrate that in forecasts started from January, predictions of route opening date are twice as uncertain as predicting the closing date and that the Arctic shipping season is becoming longer due to climate change, with later closing dates mostly responsible. We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than medium ice years. Forecasting the fastest open water route through the Arctic is accurate to within 200 km when predicted from July, a six-fold increase in accuracy compared to forecasts initialised from the previous November, which are typically no better than climatology. Finally we find that initialisation of accurate summer sea-ice thickness information is crucial to obtain skilful forecasts, further motivating investment into sea-ice thickness observations, climate models, and assimilation systems.

  8. The influences of tip clearance on the performance of nozzle blades of radial turbines - Experiment and performance prediction at three nozzle angles

    NASA Astrophysics Data System (ADS)

    Hyun, Yong-Ik; Yamaguchi, Michiteru; Hayami, Hiroshi; Senoo, Yasutoshi

    1988-05-01

    In order to study the influence of tip clearance on the turning angle and pressure loss of turbine nozzles, experimental results were obtained for nozzle angles at which the throat area was 0.8 and 1.4 times the rated condition. Contour maps of the total pressure loss and of the spanwise distributions of the mean exit-flow angle have been obtained. Although the two-layer flow model of Senoo et al., (1987) is shown to accurately predict the effects of tip clearance, it underestimates the clearance effect for a lightly loaded condition.

  9. Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle.

    PubMed

    Unruh, Ellen M; Theurer, Miles E; White, Brad J; Larson, Robert L; Drouillard, James S; Schrag, Nora

    2017-07-01

    OBJECTIVE To determine whether infrared thermographic images obtained the morning after overnight heat abatement could be used as the basis for diagnostic algorithms to predict subsequent heat stress events in feedlot cattle exposed to high ambient temperatures. ANIMALS 60 crossbred beef heifers (mean ± SD body weight, 385.8 ± 20.3 kg). PROCEDURES Calves were housed in groups of 20 in 3 pens without any shade. During the 6 am and 3 pm hours on each of 10 days during a 14-day period when the daily ambient temperature was forecasted to be > 29.4°C, an investigator walked outside each pen and obtained profile digital thermal images of and assigned panting scores to calves near the periphery of the pen. Relationships between infrared thermographic data and panting scores were evaluated with artificial learning models. RESULTS Afternoon panting score was positively associated with morning but not afternoon thermographic data (body surface temperature). Evaluation of multiple artificial learning models indicated that morning body surface temperature was not an accurate predictor of an afternoon heat stress event, and thermographic data were of little predictive benefit, compared with morning and forecasted weather conditions. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated infrared thermography was an objective method to monitor beef calves for heat stress in research settings. However, thermographic data obtained in the morning did not accurately predict which calves would develop heat stress later in the day. The use of infrared thermography as a diagnostic tool for monitoring heat stress in feedlot cattle requires further investigation.

  10. Validity of Predicting Left Ventricular End Systolic Pressure Changes Following An Acute Bout of Exercise

    PubMed Central

    Kappus, Rebecca M.; Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Cook, Marc D.; Hall, Grenita; Harvey, I. Shevon; Wilund, Kenneth R.; Woods, Jeffrey A.; Fernhall, Bo

    2012-01-01

    Objective Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance. LV ESP is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Design We compared measured LV ESP versus LV ESP values from the prediction equations at rest, 15 minutes and 30 minutes following peak aerobic exercise in 60 participants. Methods LV ESP was obtained by applanation tonometry at rest, 15 minutes post and 30 minutes post peak cycle exercise. Results Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). Conclusions These data indicate that the two prediction equations commonly used did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. PMID:22721862

  11. Validity of predicting left ventricular end systolic pressure changes following an acute bout of exercise.

    PubMed

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Cook, Marc D; Hall, Grenita; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2013-01-01

    Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance and is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Measured LV ESP vs. LV ESP values from the prediction equations were compared at rest, 15 min and 30 min following peak aerobic exercise in 60 participants. LV ESP was obtained by applanation tonometry at rest, 15 min post and 30 min post peak cycle exercise. Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). The two commonly used prediction equations did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young, healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis.

    PubMed

    Kuroda, Yukihiro; Saito, Madoka

    2010-03-01

    An in vitro method to predict phospholipidosis-inducing potential of cationic amphiphilic drugs (CADs) was developed using biochemical and physicochemical assays. The following parameters were applied to principal component analysis, as well as physicochemical parameters: pK(a) and clogP; dissociation constant of CADs from phospholipid, inhibition of enzymatic phospholipid degradation, and metabolic stability of CADs. In the score plot, phospholipidosis-inducing drugs (amiodarone, propranolol, imipramine, chloroquine) were plotted locally forming the subspace for positive CADs; while non-inducing drugs (chlorpromazine, chloramphenicol, disopyramide, lidocaine) were placed scattering out of the subspace, allowing a clear discrimination between both classes of CADs. CADs that often produce false results by conventional physicochemical or cell-based assay methods were accurately determined by our method. Basic and lipophilic disopyramide could be accurately predicted as a nonphospholipidogenic drug. Moreover, chlorpromazine, which is often falsely predicted as a phospholipidosis-inducing drug by in vitro methods, could be accurately determined. Because this method uses the pharmacokinetic parameters pK(a), clogP, and metabolic stability, which are usually obtained in the early stages of drug development, the method newly requires only the two parameters, binding to phospholipid, and inhibition of lipid degradation enzyme. Therefore, this method provides a cost-effective approach to predict phospholipidosis-inducing potential of a drug. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    NASA Astrophysics Data System (ADS)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  14. Minimal Pair Distinctions and Intelligibility in Preschool Children with and without Speech Sound Disorders

    ERIC Educational Resources Information Center

    Hodge, Megan M.; Gotzke, Carrie L.

    2011-01-01

    Listeners' identification of young children's productions of minimally contrastive words and predictive relationships between accurately identified words and intelligibility scores obtained from a 100-word spontaneous speech sample were determined for 36 children with typically developing speech (TDS) and 36 children with speech sound disorders…

  15. Alternative predictors in chaotic time series

    NASA Astrophysics Data System (ADS)

    Alves, P. R. L.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2017-06-01

    In the scheme of reconstruction, non-polynomial predictors improve the forecast from chaotic time series. The algebraic manipulation in the Maple environment is the basis for obtaining of accurate predictors. Beyond the different times of prediction, the optional arguments of the computational routines optimize the running and the analysis of global mappings.

  16. Mathematics as a Conduit for Translational Research in Post-Traumatic Osteoarthritis

    PubMed Central

    Ayati, Bruce P.; Kapitanov, Georgi I.; Coleman, Mitchell C.; Anderson, Donald D.; Martin, James A.

    2016-01-01

    Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients. In this sense, we refer to the mathematics as a “conduit of translation”. The new in silico framework presented in this paper involves a biomathematical model for the cellular and biochemical response to strains computed using finite element analysis. The model predicts qualitative responses presently, utilizing system parameter values largely taken from the literature. To contribute to accurate predictions, models need to be accurately parameterized with values that are based on solid science. We discuss a parameter identification protocol that will enable us to make increasingly accurate predictions of PTOA progression using additional data from smaller scale explant and small animal assays as they become available. By distilling the data from the explant and animal assays into parameters for biomathematical models, mathematics can translate experimental data to clinically relevant knowledge. PMID:27653021

  17. Numerical Simulation of a High Mach Number Jet Flow

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli; Mankbadi, Reda R.

    1993-01-01

    The recent efforts to develop accurate numerical schemes for transition and turbulent flows are motivated, among other factors, by the need for accurate prediction of flow noise. The success of developing high speed civil transport plane (HSCT) is contingent upon our understanding and suppression of the jet exhaust noise. The radiated sound can be directly obtained by solving the full (time-dependent) compressible Navier-Stokes equations. However, this requires computational storage that is beyond currently available machines. This difficulty can be overcome by limiting the solution domain to the near field where the jet is nonlinear and then use acoustic analogy (e.g., Lighthill) to relate the far-field noise to the near-field sources. The later requires obtaining the time-dependent flow field. The other difficulty in aeroacoustics computations is that at high Reynolds numbers the turbulent flow has a large range of scales. Direct numerical simulations (DNS) cannot obtain all the scales of motion at high Reynolds number of technological interest. However, it is believed that the large scale structure is more efficient than the small-scale structure in radiating noise. Thus, one can model the small scales and calculate the acoustically active scales. The large scale structure in the noise-producing initial region of the jet can be viewed as a wavelike nature, the net radiated sound is the net cancellation after integration over space. As such, aeroacoustics computations are highly sensitive to errors in computing the sound sources. It is therefore essential to use a high-order numerical scheme to predict the flow field. The present paper presents the first step in a ongoing effort to predict jet noise. The emphasis here is in accurate prediction of the unsteady flow field. We solve the full time-dependent Navier-Stokes equations by a high order finite difference method. Time accurate spatial simulations of both plane and axisymmetric jet are presented. Jet Mach numbers of 1.5 and 2.1 are considered. Reynolds number in the simulations was about a million. Our numerical model is based on the 2-4 scheme by Gottlieb & Turkel. Bayliss et al. applied the 2-4 scheme in boundary layer computations. This scheme was also used by Ragab and Sheen to study the nonlinear development of supersonic instability waves in a mixing layer. In this study, we present two dimensional direct simulation results for both plane and axisymmetric jets. These results are compared with linear theory predictions. These computations were made for near nozzle exit region and velocity in spanwise/azimuthal direction was assumed to be zero.

  18. Development of estrogen receptor beta binding prediction model using large sets of chemicals.

    PubMed

    Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao

    2017-11-03

    We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .

  19. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juxiu Tong; Bill X. Hu; Hai Huang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less

  20. New realisation of Preisach model using adaptive polynomial approximation

    NASA Astrophysics Data System (ADS)

    Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young

    2012-09-01

    Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.

  1. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The method was then applied to five prostate and six head-and-neck IMRT treatment courses (˜1900 clinical images). Deviations between the predicted and measured images were quantified. The portal dose image prediction model developed in this thesis work has been shown to be accurate, and it was demonstrated to be able to verify patients' delivered radiation treatments.

  2. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    NASA Astrophysics Data System (ADS)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  3. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  4. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  5. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties.

    PubMed

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-13

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  6. A novel model for estimating organic chemical bioconcentration in agricultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less

  7. Theory and computer simulation of hard-core Yukawa mixtures: thermodynamical, structural and phase coexistence properties

    NASA Astrophysics Data System (ADS)

    Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo

    2017-09-01

    We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.

  8. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    PubMed

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.

    PubMed

    Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Li, Li-Ping; Huang, De-Shuang; Yan, Gui-Ying; Nie, Ru; Huang, Yu-An

    2017-04-04

    Identification of protein-protein interactions (PPIs) is of critical importance for deciphering the underlying mechanisms of almost all biological processes of cell and providing great insight into the study of human disease. Although much effort has been devoted to identifying PPIs from various organisms, existing high-throughput biological techniques are time-consuming, expensive, and have high false positive and negative results. Thus it is highly urgent to develop in silico methods to predict PPIs efficiently and accurately in this post genomic era. In this article, we report a novel computational model combining our newly developed discriminative vector machine classifier (DVM) and an improved Weber local descriptor (IWLD) for the prediction of PPIs. Two components, differential excitation and orientation, are exploited to build evolutionary features for each protein sequence. The main characteristics of the proposed method lies in introducing an effective feature descriptor IWLD which can capture highly discriminative evolutionary information from position-specific scoring matrixes (PSSM) of protein data, and employing the powerful and robust DVM classifier. When applying the proposed method to Yeast and H. pylori data sets, we obtained excellent prediction accuracies as high as 96.52% and 91.80%, respectively, which are significantly better than the previous methods. Extensive experiments were then performed for predicting cross-species PPIs and the predictive results were also pretty promising. To further validate the performance of the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier on Human data set. The experimental results obtained indicate that our method is highly effective for PPIs prediction and can be taken as a supplementary tool for future proteomics research.

  10. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  11. Predicting the emissive power of hydrocarbon pool fires.

    PubMed

    Muñoz, Miguel; Planas, Eulàlia; Ferrero, Fabio; Casal, Joaquim

    2007-06-18

    The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E(lum), E(soot) and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction.

  12. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the calibration is linear. Using samples in the calibration set that have a different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples; providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  13. Comparison of near infrared spectra within broiler breast fillets deboned at different postmortem time

    USDA-ARS?s Scientific Manuscript database

    Near infrared (NIR) spectroscopy has been used to predict texture quality of broiler breast fillets. Sampling is an important issue in NIR measurements to obtain accurate results. There are no research papers about sampling of chicken breast fillet for NIR measurement. The objective of this study wa...

  14. A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery

    USDA-ARS?s Scientific Manuscript database

    Accurate and timely spatial predictions of vegetation cover from remote imagery are an important data source for natural resource management. High-quality in situ data are needed to develop and validate these products. Point-intercept sampling techniques are a common method for obtaining quantitativ...

  15. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  16. Comparative study of wine tannin classification using Fourier transform mid-infrared spectrometry and sensory analysis.

    PubMed

    Fernández, Katherina; Labarca, Ximena; Bordeu, Edmundo; Guesalaga, Andrés; Agosin, Eduardo

    2007-11-01

    Wine tannins are fundamental to the determination of wine quality. However, the chemical and sensorial analysis of these compounds is not straightforward and a simple and rapid technique is necessary. We analyzed the mid-infrared spectra of white, red, and model wines spiked with known amounts of skin or seed tannins, collected using Fourier transform mid-infrared (FT-MIR) transmission spectroscopy (400-4000 cm(-1)). The spectral data were classified according to their tannin source, skin or seed, and tannin concentration by means of discriminant analysis (DA) and soft independent modeling of class analogy (SIMCA) to obtain a probabilistic classification. Wines were also classified sensorially by a trained panel and compared with FT-MIR. SIMCA models gave the most accurate classification (over 97%) and prediction (over 60%) among the wine samples. The prediction was increased (over 73%) using the leave-one-out cross-validation technique. Sensory classification of the wines was less accurate than that obtained with FT-MIR and SIMCA. Overall, these results show the potential of FT-MIR spectroscopy, in combination with adequate statistical tools, to discriminate wines with different tannin levels.

  17. A rapid analytical method for predicting the oxygen demand of wastewater.

    PubMed

    Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael

    2006-11-01

    In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.

  18. Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow

    NASA Astrophysics Data System (ADS)

    Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca

    2017-11-01

    The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.

  19. Failure Criteria for FRP Laminates in Plane Stress

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2003-01-01

    A new set of six failure criteria for fiber reinforced polymer laminates is described. Derived from Dvorak's fracture mechanics analyses of cracked plies and from Puck's action plane concept, the physically-based criteria, denoted LaRC03, predict matrix and fiber failure accurately without requiring curve-fitting parameters. For matrix failure under transverse compression, the fracture plane is calculated by maximizing the Mohr-Coulomb effective stresses. A criterion for fiber kinking is obtained by calculating the fiber misalignment under load, and applying the matrix failure criterion in the coordinate frame of the misalignment. Fracture mechanics models of matrix cracks are used to develop a criterion for matrix in tension and to calculate the associated in-situ strengths. The LaRC03 criteria are applied to a few examples to predict failure load envelopes and to predict the failure mode for each region of the envelope. The analysis results are compared to the predictions using other available failure criteria and with experimental results. Predictions obtained with LaRC03 correlate well with the experimental results.

  20. A computational procedure to analyze metal matrix laminates with nonlinear lamination residual strains

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1974-01-01

    An approximate computational procedure is described for the analysis of angleplied laminates with residual nonlinear strains. The procedure consists of a combination of linear composite mechanics and incremental linear laminate theory. The procedure accounts for initial nonlinear strains, unloading, and in-situ matrix orthotropic nonlinear behavior. The results obtained in applying the procedure to boron/aluminum angleplied laminates show that this is a convenient means to accurately predict the initial tangent properties of angleplied laminates in which the matrix has been strained nonlinearly by the lamination residual stresses. The procedure predicted initial tangent properties results which were in good agreement with measured data obtained from boron/aluminum angleplied laminates.

  1. Theoretical colours for F and G dwarf stars.

    NASA Technical Reports Server (NTRS)

    Bell, R. A.

    1971-01-01

    Synthetic spectra have been computed for F and G dwarf stars, using a number of values of chemical abundance, Doppler broadening velocity, and damping constant. Metal abundances for a number of such stars have been obtained using computed and observed m(sub 1) and 40-52 colors. These abundances are in good agreement with spectroscopically determined ones. The c(sub 1) colors of such stars with exactly known trigonometric parallaxes have been used in order to determine how accurately absolute magnitudes can be predicted from the colors. Generally reasonable agreement can be obtained between observed and predicted absolute magnitudes for certain of these stars. The effects of interstellar reddening on the colors of the models are examined.

  2. Bistatic 3D Electromagnetic Scattering From a Right-Angle Dihedral at Arbitrary Orientation and Position

    DTIC Science & Technology

    2011-03-24

    compared to shooting and bouncing rays (SBR) and method of moments (MoM) predictions, as well as measured data for applicable cases. The model in this...prediction codes based on Shooting and Bouncing Rays (SBR) or Method of Moments (MoM) can be used to obtain accurate bistatic scatter- ing solutions for a...in-plane RCS pattern for dihedral. (a) For monostatic in-plane scattering, rays entering a right-angle dihedral are reflected back in the direction

  3. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  4. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.

  5. Absolute dimensions and masses of eclipsing binaries. V. IQ Persei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, C.H.; Frueh, M.L.

    1985-08-01

    New photometric and spectroscopic observations of the 1.7 day eclipsing binary IQ Persei (B8 + A6) have been analyzed to yield very accurate fundamental properties of the system. Reticon spectroscopic observations obtained at McDonald Observatory were used to determine accurate radial velocities of both stars in this slightly eccentric large light-ratio binary. A new set of VR light curves obtained at McDonald Observatory were analyzed by synthesis techniques, and previously published UBV light curves were reanalyzed to yield accurate photometric orbits. Orbital parameters derived from both sets of photometric observations are in excellent agreement. The absolute dimensions, masses, luminosities, andmore » apsidal motion period (140 yr) derived from these observations agree well with the predictions of theoretical stellar evolution models. The A6 secondary is still very close to the zero-age main sequence. The B8 primary is about one-third of the way through its main-sequence evolution. 27 references.« less

  6. Evaluation of AUC(0-4) predictive methods for cyclosporine in kidney transplant patients.

    PubMed

    Aoyama, Takahiko; Matsumoto, Yoshiaki; Shimizu, Makiko; Fukuoka, Masamichi; Kimura, Toshimi; Kokubun, Hideya; Yoshida, Kazunari; Yago, Kazuo

    2005-05-01

    Cyclosporine (CyA) is the most commonly used immunosuppressive agent in patients who undergo kidney transplantation. Dosage adjustment of CyA is usually based on trough levels. Recently, trough levels have been replacing the area under the concentration-time curve during the first 4 h after CyA administration (AUC(0-4)). The aim of this study was to compare the predictive values obtained using three different methods of AUC(0-4) monitoring. AUC(0-4) was calculated from 0 to 4 h in early and stable renal transplant patients using the trapezoidal rule. The predicted AUC(0-4) was calculated using three different methods: the multiple regression equation reported by Uchida et al.; Bayesian estimation for modified population pharmacokinetic parameters reported by Yoshida et al.; and modified population pharmacokinetic parameters reported by Cremers et al. The predicted AUC(0-4) was assessed on the basis of predictive bias, precision, and correlation coefficient. The predicted AUC(0-4) values obtained using three methods through measurement of three blood samples showed small differences in predictive bias, precision, and correlation coefficient. In the prediction of AUC(0-4) measurement of one blood sample from stable renal transplant patients, the performance of the regression equation reported by Uchida depended on sampling time. On the other hand, the performance of Bayesian estimation with modified pharmacokinetic parameters reported by Yoshida through measurement of one blood sample, which is not dependent on sampling time, showed a small difference in the correlation coefficient. The prediction of AUC(0-4) using a regression equation required accurate sampling time. In this study, the prediction of AUC(0-4) using Bayesian estimation did not require accurate sampling time in the AUC(0-4) monitoring of CyA. Thus Bayesian estimation is assumed to be clinically useful in the dosage adjustment of CyA.

  7. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  8. Accuracy of increased thyroid activity during pertechnetate scintigraphy by subcutaneous injection for diagnosing hyperthyroidism in cats.

    PubMed

    Page, Richard B; Scrivani, Peter V; Dykes, Nathan L; Erb, Hollis N; Hobbs, Jeff M

    2006-01-01

    Our purpose was to determine the accuracy of increased thyroid activity for diagnosing hyperthyroidism in cats suspected of having that disease during pertechnetate scintigraphy using subcutaneous rather than intravenous radioisotope administration. Increased thyroid activity was determined by two methods: the thyroid:salivary ratio (T:S) and visual inspection. These assessments were made on the ventral scintigram of the head and neck. Scintigraphy was performed by injecting sodium pertechnetate (111 MBq, SQ) in the right-dorsal-lumbar region; static-acquisition images were obtained 20 min after injection. We used 49 cats; 34 (69%) had hyperthyroidism based on serum-chemistry analysis. Using a Wilcoxon's rank-sum test, a significant difference (P < 0.0001) was detected in the T:S between cats with and without hyperthyroidism. Using a decision criterion of 2.0 for the T:S, the test accurately predicted hyperthyroidism in 32/34 cats (sensitivity, 94%; 95% confidence interval (CI), 85-100%) and correctly predicted that hyperthyroidism was absent in 15/15 cats (specificity, 100%; CI, 97-100%). Using visual inspection, the test accurately predicted hyperthyroidism in 34/34 cats (sensitivity, 100%; CI, 99-100%) and correctly predicted that hyperthyroidism was absent in 12/15 cats (specificity, 80%; CI, 56-100%). The positive and negative predictive values were high for a wide range of prevalence of hyperthyroidism. And, the test had excellent agreement within and between examiners. Therefore, detecting increased thyroid activity during pertechnetate scintigraphy by subcutaneous injection is an accurate and reproducible test for feline hyperthyroidism.

  9. Improved dynamic analysis method using load-dependent Ritz vectors

    NASA Technical Reports Server (NTRS)

    Escobedo-Torres, J.; Ricles, J. M.

    1993-01-01

    The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.

  10. An Approach to Flooding Inundation Combining the Streamflow Prediction Tool (SPT) and Downscaled Soil Moisture

    NASA Astrophysics Data System (ADS)

    Cotterman, K. A.; Follum, M. L.; Pradhan, N. R.; Niemann, J. D.

    2017-12-01

    Flooding impacts numerous aspects of society, from localized flash floods to continental-scale flood events. Many numerical flood models focus solely on riverine flooding, with some capable of capturing both localized and continental-scale flood events. However, these models neglect flooding away from channels that are related to excessive ponding, typically found in areas with flat terrain and poorly draining soils. In order to obtain a holistic view of flooding, we combine flood results from the Streamflow Prediction Tool (SPT), a riverine flood model, with soil moisture downscaling techniques to determine if a better representation of flooding is obtained. This allows for a more holistic understanding of potential flood prone areas, increasing the opportunity for more accurate warnings and evacuations during flooding conditions. Thirty-five years of near-global historical streamflow is reconstructed with continental-scale flow routing of runoff from global land surface models. Elevation data was also obtained worldwide, to establish a relationship between topographic attributes and soil moisture patterns. Derived soil moisture data is validated against observed soil moisture, increasing confidence in the ability to accurately capture soil moisture patterns. Potential flooding situations can be examined worldwide, with this study focusing on the United States, Central America, and the Philippines.

  11. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1

    PubMed Central

    Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.

    2013-01-01

    Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457

  12. Intermolecular potentials and the accurate prediction of the thermodynamic properties of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2013-11-21

    The ability of intermolecular potentials to correctly predict the thermodynamic properties of liquid water at a density of 0.998 g/cm{sup 3} for a wide range of temperatures (298–650 K) and pressures (0.1–700 MPa) is investigated. Molecular dynamics simulations are reported for the pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, and Joule-Thomson coefficient of liquid water using the non-polarizable SPC/E and TIP4P/2005 potentials. The results are compared with both experiment data and results obtained from the ab initio-based Matsuoka-Clementi-Yoshimine non-additive (MCYna) [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys.more » 127, 154509 (2007)] potential, which includes polarization contributions. The data clearly indicate that both the SPC/E and TIP4P/2005 potentials are only in qualitative agreement with experiment, whereas the polarizable MCYna potential predicts some properties within experimental uncertainty. This highlights the importance of polarizability for the accurate prediction of the thermodynamic properties of water, particularly at temperatures beyond 298 K.« less

  13. Prediction of S-wave velocity using complete ensemble empirical mode decomposition and neural networks

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Hachay, Olga; Zaourar, Naima

    2017-04-01

    One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.

  14. Loss of life expectancy derived from a standardized mortality ratio in Denmark, Finland, Norway and Sweden.

    PubMed

    Skriver, Mette Vinther; Væth, Michael; Støvring, Henrik

    2018-01-01

    The standardized mortality ratio (SMR) is a widely used measure. A recent methodological study provided an accurate approximate relationship between an SMR and difference in lifetime expectancies. This study examines the usefulness of the theoretical relationship, when comparing historic mortality data in four Scandinavian populations. For Denmark, Finland, Norway and Sweden, data on mortality every fifth year in the period 1950 to 2010 were obtained. Using 1980 as the reference year, SMRs and difference in life expectancy were calculated. The assumptions behind the theoretical relationship were examined graphically. The theoretical relationship predicts a linear association with a slope, [Formula: see text], between log(SMR) and difference in life expectancies, and the theoretical prediction and calculated differences in lifetime expectancies were compared. We examined the linear association both for life expectancy at birth and at age 30. All analyses were done for females, males and the total population. The approximate relationship provided accurate predictions of actual differences in lifetime expectancies. The accuracy of the predictions was better when age was restricted to above 30, and improved if the changes in mortality rate were close to a proportional change. Slopes of the linear relationship were generally around 9 for females and 10 for males. The theoretically derived relationship between SMR and difference in life expectancies provides an accurate prediction for comparing populations with approximately proportional differences in mortality, and was relatively robust. The relationship may provide a useful prediction of differences in lifetime expectancies, which can be more readily communicated and understood.

  15. Assessment of driver stopping prediction models before and after the onset of yellow using two driving simulator datasets.

    PubMed

    Ghanipoor Machiani, Sahar; Abbas, Montasir

    2016-11-01

    Accurate modeling of driver decisions in dilemma zones (DZ), where drivers are not sure whether to stop or go at the onset of yellow, can be used to increase safety at signalized intersections. This study utilized data obtained from two different driving simulator studies (VT-SCORES and NADS datasets) to investigate the possibility of developing accurate driver-decision prediction/classification models in DZ. Canonical discriminant analysis was used to construct the prediction models, and two timeframes were considered. The first timeframe used data collected during green immediately before the onset of yellow, and the second timeframe used data collected during the first three seconds after the onset of yellow. Signal protection algorithms could use the results of the prediction model during the first timeframe to decide the best time for ending the green signal, and could use the results of the prediction model during the first three seconds of yellow to extend the clearance interval. It was found that the discriminant model using data collected during the first three seconds of yellow was the most accurate, at 99% accuracy. It was also found that data collection should focus on variables that are related to speed, acceleration, time, and distance to intersection, as opposed to secondary variables, such as pavement conditions, since secondary variables did not significantly change the accuracy of the prediction models. The results reveal a promising possibility for incorporating the developed models in traffic-signal controllers to improve DZ-protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less

  17. High performance computation of residual stress and distortion in laser welded 301L stainless sheets

    DOE PAGES

    Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong; ...

    2017-07-11

    Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less

  18. The prediction of pressure distributions on an arrow-wing configuration including the effect of camber, twist, and a wing fin

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.; Manro, M. E.; Kulfan, R. M.

    1980-01-01

    Wind tunnel tests of an arrow wing body configuration consisting of flat, twisted, and cambered twisted wings were conducted at Mach numbers from 0.40 to 2.50 to provide an experimental data base for comparison with theoretical methods. A variety of leading and trailing edge control surface deflections were included in these tests, and in addition, the cambered twisted wing was tested with an outboard vertical fin to determine its effect on wing and control surface loads. Theory experiment comparisons show that current state of the art linear and nonlinear attached flow methods were adequate at small angles of attack typical of cruise conditions. The incremental effects of outboard fin, wing twist, and wing camber are most accurately predicted by the advanced panel method PANAIR. Results of the advanced panel separated flow method, obtained with an early version of the program, show promise that accurate detailed pressure predictions may soon be possible for an aeroelasticity deformed wing at high angles of attack.

  19. High performance computation of residual stress and distortion in laser welded 301L stainless sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hui; Tsutsumi, Seiichiro; Wang, Jiandong

    Transient thermo-mechanical simulation of stainless plate laser welding process was performed by a highly efficient and accurate approach-hybrid iterative substructure and adaptive mesh method. Especially, residual stress prediction was enhanced by considering various heat effects in the numerical model. The influence of laser welding heat input on residual stress and welding distortion of stainless thin sheets were investigated by experiment and simulation. X-ray diffraction (XRD) and contour method were used to measure the surficial and internal residual stress respectively. Effect of strain hardening, annealing and melting on residual stress prediction was clarified through a parametric study. It was shown thatmore » these heat effects must be taken into account for accurate prediction of residual stresses in laser welded stainless sheets. Reasonable agreement among residual stresses by numerical method, XRD and contour method was obtained. Buckling type welding distortion was also well reproduced by the developed thermo-mechanical FEM.« less

  20. Diagnostic peritoneal lavage: volume of lavage effluent needed for accurate determination of a negative lavage.

    PubMed

    Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S

    1994-12-01

    While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).

  1. Forecasting the spatial transmission of influenza in the United States.

    PubMed

    Pei, Sen; Kandula, Sasikiran; Yang, Wan; Shaman, Jeffrey

    2018-03-13

    Recurrent outbreaks of seasonal and pandemic influenza create a need for forecasts of the geographic spread of this pathogen. Although it is well established that the spatial progression of infection is largely attributable to human mobility, difficulty obtaining real-time information on human movement has limited its incorporation into existing infectious disease forecasting techniques. In this study, we develop and validate an ensemble forecast system for predicting the spatiotemporal spread of influenza that uses readily accessible human mobility data and a metapopulation model. In retrospective state-level forecasts for 35 US states, the system accurately predicts local influenza outbreak onset,-i.e., spatial spread, defined as the week that local incidence increases above a baseline threshold-up to 6 wk in advance of this event. In addition, the metapopulation prediction system forecasts influenza outbreak onset, peak timing, and peak intensity more accurately than isolated location-specific forecasts. The proposed framework could be applied to emergent respiratory viruses and, with appropriate modifications, other infectious diseases.

  2. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory

    DOE PAGES

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; ...

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less

  3. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    PubMed

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  5. Automated combinatorial method for fast and robust prediction of lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.

  6. Comparison of Code Predictions to Test Measurements for Two Orifice Compensated Hydrostatic Bearings at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Keba, John E.

    1996-01-01

    Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.

  7. Opportunities to Intercalibrate Radiometric Sensors From International Space Station

    NASA Technical Reports Server (NTRS)

    Roithmayr, C. M.; Lukashin, C.; Speth, P. W.; Thome, K. J.; Young, D. F.; Wielicki, B. A.

    2012-01-01

    Highly accurate measurements of Earth's thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. We consider the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission such as the Climate Absolute Radiance and Refractivity Observatory. In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of year-long simulations of orbital motion. We conclude that the International Space Station orbit is ideally suited for the purpose of intercalibration.

  8. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease.

    PubMed

    Tong, Tong; Gao, Qinquan; Guerrero, Ricardo; Ledig, Christian; Chen, Liang; Rueckert, Daniel; Initiative, Alzheimer's Disease Neuroimaging

    2017-01-01

    Identifying mild cognitive impairment (MCI) subjects who will progress to Alzheimer's disease (AD) is not only crucial in clinical practice, but also has a significant potential to enrich clinical trials. The purpose of this study is to develop an effective biomarker for an accurate prediction of MCI-to-AD conversion from magnetic resonance images. We propose a novel grading biomarker for the prediction of MCI-to-AD conversion. First, we comprehensively study the effects of several important factors on the performance in the prediction task including registration accuracy, age correction, feature selection, and the selection of training data. Based on the studies of these factors, a grading biomarker is then calculated for each MCI subject using sparse representation techniques. Finally, the grading biomarker is combined with age and cognitive measures to provide a more accurate prediction of MCI-to-AD conversion. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the proposed global grading biomarker achieved an area under the receiver operating characteristic curve (AUC) in the range of 79-81% for the prediction of MCI-to-AD conversion within three years in tenfold cross validations. The classification AUC further increases to 84-92% when age and cognitive measures are combined with the proposed grading biomarker. The obtained accuracy of the proposed biomarker benefits from the contributions of different factors: a tradeoff registration level to align images to the template space, the removal of the normal aging effect, selection of discriminative voxels, the calculation of the grading biomarker using AD and normal control groups, and the integration of sparse representation technique and the combination of cognitive measures. The evaluation on the ADNI dataset shows the efficacy of the proposed biomarker and demonstrates a significant contribution in accurate prediction of MCI-to-AD conversion.

  9. Radiomics biomarkers for accurate tumor progression prediction of oropharyngeal cancer

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Chan, Heang-Ping; Cha, Kenny H.; Srinivasan, Ashok; Wei, Jun; Zhou, Chuan; Prince, Mark; Papagerakis, Silvana

    2017-03-01

    Accurate tumor progression prediction for oropharyngeal cancers is crucial for identifying patients who would best be treated with optimized treatment and therefore minimize the risk of under- or over-treatment. An objective decision support system that can merge the available radiomics, histopathologic and molecular biomarkers in a predictive model based on statistical outcomes of previous cases and machine learning may assist clinicians in making more accurate assessment of oropharyngeal tumor progression. In this study, we evaluated the feasibility of developing individual and combined predictive models based on quantitative image analysis from radiomics, histopathology and molecular biomarkers for oropharyngeal tumor progression prediction. With IRB approval, 31, 84, and 127 patients with head and neck CT (CT-HN), tumor tissue microarrays (TMAs) and molecular biomarker expressions, respectively, were collected. For 8 of the patients all 3 types of biomarkers were available and they were sequestered in a test set. The CT-HN lesions were automatically segmented using our level sets based method. Morphological, texture and molecular based features were extracted from CT-HN and TMA images, and selected features were merged by a neural network. The classification accuracy was quantified using the area under the ROC curve (AUC). Test AUCs of 0.87, 0.74, and 0.71 were obtained with the individual predictive models based on radiomics, histopathologic, and molecular features, respectively. Combining the radiomics and molecular models increased the test AUC to 0.90. Combining all 3 models increased the test AUC further to 0.94. This preliminary study demonstrates that the individual domains of biomarkers are useful and the integrated multi-domain approach is most promising for tumor progression prediction.

  10. Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats.

    PubMed

    Cacho, J; Sevillano, J; de Castro, J; Herrera, E; Ramos, M P

    2008-11-01

    Insulin resistance plays a role in the pathogenesis of diabetes, including gestational diabetes. The glucose clamp is considered the gold standard for determining in vivo insulin sensitivity, both in human and in animal models. However, the clamp is laborious, time consuming and, in animals, requires anesthesia and collection of multiple blood samples. In human studies, a number of simple indexes, derived from fasting glucose and insulin levels, have been obtained and validated against the glucose clamp. However, these indexes have not been validated in rats and their accuracy in predicting altered insulin sensitivity remains to be established. In the present study, we have evaluated whether indirect estimates based on fasting glucose and insulin levels are valid predictors of insulin sensitivity in nonpregnant and 20-day-pregnant Wistar and Sprague-Dawley rats. We have analyzed the homeostasis model assessment of insulin resistance (HOMA-IR), the quantitative insulin sensitivity check index (QUICKI), and the fasting glucose-to-insulin ratio (FGIR) by comparing them with the insulin sensitivity (SI(Clamp)) values obtained during the hyperinsulinemic-isoglycemic clamp. We have performed a calibration analysis to evaluate the ability of these indexes to accurately predict insulin sensitivity as determined by the reference glucose clamp. Finally, to assess the reliability of these indexes for the identification of animals with impaired insulin sensitivity, performance of the indexes was analyzed by receiver operating characteristic (ROC) curves in Wistar and Sprague-Dawley rats. We found that HOMA-IR, QUICKI, and FGIR correlated significantly with SI(Clamp), exhibited good sensitivity and specificity, accurately predicted SI(Clamp), and yielded lower insulin sensitivity in pregnant than in nonpregnant rats. Together, our data demonstrate that these indexes provide an easy and accurate measure of insulin sensitivity during pregnancy in the rat.

  11. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    NASA Astrophysics Data System (ADS)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  12. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    PubMed

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented to support the application of compensation law behavior to the cell death processes--that is, the strong correlation between the kinetic coefficients, ln{A} and E(a), is confirmed.

  13. Predicting the Quasar Photometric Reshift with the Sloan Digital Sky Survey Filter System

    NASA Astrophysics Data System (ADS)

    Laubacher, Emily M.; York, Donald G.

    1999-10-01

    Photometric data were obtained for a set of known quasars (QSOs) in five bands with the Sloan Digital Sky Survey (SDSS) filter system for the purpose of testing the ability of the SDSS system to accurately predict the photometric redshift of QSOs. The initial plot of the SDSS photometric redshift versus the measured redshift shows a good relationship, but a lot of scatter. A literature search was conducted on a selected sampling of 49 QSOs, 26 with redshift z <= 0.5 and 23 with 0.5 < z < 2.6, to confirm their accurate identifications as QSOs with their advertised redshifts. This search revealed 10 rejected QSOs which were not QSOs but rather Seyfert galaxies or Narrow Line Objects. Additionally, 11 QSOs were either Broad Absorption Line Systems or had spectra that were in some way incomplete, and therefore, their QSO identification could not be confirmed. The revised plot, with the rejected and unconfirmed QSOs removed, gives an excellent straight line with very little scatter. Although these results are preliminary and for only a small sampling of QSOs, they show that further study of the relationship is warranted and that eventually the SDSS method may be used to accurately predict the photometric redshift of QSOs.

  14. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Expediting SRM assay development for large-scale targeted proteomics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Shi, Tujin; Brown, Joseph N.

    2014-08-22

    Due to their high sensitivity and specificity, targeted proteomics measurements, e.g. selected reaction monitoring (SRM), are becoming increasingly popular for biological and translational applications. Selection of optimal transitions and optimization of collision energy (CE) are important assay development steps for achieving sensitive detection and accurate quantification; however, these steps can be labor-intensive, especially for large-scale applications. Herein, we explored several options for accelerating SRM assay development evaluated in the context of a relatively large set of 215 synthetic peptide targets. We first showed that HCD fragmentation is very similar to CID in triple quadrupole (QQQ) instrumentation, and by selection ofmore » top six y fragment ions from HCD spectra, >86% of top transitions optimized from direct infusion on QQQ instrument are covered. We also demonstrated that the CE calculated by existing prediction tools was less accurate for +3 precursors, and a significant increase in intensity for transitions could be obtained using a new CE prediction equation constructed from the present experimental data. Overall, our study illustrates the feasibility of expediting the development of larger numbers of high-sensitivity SRM assays through automation of transitions selection and accurate prediction of optimal CE to improve both SRM throughput and measurement quality.« less

  16. Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F; Ye, Xianggui; Cui, Shengting

    2013-01-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained bymore » successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.« less

  17. Impact of Upfront Cellular Enrichment by Laser Capture Microdissection on Protein and Phosphoprotein Drug Target Signaling Activation Measurements in Human Lung Cancer: Implications for Personalized Medicine

    PubMed Central

    Elisa, Baldelli; B., Haura Eric; Lucio, Crinò; Douglas, Cress W.; Vienna, Ludovini; B., Schabath Matthew; A., Liotta Lance; F., Petricoin Emanuel; Mariaelena, Pierobon

    2015-01-01

    Purpose The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection is necessary for accurately quantifying predictive biomarkers in non-small cell lung cancer tumors. Experimental design Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via laser capture microdissection (LCM) were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. Results Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. Conclusions and clinical relevance These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted. PMID:25676683

  18. H-, He-like recombination spectra - II. l-changing collisions for He Rydberg states

    NASA Astrophysics Data System (ADS)

    Guzmán, F.; Badnell, N. R.; Williams, R. J. R.; van Hoof, P. A. M.; Chatzikos, M.; Ferland, G. J.

    2017-01-01

    Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of <1 per cent in order to constrain big bang nucleosynthesis models. Theoretical line emissivities at least this accurate are needed if this precision is to be achieved. In the first paper of this series, which focused on H I, we showed that differences in l-changing collisional rate coefficients predicted by three different theories can translate into 10 per cent changes in predictions for H I spectra. Here, we consider the more complicated case of He atoms, where low-l subshells are not energy degenerate. A criterion for deciding when the energy separation between l subshells is small enough to apply energy-degenerate collisional theories is given. Moreover, for certain conditions, the Bethe approximation originally proposed by Pengelly & Seaton is not sufficiently accurate. We introduce a simple modification of this theory which leads to rate coefficients which agree well with those obtained from pure quantal calculations using the approach of Vrinceanu et al. We show that the l-changing rate coefficients from the different theoretical approaches lead to differences of ˜10 per cent in He I emissivities in simulations of H II regions using spectral code CLOUDY.

  19. Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates.

    PubMed

    Nagahori, Hirohisa; Suzuki, Noriyuki; Le Coz, Florian; Omori, Takashi; Saito, Koichi

    2016-09-30

    Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Space vehicle acoustics prediction improvement for payloads. [space shuttle

    NASA Technical Reports Server (NTRS)

    Dandridge, R. E.

    1979-01-01

    The modal analysis method was extensively modified for the prediction of space vehicle noise reduction in the shuttle payload enclosure, and this program was adapted to the IBM 360 computer. The predicted noise reduction levels for two test cases were compared with experimental results to determine the validity of the analytical model for predicting space vehicle payload noise environments in the 10 Hz one-third octave band regime. The prediction approach for the two test cases generally gave reasonable magnitudes and trends when compared with the measured noise reduction spectra. The discrepancies in the predictions could be corrected primarily by improved modeling of the vehicle structural walls and of the enclosed acoustic space to obtain a more accurate assessment of normal modes. Techniques for improving and expandng the noise prediction for a payload environment are also suggested.

  1. Towards Bridging the Gaps in Holistic Transition Prediction via Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Duan, Lian; Chang, Chau-Lyan; Carpenter, Mark H.; Streett, Craig L.; Malik, Mujeeb R.

    2013-01-01

    The economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and supersonic aircraft cannot be realized without minimizing the uncertainty in drag prediction in general and transition prediction in particular. Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper provides a summary of selected research activities targeting the current gaps in high-fidelity transition prediction, specifically those related to the receptivity and laminar breakdown phases of crossflow induced transition in a subsonic swept-wing boundary layer. The results of direct numerical simulations are used to obtain an enhanced understanding of the laminar breakdown region as well as to validate reduced order prediction methods.

  2. Automatic analysis for neuron by confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko

    2005-12-01

    The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.

  3. A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataro; Mori, Hiroyuki

    In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.

  4. Experimental verification of the Neuber relation at room and elevated temperatures. M.S. Thesis; [to predict stress-strain behavior in notched specimens of hastelloy x

    NASA Technical Reports Server (NTRS)

    Lucas, L. J.

    1982-01-01

    The accuracy of the Neuber equation at room temperature and 1,200 F as experimentally determined under cyclic load conditions with hold times. All strains were measured with an interferometric technique at both the local and remote regions of notched specimens. At room temperature, strains were obtained for the initial response at one load level and for cyclically stable conditions at four load levels. Stresses in notched members were simulated by subjecting smooth specimens to he same strains as were recorded on the notched specimen. Local stress-strain response was then predicted with excellent accuracy by subjecting a smooth specimen to limits established by the Neuber equation. Data at 1,200 F were obtained with the same experimental techniques but only in the cyclically stable conditions. The Neuber prediction at this temperature gave relatively accurate results in terms of predicting stress and strain points.

  5. Predicting elastic properties of β-HMX from first-principles calculations.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu

    2015-05-07

    We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.

  6. Measurement and simulation of deformation and stresses in steel casting

    NASA Astrophysics Data System (ADS)

    Galles, D.; Monroe, C. A.; Beckermann, C.

    2012-07-01

    Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.

  7. Electrochemical carbon dioxide concentrator subsystem math model. [for manned space station

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Schubert, F. H.

    1974-01-01

    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range.

  8. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Uncertainty quantification and validation of 3D lattice scaffolds for computer-aided biomedical applications.

    PubMed

    Gorguluarslan, Recep M; Choi, Seung-Kyum; Saldana, Christopher J

    2017-07-01

    A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  11. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  12. A More Accurate and Efficient Technique Developed for Using Computational Methods to Obtain Helical Traveling-Wave Tube Interaction Impedance

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made in the analysis were addressed and fully investigated for their accuracy by using the three-dimensional electromagnetic simulation code MAFIA (Solution of Maxwell's Equations by the Finite Integration Algorithm) (refs. 3 and 4). We found that several approximations introduced significant error (ref. 5).

  13. Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.

    PubMed

    Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K

    2012-01-01

    Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.

  14. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.

    2007-01-01

    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  15. Growth and yield model application in tropical rain forest management

    Treesearch

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  16. Microstructural Characterization and Modeling of SLM Superalloy 718

    NASA Technical Reports Server (NTRS)

    Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard

    2017-01-01

    Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.

  17. Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sin Kim; Goon-Cherl Park

    1995-09-01

    An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral lossmore » coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.« less

  18. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    PubMed Central

    Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele

    2016-01-01

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed. PMID:28773773

  19. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-08-02

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently under-predicted and the friction-coverage and friction-velocity behavior deviates from that observed using all-atom force-fields and experimentally. This has important implications regarding force-field selection for NEMD simulations of systems containing long-chain, linear molecules; specifically, it is recommended that accurate all-atom potentials, such as L-OPLS-AA, are employed.

  20. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  1. Antibody specific epitope prediction-emergence of a new paradigm.

    PubMed

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    NASA Astrophysics Data System (ADS)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  3. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.

    PubMed

    Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat

    2018-05-23

    The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mathematics as a conduit for translational research in post-traumatic osteoarthritis.

    PubMed

    Ayati, Bruce P; Kapitanov, Georgi I; Coleman, Mitchell C; Anderson, Donald D; Martin, James A

    2017-03-01

    Biomathematical models offer a powerful method of clarifying complex temporal interactions and the relationships among multiple variables in a system. We present a coupled in silico biomathematical model of articular cartilage degeneration in response to impact and/or aberrant loading such as would be associated with injury to an articular joint. The model incorporates fundamental biological and mechanical information obtained from explant and small animal studies to predict post-traumatic osteoarthritis (PTOA) progression, with an eye toward eventual application in human patients. In this sense, we refer to the mathematics as a "conduit of translation." The new in silico framework presented in this paper involves a biomathematical model for the cellular and biochemical response to strains computed using finite element analysis. The model predicts qualitative responses presently, utilizing system parameter values largely taken from the literature. To contribute to accurate predictions, models need to be accurately parameterized with values that are based on solid science. We discuss a parameter identification protocol that will enable us to make increasingly accurate predictions of PTOA progression using additional data from smaller scale explant and small animal assays as they become available. By distilling the data from the explant and animal assays into parameters for biomathematical models, mathematics can translate experimental data to clinically relevant knowledge. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:566-572, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Dimension reduction method for SPH equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-08-26

    Smoothed Particle Hydrodynamics model of a complex multiscale processe often results in a system of ODEs with an enormous number of unknowns. Furthermore, a time integration of the SPH equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Here we propose a novel dimension reduction method that gives an approximate solution of the SPH ODEs and provides an accurate prediction of the average behavior of the modeled system. The method consists of two main elements. First, effective equationss for evolution of averagemore » variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the SPH ODEs over the entire computational domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the SPH variables. Second, a computational closure is used to close the system of the effective equations. The computational closure is achieved via short bursts of the SPH model. The dimension reduction model is used to simulate flow and transport with mixing controlled reactions and mineral precipitation. An SPH model is used model transport at the porescale. Good agreement between direct solutions of the SPH equations and solutions obtained with the dimension reduction method for different boundary conditions confirms the accuracy and computational efficiency of the dimension reduction model. The method significantly accelerates SPH simulations, while providing accurate approximation of the solution and accurate prediction of the average behavior of the system.« less

  6. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of themore » Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.« less

  7. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  8. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    PubMed

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluating remedial alternatives for an acid mine drainage stream: A model post audit

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Walton-Day, Katherine; Verplanck, Philip L.; Broshears, Robert E.

    2012-01-01

    A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H+, and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.

  10. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  11. Prediction of lymph node parasite load from clinical data in dogs with leishmaniasis: An application of radial basis artificial neural networks.

    PubMed

    Torrecilha, Rafaela Beatriz Pintor; Utsunomiya, Yuri Tani; Batista, Luís Fábio da Silva; Bosco, Anelise Maria; Nunes, Cáris Maroni; Ciarlini, Paulo César; Laurenti, Márcia Dalastra

    2017-01-30

    Quantification of Leishmania infantum load via real-time quantitative polymerase chain reaction (qPCR) in lymph node aspirates is an accurate tool for diagnostics, surveillance and therapeutics follow-up in dogs with leishmaniasis. However, qPCR requires infrastructure and technical training that is not always available commercially or in public services. Here, we used a machine learning technique, namely Radial Basis Artificial Neural Network, to assess whether parasite load could be learned from clinical data (serological test, biochemical markers and physical signs). By comparing 18 different combinations of input clinical data, we found that parasite load can be accurately predicted using a relatively small reference set of 35 naturally infected dogs and 20 controls. In the best case scenario (use of all clinical data), predictions presented no bias or inflation and an accuracy (i.e., correlation between true and predicted values) of 0.869, corresponding to an average error of ±38.2 parasites per unit of volume. We conclude that reasonable estimates of L. infantum load from lymph node aspirates can be obtained from clinical records when qPCR services are not available. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  14. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  15. Evaluating remedial alternatives for an acid mine drainage stream: a model post audit.

    PubMed

    Runkel, Robert L; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L; Broshears, Robert E

    2012-01-03

    A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H(+), and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.

  16. Use of differential scanning calorimetry to detect canola oil (Brassica napus L.) adulterated with lard stearin.

    PubMed

    Marikkar, Jalaldeen Mohammed Nazrim; Rana, Sohel

    2014-01-01

    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.

  17. Development and Validation of a Near-Infrared Spectroscopy Method for the Prediction of Acrylamide Content in French-Fried Potato.

    PubMed

    Adedipe, Oluwatosin E; Johanningsmeier, Suzanne D; Truong, Van-Den; Yencho, G Craig

    2016-03-02

    This study investigated the ability of near-infrared spectroscopy (NIRS) to predict acrylamide content in French-fried potato. Potato flour spiked with acrylamide (50-8000 μg/kg) was used to determine if acrylamide could be accurately predicted in a potato matrix. French fries produced with various pretreatments and cook times (n = 84) and obtained from quick-service restaurants (n = 64) were used for model development and validation. Acrylamide was quantified using gas chromatography-mass spectrometry, and reflectance spectra (400-2500 nm) of each freeze-dried sample were captured on a Foss XDS Rapid Content Analyzer-NIR spectrometer. Partial least-squares (PLS) discriminant analysis and PLS regression modeling demonstrated that NIRS could accurately detect acrylamide content as low as 50 μg/kg in the model potato matrix. Prediction errors of 135 μg/kg (R(2) = 0.98) and 255 μg/kg (R(2) = 0.93) were achieved with the best PLS models for acrylamide prediction in Russet Norkotah French-fried potato and multiple samples of unknown varieties, respectively. The findings indicate that NIRS can be used as a screening tool in potato breeding and potato processing research to reduce acrylamide in the food supply.

  18. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    PubMed Central

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739

  19. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    PubMed

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  20. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system

    PubMed Central

    Hinke, Jefferson T.; Perryman, Wayne L.; Goebel, Michael E.; LeRoi, Donald J.

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable. PMID:29186134

  1. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less

  2. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system.

    PubMed

    Krause, Douglas J; Hinke, Jefferson T; Perryman, Wayne L; Goebel, Michael E; LeRoi, Donald J

    2017-01-01

    Measurements of body size and mass are fundamental to pinniped population management and research. Manual measurements tend to be accurate but are invasive and logistically challenging to obtain. Ground-based photogrammetric techniques are less invasive, but inherent limitations make them impractical for many field applications. The recent proliferation of unmanned aerial systems (UAS) in wildlife monitoring has provided a promising new platform for the photogrammetry of free-ranging pinnipeds. Leopard seals (Hydrurga leptonyx) are an apex predator in coastal Antarctica whose body condition could be a valuable indicator of ecosystem health. We aerially surveyed leopard seals of known body size and mass to test the precision and accuracy of photogrammetry from a small UAS. Flights were conducted in January and February of 2013 and 2014 and 50 photogrammetric samples were obtained from 15 unrestrained seals. UAS-derived measurements of standard length were accurate to within 2.01 ± 1.06%, and paired comparisons with ground measurements were statistically indistinguishable. An allometric linear mixed effects model predicted leopard seal mass within 19.40 kg (4.4% error for a 440 kg seal). Photogrammetric measurements from a single, vertical image obtained using UAS provide a noninvasive approach for estimating the mass and body condition of pinnipeds that may be widely applicable.

  3. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers

    PubMed Central

    Kamalandua, Aubeline

    2015-01-01

    Age estimation from DNA methylation markers has seen an exponential growth of interest, not in the least from forensic scientists. The current published assays, however, can still be improved by lowering the number of markers in the assay and by providing more accurate models to predict chronological age. From the published literature we selected 4 age-associated genes (ASPA, PDE4C, ELOVL2, and EDARADD) and determined CpG methylation levels from 206 blood samples of both deceased and living individuals (age range: 0–91 years). This data was subsequently used to compare prediction accuracy with both linear and non-linear regression models. A quadratic regression model in which the methylation levels of ELOVL2 were squared showed the highest accuracy with a Mean Absolute Deviation (MAD) between chronological age and predicted age of 3.75 years and an adjusted R2 of 0.95. No difference in accuracy was observed for samples obtained either from living and deceased individuals or between the 2 genders. In addition, 29 teeth from different individuals (age range: 19–70 years) were analyzed using the same set of markers resulting in a MAD of 4.86 years and an adjusted R2 of 0.74. Cross validation of the results obtained from blood samples demonstrated the robustness and reproducibility of the assay. In conclusion, the set of 4 CpG DNA methylation markers is capable of producing highly accurate age predictions for blood samples from deceased and living individuals PMID:26280308

  4. Analysis of the predictive qualities of betting odds and FIFA World Ranking: evidence from the 2006, 2010 and 2014 Football World Cups.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2016-12-01

    The present study aims to investigate the ability of a new framework enabling to derive more detailed model-based predictions from ranking systems. These were compared to predictions from the bet market including data from the World Cups 2006, 2010, and 2014. The results revealed that the FIFA World Ranking has essentially improved its predictive qualities compared to the bet market since the mode of calculation was changed in 2006. While both predictors were useful to obtain accurate predictions in general, the world ranking was able to outperform the bet market significantly for the World Cup 2014 and when the data from the World Cups 2010 and 2014 were pooled. Our new framework can be extended in future research to more detailed prediction tasks (i.e., predicting the final scores of a match or the tournament progress of a team).

  5. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  6. Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.

    2018-01-01

    Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.

  7. A Comparative Study to Assess the Predictability of Different IOL Power Calculation Formulas in Eyes of Short and Long Axial Length.

    PubMed

    Doshi, Dharmil; Limdi, Purvi; Parekh, Nilesh; Gohil, Neepa

    2017-01-01

    Accurate Intraocular Lens (IOL) power calculation in cataract surgery is very important for providing postoperative precise vision. Selection of most appropriate formula is difficult in high myopic and hypermetropic patients. To investigate the predictability of different IOL (Intra Ocular Lens) power calculation formulae in eyes with short and long Axial Length (AL) and to find out most accurate IOL power calculation formula in both groups. A prospective study was conducted on 80 consecutive patients who underwent phacoemulsification with monofocal IOL implantation after obtaining an informed and written consent. Preoperative keratometry was done by IOL Master. Axial length and anterior chamber depth was measured using A-scan machine ECHORULE 2 (BIOMEDIX). Patients were divided into two groups based on AL. (40 in each group). Group A with AL<22 mm and Group B with AL>24.5 mm. The IOL power calculation in each group was done by Haigis, Hoffer Q, Holladay-I, SRK/T formulae using the software of ECHORULE 2. The actual postoperative Spherical Equivalent (SE), Estimation error (E) and Absolute Error (AE) were calculated at one and half months and were used in data analysis. The predictive accuracy of each formula in each group was analyzed by comparing the Absolute Error (AE). The Kruskal Wallis test was used to compare differences in the (AE) of the formulae. A statistically significant difference was defined as p-value<0.05. In Group A, Hoffer Q, Holladay 1 and SRK/T formulae were equally accurate in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL less than 22.0 mm and accuracy of these three formulae was significantly higher than Haigis formula. Whereas in Group B, Hoffer Q, Holladay 1, SRK/T and Haigis formulae were equally accurate in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL more than 24.5 mm. Hoffer Q, Holladay 1 and SRK/T formulae were showing significantly higher accuracy than Haigis formula in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL less than 22.0 mm. In eyes with AL more than 24.5 mm Hoffer Q, Holladay 1, SRK/T and Haigis formulae were equally accurate.

  8. A Comparative Study to Assess the Predictability of Different IOL Power Calculation Formulas in Eyes of Short and Long Axial Length

    PubMed Central

    Limdi, Purvi; Parekh, Nilesh; Gohil, Neepa

    2017-01-01

    Introduction Accurate Intraocular Lens (IOL) power calculation in cataract surgery is very important for providing postoperative precise vision. Selection of most appropriate formula is difficult in high myopic and hypermetropic patients. Aim To investigate the predictability of different IOL (Intra Ocular Lens) power calculation formulae in eyes with short and long Axial Length (AL) and to find out most accurate IOL power calculation formula in both groups. Materials and Methods A prospective study was conducted on 80 consecutive patients who underwent phacoemulsification with monofocal IOL implantation after obtaining an informed and written consent. Preoperative keratometry was done by IOL Master. Axial length and anterior chamber depth was measured using A-scan machine ECHORULE 2 (BIOMEDIX). Patients were divided into two groups based on AL. (40 in each group). Group A with AL<22 mm and Group B with AL>24.5 mm. The IOL power calculation in each group was done by Haigis, Hoffer Q, Holladay-I, SRK/T formulae using the software of ECHORULE 2. The actual postoperative Spherical Equivalent (SE), Estimation error (E) and Absolute Error (AE) were calculated at one and half months and were used in data analysis. The predictive accuracy of each formula in each group was analyzed by comparing the Absolute Error (AE). The Kruskal Wallis test was used to compare differences in the (AE) of the formulae. A statistically significant difference was defined as p-value<0.05. Results In Group A, Hoffer Q, Holladay 1 and SRK/T formulae were equally accurate in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL less than 22.0 mm and accuracy of these three formulae was significantly higher than Haigis formula. Whereas in Group B, Hoffer Q, Holladay 1, SRK/T and Haigis formulae were equally accurate in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL more than 24.5 mm. Conclusion Hoffer Q, Holladay 1 and SRK/T formulae were showing significantly higher accuracy than Haigis formula in predicting the postoperative refraction after cataract surgery (IOL power calculation) in eyes with AL less than 22.0 mm. In eyes with AL more than 24.5 mm Hoffer Q, Holladay 1, SRK/T and Haigis formulae were equally accurate. PMID:28273986

  9. Multivariate Formation Pressure Prediction with Seismic-derived Petrophysical Properties from Prestack AVO inversion and Poststack Seismic Motion Inversion

    NASA Astrophysics Data System (ADS)

    Yu, H.; Gu, H.

    2017-12-01

    A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.

  10. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  11. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  12. Using LSTMs to learn physiological models of blood glucose behavior.

    PubMed

    Mirshekarian, Sadegh; Bunescu, Razvan; Marling, Cindy; Schwartz, Frank

    2017-07-01

    For people with type 1 diabetes, good blood glucose control is essential to keeping serious disease complications at bay. This entails carefully monitoring blood glucose levels and taking corrective steps whenever they are too high or too low. If blood glucose levels could be accurately predicted, patients could take proactive steps to prevent blood glucose excursions from occurring. However, accurate predictions require complex physiological models of blood glucose behavior. Factors such as insulin boluses, carbohydrate intake, and exercise influence blood glucose in ways that are difficult to capture through manually engineered equations. In this paper, we describe a recursive neural network (RNN) approach that uses long short-term memory (LSTM) units to learn a physiological model of blood glucose. When trained on raw data from real patients, the LSTM networks (LSTMs) obtain results that are competitive with a previous state-of-the-art model based on manually engineered physiological equations. The RNN approach can incorporate arbitrary physiological parameters without the need for sophisticated manual engineering, thus holding the promise of further improvements in prediction accuracy.

  13. A new powerful parameterization tool for managing groundwater resources and predicting land subsidence in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nunes, V. D.; Burbey, T. J.; Borggaard, J.

    2012-12-01

    More than 1.5 m of subsidence has been observed in Las Vegas Valley since 1935 as a result of groundwater pumping that commenced in 1905 (Bell, 2002). The compaction of the aquifer system has led to several large subsidence bowls and deleterious earth fissures. The highly heterogeneous aquifer system with its variably thick interbeds makes predicting the magnitude and location of subsidence extremely difficult. Several numerical groundwater flow models of the Las Vegas basin have been previously developed; however none of them have been able to accurately simulate the observed subsidence patterns or magnitudes because of inadequate parameterization. To better manage groundwater resources and predict future subsidence we have updated and developed a more accurate groundwater management model for Las Vegas Valley by developing a new adjoint parameter estimation package (APE) that is used in conjunction with UCODE along with MODFLOW and the SUB (subsidence) and HFB (horizontal flow barrier) packages. The APE package is used with UCODE to automatically identify suitable parameter zonations and inversely calculate parameter values from hydraulic head and subsidence measurements, which are highly sensitive to both elastic (Ske) and inelastic (Skv) storage coefficients. With the advent of InSAR (Interferometric synthetic aperture radar), distributed spatial and temporal subsidence measurements can be obtained, which greatly enhance the accuracy of parameter estimation. This automation process can remove user bias and provide a far more accurate and robust parameter zonation distribution. The outcome of this work yields a more accurate and powerful tool for managing groundwater resources in Las Vegas Valley to date.

  14. Aerodynamic analysis of the Darrieus wind turbines including dynamic-stall effects

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, Ion; Allet, Azeddine

    Experimental data for a 17-m wind turbine are compared with aerodynamic performance predictions obtained with two dynamic stall methods which are based on numerical correlations of the dynamic stall delay with the pitch rate parameter. Unlike the Gormont (1973) model, the MIT model predicts that dynamic stall does not occur in the downwind part of the turbine, although it does exist in the upwind zone. The Gormont model is shown to overestimate the aerodynamic coefficients relative to the MIT model. The MIT model is found to accurately predict the dynamic-stall regime, which is characterized by a plateau oscillating near values of the experimental data for the rotor power vs wind speed at the equator.

  15. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters

    Treesearch

    C.A. Gonzalez-Benecke; Salvador A. Gezan; Lisa J. Samuelson; Wendell P. Cropper; Daniel J. Leduc; Timothy A. Martin

    2014-01-01

    Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used...

  16. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Adamo, Giuseppe, E-mail: giuseppe.dadamo@sissa.it; Pelissetto, Andrea, E-mail: andrea.pelissetto@roma1.infn.it; Pierleoni, Carlo, E-mail: carlo.pierleoni@aquila.infn.it

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmannmore » inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.« less

  17. Biomarker Surrogates Do Not Accurately Predict Sputum Eosinophils and Neutrophils in Asthma

    PubMed Central

    Hastie, Annette T.; Moore, Wendy C.; Li, Huashi; Rector, Brian M.; Ortega, Victor E.; Pascual, Rodolfo M.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.

    2013-01-01

    Background Sputum eosinophils (Eos) are a strong predictor of airway inflammation, exacerbations, and aid asthma management, whereas sputum neutrophils (Neu) indicate a different severe asthma phenotype, potentially less responsive to TH2-targeted therapy. Variables such as blood Eos, total IgE, fractional exhaled nitric oxide (FeNO) or FEV1% predicted, may predict airway Eos, while age, FEV1%predicted, or blood Neu may predict sputum Neu. Availability and ease of measurement are useful characteristics, but accuracy in predicting airway Eos and Neu, individually or combined, is not established. Objectives To determine whether blood Eos, FeNO, and IgE accurately predict sputum eosinophils, and age, FEV1% predicted, and blood Neu accurately predict sputum neutrophils (Neu). Methods Subjects in the Wake Forest Severe Asthma Research Program (N=328) were characterized by blood and sputum cells, healthcare utilization, lung function, FeNO, and IgE. Multiple analytical techniques were utilized. Results Despite significant association with sputum Eos, blood Eos, FeNO and total IgE did not accurately predict sputum Eos, and combinations of these variables failed to improve prediction. Age, FEV1%predicted and blood Neu were similarly unsatisfactory for prediction of sputum Neu. Factor analysis and stepwise selection found FeNO, IgE and FEV1% predicted, but not blood Eos, correctly predicted 69% of sputum Eos

  18. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is addressed using two active flow-control methods. These methods are the tangential leading-edge blowing and the flow suction from the leading-edge vortex cores along their paths. Qualitative and quantitative comparisons with the available experimental data are presented. The comparisons indicate that the present multidisciplinary aeroelastic analysis tools are robust, accurate and efficient.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Deukwoo; Little, Mark P.; Miller, Donald L.

    Purpose: To determine more accurate regression formulas for estimating peak skin dose (PSD) from reference air kerma (RAK) or kerma-area product (KAP). Methods: After grouping of the data from 21 procedures into 13 clinically similar groups, assessments were made of optimal clustering using the Bayesian information criterion to obtain the optimal linear regressions of (log-transformed) PSD vs RAK, PSD vs KAP, and PSD vs RAK and KAP. Results: Three clusters of clinical groups were optimal in regression of PSD vs RAK, seven clusters of clinical groups were optimal in regression of PSD vs KAP, and six clusters of clinical groupsmore » were optimal in regression of PSD vs RAK and KAP. Prediction of PSD using both RAK and KAP is significantly better than prediction of PSD with either RAK or KAP alone. The regression of PSD vs RAK provided better predictions of PSD than the regression of PSD vs KAP. The partial-pooling (clustered) method yields smaller mean squared errors compared with the complete-pooling method.Conclusion: PSD distributions for interventional radiology procedures are log-normal. Estimates of PSD derived from RAK and KAP jointly are most accurate, followed closely by estimates derived from RAK alone. Estimates of PSD derived from KAP alone are the least accurate. Using a stochastic search approach, it is possible to cluster together certain dissimilar types of procedures to minimize the total error sum of squares.« less

  20. Computerized method for automatic evaluation of lean body mass from PET/CT: comparison with predictive equations.

    PubMed

    Chan, Tao

    2012-01-01

    CT has become an established method for calculating body composition, but it requires data from the whole body, which are not typically obtained in routine PET/CT examinations. A computerized scheme that evaluates whole-body lean body mass (LBM) based on CT data from limited-whole-body coverage was developed. The LBM so obtained was compared with results from conventional predictive equations. LBM can be obtained automatically from limited-whole-body CT data by 3 means: quantification of body composition from CT images in the limited-whole-body scan, based on thresholding of CT attenuation; determination of the range of coverage based on a characteristic trend of changing composition across different levels and pattern recognition of specific features at strategic positions; and estimation of the LBM of the whole body on the basis of a predetermined relationship between proportion of fat mass and extent of coverage. This scheme was validated using 18 whole-body PET/CT examinations truncated at different lengths to emulate limited-whole-body data. LBM was also calculated using predictive equations that had been reported for use in SUV normalization. LBM derived from limited-whole-body data using the proposed method correlated strongly with LBM derived from whole-body CT data, with correlation coefficients ranging from 0.991 (shorter coverage) to 0.998 (longer coverage) and SEMs of LBM ranging from 0.14 to 0.33 kg. These were more accurate than results from different predictive equations, which ranged in correlation coefficient from 0.635 to 0.970 and in SEM from 0.64 to 2.40 kg. LBM of the whole body could be automatically estimated from CT data of limited-whole-body coverage typically acquired in PET/CT examinations. This estimation allows more accurate and consistent quantification of metabolic activity of tumors based on LBM-normalized standardized uptake value.

  1. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  2. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  3. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.

  4. Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18-81 years.

    PubMed

    Leahy, Siobhan; O'Neill, Cian; Sohun, Rhoda; Toomey, Clodagh; Jakeman, Philip

    2013-02-28

    Anthropometric data indicate that the human phenotype is changing. Today's adult is greater in stature, body mass and fat mass. Accurate measurement of body composition is necessary to maintain surveillance of obesity within the population and to evaluate associated interventions. The aim of the present study was to construct and validate generalised equations for percentage body fat (%BF) prediction from anthropometry in 1136 adult men and women. Reference values for %BF were obtained using dual-energy X-ray absorptiometry. Skinfold thickness (SF) at ten sites and girth (G) at seven sites were measured on 736 men and women aged 18-81 years (%BF 5·1-56·8%). Quantile regression was employed to construct prediction equations from age and log-transformed SF and G measures. These equations were then cross-validated on a cohort of 400 subjects of similar age and fatness. The following generalised equations were found to most accurately predict %BF: Men: (age x 0·1) + (logtricepsSF x 7·6) + (logmidaxillaSF x 8·8) + (logsuprspinaleSF x 11·9) - 11·3 (standard error of the estimate: 2·5%, 95% limits of agreement: - 4·8, + 4·9) Women: (age x 0·1) + (logabdominalG x 39·4) + (logmidaxillaSF x 4·9) + (logbicepsSF x 11·0) + (logmedialcalfSF x 9·1) - 73·5 (standard error of the estimate: 3·0%, 95% limits of agreement: - 5·7, + 5·9) These generalised anthropometric equations accurately predict %BF and are suitable for the measurement of %BF in adult men and women of varying levels of fatness across the lifespan.

  5. Preliminary Analysis of Fluctuations in the Received Uplink-Beacon-Power Data Obtained From the GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  6. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  7. Electrical Resistance of Ceramic Matrix Composites for Damage Detection and Life-Prediction

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Morscher, Gregory N.; Xia, Zhenhai

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection or inspection of a component during "down time". The correlation of damage with appropriate failure mechanism can then be applied to accurate life prediction for high-temperature ceramic matrix composites.

  8. Preliminary analysis of fluctuations in the received uplink-beacon-power data obtained from the GOLD experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Wilson, K. E.; Lesh, J. R.

    1996-01-01

    Uplink data from recent free-space optical communication experiments carried out between the Table Mountain Facility and the Japanese Engineering Test Satellite are used to study fluctuations caused by beam propagation through the atmosphere. The influence of atmospheric scintillation, beam wander and jitter, and multiple uplink beams on the statistics of power received by the satellite is analyzed and compared to experimental data. Preliminary analysis indicates the received signal obeys an approximate lognormal distribution, as predicted by the weak-turbulence model, but further characterization of other sources of fluctuations is necessary for accurate link predictions.

  9. Prediction of power requirements for a longwall armored face conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1995-12-31

    Longwall armored face conveyors (AFC`s) have traditionally been designed using a combination of heuristics and simple models. However, as longwalls increase in length these design procedures are proving to be inadequate. The result has either been costly loss of production due to AFC stalling or component failure, or larger than necessary capital investment due to overdesign. In order to allow accurate estimation of the power requirements for an AFC this paper develops a comprehensive model of all the friction forces associated with the AFC. Power requirement predictions obtained from these models are then compared with measurements from two mine faces.

  10. A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Yevgeniya; Fasli, Maria

    This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit.

  11. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  12. Estimating bird damage from damage incidence in wine grape vineyards

    USGS Publications Warehouse

    DeHaven, R.W.; Hothem, R.L.

    1981-01-01

    Bird damage was measured during 1977 and 1978 at 32 wine grape vineyards in the San Joaquin Valley and North Coastal Region of California. Both the percentage bird loss (PBL) and the percentage of bunches damaged (BDI = bird damage incidence) were determined during 55 total-damage assessments, and the resulting data pairs were used to develop a regression of PBL on BDI. The final prediction equation was loge (PBL + 1) = 0.0385 BDI, for which the SE = 9.6297 10-4, and it accounted for 97% of the observed variation. We conclude that by using that equation, reasonably accurate predictions of PBL can be obtained from relatively quick and inexpensive estimates of BDI. Guidelines for the use of the prediction method and the accuracy of some PBL predictions are discussed.

  13. Use of model calibration to achieve high accuracy in analysis of computer networks

    DOEpatents

    Frogner, Bjorn; Guarro, Sergio; Scharf, Guy

    2004-05-11

    A system and method are provided for creating a network performance prediction model, and calibrating the prediction model, through application of network load statistical analyses. The method includes characterizing the measured load on the network, which may include background load data obtained over time, and may further include directed load data representative of a transaction-level event. Probabilistic representations of load data are derived to characterize the statistical persistence of the network performance variability and to determine delays throughout the network. The probabilistic representations are applied to the network performance prediction model to adapt the model for accurate prediction of network performance. Certain embodiments of the method and system may be used for analysis of the performance of a distributed application characterized as data packet streams.

  14. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  15. The use of dual-energy X-ray absorptiometry to estimate the dissected composition of lamb carcasses.

    PubMed

    Mercier, J; Pomar, C; Marcoux, M; Goulet, F; Thériault, M; Castonguay, F W

    2006-06-01

    A total of 140 male and female Dorset and Suffolk lambs were slaughtered according to four live weight classes (36-39kg, 41-44kg, 46-49kg and 51-54kg). Total tissue, fat and lean masses, and bone mineral content measured by dual-energy X-ray absorptiometry (DXA) were used to predict dissected tissue weights. The DXA total weights accurately predict half-carcasses and primal cuts weights (shoulder, leg, loin and flank) (R(2)>0.99, CVe<1.3%). The prediction of the half-carcass dissected fat percentage is weaker (R(2)=0.77, CVe=10.4%). Fatness prediction accuracy is equivalent for the shoulder, leg and loin (R(2) between 0.68 and 0.78, CVe between 10% and 13%). The R(2) obtained when predicting dissected lean content from DXA variables is 0.93 for the half-carcass and higher than 0.83 for all cuts other than flank (CVe are between 3.5% and 6.5%, except for the flank, which is 9.1%). The prediction of bone weight using the bone mineral content is not very accurate for the half-carcass, shoulder and leg (R(2): 0.48, 0.47 and 0.43; CVe: 10.2%, 12.0% and 11.6%, respectively). The situation improves, however, for the loin (R(2)=0.70, CVe=10.7%). In conclusion, DXA is an effective technology for predicting total weight and the amount of lean and fat in lamb carcasses and their primal cuts.

  16. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  17. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    PubMed

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Prediction of brain maturity based on cortical thickness at different spatial resolutions.

    PubMed

    Khundrakpam, Budhachandra S; Tohka, Jussi; Evans, Alan C

    2015-05-01

    Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Integrating Environmental and Mosquito Data to Model Disease: Evaluating Alternative Modeling Approaches for Forecasting West Nile Virus in South Dakota, USA

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Vincent, G. P.; Hildreth, M.; Kightlinger, L.; Carlson, C.; Wimberly, M. C.

    2017-12-01

    South Dakota has the highest annual incidence of human cases of West Nile virus (WNV) in all US states, and human cases can vary wildly among years; predicting WNV risk in advance is a necessary exercise if public health officials are to respond efficiently and effectively to risk. Case counts are associated with environmental factors that affect mosquitoes, avian hosts, and the virus itself. They are also correlated with entomological risk indices obtained by trapping and testing mosquitoes. However, neither weather nor insect data alone provide a sufficient basis to make timely and accurate predictions, and combining them into models of human disease is not necessarily straightforward. Here we present lessons learned in three years of making real-time forecasts of this threat to public health. Various methods of integrating data from NASA's North American Land Data Assimilation System (NLDAS) with mosquito surveillance data were explored in a model comparison framework. We found that a model of human disease summarizing weather data (by polynomial distributed lags with seasonally-varying coefficients) and mosquito data (by a mixed-effects model that smooths out these sparse and highly-variable data) made accurate predictions of risk, and was generalizable enough to be recommended in similar applications. A model based on lagged effects of temperature and humidity provided the most accurate predictions. We also found that model accuracy was improved by allowing coefficients to vary smoothly throughout the season, giving different weights to different predictor variables during different parts of the season.

  20. Molecular Dynamics Simulations of Hydrophobic Residues

    NASA Astrophysics Data System (ADS)

    Caballero, Diego; Zhou, Alice; Regan, Lynne; O'Hern, Corey

    2013-03-01

    Molecular recognition and protein-protein interactions are involved in important biological processes. However, despite recent improvements in computational methods for protein design, we still lack a predictive understanding of protein structure and interactions. To begin to address these shortcomings, we performed molecular dynamics simulations of hydrophobic residues modeled as hard spheres with stereo-chemical constraints initially at high temperature, and then quenched to low temperature to obtain local energy minima. We find that there is a range of quench rates over which the probabilities of side-chain dihedral angles for hydrophobic residues match the probabilities obtained for known protein structures. In addition, we predict the side-chain dihedral angle propensities in the core region of the proteins T4, ROP, and several mutants. These studies serve as a first step in developing the ability to quantitatively rank the energies of designed protein constructs. The success of these studies suggests that only hard-sphere dynamics with geometrical constraints are needed for accurate protein structure prediction in hydrophobic cavities and binding interfaces. NSF Grant PHY-1019147

  1. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways

    PubMed Central

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-01-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 μm aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301

  2. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    PubMed

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  3. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  4. Genomic prediction of piglet response to infection with one of two porcine reproductive and respiratory syndrome virus isolates.

    PubMed

    Waide, Emily H; Tuggle, Christopher K; Serão, Nick V L; Schroyen, Martine; Hess, Andrew; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham; Dekkers, Jack C M

    2018-02-01

    Genomic prediction of the pig's response to the porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) would be a useful tool in the swine industry. This study investigated the accuracy of genomic prediction based on porcine SNP60 Beadchip data using training and validation datasets from populations with different genetic backgrounds that were challenged with different PRRSV isolates. Genomic prediction accuracy averaged 0.34 for viral load (VL) and 0.23 for weight gain (WG) following experimental PRRSV challenge, which demonstrates that genomic selection could be used to improve response to PRRSV infection. Training on WG data during infection with a less virulent PRRSV, KS06, resulted in poor accuracy of prediction for WG during infection with a more virulent PRRSV, NVSL. Inclusion of single nucleotide polymorphisms (SNPs) that are in linkage disequilibrium with a major quantitative trait locus (QTL) on chromosome 4 was vital for accurate prediction of VL. Overall, SNPs that were significantly associated with either trait in single SNP genome-wide association analysis were unable to predict the phenotypes with an accuracy as high as that obtained by using all genotyped SNPs across the genome. Inclusion of data from close relatives into the training population increased whole genome prediction accuracy by 33% for VL and by 37% for WG but did not affect the accuracy of prediction when using only SNPs in the major QTL region. Results show that genomic prediction of response to PRRSV infection is moderately accurate and, when using all SNPs on the porcine SNP60 Beadchip, is not very sensitive to differences in virulence of the PRRSV in training and validation populations. Including close relatives in the training population increased prediction accuracy when using the whole genome or SNPs other than those near a major QTL.

  5. Using radiance predicted by the P3 approximation in a spherical geometry to predict tissue optical properties

    NASA Astrophysics Data System (ADS)

    Dickey, Dwayne J.; Moore, Ronald B.; Tulip, John

    2001-01-01

    For photodynamic therapy of solid tumors, such as prostatic carcinoma, to be achieved, an accurate model to predict tissue parameters and light dose must be found. Presently, most analytical light dosimetry models are fluence based and are not clinically viable for tissue characterization. Other methods of predicting optical properties, such as Monet Carlo, are accurate but far too time consuming for clinical application. However, radiance predicted by the P3-Approximation, an anaylitical solution to the transport equation, may be a viable and accurate alternative. The P3-Approximation accurately predicts optical parameters in intralipid/methylene blue based phantoms in a spherical geometry. The optical parameters furnished by the radiance, when introduced into fluence predicted by both P3- Approximation and Grosjean Theory, correlate well with experimental data. The P3-Approximation also predicts the optical properties of prostate tissue, agreeing with documented optical parameters. The P3-Approximation could be the clinical tool necessary to facilitate PDT of solid tumors because of the limited number of invasive measurements required and the speed in which accurate calculations can be performed.

  6. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  7. Hadronic light-by-light contribution to the muon g — 2

    NASA Astrophysics Data System (ADS)

    Guevara, Adolfo

    2016-10-01

    We have computed the hadronic light-by-light (LbL) contribution to the muon anomalous magnetic moment aμ in the frame of Chiral Perturbation Theory with the inclusion of the lightest resonance multiplets as dynamical fields (RχT). It is essential to give a more accurate prediction of this hadronic contribution due to the future projects of J-Parc and FNAL on reducing the uncertainty in this observable. We, therefore, computed the pseudoscalar transition form factor and proposed the measurement of the e+ e - →μ+ μ- π0 cross section and dimuon invariant mass spectrum to determine more accurately its parameters. Then, we evaluated the pion exchange contribution to αμ, obtaining (6.66 ± 0.21) • 10-10. By comparing the pion exchange contribution and the pion-pole approximation to the corresponding transition form factor (πTFF) we recalled that the latter underestimates the complete πTFF by (15-20)%. Then, we obtained the η(') TFF, obtaining a total contribution of the lightest pseudoscalar exchanges of (10.47 ± 0.54) • 10-10, in agreement with previous results and with smaller error.

  8. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrido, J. M.; Algaba, J.; Blas, F. J., E-mail: felipe@uhu.es

    2016-04-14

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombicmore » intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with experimental data. The three CG models predict reasonably well (but only qualitatively) the surface tension of THF, as a function of temperature, from the triple point to the critical temperature. On the other hand, only the TraPPE united-atoms models are able to predict accurately the experimental surface tension of the system in the whole temperature range.« less

  9. Fetal sex determination in twin pregnancies using cell free fetal DNA analysis.

    PubMed

    Milan, Miguel; Mateu, Emilia; Blesa, David; Clemente-Ciscar, Monica; Simon, Carlos

    2018-04-23

    We sought to develop an accurate sex classification method in twin pregnancies using data obtained from a standard commercial non-invasive prenatal test. A total of 706 twin pregnancies were included in this retrospective analytical data study. Normalized chromosome values for chromosomes X and Y were used and adapted into a sex-score to predict fetal sex in each fetus, and results were compared with the clinical outcome at birth. Outcome information at birth for sex chromosomes was available for 232 twin pregnancies. From these, a total of 173 twin pregnancies with a Y chromosome identified in non-invasive pregnancy testing were used for the development of a predictive model. Global accuracy for sex classification in the testing set with 51 samples was 0.98 (95% confidence interval [0.90,0.99]), with a specificity and sensitivity of 1 (95% confidence interval [0.82,1.00]) and 0.97 (95% confidence interval [0.84,0.99]), respectively. While non-invasive prenatal testing is a screening method and confirmatory results must be obtained by ultrasound or genetic diagnosis, the sex-score determination presented herein offers an accurate and useful approach to characterizing fetus sex in twin pregnancies in a non-invasive manner early on in pregnancy. © 2018 John Wiley & Sons, Ltd.

  10. Testing the Applicability of Nernst-Planck Theory in Ion Channels: Comparisons with Brownian Dynamics Simulations

    PubMed Central

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex ‘catenary’ channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction. PMID:21731672

  11. Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.

    PubMed

    Song, Chen; Corry, Ben

    2011-01-01

    The macroscopic Nernst-Planck (NP) theory has often been used for predicting ion channel currents in recent years, but the validity of this theory at the microscopic scale has not been tested. In this study we systematically tested the ability of the NP theory to accurately predict channel currents by combining and comparing the results with those of Brownian dynamics (BD) simulations. To thoroughly test the theory in a range of situations, calculations were made in a series of simplified cylindrical channels with radii ranging from 3 to 15 Å, in a more complex 'catenary' channel, and in a realistic model of the mechanosensitive channel MscS. The extensive tests indicate that the NP equation is applicable in narrow ion channels provided that accurate concentrations and potentials can be input as the currents obtained from the combination of BD and NP match well with those obtained directly from BD simulations, although some discrepancies are seen when the ion concentrations are not radially uniform. This finding opens a door to utilising the results of microscopic simulations in continuum theory, something that is likely to be useful in the investigation of a range of biophysical and nano-scale applications and should stimulate further studies in this direction.

  12. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    NASA Astrophysics Data System (ADS)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  13. Bayesian calibration for electrochemical thermal model of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Basu, Suman; Verma, Mohan Kumar Singh; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2016-07-01

    Pseudo-two dimensional electrochemical thermal (P2D-ECT) model contains many parameters that are difficult to evaluate experimentally. Estimation of these model parameters is challenging due to computational cost and the transient model. Due to lack of complete physical understanding, this issue gets aggravated at extreme conditions like low temperature (LT) operations. This paper presents a Bayesian calibration framework for estimation of the P2D-ECT model parameters. The framework uses a matrix variate Gaussian process representation to obtain a computationally tractable formulation for calibration of the transient model. Performance of the framework is investigated for calibration of the P2D-ECT model across a range of temperatures (333 Ksbnd 263 K) and operating protocols. In the absence of complete physical understanding, the framework also quantifies structural uncertainty in the calibrated model. This information is used by the framework to test validity of the new physical phenomena before incorporation in the model. This capability is demonstrated by introducing temperature dependence on Bruggeman's coefficient and lithium plating formation at LT. With the incorporation of new physics, the calibrated P2D-ECT model accurately predicts the cell voltage with high confidence. The accurate predictions are used to obtain new insights into the low temperature lithium ion cell behavior.

  14. Can recording only the day-time voided volumes predict bladder capacity?

    PubMed

    Cho, Won Yeol; Kim, Seong Cheol; Kim, Sun-Ouck; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Kim, Kyung Do; Moon, Du Geon; Kim, Young Sig; Kim, Jun Mo

    2018-05-01

    This study aimed to demonstrate a method to easily assess bladder capacity using knowledge of day-time voided volumes, which can be obtained even from patients with nocturnal enuresis where the first morning void cannot accurately predict the bladder capacity due to bladder emptying overnight. We evaluated 177 healthy children from 7 Korean medical centres entered the study between January 2008 and January 2009. Voided volumes measured for more than 48 hours were recorded in the frequency volume chart (FVC). Most voided volumes during day-time were showed between 30% and 80% of the maximal voided volume (MVV). The maximal voided volume during day-time (MVVDT) was significantly less than the MVV (179.5±71.1 mL vs. 227.0±79.2 mL, p<0.001). The correlation coefficients with the MVV were 0.801 for the estimated MVV using the MVVDT (MVVDT×1.25), which suggested a fairly strong relationship between the MVVDT×1.25 and the MVV. The MVV derived from the FVC excluding the FMV was less than if the FMV had been included. When an accurate first morning voided volume cannot be obtained, as in patients with nocturnal enuresis, calculating MVVDT×1.25 allows estimation of the bladder capacity in place of the MVV.

  15. Motor system contribution to action prediction: Temporal accuracy depends on motor experience.

    PubMed

    Stapel, Janny C; Hunnius, Sabine; Meyer, Marlene; Bekkering, Harold

    2016-03-01

    Predicting others' actions is essential for well-coordinated social interactions. In two experiments including an infant population, this study addresses to what extent motor experience of an observer determines prediction accuracy for others' actions. Results show that infants who were proficient crawlers but inexperienced walkers predicted crawling more accurately than walking, whereas age groups mastering both skills (i.e. toddlers and adults) were equally accurate in predicting walking and crawling. Regardless of experience, human movements were predicted more accurately by all age groups than non-human movement control stimuli. This suggests that for predictions to be accurate, the observed act needs to be established in the motor repertoire of the observer. Through the acquisition of new motor skills, we also become better at predicting others' actions. The findings thus stress the relevance of motor experience for social-cognitive development. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway.

    PubMed

    Abou-Senna, Hatem; Radwan, Essam; Westerlund, Kurt; Cooper, C David

    2013-07-01

    The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.

  17. Measurement of the uterus and gestation sac by ultrasound in early normal and abnormal pregnancy.

    PubMed

    Chandra, M; Evans, L J; Duff, G B

    1981-01-14

    Uterine volumes measured by two different ultrasonic methods, and gestation sac volumes in early normal pregnancy are reported. The results obtained for uterine volume measurements are compared. Methods using measurements obtained from only a longitudinal scan were simpler but slightly less accurate. Uterine volumes were also calculated in a series of patients with pregnancy complicated by threatened abortion. The accuracy of the prediction of the outcome of the pregnancy, based solely on uterine volume was 71 percent. Uterine volume measurement is most useful in identifying cases of missed abortion where the period of gestation is known.

  18. High accuracy operon prediction method based on STRING database scores.

    PubMed

    Taboada, Blanca; Verde, Cristina; Merino, Enrique

    2010-07-01

    We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412-D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organism's data set for the training procedure, and a different organism's data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.

  19. Finite Element Creep Damage Analyses and Life Prediction of P91 Pipe Containing Local Wall Thinning Defect

    NASA Astrophysics Data System (ADS)

    Xue, Jilin; Zhou, Changyu

    2016-03-01

    Creep continuum damage finite element (FE) analyses were performed for P91 steel pipe containing local wall thinning (LWT) defect subjected to monotonic internal pressure, monotonic bending moment and combined internal pressure and bending moment by orthogonal experimental design method. The creep damage lives of pipe containing LWT defect under different load conditions were obtained. Then, the creep damage life formulas were regressed based on the creep damage life results from FE method. At the same time a skeletal point rupture stress was found and used for life prediction which was compared with creep damage lives obtained by continuum damage analyses. From the results, the failure lives of pipe containing LWT defect can be obtained accurately by using skeletal point rupture stress method. Finally, the influence of LWT defect geometry was analysed, which indicated that relative defect depth was the most significant factor for creep damage lives of pipe containing LWT defect.

  20. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less

  1. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers

    PubMed Central

    2009-01-01

    Background Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle. Methods Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls. Results For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy. All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time. Conclusions The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended. PMID:20043835

  2. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.

    PubMed

    Hughes, Timothy J; Kandathil, Shaun M; Popelier, Paul L A

    2015-02-05

    As intermolecular interactions such as the hydrogen bond are electrostatic in origin, rigorous treatment of this term within force field methodologies should be mandatory. We present a method able of accurately reproducing such interactions for seven van der Waals complexes. It uses atomic multipole moments up to hexadecupole moment mapped to the positions of the nuclear coordinates by the machine learning method kriging. Models were built at three levels of theory: HF/6-31G(**), B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ. The quality of the kriging models was measured by their ability to predict the electrostatic interaction energy between atoms in external test examples for which the true energies are known. At all levels of theory, >90% of test cases for small van der Waals complexes were predicted within 1 kJ mol(-1), decreasing to 60-70% of test cases for larger base pair complexes. Models built on moments obtained at B3LYP and M06-2X level generally outperformed those at HF level. For all systems the individual interactions were predicted with a mean unsigned error of less than 1 kJ mol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Strategies for Controlling Non-Transmissible Infection Outbreaks Using a Large Human Movement Data Set

    PubMed Central

    Hancock, Penelope A.; Rehman, Yasmin; Hall, Ian M.; Edeghere, Obaghe; Danon, Leon; House, Thomas A.; Keeling, Matthew J.

    2014-01-01

    Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak. PMID:25211122

  4. Microbial genomic island discovery, visualization and analysis.

    PubMed

    Bertelli, Claire; Tilley, Keith E; Brinkman, Fiona S L

    2018-06-03

    Horizontal gene transfer (also called lateral gene transfer) is a major mechanism for microbial genome evolution, enabling rapid adaptation and survival in specific niches. Genomic islands (GIs), commonly defined as clusters of bacterial or archaeal genes of probable horizontal origin, are of particular medical, environmental and/or industrial interest, as they disproportionately encode virulence factors and some antimicrobial resistance genes and may harbor entire metabolic pathways that confer a specific adaptation (solvent resistance, symbiosis properties, etc). As large-scale analyses of microbial genomes increases, such as for genomic epidemiology investigations of infectious disease outbreaks in public health, there is increased appreciation of the need to accurately predict and track GIs. Over the past decade, numerous computational tools have been developed to tackle the challenges inherent in accurate GI prediction. We review here the main types of GI prediction methods and discuss their advantages and limitations for a routine analysis of microbial genomes in this era of rapid whole-genome sequencing. An assessment is provided of 20 GI prediction software methods that use sequence-composition bias to identify the GIs, using a reference GI data set from 104 genomes obtained using an independent comparative genomics approach. Finally, we present guidelines to assist researchers in effectively identifying these key genomic regions.

  5. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp.

  6. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  7. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    NASA Technical Reports Server (NTRS)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  8. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  9. Three-dimensional water droplet trajectory code validation using an ECS inlet geometry

    NASA Technical Reports Server (NTRS)

    Breer, Marlin D.; Goodman, Mark P.

    1993-01-01

    A task was completed under NASA contract, the purpose of which was to validate a three-dimensional particle trajectory code with existing test data obtained from the Icing Research Tunnel at NASA-LeRC. The geometry analyzed was a flush-mounted environmental control system (ECS) inlet. Results of the study indicated good overall agreement between analytical predictions and wind tunnel test results at most flight conditions. Difficulties were encountered when predicting impingement characteristics of the droplets less than or equal to 13.5 microns in diameter. This difficulty was corrected to some degree by modifications to a module of the particle trajectory code; however, additional modifications will be required to accurately predict impingement characteristics of smaller droplets.

  10. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  11. Negative correlation learning for customer churn prediction: a comparison study.

    PubMed

    Rodan, Ali; Fayyoumi, Ayham; Faris, Hossam; Alsakran, Jamal; Al-Kadi, Omar

    2015-01-01

    Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis.

  12. Predicting the crystalline and porous equations of state for secondary explosives

    NASA Astrophysics Data System (ADS)

    Wixom, Ryan; Damm, David

    2013-06-01

    Accurate simulations of energetic material response necessitate accurate unreacted equations of state at pressures much higher than even the C-J state. Unfortunately, for reactive materials, experimental data at high pressures may be unattainable, and extrapolation from low-pressure data results in unacceptable uncertainty. In addition to being low-pressure, the available data is typically limited to the porous state. The fully-dense, or crystalline, equation of state is required for building mesoscale simulations of the dynamic response of energetic materials. We have used quantum molecular dynamics to predict the Hugoniots and 300 K isotherms of crystalline PETN, HNS, CL-20 and TATB up to pressures not attainable in experiments. The porous Hugoniots for these materials were then analytically obtained and are validated by comparison with available data. Our calculations for TATB confirm the presence of a kink in the Hugoniot, and the softening of the shock response is explained in terms of a change in molecular conformation and the loss of aromaticity.

  13. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  14. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  15. Optimization and real-time control for laser treatment of heterogeneous soft tissues.

    PubMed

    Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole

    2009-01-01

    Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.

  16. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  17. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  18. Shuttle orbiter boundary layer transition at flight and wind tunnel conditions

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Bertin, J. J.

    1983-01-01

    Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.

  19. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  20. Experimental Aeroheating Study of Mid-L/D Entry Vehicle Geometries: NASA LaRC 20-Inch Mach 6 Air Tunnel Test 6966

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2014-01-01

    Aeroheating data on mid lift-to-drag ratio entry vehicle configurations has been obtained through hypersonic wind tunnel testing. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry vehicle geometries of previous Mars missions are insufficient. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptical cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Global aeroheating data were obtained using phosphor thermography. Both stream-wise and cross-flow transition occured on different configurations. Comparisons were made with laminar and turbulent computational predictions generated with an algebraic turbulence model. Predictions were generally in good agreement in regions of laminar or fully-turbulent flow; however for transitional cases, the lack of a transition onset prediction capability produced less accurate comparisons. The data obtained in this study are intended to be used for prelimary mission design studies and the development and validation of computational methods.

  1. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings

    NASA Astrophysics Data System (ADS)

    Peng, Yanfeng; Cheng, Junsheng; Liu, Yanfei; Li, Xuejun; Peng, Zhihua

    2018-06-01

    A novel data-driven method based on Gaussian mixture model (GMM) and distance evaluation technique (DET) is proposed to predict the remaining useful life (RUL) of rolling bearings. The data sets are clustered by GMM to divide all data sets into several health states adaptively and reasonably. The number of clusters is determined by the minimum description length principle. Thus, either the health state of the data sets or the number of the states is obtained automatically. Meanwhile, the abnormal data sets can be recognized during the clustering process and removed from the training data sets. After obtaining the health states, appropriate features are selected by DET for increasing the classification and prediction accuracy. In the prediction process, each vibration signal is decomposed into several components by empirical mode decomposition. Some common statistical parameters of the components are calculated first and then the features are clustered using GMM to divide the data sets into several health states and remove the abnormal data sets. Thereafter, appropriate statistical parameters of the generated components are selected using DET. Finally, least squares support vector machine is utilized to predict the RUL of rolling bearings. Experimental results indicate that the proposed method reliably predicts the RUL of rolling bearings.

  3. Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong; Malik, Waqar; Jung, Yoon C.

    2016-01-01

    Predicting the taxi-out times of departures accurately is important for improving airport efficiency and takeoff time predictability. In this paper, we attempt to apply machine learning techniques to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction. To find the key factors affecting aircraft taxi times, surface surveillance data is first analyzed. From this data analysis, several variables, including terminal concourse, spot, runway, departure fix and weight class, are selected for taxi time prediction. Then, various machine learning methods such as linear regression, support vector machines, k-nearest neighbors, random forest, and neural networks model are applied to actual flight data. Different traffic flow and weather conditions at Charlotte airport are also taken into account for more accurate prediction. The taxi-out time prediction results show that linear regression and random forest techniques can provide the most accurate prediction in terms of root-mean-square errors. We also discuss the operational complexity and uncertainties that make it difficult to predict the taxi times accurately.

  4. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE PAGES

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; ...

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  5. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promotermore » of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  6. Exploring the knowledge behind predictions in everyday cognition: an iterated learning study.

    PubMed

    Stephens, Rachel G; Dunn, John C; Rao, Li-Lin; Li, Shu

    2015-10-01

    Making accurate predictions about events is an important but difficult task. Recent work suggests that people are adept at this task, making predictions that reflect surprisingly accurate knowledge of the distributions of real quantities. Across three experiments, we used an iterated learning procedure to explore the basis of this knowledge: to what extent is domain experience critical to accurate predictions and how accurate are people when faced with unfamiliar domains? In Experiment 1, two groups of participants, one resident in Australia, the other in China, predicted the values of quantities familiar to both (movie run-times), unfamiliar to both (the lengths of Pharaoh reigns), and familiar to one but unfamiliar to the other (cake baking durations and the lengths of Beijing bus routes). While predictions from both groups were reasonably accurate overall, predictions were inaccurate in the selectively unfamiliar domains and, surprisingly, predictions by the China-resident group were also inaccurate for a highly familiar domain: local bus route lengths. Focusing on bus routes, two follow-up experiments with Australia-resident groups clarified the knowledge and strategies that people draw upon, plus important determinants of accurate predictions. For unfamiliar domains, people appear to rely on extrapolating from (not simply directly applying) related knowledge. However, we show that people's predictions are subject to two sources of error: in the estimation of quantities in a familiar domain and extension to plausible values in an unfamiliar domain. We propose that the key to successful predictions is not simply domain experience itself, but explicit experience of relevant quantities.

  7. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.

    PubMed

    Wang, Sheng; Sun, Siqi; Li, Zhen; Zhang, Renyu; Xu, Jinbo

    2017-01-01

    Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. http://raptorx.uchicago.edu/ContactMap/.

  8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model

    PubMed Central

    Li, Zhen; Zhang, Renyu

    2017-01-01

    Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/ PMID:28056090

  9. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.

  10. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: Evidence that long-range LD is a major contributing factor.

    PubMed

    Vallejo, Roger L; Silva, Rafael M O; Evenhuis, Jason P; Gao, Guangtu; Liu, Sixin; Parsons, James E; Martin, Kyle E; Wiens, Gregory D; Lourenco, Daniela A L; Leeds, Timothy D; Palti, Yniv

    2018-06-05

    Previously accurate genomic predictions for Bacterial cold water disease (BCWD) resistance in rainbow trout were obtained using a medium-density single nucleotide polymorphism (SNP) array. Here, the impact of lower-density SNP panels on the accuracy of genomic predictions was investigated in a commercial rainbow trout breeding population. Using progeny performance data, the accuracy of genomic breeding values (GEBV) using 35K, 10K, 3K, 1K, 500, 300 and 200 SNP panels as well as a panel with 70 quantitative trait loci (QTL)-flanking SNP was compared. The GEBVs were estimated using the Bayesian method BayesB, single-step GBLUP (ssGBLUP) and weighted ssGBLUP (wssGBLUP). The accuracy of GEBVs remained high despite the sharp reductions in SNP density, and even with 500 SNP accuracy was higher than the pedigree-based prediction (0.50-0.56 versus 0.36). Furthermore, the prediction accuracy with the 70 QTL-flanking SNP (0.65-0.72) was similar to the panel with 35K SNP (0.65-0.71). Genomewide linkage disequilibrium (LD) analysis revealed strong LD (r 2  ≥ 0.25) spanning on average over 1 Mb across the rainbow trout genome. This long-range LD likely contributed to the accurate genomic predictions with the low-density SNP panels. Population structure analysis supported the hypothesis that long-range LD in this population may be caused by admixture. Results suggest that lower-cost, low-density SNP panels can be used for implementing genomic selection for BCWD resistance in rainbow trout breeding programs. © 2018 The Authors. This article is a U.S. Government work and is in the public domain in the USA. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  11. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  12. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC ratio, which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; these divisions also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact-correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass, indicating that the calibration is linear. Using samples in the calibration set that have different OM / OC or ammonium / OC distributions than the test set leads to only a modest increase in bias and normalized error in the predicted samples. We conclude that FT-IR analysis with partial least-squares regression is a robust method for accurately predicting TOR OC in IMPROVE network samples - providing complementary information to the organic functional group composition and organic aerosol mass estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).

  13. Using Deep Learning for Compound Selectivity Prediction.

    PubMed

    Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili

    2016-01-01

    Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.

  14. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.

    PubMed

    Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G

    2002-03-01

    During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.

  15. The effect of ring distortions on buckling of blunt conical shells. [Viking mission aeroshell

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Anderson, M. S.; Stephens, W. B.

    1975-01-01

    A rigorous analytical study of cones stiffened by many thin-gage, open-section rings is presented. The results are compared with data previously obtained from uniform pressure tests of the Viking mission flight aeroshell and of the Viking structural prototype aeroshells. A conventional analysis, in which the rings are modeled as discrete rigid cross sections, is shown to lead to large, unconservative strength predictions. A more sophisticated technique of modeling the rings as shell branches leads to much more realistic strength predictions and more accurately predicts the failure modes. It is also shown that if a small initial imperfection proportional to the shape of the buckling mode is assumed, the critical buckling modes from analysis and test are in agreement. However, the reduction in buckling strength from the perfect-shell predictions is small.

  16. Prediction of the mass gain during high temperature oxidation of aluminized nanostructured nickel using adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Hayati, M.; Rashidi, A. M.; Rezaei, A.

    2012-10-01

    In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.

  17. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis.

    PubMed

    Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H

    2017-09-01

    Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides information about the contributions of absorptive and postabsorptive conversion to total bioefficacy if an additional sample is taken at 1 d. © 2017 American Society for Nutrition.

  18. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  19. Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX

    PubMed Central

    Fischer, Axel W.; Bordignon, Enrica; Bleicken, Stephanie; García-Sáez, Ana J.; Jeschke, Gunnar; Meiler, Jens

    2016-01-01

    Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9 Å to 3.9 Å and from 5.7 Å to 3.3 Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively. PMID:27129417

  20. Accurate Monitoring and Fault Detection in Wind Measuring Devices through Wireless Sensor Networks

    PubMed Central

    Khan, Komal Saifullah; Tariq, Muhammad

    2014-01-01

    Many wind energy projects report poor performance as low as 60% of the predicted performance. The reason for this is poor resource assessment and the use of new untested technologies and systems in remote locations. Predictions about the potential of an area for wind energy projects (through simulated models) may vary from the actual potential of the area. Hence, introducing accurate site assessment techniques will lead to accurate predictions of energy production from a particular area. We solve this problem by installing a Wireless Sensor Network (WSN) to periodically analyze the data from anemometers installed in that area. After comparative analysis of the acquired data, the anemometers transmit their readings through a WSN to the sink node for analysis. The sink node uses an iterative algorithm which sequentially detects any faulty anemometer and passes the details of the fault to the central system or main station. We apply the proposed technique in simulation as well as in practical implementation and study its accuracy by comparing the simulation results with experimental results to analyze the variation in the results obtained from both simulation model and implemented model. Simulation results show that the algorithm indicates faulty anemometers with high accuracy and low false alarm rate when as many as 25% of the anemometers become faulty. Experimental analysis shows that anemometers incorporating this solution are better assessed and performance level of implemented projects is increased above 86% of the simulated models. PMID:25421739

  1. Forecasting influenza outbreak dynamics in Melbourne from Internet search query surveillance data.

    PubMed

    Moss, Robert; Zarebski, Alexander; Dawson, Peter; McCaw, James M

    2016-07-01

    Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers in temperate climates, as these epidemics vary substantially in their size, timing and duration from year to year, making it a challenge to deliver timely and proportionate responses. Previous studies have shown that Bayesian estimation techniques can accurately predict when an influenza epidemic will peak many weeks in advance, using existing surveillance data, but these methods must be tailored both to the target population and to the surveillance system. Our aim was to evaluate whether forecasts of similar accuracy could be obtained for metropolitan Melbourne (Australia). We used the bootstrap particle filter and a mechanistic infection model to generate epidemic forecasts for metropolitan Melbourne (Australia) from weekly Internet search query surveillance data reported by Google Flu Trends for 2006-14. Optimal observation models were selected from hundreds of candidates using a novel approach that treats forecasts akin to receiver operating characteristic (ROC) curves. We show that the timing of the epidemic peak can be accurately predicted 4-6 weeks in advance, but that the magnitude of the epidemic peak and the overall burden are much harder to predict. We then discuss how the infection and observation models and the filtering process may be refined to improve forecast robustness, thereby improving the utility of these methods for healthcare decision support. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors.

    PubMed

    Hemmateenejad, Bahram; Yazdani, Mahdieh

    2009-02-16

    Steroids are widely distributed in nature and are found in plants, animals, and fungi in abundance. A data set consists of a diverse set of steroids have been used to develop quantitative structure-electrochemistry relationship (QSER) models for their half-wave reduction potential. Modeling was established by means of multiple linear regression (MLR) and principle component regression (PCR) analyses. In MLR analysis, the QSPR models were constructed by first grouping descriptors and then stepwise selection of variables from each group (MLR1) and stepwise selection of predictor variables from the pool of all calculated descriptors (MLR2). Similar procedure was used in PCR analysis so that the principal components (or features) were extracted from different group of descriptors (PCR1) and from entire set of descriptors (PCR2). The resulted models were evaluated using cross-validation, chance correlation, application to prediction reduction potential of some test samples and accessing applicability domain. Both MLR approaches represented accurate results however the QSPR model found by MLR1 was statistically more significant. PCR1 approach produced a model as accurate as MLR approaches whereas less accurate results were obtained by PCR2 approach. In overall, the correlation coefficients of cross-validation and prediction of the QSPR models resulted from MLR1, MLR2 and PCR1 approaches were higher than 90%, which show the high ability of the models to predict reduction potential of the studied steroids.

  3. A new hydrodynamic prediction of the peak heat flux from horizontal cylinders in low speed upflow

    NASA Technical Reports Server (NTRS)

    Ungar, E. K.; Eichhorn, R.

    1988-01-01

    Flow-boiling data have been obtained for horizontal cylinders in saturated acetone, isopropanol, and water, yielding heat flux vs. wall superheat boiling curves for the organic liquids. A region of low speed upflow is identified in which long cylindrical bubbles break off from the wake with regular frequency. The Strouhal number of bubble breakoff is a function only of the Froude number in any liquid, and the effective wake thickness in all liquids is a function of the density ratio and the Froude number. A low speed flow boiling burnout prediction procedure is presented which yields accurate results in widely dissimilar liquids.

  4. Analytical modeling and sensor monitoring for optimal processing of advanced textile structural composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Macrae, John D.; Hammond, Vincent H.; Kranbuehl, David E.; Hart, Sean M.; Hasko, Gregory H.; Markus, Alan M.

    1993-01-01

    A two-dimensional model of the resin transfer molding (RTM) process was developed which can be used to simulate the infiltration of resin into an anisotropic fibrous preform. Frequency dependent electromagnetic sensing (FDEMS) has been developed for in situ monitoring of the RTM process. Flow visualization tests were performed to obtain data which can be used to verify the sensor measurements and the model predictions. Results of the tests showed that FDEMS can accurately detect the position of the resin flow-front during mold filling, and that the model predicted flow-front patterns agreed well with the measured flow-front patterns.

  5. Prediction of power requirements for a longwall armored face conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broadfoot, A.R.; Betz, R.E.

    1997-01-01

    Longwall armored face conveyors (AFC`s) have traditionally been designed using a combination of heuristics and simple models. However, as longwalls increase in length, these design procedures are proving to be inadequate. The result has either been a costly loss of production due to AFC stalling or component failure, or larger than necessary capital investment due to overdesign. In order to allow accurate estimation of the power requirements for an AFC, this paper develops a comprehensive model of all the friction forces associated with the AFC. Power requirement predictions obtained from these models are then compared with measurements from two minemore » faces.« less

  6. System identification of an unmanned quadcopter system using MRAN neural

    NASA Astrophysics Data System (ADS)

    Pairan, M. F.; Shamsudin, S. S.

    2017-12-01

    This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.

  7. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  8. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  9. Grid Resolution Effects on LES of a Piloted Methane-Air Flame

    DTIC Science & Technology

    2009-05-20

    respectively. In the LES momen- tum equation , Eq.(3), the Smagorinsky model is used to obtain the deviatoric part of the unclosed SGS stress τi j... accurately predicted from integra- tion of their LES evolution equations ; and (ii), the flamelet parametrization should adequately approximate the... effect of the complex small-scale turbulence/chemistry interactions is modeled in an affordable way by a combustion model. A question of how a particular

  10. The natural frequencies of symmetric angle-ply laminates derived from eigensensitivity analysis

    NASA Technical Reports Server (NTRS)

    Reiss, Robert; Ramachandran, S.; Qian, BO

    1988-01-01

    In this paper, a new closed-form approximate solution for the natural frequencies of symmetric rectangular angle-ply laminates simply supported on all four edges is derived. The solution, obtained from eigensensitivity analysis, is expressed as a truncated Fourier series in the ply angle. Results show that the prediction for the fundamental frequency is quite accurate for engineering applications, often within 1-2 percent of the true frequency.

  11. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure.

    PubMed

    Nielsen, Morten; Justesen, Sune; Lund, Ole; Lundegaard, Claus; Buus, Søren

    2010-11-13

    Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0.

  13. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less

  14. The feasibility of an efficient drug design method with high-performance computers.

    PubMed

    Yamashita, Takefumi; Ueda, Akihiko; Mitsui, Takashi; Tomonaga, Atsushi; Matsumoto, Shunji; Kodama, Tatsuhiko; Fujitani, Hideaki

    2015-01-01

    In this study, we propose a supercomputer-assisted drug design approach involving all-atom molecular dynamics (MD)-based binding free energy prediction after the traditional design/selection step. Because this prediction is more accurate than the empirical binding affinity scoring of the traditional approach, the compounds selected by the MD-based prediction should be better drug candidates. In this study, we discuss the applicability of the new approach using two examples. Although the MD-based binding free energy prediction has a huge computational cost, it is feasible with the latest 10 petaflop-scale computer. The supercomputer-assisted drug design approach also involves two important feedback procedures: The first feedback is generated from the MD-based binding free energy prediction step to the drug design step. While the experimental feedback usually provides binding affinities of tens of compounds at one time, the supercomputer allows us to simultaneously obtain the binding free energies of hundreds of compounds. Because the number of calculated binding free energies is sufficiently large, the compounds can be classified into different categories whose properties will aid in the design of the next generation of drug candidates. The second feedback, which occurs from the experiments to the MD simulations, is important to validate the simulation parameters. To demonstrate this, we compare the binding free energies calculated with various force fields to the experimental ones. The results indicate that the prediction will not be very successful, if we use an inaccurate force field. By improving/validating such simulation parameters, the next prediction can be made more accurate.

  15. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy.

    PubMed

    Payne, Courtney E; Wolfrum, Edward J

    2015-01-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. We present individual model statistics to demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. It is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.

  16. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.

  17. The DoE method as an efficient tool for modeling the behavior of monocrystalline Si-PV module

    NASA Astrophysics Data System (ADS)

    Kessaissia, Fatma Zohra; Zegaoui, Abdallah; Boutoubat, Mohamed; Allouache, Hadj; Aillerie, Michel; Charles, Jean-Pierre

    2018-05-01

    The objective of this paper is to apply the Design of Experiments (DoE) method to study and to obtain a predictive model of any marketed monocrystalline photovoltaic (mc-PV) module. This technique allows us to have a mathematical model that represents the predicted responses depending upon input factors and experimental data. Therefore, the DoE model for characterization and modeling of mc-PV module behavior can be obtained by just performing a set of experimental trials. The DoE model of the mc-PV panel evaluates the predictive maximum power, as a function of irradiation and temperature in a bounded domain of study for inputs. For the mc-PV panel, the predictive model for both one level and two levels were developed taking into account both influences of the main effect and the interactive effects on the considered factors. The DoE method is then implemented by developing a code under Matlab software. The code allows us to simulate, characterize, and validate the predictive model of the mc-PV panel. The calculated results were compared to the experimental data, errors were estimated, and an accurate validation of the predictive models was evaluated by the surface response. Finally, we conclude that the predictive models reproduce the experimental trials and are defined within a good accuracy.

  18. Mass transfer parameters of celeriac during vacuum drying

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2017-04-01

    An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.

  19. Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk

    1993-01-01

    Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.

  20. Feasibility study for image guided kidney surgery: assessment of required intraoperative surface for accurate image to physical space registrations

    NASA Astrophysics Data System (ADS)

    Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.

    2006-03-01

    Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.

  1. The prediction and mapping of geoidal undulations from GEOS-3 altimetry. [gravity anomalies

    NASA Technical Reports Server (NTRS)

    Kearsley, W.

    1978-01-01

    From the adjusted altimeter data an approximation to the geoid height in ocean areas is obtained. Methods are developed to produce geoid maps in these areas. Geoid heights are obtained for grid points in the region to be mapped, and two of the parameters critical to the production of an accurate map are investigated. These are the spacing of the grid, which must be related to the half-wavelength of the altimeter signal whose amplitude is the desired accuracy of the contour; and the method adopted to predict the grid values. Least squares collocation was used to find geoid undulations on a 1 deg grid in the mapping area. Twenty maps, with their associated precisions, were produced and are included. These maps cover the Indian Ocean, Southwestern and Northeastern portions of the Pacific Ocean, and Southwest Atlantic and the U.S. Calibration Area.

  2. The isentropic light piston annular cascade facil ity at RAE Pyestock

    NASA Astrophysics Data System (ADS)

    Brooks, A. J.; Colbourne, D. E.; Wedlake, E. T.; Jones, T. V.; Oldfield, M. L. G.; Schultz, D. L.; Loftus, P. J.

    1985-09-01

    An accurate assessment of heat transfer rates to turbine vanes and blades is an important aspect of efficient cooling system design and component life prediction in gas turbines. Techniques have been developed at Oxford University which permit such measurements to be obtained in test rigs which provide short duration steady flow through a turbine cascade. The temperature ratio between the gas stream and the turbine correctly models that found in an engine environment. Reynolds number and Mach numaber can be varied over a wide range to match engine conditions. The design, construction and operation of a new facility at Royal Aircraft Establishment (RAE) Pyestock, incorporating these techniques, is described. Heat transfer and aerodynamic measurements have been made on airfoil surfaces and endwalls of a fully annular cascade of nozzle guide vanes. These results are discussed and compared with those obtained from the same profile in 2-D cascade tests, and with computed 3-D flow predictions.

  3. Estimation of height and body mass index from demi-span in elderly individuals.

    PubMed

    Weinbrenner, Tanja; Vioque, Jesús; Barber, Xavier; Asensio, Laura

    2006-01-01

    Obtaining accurate height and, consequently, body mass index (BMI) measurements in elderly subjects can be difficult due to changes in posture and loss of height during ageing. Measurements of other body segments can be used as an alternative to estimate standing height, but population- and age-specific equations are necessary. Our objectives were to validate existing equations, to develop new simple equations to predict height in an elderly Spanish population and to assess the accuracy of the BMI calculated by estimated height from the new equations. We measured height and demi-span in a representative sample of 592 individuals, 271 men and 321 women, 65 years and older (mean +/- SD, 73.8 +/- 6.3 years). We suggested equations to predict height from demi-span by multiple regression analyses and performed an agreement analysis between measured and estimated indices. Height estimated from demi-span correlated significantly (p < 0.001) with measured height (men: r = 0.708, women: r = 0.625). The best prediction equations were as follows: men, height (in cm) = 77.821 + (1.132 x demi-span in cm) + (-0.215 x 5-year age category); women: height (in cm) = 88.854 + (0.899 x demi-span in cm) + (-0.692 x 5-year age category). No significant differences between the mean values of estimated and measured heights were found for men (-0.03 +/- 4.6 cm) or women (-0.02 +/- 4.1 cm). The BMI derived from measured height did not differ significantly from the BMI derived from estimated height either. Predicted height values from equations based on demi-span and age may be acceptable surrogates to derive accurate nutritional indices such as the BMI, particularly in elderly populations, where height may be difficult to measure accurately.

  4. Prediction of DHF disease spreading patterns using inverse distances weighted (IDW), ordinary and universal kriging

    NASA Astrophysics Data System (ADS)

    Prasetiyowati, S. S.; Sibaroni, Y.

    2018-03-01

    Dengue hemorrhagic disease, is a disease caused by the Dengue virus of the Flavivirus genus Flaviviridae family. Indonesia is the country with the highest case of dengue in Southeast Asia. In addition to mosquitoes as vectors and humans as hosts, other environmental and social factors are also the cause of widespread dengue fever. To prevent the occurrence of the epidemic of the disease, fast and accurate action is required. Rapid and accurate action can be taken, if there is appropriate information support on the occurrence of the epidemic. Therefore, a complete and accurate information on the spread pattern of endemic areas is necessary, so that precautions can be done as early as possible. The information on dispersal patterns can be obtained by various methods, which are based on empirical and theoretical considerations. One of the methods used is based on the estimated number of infected patients in a region based on spatial and time. The first step of this research is conducted by predicting the number of DHF patients in 2016 until 2018 based on 2010 to 2015 data using GSTAR (1, 1). In the second phase, the distribution pattern prediction of dengue disease area is conducted. Furthermore, based on the characteristics of DHF epidemic trends, i.e. down, stable or rising, the analysis of distribution patterns of dengue fever distribution areas with IDW and Kriging (ordinary and universal Kriging) were conducted in this study. The difference between IDW and Kriging, is the initial process that underlies the prediction process. Based on the experimental results, it is known that the dispersion pattern of epidemic areas of dengue disease with IDW and Ordinary Kriging is similar in the period of time.

  5. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  6. Investigation of Universal Behavior in Symmetric Diblock Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Medapuram, Pavani

    Coarse-grained theories of dense polymer liquids such as block copolymer melts predict a universal dependence of equilibrium properties on a few dimensionless parameters. For symmetric diblock copolymer melts, such theories predict a universal dependence on only chieN and N¯, where chie is an effective interaction parameter, N is the degree of polymerization, and N¯ is a measure of overlap. This thesis focuses on testing the universal behavior hypothesis by comparing results for various properties obtained from different coarse-grained simulation models to each other. Specifically, results from pairs of simulations of different models that have been designed to have matched values of N¯ are compared over a range of values of chiN. The use of vastly different simulation models allows us to cover a vast range of chi eN ≃ 200 - 8000 that includes most of the experimentally relevant range. Properties studied here include collective and single-chain correlations in the disordered phase, block and chain radii of gyration in the disordered phase, the value of chieN at the order-disorder transition (ODT), the free energy per chain, the latent heat of transition, the layer spacing, the composition profile, and compression modulus in the ordered phase. All results strongly support the universal scaling hypothesis, even for rather short chains, confirming that it is indeed possible to give an accurate universal description of simulation models that differ in many details. The underlying universality becomes apparent, however, only if data are analyzed using an adequate estimate of chie, which we obtained by fitting the structure factor S( q) in the disordered state to predictions of the recently developed renormalized one-loop (ROL) theory. The ROL theory is shown to provide an excellent description of the dependence of S(q on chain length and thermodynamic conditions for all models, even for very short chains, if we allow for the existence of a nonlinear dependence of the effective interaction parameter chie upon the strength of the AB repulsion. The results show that behavior near the ODT exhibits a different character at moderate and high values of N¯, with a crossover near N¯ ≃ 104. Within the range N¯ ≤sssim 104 studied in this work, the ordered and disordered phases near the ODT both contain strongly segregated domains of nearly pure A and B, in contrast to the assumption of weak segregation underlying the Fredrickson-Helfand (FH) theory. In this regime, the FH theory is inaccurate and substantially underestimates the value of chieN at the ODT. Results for the highest values of N¯ studied here agree reasonably well with FH predictions, suggesting that the theory may be accurate for N¯ gtrsim 104. Self-consistent field theory (SCFT) grossly underestimates (chieN)ODT for modest N¯ because it cannot describe strong correlations in the disordered phase. SCFT is found, however, to yield accurate predictions for several properties of the ordered lamellar phase. A detailed quantitative comparison of experimental results to theoretical predictions and obtained simulations results is also presented. Experimental results for structure factor obtained from small-angle neutron and X-ray scattering (SANS and SAXS) measurements are analyzed using methods closely analogous to those used to analyze simulation results. Peak scattering intensity results of different chain lengths of a AB pair are fitted to the ROL theory predictions in order to estimate the effective interaction parameter chi e(T) of the chemical system. The resulting chi e(T) estimates are used to obtain ODT values (chieN)ODT of different experimental systems, which we compare to the scaling law obtained from simulation results and to theoretical predictions. The results are largely consistent with the expected systematic decrease with increasing N¯ and lie closer to the simulations scaling law than to any theoretical prediction. These results confirm the overwhelming importance of fluctuation effects in systems with modest values of N¯ = 102 - 103, and the usefulness of coarse-grained simulations as a starting point for quantitative modeling.

  7. Development and validation of a machine learning algorithm and hybrid system to predict the need for life-saving interventions in trauma patients.

    PubMed

    Liu, Nehemiah T; Holcomb, John B; Wade, Charles E; Batchinsky, Andriy I; Cancio, Leopoldo C; Darrah, Mark I; Salinas, José

    2014-02-01

    Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.

  8. Accurate RNA 5-methylcytosine site prediction based on heuristic physical-chemical properties reduction and classifier ensemble.

    PubMed

    Zhang, Ming; Xu, Yan; Li, Lei; Liu, Zi; Yang, Xibei; Yu, Dong-Jun

    2018-06-01

    RNA 5-methylcytosine (m 5 C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m 5 C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m 5 C. Due to the difficulty and expensive costs of identifying m 5 C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m 5 C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m 5 C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  10. On the accuracy of the 'decoupled l-dominant' approximation for atom-molecule scattering

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    Cross sections for rotational excitation and spectral pressure broadening of HD, HCl, CO, and HCN due to collisions with low energy He atoms have been computed within the 'decoupled l-dominant' (DLD) approximation and are compared with accurate close coupling results and also with two similar approximations, the effective potential of Rabitz and the coupled states of McGuire and Kouri. DLD predictions of state-to-state cross sections are rather good, being only slightly less accurate than coupled states results. DLD is far superior to either the coupled states or effective potential methods for pressure broadening calculations, although it may not be uniformly of the quantitative accuracy desirable for obtaining intermolecular potentials from experimental data.

  11. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Dong, Guangzhong; Wei, Jingwen; Chen, Zonghai; Sun, Han; Yu, Xiaowei

    2017-10-01

    To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues.

  12. Predictive coupled-cluster isomer orderings for some Si{sub n}C{sub m} (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Jason N., E-mail: byrd.jason@ensco.com; ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940; Lutz, Jesse J., E-mail: jesse.lutz.ctr@afit.edu

    The accurate determination of the preferred Si{sub 12}C{sub 12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC{sub 3} to Si{sub 12}C{sub 12}. It is found that post-MBPT(2) correlation energy plays a significant rolemore » in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si{sub 12}C{sub 12} isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.« less

  13. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene

    DOE PAGES

    Srinivasan, Sriram Goverapet; Adri C. T. van Duin; Ganesh, Panchapakesan

    2015-01-06

    In this paper, we report the development of a ReaxFF reactive potential that can accurately describe the chemistry and dynamics of carbon condensed phases. Density functional theory (DFT)-based calculations were performed to obtain the equation of state for graphite and diamond and the formation energies of defects in graphene and amorphous phases from fullerenes. The DFT data were used to reparametrize ReaxFF CHO, resulting in a new potential called ReaxFF C-2013. ReaxFF C-2013 accurately predicts the atomization energy of graphite and closely reproduces the DFT-based energy difference between graphite and diamond, and the barrier for transition from graphite to diamond.more » ReaxFF C-2013 also accurately predicts the DFT-based energy barrier for Stone–Wales transformation in a C 60(I h) fullerene through the concerted rotation of a C 2 unit. Later, MD simulations of a C 180 fullerene using ReaxFF C-2013 suggested that the thermal fragmentation of these giant fullerenes is an exponential function of time. An Arrhenius-type equation was fit to the decay rate, giving an activation energy of 7.66 eV for the loss of carbon atoms from the fullerene. Although the decay of the molecule occurs primarily via the loss of C 2 units, we observed that, with an increase in temperature, the probability of loss of larger fragments increases. Finally, the ReaxFF C-2013 potential developed in this work, and the results obtained on fullerene fragmentation, provide an important step toward the full computational chemical modeling of coal pyrolysis, soot incandescence, high temperature erosion of graphitic rocket nozzles, and ablation of carbon-based spacecraft materials during atmospheric reentry.« less

  14. MRI signal and texture features for the prediction of MCI to Alzheimer's disease progression

    NASA Astrophysics Data System (ADS)

    Martínez-Torteya, Antonio; Rodríguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, José G.

    2014-03-01

    An early diagnosis of Alzheimer's disease (AD) confers many benefits. Several biomarkers from different information modalities have been proposed for the prediction of MCI to AD progression, where features extracted from MRI have played an important role. However, studies have focused almost exclusively in the morphological characteristics of the images. This study aims to determine whether features relating to the signal and texture of the image could add predictive power. Baseline clinical, biological and PET information, and MP-RAGE images for 62 subjects from the Alzheimer's Disease Neuroimaging Initiative were used in this study. Images were divided into 83 regions and 50 features were extracted from each one of these. A multimodal database was constructed, and a feature selection algorithm was used to obtain an accurate and small logistic regression model, which achieved a cross-validation accuracy of 0.96. These model included six features, five of them obtained from the MP-RAGE image, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index, showing that both groups are statistically different (p-value of 2.04e-11). The results demonstrate that MRI features related to both signal and texture, add MCI to AD predictive power, and support the idea that multimodal biomarkers outperform single-modality biomarkers.

  15. Body Fat Percentage Prediction Using Intelligent Hybrid Approaches

    PubMed Central

    Shao, Yuehjen E.

    2014-01-01

    Excess of body fat often leads to obesity. Obesity is typically associated with serious medical diseases, such as cancer, heart disease, and diabetes. Accordingly, knowing the body fat is an extremely important issue since it affects everyone's health. Although there are several ways to measure the body fat percentage (BFP), the accurate methods are often associated with hassle and/or high costs. Traditional single-stage approaches may use certain body measurements or explanatory variables to predict the BFP. Diverging from existing approaches, this study proposes new intelligent hybrid approaches to obtain fewer explanatory variables, and the proposed forecasting models are able to effectively predict the BFP. The proposed hybrid models consist of multiple regression (MR), artificial neural network (ANN), multivariate adaptive regression splines (MARS), and support vector regression (SVR) techniques. The first stage of the modeling includes the use of MR and MARS to obtain fewer but more important sets of explanatory variables. In the second stage, the remaining important variables are served as inputs for the other forecasting methods. A real dataset was used to demonstrate the development of the proposed hybrid models. The prediction results revealed that the proposed hybrid schemes outperformed the typical, single-stage forecasting models. PMID:24723804

  16. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  17. Unified nonlinear approach to both weak and strong-interaction problems. [heat transfer in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Rodkiewicz, C. M.

    1975-01-01

    The numerical results are obtained for heat transfer, skin-friction, and viscous interaction induced pressure for a step-wise accelerated flat plate in hypersonic flow. In the unified approach here the results are presented for both weak and strong-interaction problems without employing any linearization scheme. With the help of the numerical method used in this work an accurate prediction of wall shear can be made for the problems with plate velocity changes of 1% or larger. The obtained results indicate that the transient contribution to the induced pressure for helium is greater than that for air.

  18. Accuracy of risk scales for predicting repeat self-harm and suicide: a multicentre, population-level cohort study using routine clinical data.

    PubMed

    Steeg, Sarah; Quinlivan, Leah; Nowland, Rebecca; Carroll, Robert; Casey, Deborah; Clements, Caroline; Cooper, Jayne; Davies, Linda; Knipe, Duleeka; Ness, Jennifer; O'Connor, Rory C; Hawton, Keith; Gunnell, David; Kapur, Nav

    2018-04-25

    Risk scales are used widely in the management of patients presenting to hospital following self-harm. However, there is evidence that their diagnostic accuracy in predicting repeat self-harm is limited. Their predictive accuracy in population settings, and in identifying those at highest risk of suicide is not known. We compared the predictive accuracy of the Manchester Self-Harm Rule (MSHR), ReACT Self-Harm Rule (ReACT), SAD PERSONS Scale (SPS) and Modified SAD PERSONS Scale (MSPS) in an unselected sample of patients attending hospital following self-harm. Data on 4000 episodes of self-harm presenting to Emergency Departments (ED) between 2010 and 2012 were obtained from four established monitoring systems in England. Episodes were assigned a risk category for each scale and followed up for 6 months. The episode-based repeat rate was 28% (1133/4000) and the incidence of suicide was 0.5% (18/3962). The MSHR and ReACT performed with high sensitivity (98% and 94% respectively) and low specificity (15% and 23%). The SPS and the MSPS performed with relatively low sensitivity (24-29% and 9-12% respectively) and high specificity (76-77% and 90%). The area under the curve was 71% for both MSHR and ReACT, 51% for SPS and 49% for MSPS. Differences in predictive accuracy by subgroup were small. The scales were less accurate at predicting suicide than repeat self-harm. The scales failed to accurately predict repeat self-harm and suicide. The findings support existing clinical guidance not to use risk classification scales alone to determine treatment or predict future risk.

  19. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  20. Negative Correlation Learning for Customer Churn Prediction: A Comparison Study

    PubMed Central

    Faris, Hossam

    2015-01-01

    Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis. PMID:25879060

  1. An efficient algorithm for building locally refined hp - adaptive H-PCFE: Application to uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2017-12-01

    Hybrid polynomial correlated function expansion (H-PCFE) is a novel metamodel formulated by coupling polynomial correlated function expansion (PCFE) and Kriging. Unlike commonly available metamodels, H-PCFE performs a bi-level approximation and hence, yields more accurate results. However, till date, it is only applicable to medium scaled problems. In order to address this apparent void, this paper presents an improved H-PCFE, referred to as locally refined hp - adaptive H-PCFE. The proposed framework computes the optimal polynomial order and important component functions of PCFE, which is an integral part of H-PCFE, by using global variance based sensitivity analysis. Optimal number of training points are selected by using distribution adaptive sequential experimental design. Additionally, the formulated model is locally refined by utilizing the prediction error, which is inherently obtained in H-PCFE. Applicability of the proposed approach has been illustrated with two academic and two industrial problems. To illustrate the superior performance of the proposed approach, results obtained have been compared with those obtained using hp - adaptive PCFE. It is observed that the proposed approach yields highly accurate results. Furthermore, as compared to hp - adaptive PCFE, significantly less number of actual function evaluations are required for obtaining results of similar accuracy.

  2. Supraorbital Keyhole Craniotomy for Basilar Artery Aneurysms: Accounting for the "Cliff" Effect.

    PubMed

    Stamates, Melissa M; Wong, Andrew K; Bhansali, Anita; Wong, Ricky H

    2017-04-01

    Treatment of basilar artery aneurysms is challenging. While endovascular techniques have dominated, there still remain circumstances where open surgical clipping is required or preferred. Minimally invasive "keyhole" approaches are being used more frequently to provide the durability of surgical clipping with a lower morbidity profile; however, careful patient selection is required. The supraorbital "keyhole" approach has been described for the treatment of basilar artery aneurysms, but careful assessment of the basilar exposure is necessary to ensure proper visualization of the aneurysm and ability to obtain proximal vascular control. Various methods of estimating the basilar artery exposure in this approach have been described, including the anterior skull base line and the posterior clinoid line, but both are unreliable and inaccurate. To propose a new method, the orbital roof-dorsum line, to simply and accurately predict the basilar artery exposure. CT angiograms for 20 consecutive unique patients were analyzed to obtain the anterior skull base line, posterior clinoid line, and the orbital roof-dorsum line. CT angiograms were then loaded onto a Stealth neuronavigation system (Medtronic, Minneapolis, Minnesota) to obtain "true" visualization lengths. A case illustration is presented. Pairwise comparison tests demonstrated that both the anterior skull base and the posterior clinoid estimation lines differed significantly from the "true"  value ( P < .0001). Our orbital roof-dorsum estimation provided results that accurately predicted the "true" value ( P = .71). The orbital roof-dorsum line provides a simple and reliable method of estimating basilar artery exposure and should be used whenever considering patients for surgical clipping by this approach. Copyright © 2017 by the Congress of Neurological Surgeons

  3. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppola, Anthony; Faruque, Omar; Truskin, James F

    As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.« less

  4. S100b and BNP predict functional neurological outcome after intracerebral hemorrhage

    PubMed Central

    James, Michael L.; Blessing, Robert; Phillips-Bute, Barbara G.; Bennett, Ellen; Laskowitz, Daniel T.

    2009-01-01

    Objective To determine the predictive value of S100b and brain natriuretic peptide (BNP) to accurately and quickly determine discharge prognosis after primary supratentorial intracerebral hemorrhage (ICH). Methods After IRB approval and informed consent, blood samples were obtained and analyzed from 28 adult patients consecutively admitted to the neuroscience intensive care unit with computed tomography-proven supratentorial ICH from June 2003 and December 2004 within the first 24 h after symptom onset for S100b and BNP. Functional outcomes on discharge were dichotomized to favorable (mRS<3) or unfavorable. Results BNP (a neurohormone) and S100b (a marker of glial activation) were found to be independently highly predictive of functional neurological outcome at the time of discharge as measured by modified Rankin Score (BNP:p<0.01, r=0.46; S100b: p<0.01, r=0.42) and Barthel Index (BNP:p<0.01, r=0.54; s100b:p<0.01, r=0.50). Although inclusion of either biomarker produced additive value when included with traditional clinical prognostic variables, such as the ICH Score (Barthel index: p<0.01, r=0.66; mRS:p<0.01, r=0.96), little predictive power is added with inclusion of both biomarkers in a regression model for neurological outcome. Conclusions Serum S100b and BNP levels in the first 24 h after injury accurately predict neurological function at discharge after supratentorial ICH. PMID:19505208

  5. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  6. Predicting Individual Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using amore » large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.« less

  7. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, Kevin; Buchheit, Thomas E.; Diebold, Thomas Wayne

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  8. Stress Mapping in Glass-to-Metal Seals using Indentation Crack Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchheit, Thomas E.; Strong, Kevin; Newton, Clay S.

    Predicting the residual stress which develops during fabrication of a glass-to-metal compression seal requires material models that can accurately predict the effects of processing on the sealing glass. Validation of the predictions requires measurements on representative test geometries to accurately capture the interaction between the seal materials during a processing cycle required to form the seal, which consists of a temperature excursion through the glass transition temperature of the sealing glass. To this end, a concentric seal test geometry, referred to as a short cylinder seal, consisting of a stainless steel shell enveloping a commercial sealing glass disk has beenmore » designed, fabricated, and characterized as a model validation test geometry. To obtain data to test/validate finite element (FE) stress model predictions of this geometry, spatially-resolved residual stress was calculated from the measured lengths of the cracks emanating from radially positioned Vickers indents in the glass disk portion of the seal. The indentation crack length method is described, and the spatially-resolved residual stress determined experimentally are compared to FE stress predictions made using a nonlinear viscoelastic material model adapted to inorganic sealing glasses and an updated rate dependent material model for 304L stainless steel. The measurement method is a first to achieve a degree of success for measuring spatially resolved residual stress in a glass-bearing geometry and a favorable comparison between measurements and simulation was observed.« less

  9. Prediction of discretization error using the error transport equation

    NASA Astrophysics Data System (ADS)

    Celik, Ismail B.; Parsons, Don Roscoe

    2017-06-01

    This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.

  10. Plateletpheresis efficiency and mathematical correction of software-derived platelet yield prediction: A linear regression and ROC modeling approach.

    PubMed

    Jaime-Pérez, José Carlos; Jiménez-Castillo, Raúl Alberto; Vázquez-Hernández, Karina Elizabeth; Salazar-Riojas, Rosario; Méndez-Ramírez, Nereida; Gómez-Almaguer, David

    2017-10-01

    Advances in automated cell separators have improved the efficiency of plateletpheresis and the possibility of obtaining double products (DP). We assessed cell processor accuracy of predicted platelet (PLT) yields with the goal of a better prediction of DP collections. This retrospective proof-of-concept study included 302 plateletpheresis procedures performed on a Trima Accel v6.0 at the apheresis unit of a hematology department. Donor variables, software predicted yield and actual PLT yield were statistically evaluated. Software prediction was optimized by linear regression analysis and its optimal cut-off to obtain a DP assessed by receiver operating characteristic curve (ROC) modeling. Three hundred and two plateletpheresis procedures were performed; in 271 (89.7%) occasions, donors were men and in 31 (10.3%) women. Pre-donation PLT count had the best direct correlation with actual PLT yield (r = 0.486. P < .001). Means of software machine-derived values differed significantly from actual PLT yield, 4.72 × 10 11 vs.6.12 × 10 11 , respectively, (P < .001). The following equation was developed to adjust these values: actual PLT yield= 0.221 + (1.254 × theoretical platelet yield). ROC curve model showed an optimal apheresis device software prediction cut-off of 4.65 × 10 11 to obtain a DP, with a sensitivity of 82.2%, specificity of 93.3%, and an area under the curve (AUC) of 0.909. Trima Accel v6.0 software consistently underestimated PLT yields. Simple correction derived from linear regression analysis accurately corrected this underestimation and ROC analysis identified a precise cut-off to reliably predict a DP. © 2016 Wiley Periodicals, Inc.

  11. Comparing strategies for selection of low-density SNPs for imputation-mediated genomic prediction in U. S. Holsteins.

    PubMed

    He, Jun; Xu, Jiaqi; Wu, Xiao-Lin; Bauck, Stewart; Lee, Jungjae; Morota, Gota; Kachman, Stephen D; Spangler, Matthew L

    2018-04-01

    SNP chips are commonly used for genotyping animals in genomic selection but strategies for selecting low-density (LD) SNPs for imputation-mediated genomic selection have not been addressed adequately. The main purpose of the present study was to compare the performance of eight LD (6K) SNP panels, each selected by a different strategy exploiting a combination of three major factors: evenly-spaced SNPs, increased minor allele frequencies, and SNP-trait associations either for single traits independently or for all the three traits jointly. The imputation accuracies from 6K to 80K SNP genotypes were between 96.2 and 98.2%. Genomic prediction accuracies obtained using imputed 80K genotypes were between 0.817 and 0.821 for daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 0.850 and 0.863 for milk yield. The two SNP panels optimized on the three major factors had the highest genomic prediction accuracy (0.821-0.863), and these accuracies were very close to those obtained using observed 80K genotypes (0.825-0.868). Further exploration of the underlying relationships showed that genomic prediction accuracies did not respond linearly to imputation accuracies, but were significantly affected by genotype (imputation) errors of SNPs in association with the traits to be predicted. SNPs optimal for map coverage and MAF were favorable for obtaining accurate imputation of genotypes whereas trait-associated SNPs improved genomic prediction accuracies. Thus, optimal LD SNP panels were the ones that combined both strengths. The present results have practical implications on the design of LD SNP chips for imputation-enabled genomic prediction.

  12. Improved failure prediction in forming simulations through pre-strain mapping

    NASA Astrophysics Data System (ADS)

    Upadhya, Siddharth; Staupendahl, Daniel; Heuse, Martin; Tekkaya, A. Erman

    2018-05-01

    The sensitivity of sheared edges of advanced high strength steel (AHSS) sheets to cracking during subsequent forming operations and the difficulty to predict this failure with any degree of accuracy using conventionally used FLC based failure criteria is a major problem plaguing the manufacturing industry. A possible method that allows for an accurate prediction of edge cracks is the simulation of the shearing operation and carryover of this model into a subsequent forming simulation. But even with an efficient combination of a solid element shearing operation and a shell element forming simulation, the need for a fine mesh, and the resulting high computation time makes this approach not viable from an industry point of view. The crack sensitivity of sheared edges is due to work hardening in the shear-affected zone (SAZ). A method to predict plastic strains induced by the shearing process is to measure the hardness after shearing and calculate the ultimate tensile strength as well as the flow stress. In combination with the flow curve, the relevant strain data can be obtained. To eliminate the time-intensive shearing simulation necessary to obtain the strain data in the SAZ, a new pre-strain mapping approach is proposed. The pre-strains to be mapped are, hereby, determined from hardness values obtained in the proximity of the sheared edge. To investigate the performance of this approach the ISO/TS 16630 hole expansion test was simulated with shell elements for different materials, whereby the pre-strains were mapped onto the edge of the hole. The hole expansion ratios obtained from such pre-strain mapped simulations are in close agreement with the experimental results. Furthermore, the simulations can be carried out with no increase in computation time, making this an interesting and viable solution for predicting edge failure due to shearing.

  13. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  14. Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.

    PubMed

    Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-08-01

    This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  16. Physical exam of the adolescent shoulder: tips for evaluating and diagnosing common shoulder disorders in the adolescent athlete.

    PubMed

    Lazaro, Lionel E; Cordasco, Frank A

    2017-02-01

    In the young athlete, the shoulder is one of the most frequently injured joints during sports activities. The injuries are either from an acute traumatic event or overuse. Shoulder examination can present some challenges; given the multiple joints involved, the difficulty palpating the underlying structures, and the potential to have both intra- and/or extra-articular problems. Many of the shoulder examination tests can be positive in multiple problems. They usually have high sensitivity but low specificity and therefore low predictive value. The medical history coupled with a detailed physical exam can usually provide the information necessary to obtain an accurate diagnosis. A proficient shoulder examination and the development of an adequate differential diagnosis are important before considering advanced imaging. The shoulder complex relies upon the integrity of multiple structures for normal function. A detailed history is of paramount importance when evaluating young athletes with shoulder problems. A systematic physical examination is extremely important to guiding an accurate diagnosis. The patient's age and activity level are very important when considering the differential diagnosis. Findings obtain through history and physical examination should dictate the decision to obtain advanced imaging of the shoulder.

  17. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  18. Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Tajarobi, Farhad; Abrahmsen-Alami, Susanna; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2013-03-12

    In this paper a new model describing drug release from a polymer matrix tablet is presented. The utilization of the model is described as a two step process where, initially, polymer parameters are obtained from a previously published pure polymer dissolution model. The results are then combined with drug parameters obtained from literature data in the new model to predict solvent and drug concentration profiles and polymer and drug release profiles. The modelling approach was applied to the case of a HPMC matrix highly loaded with mannitol (model drug). The results showed that the drug release rate can be successfully predicted, using the suggested modelling approach. However, the model was not able to accurately predict the polymer release profile, possibly due to the sparse amount of usable pure polymer dissolution data. In addition to the case study, a sensitivity analysis of model parameters relevant to drug release was performed. The analysis revealed important information that can be useful in the drug formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Performance evaluation of 4 measuring methods of ground-glass opacities for predicting the 5-year relapse-free survival of patients with peripheral nonsmall cell lung cancer: a multicenter study.

    PubMed

    Kakinuma, Ryutaro; Kodama, Ken; Yamada, Kouzo; Yokoyama, Akira; Adachi, Shuji; Mori, Kiyoshi; Fukuyama, Yasuro; Fukuda, Yasuro; Kuriyama, Keiko; Oda, Junichi; Oda, Junji; Noguchi, Masayuki; Matsuno, Yoshihiro; Yokose, Tomoyuki; Ohmatsu, Hironobu; Nishiwaki, Yutaka

    2008-01-01

    To evaluate the performance of 4 methods of measuring the extent of ground-glass opacities as a means of predicting the 5-year relapse-free survival of patients with peripheral nonsmall cell lung cancer (NSLC). Ground-glass opacities on thin-section computed tomographic images of 120 peripheral NSLCs were measured at 7 medical institutions by the length, area, modified length, and vanishing ratio (VR) methods. The performance (Az) of each method in predicting the 5-year relapse-free survival was evaluated using receiver operating characteristic analysis. The mean Az value obtained by the length, area, modified length, and VR methods in the receiver operating characteristic analyses was 0.683, 0.702, 0.728, and 0.784, respectively. The differences between the mean Az value obtained by the VR method and by the other 3 methods were significant. Vanishing ratio method was the most accurate predictor of the 5-year relapse-free survival of patients with peripheral NSLC.

  20. A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.

  1. Combining Physicochemical and Evolutionary Information for Protein Contact Prediction

    PubMed Central

    Schneider, Michael; Brock, Oliver

    2014-01-01

    We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092

  2. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.

    PubMed

    Chansanroj, Krisanin; Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele

    2011-10-09

    Artificial neural networks (ANNs) were applied for system understanding and prediction of drug release properties from direct compacted matrix tablets using sucrose esters (SEs) as matrix-forming agents for controlled release of a highly water soluble drug, metoprolol tartrate. Complexity of the system was presented through the effects of SE concentration and tablet porosity at various hydrophilic-lipophilic balance (HLB) values of SEs ranging from 0 to 16. Both effects contributed to release behaviors especially in the system containing hydrophilic SEs where swelling phenomena occurred. A self-organizing map neural network (SOM) was applied for visualizing interrelation among the variables and multilayer perceptron neural networks (MLPs) were employed to generalize the system and predict the drug release properties based on HLB value and concentration of SEs and tablet properties, i.e., tablet porosity, volume and tensile strength. Accurate prediction was obtained after systematically optimizing network performance based on learning algorithm of MLP. Drug release was mainly attributed to the effects of SEs, tablet volume and tensile strength in multi-dimensional interrelation whereas tablet porosity gave a small impact. Ability of system generalization and accurate prediction of the drug release properties proves the validity of SOM and MLPs for the formulation modeling of direct compacted matrix tablets containing controlled release agents of different material properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Predicting of the refractive index of haemoglobin using the Hybrid GA-SVR approach.

    PubMed

    Oyehan, Tajudeen A; Alade, Ibrahim O; Bagudu, Aliyu; Sulaiman, Kazeem O; Olatunji, Sunday O; Saleh, Tawfik A

    2018-04-30

    The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Ortensi; A.M. Ougouag

    2011-12-01

    The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less

  5. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  6. Prediction of fishing effort distributions using boosted regression trees.

    PubMed

    Soykan, Candan U; Eguchi, Tomoharu; Kohin, Suzanne; Dewar, Heidi

    2014-01-01

    Concerns about bycatch of protected species have become a dominant factor shaping fisheries management. However, efforts to mitigate bycatch are often hindered by a lack of data on the distributions of fishing effort and protected species. One approach to overcoming this problem has been to overlay the distribution of past fishing effort with known locations of protected species, often obtained through satellite telemetry and occurrence data, to identify potential bycatch hotspots. This approach, however, generates static bycatch risk maps, calling into question their ability to forecast into the future, particularly when dealing with spatiotemporally dynamic fisheries and highly migratory bycatch species. In this study, we use boosted regression trees to model the spatiotemporal distribution of fishing effort for two distinct fisheries in the North Pacific Ocean, the albacore (Thunnus alalunga) troll fishery and the California drift gillnet fishery that targets swordfish (Xiphias gladius). Our results suggest that it is possible to accurately predict fishing effort using < 10 readily available predictor variables (cross-validated correlations between model predictions and observed data -0.6). Although the two fisheries are quite different in their gears and fishing areas, their respective models had high predictive ability, even when input data sets were restricted to a fraction of the full time series. The implications for conservation and management are encouraging: Across a range of target species, fishing methods, and spatial scales, even a relatively short time series of fisheries data may suffice to accurately predict the location of fishing effort into the future. In combination with species distribution modeling of bycatch species, this approach holds promise as a mitigation tool when observer data are limited. Even in data-rich regions, modeling fishing effort and bycatch may provide more accurate estimates of bycatch risk than partial observer coverage for fisheries and bycatch species that are heavily influenced by dynamic oceanographic conditions.

  7. Enhancing 18F-FDG-PET/CT analysis in lung cancer patients. Is CT-CT image fusion helpful in predicting pleural involvement? A pilot study.

    PubMed

    Kapfhammer, A; Winkens, T; Lesser, T; Reissig, A; Steinert, M; Freesmeyer, M

    2015-01-01

    To retrospectively evaluate the feasibility and value of CT-CT image fusion to assess the shift of peripheral lung cancers with/-out chest wall infiltration, comparing computed tomography acquisitions in shallow-breathing (SB-CT) and deep-inspiration breath-hold (DIBH-CT) in patients undergoing FDG-PET/CT for lung cancer staging. Image fusion of SB-CT and DIBH-CT was performed with a multimodal workstation used for nuclear medicine fusion imaging. The distance of intrathoracic landmarks and the positional shift of tumours were measured using semi-transparent overlay of both CT series. Statistical analyses were adjusted for confounders of tumour infiltration. Cutoff levels were calculated for prediction of no-/infiltration. Lateral pleural recessus and diaphragm showed the largest respiratory excursions. Infiltrating lung cancers showed more limited respiratory shifts than non-infiltrating tumours. A large respiratory tumour-motility accurately predicted non-infiltration. However, the tumour shifts were limited and variable, limiting the accuracy of prediction. This pilot fusion study proved feasible and allowed a simple analysis of the respiratory shifts of peripheral lung tumours using CT-CT image fusion in a PET/CT setting. The calculated cutoffs were useful in predicting the exclusion of chest wall infiltration but did not accurately predict tumour infiltration. This method can provide additional qualitative information in patients with lung cancers with contact to the chest wall but unclear CT evidence of infiltration undergoing PET/CT without the need of additional investigations. Considering the small sample size investigated, further studies are necessary to verify the obtained results.

  8. The accuracy of two-dimensional planning for routine orthognathic surgery.

    PubMed

    Rustemeyer, Jan; Groddeck, Alexander; Zwerger, Stefan; Bremerich, Andreas

    2010-06-01

    Two-dimensional cephalometric planning software should be helpful for prediction of hard tissue outcome after bilateral sagittal split ramus osteotomy (BSSRO) or bimaxillary osteotomy, but transferring two-dimensional data to three-dimensions (including mock operation and surgery) may result in errors. The objective of this retrospective study was to analyze deviations between predicted results and postoperative outcome using cephalometric analyses, and to evaluate this procedure for daily use. Fifty-four subjects (mean (SD) age 26 (8) years) had a BSSRO (n=21) alone or in combination with Le Fort I osteotomy (n=33). Predictions were made for each case by cephalometric planning software and mock operations done with study models. Postoperative cephalograms were obtained after 14 days and compared with predicted cephalograms for sagittal (SNA, SNB, ANB,) and vertical (ArMeGo, ML-NSL, NL-NSL) measurements. Mean (SD) differences for all measurements varied between 1.3 degrees (1.1 degrees) and 2.2 degrees (1.6 degrees) for BSSRO; and between 1.1 degrees (1.3 degrees) and 2.2 degrees (1.6 degrees) for bimaxillary osteotomy. There were no significant differences between measurements or operations, indicating that the predictions were accurate. A difference of up to 8.5 degrees could be measured in a single case. Cephalometric prediction therefore remains an accurate tool for planning, particularly maxillary rearrangement in the vertical and sagittal dimension for routine operations. If greater shifts in the transversal dimension are necessary, exact planning should be adapted with three-dimensional planning devices to avoid significant differences. Copyright 2009 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach

    PubMed Central

    Meyer, Pablo; Siwo, Geoffrey; Zeevi, Danny; Sharon, Eilon; Norel, Raquel; Segal, Eran; Stolovitzky, Gustavo; Siwo, Geoffrey; Rider, Andrew K.; Tan, Asako; Pinapati, Richard S.; Emrich, Scott; Chawla, Nitesh; Ferdig, Michael T.; Tung, Yi-An; Chen, Yong-Syuan; Chen, Mei-Ju May; Chen, Chien-Yu; Knight, Jason M.; Sahraeian, Sayed Mohammad Ebrahim; Esfahani, Mohammad Shahrokh; Dreos, Rene; Bucher, Philipp; Maier, Ezekiel; Saeys, Yvan; Szczurek, Ewa; Myšičková, Alena; Vingron, Martin; Klein, Holger; Kiełbasa, Szymon M.; Knisley, Jeff; Bonnell, Jeff; Knisley, Debra; Kursa, Miron B.; Rudnicki, Witold R.; Bhattacharjee, Madhuchhanda; Sillanpää, Mikko J.; Yeung, James; Meysman, Pieter; Rodríguez, Aminael Sánchez; Engelen, Kristof; Marchal, Kathleen; Huang, Yezhou; Mordelet, Fantine; Hartemink, Alexander; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in a previously unknown experimentally generated data set. The challenge was presented to the community in the framework of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53 different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms. Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning approaches, can be improved by the addition of biological features such as transcription factor binding sites. PMID:23950146

  10. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    PubMed

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  11. Growth parameters of Penicillium expansum calculated from mixed inocula as an alternative to account for intraspecies variability.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2014-09-01

    The aim of this work was to compare the radial growth rate (μ) and the lag time (λ) for growth of 25 isolates of Penicillium expansum at 1 and 20 ºC with those of the mixed inoculum of the 25 isolates. Moreover, the evolution of probability of growth through time was also compared for the single strains and mixed inoculum. Working with a mixed inoculum would require less work, time and consumables than if a range of single strains has to be used in order to represent a given species. Suitable predictive models developed for a given species should represent as much as possible the behavior of all strains belonging to this species. The results suggested, on one hand, that the predictions based on growth parameters calculated on the basis of mixed inocula may not accurately predict the behavior of all possible strains but may represent a percentage of them, and the median/mean values of μ and λ obtained by the 25 strains may be substituted by the value obtained with the mixed inoculum. Moreover, the predictions may be biased, in particular, the predictions of λ which may be underestimated (fail-safe). Moreover, the prediction of time for a given probability of growth through a mixed inoculum may not be accurate for all single inocula, but it may represent 92% and 60% of them at 20 and 1 ºC, respectively, and also their overall mean and median values. In conclusion, mixed inoculum could be a good alternative to estimate the mean or median values of high number of isolates, but not to account for those strains with marginal behavior. In particular, estimation of radial growth rate, and time for 0.10 and 0.50 probability of growth using a cocktail inoculum accounted for the estimates of most single isolates tested. For the particular case of probability models, this is an interesting result as for practical applications in the food industry the estimation of t10 or lower probability may be required. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer's disease progression.

    PubMed

    Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M; Galván-Tejada, Jorge I; Treviño, Victor; Tamez-Peña, Jose

    2014-10-01

    Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.

  13. Auditory sensitivity of seals and sea lions in complex listening scenarios.

    PubMed

    Cunningham, Kane A; Southall, Brandon L; Reichmuth, Colleen

    2014-12-01

    Standard audiometric data, such as audiograms and critical ratios, are often used to inform marine mammal noise-exposure criteria. However, these measurements are obtained using simple, artificial stimuli-i.e., pure tones and flat-spectrum noise-while natural sounds typically have more complex structure. In this study, detection thresholds for complex signals were measured in (I) quiet and (II) masked conditions for one California sea lion (Zalophus californianus) and one harbor seal (Phoca vitulina). In Experiment I, detection thresholds in quiet conditions were obtained for complex signals designed to isolate three common features of natural sounds: Frequency modulation, amplitude modulation, and harmonic structure. In Experiment II, detection thresholds were obtained for the same complex signals embedded in two types of masking noise: Synthetic flat-spectrum noise and recorded shipping noise. To evaluate how accurately standard hearing data predict detection of complex sounds, the results of Experiments I and II were compared to predictions based on subject audiograms and critical ratios combined with a basic hearing model. Both subjects exhibited greater-than-predicted sensitivity to harmonic signals in quiet and masked conditions, as well as to frequency-modulated signals in masked conditions. These differences indicate that the complex features of naturally occurring sounds enhance detectability relative to simple stimuli.

  14. ECONOMICS AND THE SEARCH FOR OFFSHORE HEAVY MINERAL DEPOSITS.

    USGS Publications Warehouse

    Attanasi, E.D.; DeYoung, J.H.

    1987-01-01

    This paper examines the relative importance, in terms of a deposit's commercial status, of physical characteristics of onshore titanium-bearing heavy-mineral placer deposits, and applies these findings to the search for and evaluation of offshore deposits. Results obtained by applying statistical discriminant analysis show that the characteristics most useful for predicting a deposit's commercial status are the grades of the constituent titanium minerals and the size of the deposit. Heavy-mineral grade or even the combined grades of all titanium-bearing minerals (without information and constituent mineral grades) are inferior predictors of a deposit's commercial status. When data from homogeneous regions are analyzed separately, the ability to accurately predict the deposit's commerical status improves.

  15. Forecasting vegetation greenness with satellite and climate data

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    A new and unique vegetation greenness forecast (VGF) model was designed to predict future vegetation conditions to three months through the use of current and historical climate data and satellite imagery. The VGF model is implemented through a seasonality-adjusted autoregressive distributed-lag function, based on our finding that the normalized difference vegetation index is highly correlated with lagged precipitation and temperature. Accurate forecasts were obtained from the VGF model in Nebraska grassland and cropland. The regression R2 values range from 0.97-0.80 for 2-12 week forecasts, with higher R2 associated with a shorter prediction. An important application would be to produce real-time forecasts of greenness images.

  16. Research of Coal Resources Reserves Prediction Based on GM (1, 1) Model

    NASA Astrophysics Data System (ADS)

    Xiao, Jiancheng

    2018-01-01

    Based on the forecast of China’s coal reserves, this paper uses the GM (1, 1) gray forecasting theory to establish the gray forecasting model of China’s coal reserves based on the data of China’s coal reserves from 2002 to 2009, and obtained the trend of coal resources reserves with the current economic and social development situation, and the residual test model is established, so the prediction model is more accurate. The results show that China’s coal reserves can ensure the use of production at least 300 years of use. And the results are similar to the mainstream forecast results, and that are in line with objective reality.

  17. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, S. L.; Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk; State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recordedmore » values within 15%.« less

  18. Thermodynamic Properties of Actinides and Actinide Compounds

    NASA Astrophysics Data System (ADS)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  19. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  20. Thermographic Analysis of Stress Distribution in Welded Joints

    NASA Astrophysics Data System (ADS)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  1. Optimal sampling design for estimating spatial distribution and abundance of a freshwater mussel population

    USGS Publications Warehouse

    Pooler, P.S.; Smith, D.R.

    2005-01-01

    We compared the ability of simple random sampling (SRS) and a variety of systematic sampling (SYS) designs to estimate abundance, quantify spatial clustering, and predict spatial distribution of freshwater mussels. Sampling simulations were conducted using data obtained from a census of freshwater mussels in a 40 X 33 m section of the Cacapon River near Capon Bridge, West Virginia, and from a simulated spatially random population generated to have the same abundance as the real population. Sampling units that were 0.25 m 2 gave more accurate and precise abundance estimates and generally better spatial predictions than 1-m2 sampling units. Systematic sampling with ???2 random starts was more efficient than SRS. Estimates of abundance based on SYS were more accurate when the distance between sampling units across the stream was less than or equal to the distance between sampling units along the stream. Three measures for quantifying spatial clustering were examined: Hopkins Statistic, the Clumping Index, and Morisita's Index. Morisita's Index was the most reliable, and the Hopkins Statistic was prone to false rejection of complete spatial randomness. SYS designs with units spaced equally across and up stream provided the most accurate predictions when estimating the spatial distribution by kriging. Our research indicates that SYS designs with sampling units equally spaced both across and along the stream would be appropriate for sampling freshwater mussels even if no information about the true underlying spatial distribution of the population were available to guide the design choice. ?? 2005 by The North American Benthological Society.

  2. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, J; Cao, R; Pei, X

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less

  3. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care.

    PubMed

    Alanazi, Hamdan O; Abdullah, Abdul Hanan; Qureshi, Kashif Naseer

    2017-04-01

    Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.

  4. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE PAGES

    Payne, Courtney E.; Wolfrum, Edward J.

    2015-03-12

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  5. Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Courtney E.; Wolfrum, Edward J.

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. Our objective was to use near-infrared (NIR) spectroscopy and partial least squares (PLS) multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. Major feedstocks included in the calibration models are corn stover, sorghum, switchgrass, perennial cool season grasses, rice straw, and miscanthus. Here are the results: We present individual model statistics tomore » demonstrate model performance and validation samples to more accurately measure predictive quality of the models. The PLS-2 model for composition predicts glucan, xylan, lignin, and ash (wt%) with uncertainties similar to primary measurement methods. A PLS-2 model was developed to predict glucose and xylose release following pretreatment and enzymatic hydrolysis. An additional PLS-2 model was developed to predict glucan and xylan yield. PLS-1 models were developed to predict the sum of glucose/glucan and xylose/xylan for release and yield (grams per gram). The release and yield models have higher uncertainties than the primary methods used to develop the models. In conclusion, it is possible to build effective multispecies feedstock models for composition, as well as carbohydrate release and yield. The model for composition is useful for predicting glucan, xylan, lignin, and ash with good uncertainties. The release and yield models have higher uncertainties; however, these models are useful for rapidly screening sample populations to identify unusual samples.« less

  6. On the reliability of computed chaotic solutions of non-linear differential equations

    NASA Astrophysics Data System (ADS)

    Liao, Shijun

    2009-08-01

    A new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely avoided. Using this concept, the famous conclusion `accurate long-term prediction of chaos is impossible' should be replaced by a more precise conclusion that `accurate prediction of chaos beyond the critical predictable time Tc is impossible'. So, this concept also provides us a timescale to determine whether or not a particular time is long enough for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 <= t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of the initial condition and the computed data at each time step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called `precision paradox of chaos', which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.

  7. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    NASA Astrophysics Data System (ADS)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  8. Aggregation Trade Offs in Family Based Recommendations

    NASA Astrophysics Data System (ADS)

    Berkovsky, Shlomo; Freyne, Jill; Coombe, Mac

    Personalized information access tools are frequently based on collaborative filtering recommendation algorithms. Collaborative filtering recommender systems typically suffer from a data sparsity problem, where systems do not have sufficient user data to generate accurate and reliable predictions. Prior research suggested using group-based user data in the collaborative filtering recommendation process to generate group-based predictions and partially resolve the sparsity problem. Although group recommendations are less accurate than personalized recommendations, they are more accurate than general non-personalized recommendations, which are the natural fall back when personalized recommendations cannot be generated. In this work we present initial results of a study that exploits the browsing logs of real families of users gathered in an eHealth portal. The browsing logs allowed us to experimentally compare the accuracy of two group-based recommendation strategies: aggregated group models and aggregated predictions. Our results showed that aggregating individual models into group models resulted in more accurate predictions than aggregating individual predictions into group predictions.

  9. Repopulation of calibrations with samples from the target site: effect of the size of the calibration.

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Gómez, I.; Mataix-Solera, J.; Navarro-Pedreño, J.; Mataix-Beneyto, J.; García-Orenes, F.

    2009-04-01

    Near infrared (NIR) reflectance spectroscopy offers important advantages because is a non-destructive technique, the pre-treatments needed in samples are minimal, and the spectrum of the sample is obtained in less than 1 minute without the needs of chemical reagents. For these reasons, NIR is a fast and cost-effective method. Moreover, NIR allows the analysis of several constituents or parameters simultaneously from the same spectrum once it is obtained. For this, a needed steep is the development of soil spectral libraries (set of samples analysed and scanned) and calibrations (using multivariate techniques). The calibrations should contain the variability of the target site soils in which the calibration is to be used. Many times this premise is not easy to fulfil, especially in libraries recently developed. A classical way to solve this problem is through the repopulation of libraries and the subsequent recalibration of the models. In this work we studied the changes in the accuracy of the predictions as a consequence of the successive addition of samples to repopulation. In general, calibrations with high number of samples and high diversity are desired. But we hypothesized that calibrations with lower quantities of samples (lower size) will absorb more easily the spectral characteristics of the target site. Thus, we suspect that the size of the calibration (model) that will be repopulated could be important. For this reason we also studied this effect in the accuracy of predictions of the repopulated models. In this study we used those spectra of our library which contained data of soil Kjeldahl Nitrogen (NKj) content (near to 1500 samples). First, those spectra from the target site were removed from the spectral library. Then, different quantities of samples of the library were selected (representing the 5, 10, 25, 50, 75 and 100% of the total library). These samples were used to develop calibrations with different sizes (%) of samples. We used partial least squares regression, and leave-one-out cross validation as methods of calibration. Two methods were used to select the different quantities (size of models) of samples: (1) Based on Characteristics of Spectra (BCS), and (2) Based on NKj Values of Samples (BVS). Both methods tried to select representative samples. Each of the calibrations (containing the 5, 10, 25, 50, 75 or 100% of the total samples of the library) was repopulated with samples from the target site and then recalibrated (by leave-one-out cross validation). This procedure was sequential. In each step, 2 samples from the target site were added to the models, and then recalibrated. This process was repeated successively 10 times, being 20 the total number of samples added. A local model was also created with the 20 samples used for repopulation. The repopulated, non-repopulated and local calibrations were used to predict the NKj content in those samples from the target site not included in repopulations. For the measurement of the accuracy of the predictions, the r2, RMSEP and slopes were calculated comparing predicted with analysed NKj values. This scheme was repeated for each of the four target sites studied. In general, scarce differences can be found between results obtained with BCS and BVS models. We observed that the repopulation of models increased the r2 of the predictions in sites 1 and 3. The repopulation caused scarce changes of the r2 of the predictions in sites 2 and 4, maybe due to the high initial values (using non-repopulated models r2 >0.90). As consequence of repopulation, the RMSEP decreased in all the sites except in site 2, where a very low RMESP was obtained before the repopulation (0.4 g×kg-1). The slopes trended to approximate to 1, but this value was reached only in site 4 and after the repopulation with 20 samples. In sites 3 and 4, accurate predictions were obtained using the local models. Predictions obtained with models using similar size of samples (similar %) were averaged with the aim to describe the main patterns. The r2 of predictions obtained with models of higher size were not more accurate than those obtained with models of lower size. After repopulation, the RMSEP of predictions using models with lower sizes (5, 10 and 25% of samples of the library) were lower than RMSEP obtained with higher sizes (75 and 100%), indicating that small models can easily integrate the variability of the soils from the target site. The results suggest that calibrations of small size could be repopulated and "converted" in local calibrations. According to this, we can focus most of the efforts in the obtainment of highly accurate analytical values in a reduced set of samples (including some samples from the target sites). The patterns observed here are in opposition with the idea of global models. These results could encourage the expansion of this technique, because very large data based seems not to be needed. Future studies with very different samples will help to confirm the robustness of the patterns observed. Authors acknowledge to "Bancaja-UMH" for the financial support of the project "NIRPROS".

  10. The DynaMine webserver: predicting protein dynamics from sequence.

    PubMed

    Cilia, Elisa; Pancsa, Rita; Tompa, Peter; Lenaerts, Tom; Vranken, Wim F

    2014-07-01

    Protein dynamics are important for understanding protein function. Unfortunately, accurate protein dynamics information is difficult to obtain: here we present the DynaMine webserver, which provides predictions for the fast backbone movements of proteins directly from their amino-acid sequence. DynaMine rapidly produces a profile describing the statistical potential for such movements at residue-level resolution. The predicted values have meaning on an absolute scale and go beyond the traditional binary classification of residues as ordered or disordered, thus allowing for direct dynamics comparisons between protein regions. Through this webserver, we provide molecular biologists with an efficient and easy to use tool for predicting the dynamical characteristics of any protein of interest, even in the absence of experimental observations. The prediction results are visualized and can be directly downloaded. The DynaMine webserver, including instructive examples describing the meaning of the profiles, is available at http://dynamine.ibsquare.be. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  12. The vibration discomfort of standing people: evaluation of multi-axis vibration.

    PubMed

    Thuong, Olivier; Griffin, Michael J

    2015-01-01

    Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.

  13. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection.

    PubMed

    Liu, Liang; Cai, Yudong; Lu, Wencong; Feng, Kaiyan; Peng, Chunrong; Niu, Bing

    2009-03-06

    Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein-protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR-KNNs-wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.

  14. Measurement Of Trailing Edge Noise using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional array of microphones for the measurement of trailing edge (TE) noise is described. The capabilities of this method are evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on the cross spectral analysis of output signals from a pair of microphones (COP method). Advantages and limitations of both methods are examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  15. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  16. A Smoluchowski model of crystallization dynamics of small colloidal clusters

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.

    2011-10-01

    We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.

  17. Predicting age from cortical structure across the lifespan.

    PubMed

    Madan, Christopher R; Kensinger, Elizabeth A

    2018-03-01

    Despite interindividual differences in cortical structure, cross-sectional and longitudinal studies have demonstrated a large degree of population-level consistency in age-related differences in brain morphology. This study assessed how accurately an individual's age could be predicted by estimates of cortical morphology, comparing a variety of structural measures, including thickness, gyrification and fractal dimensionality. Structural measures were calculated across up to seven different parcellation approaches, ranging from one region to 1000 regions. The age prediction framework was trained using morphological measures obtained from T1-weighted MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 18-97. Age predictions were calculated using a machine-learning approach that incorporated nonlinear differences over the lifespan. In two independent, held-out test samples, age predictions had a median error of 6-7 years. Age predictions were best when using a combination of cortical metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related differences in brain structure are systematic enough to enable reliable age prediction based on metrics of cortical morphology. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  19. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  20. Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction

    DOE PAGES

    Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...

    2017-07-01

    The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less

  1. Molecular gas dynamics applied to low-thrust propulsion

    NASA Astrophysics Data System (ADS)

    Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.

    1993-11-01

    The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.

  2. Molecular gas dynamics applied to low-thrust propulsion

    NASA Technical Reports Server (NTRS)

    Zelesnik, Donna; Penko, Paul F.; Boyd, Iain D.

    1993-01-01

    The Direct Simulation Monte Carlo method is currently being applied to study flowfields of small thrusters, including both the internal nozzle and the external plume flow. The DSMC method is employed because of its inherent ability to capture nonequilibrium effects and proper boundary physics in low-density flow that are not readily obtained by continuum methods. Accurate prediction of both the internal and external nozzle flow is important in determining plume expansion which, in turn, bears directly on impingement and contamination effects.

  3. A New Model for Temperature Jump at a Fluid-Solid Interface

    PubMed Central

    Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong

    2016-01-01

    The problem presented involves the development of a new analytical model for the general fluid-solid temperature jump. To the best of our knowledge, there are no analytical models that provide the accurate predictions of the temperature jump for both gas and liquid systems. In this paper, a unified model for the fluid-solid temperature jump has been developed based on our adsorption model of the interfacial interactions. Results obtained from this model are validated with available results from the literature. PMID:27764230

  4. Optimal dimensionality reduction of complex dynamics: the chess game as diffusion on a free-energy landscape.

    PubMed

    Krivov, Sergei V

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  5. Some anomalies observed in wind-tunnel tests of a blunt body at transonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Brooks, J. D.

    1976-01-01

    An investigation of anomalies observed in wind tunnel force tests of a blunt body configuration was conducted at Mach numbers from 0.20 to 1.35 in the Langley 8-foot transonic pressure tunnel and at Mach numbers of 1.50, 1,80, and 2.16 in the Langley Unitary Plan wind tunnel. At a Mach number of 1.35, large variations occurred in axial force coefficient at a given angle of attack. At transonic and low supersonic speeds, the total drag measured in the wind tunnel was much lower than that measured during earlier ballistic range tests. Accurate measurements of total drag for blunt bodies will require the use of models smaller than those tested thus far; however, it appears that accurate forebody drag results can be obtained by using relatively large models. Shock standoff distance is presented from experimental data over the Mach number range from 1.05 to 4.34. Theory accurately predicts the shock standoff distance at Mach numbers up to 1.75.

  6. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  7. Optimal dimensionality reduction of complex dynamics: The chess game as diffusion on a free-energy landscape

    NASA Astrophysics Data System (ADS)

    Krivov, Sergei V.

    2011-07-01

    Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.

  8. Measurement of compressed breast thickness by optical stereoscopic photogrammetry.

    PubMed

    Tyson, Albert H; Mawdsley, Gordon E; Yaffe, Martin J

    2009-02-01

    The determination of volumetric breast density (VBD) from mammograms requires accurate knowledge of the thickness of the compressed breast. In attempting to accurately determine VBD from images obtained on conventional mammography systems, the authors found that the thickness reported by a number of mammography systems in the field varied by as much as 15 mm when compressing the same breast or phantom. In order to evaluate the behavior of mammographic compression systems and to be able to predict the thickness at different locations in the breast on patients, they have developed a method for measuring the local thickness of the breast at all points of contact with the compression paddle using optical stereoscopic photogrammetry. On both flat (solid) and compressible phantoms, the measurements were accurate to better than 1 mm with a precision of 0.2 mm. In a pilot study, this method was used to measure thickness on 108 volunteers who were undergoing mammography examination. This measurement tool will allow us to characterize paddle surface deformations, deflections and calibration offsets for mammographic units.

  9. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  10. Stability and accuracy of metamemory in adulthood and aging: a longitudinal analysis.

    PubMed

    McDonald-Miszczak, L; Hertzog, C; Hultsch, D F

    1995-12-01

    The stability and accuracy of memory perceptions in 2 longitudinal samples was examined. Sample 1 consisted of 231 adults (22-78 years) tested twice over 2 years. Sample 2 consisted of 234 adults (55-86 years) tested 3 times over 6 years. Measures of perceived and actual memory change were obtained. A primary focus was whether perceptions of memory change stem from application of an implicit theory about aging and memory or from accurate monitoring of actual changes in performance. Individual differences in metamemory were highly stable over time. Results suggested at least some accurate monitoring of memory in Sample 2, in which actual change was greatest. However the overall pattern of results is largely consistent with predictions derived from an implicit theory hypothesis.

  11. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  12. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  13. Constraining proposed combinations of ice history and Earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories, these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the VLBI observations.

  14. Nanoparticle surface characterization and clustering through concentration-dependent surface adsorption modeling.

    PubMed

    Chen, Ran; Zhang, Yuntao; Sahneh, Faryad Darabi; Scoglio, Caterina M; Wohlleben, Wendel; Haase, Andrea; Monteiro-Riviere, Nancy A; Riviere, Jim E

    2014-09-23

    Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  15. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy

    NASA Astrophysics Data System (ADS)

    Franceschini, M. H. D.; Demattê, J. A. M.; da Silva Terra, F.; Vicente, L. E.; Bartholomeus, H.; de Souza Filho, C. R.

    2015-06-01

    Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS - Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.

  16. TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach

    PubMed Central

    Diaz, Naryttza N; Krause, Lutz; Goesmann, Alexander; Niehaus, Karsten; Nattkemper, Tim W

    2009-01-01

    Background Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning. Results Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained. Conclusion An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as newly sequenced genomes become available. Moreover, the method demonstrated to be competitive when compared to the most current classifier PhyloPythia and has the advantage that it can be locally installed and the reference set can be kept up-to-date. PMID:19210774

  17. A Clinical Prediction Algorithm to Stratify Pediatric Musculoskeletal Infection by Severity

    PubMed Central

    Benvenuti, Michael A; An, Thomas J; Mignemi, Megan E; Martus, Jeffrey E; Mencio, Gregory A; Lovejoy, Stephen A; Thomsen, Isaac P; Schoenecker, Jonathan G; Williams, Derek J

    2016-01-01

    Objective There are currently no algorithms for early stratification of pediatric musculoskeletal infection (MSKI) severity that are applicable to all types of tissue involvement. In this study, the authors sought to develop a clinical prediction algorithm that accurately stratifies infection severity based on clinical and laboratory data at presentation to the emergency department. Methods An IRB-approved retrospective review was conducted to identify patients aged 0–18 who presented to the pediatric emergency department at a tertiary care children’s hospital with concern for acute MSKI over a five-year period (2008–2013). Qualifying records were reviewed to obtain clinical and laboratory data and to classify in-hospital outcomes using a three-tiered severity stratification system. Ordinal regression was used to estimate risk for each outcome. Candidate predictors included age, temperature, respiratory rate, heart rate, C-reactive protein, and peripheral white blood cell count. We fit fully specified (all predictors) and reduced models (retaining predictors with a p-value ≤ 0.2). Discriminatory power of the models was assessed using the concordance (c)-index. Results Of the 273 identified children, 191 (70%) met inclusion criteria. Median age was 5.8 years. Outcomes included 47 (25%) children with inflammation only, 41 (21%) with local infection, and 103 (54%) with disseminated infection. Both the full and reduced models accurately demonstrated excellent performance (full model c-index 0.83, 95% CI [0.79–0.88]; reduced model 0.83, 95% CI [0.78–0.87]). Model fit was also similar, indicating preference for the reduced model. Variables in this model included C-reactive protein, pulse, temperature, and an interaction term for pulse and temperature. The odds of a more severe outcome increased by 30% for every 10-unit increase in C-reactive protein. Conclusions Clinical and laboratory data obtained in the emergency department may be used to accurately differentiate pediatric MSKI severity. The predictive algorithm in this study stratifies pediatric MSKI severity at presentation irrespective of tissue involvement and anatomic diagnosis. Prospective studies are needed to validate model performance and clinical utility. PMID:27682512

  18. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs

    PubMed Central

    2017-01-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980

  19. Heart rate during basketball game play and volleyball drills accurately predicts oxygen uptake and energy expenditure.

    PubMed

    Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J

    2015-09-01

    There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.

  20. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities

    PubMed Central

    Helb, Danica A.; Tetteh, Kevin K. A.; Felgner, Philip L.; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R.; Beeson, James G.; Tappero, Jordan; Smith, David L.; Crompton, Peter D.; Rosenthal, Philip J.; Dorsey, Grant; Drakeley, Christopher J.; Greenhouse, Bryan

    2015-01-01

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual’s recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86–0.93), whereas responses to six antigens accurately estimated an individual’s malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs. PMID:26216993

  1. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

    PubMed

    Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan

    2015-08-11

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.

  2. A practical approach for predicting retention time shifts due to pressure and temperature gradients in ultra-high-pressure liquid chromatography.

    PubMed

    Åsberg, Dennis; Chutkowski, Marcin; Leśko, Marek; Samuelsson, Jörgen; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2017-01-06

    Large pressure gradients are generated in ultra-high-pressure liquid chromatography (UHPLC) using sub-2μm particles causing significant temperature gradients over the column due to viscous heating. These pressure and temperature gradients affect retention and ultimately result in important selectivity shifts. In this study, we developed an approach for predicting the retention time shifts due to these gradients. The approach is presented as a step-by-step procedure and it is based on empirical linear relationships describing how retention varies as a function of temperature and pressure and how the average column temperature increases with the flow rate. It requires only four experiments on standard equipment, is based on straightforward calculations, and is therefore easy to use in method development. The approach was rigorously validated against experimental data obtained with a quality control method for the active pharmaceutical ingredient omeprazole. The accuracy of retention time predictions was very good with relative errors always less than 1% and in many cases around 0.5% (n=32). Selectivity shifts observed between omeprazole and the related impurities when changing the flow rate could also be accurately predicted resulting in good estimates of the resolution between critical peak pairs. The approximations which the presented approach are based on were all justified. The retention factor as a function of pressure and temperature was studied in an experimental design while the temperature distribution in the column was obtained by solving the fundamental heat and mass balance equations for the different experimental conditions. We strongly believe that this approach is sufficiently accurate and experimentally feasible for this separation to be a valuable tool when developing a UHPLC method. After further validation with other separation systems, it could become a useful approach in UHPLC method development, especially in the pharmaceutical industry where demands are high for robustness and regulatory oversight. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Parameterizing Coefficients of a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter-continuation software can be used on the parameterized dynamical system to derive a bifurcation diagram that accurately predicts the temporal flow behavior.

  4. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    PubMed

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  6. The generalized scattering coefficient method for plane wave scattering in layered structures

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song

    2017-02-01

    The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.

  7. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

    PubMed

    Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2015-12-21

    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.

  8. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529

  9. Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.

    PubMed

    Yadav, Jaydeep; Korzekwa, Ken; Nagar, Swati

    2018-05-07

    Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min -1 , the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min -1 . These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.

  10. Personalized prediction of chronic wound healing: an exponential mixed effects model using stereophotogrammetric measurement.

    PubMed

    Xu, Yifan; Sun, Jiayang; Carter, Rebecca R; Bogie, Kath M

    2014-05-01

    Stereophotogrammetric digital imaging enables rapid and accurate detailed 3D wound monitoring. This rich data source was used to develop a statistically validated model to provide personalized predictive healing information for chronic wounds. 147 valid wound images were obtained from a sample of 13 category III/IV pressure ulcers from 10 individuals with spinal cord injury. Statistical comparison of several models indicated the best fit for the clinical data was a personalized mixed-effects exponential model (pMEE), with initial wound size and time as predictors and observed wound size as the response variable. Random effects capture personalized differences. Other models are only valid when wound size constantly decreases. This is often not achieved for clinical wounds. Our model accommodates this reality. Two criteria to determine effective healing time outcomes are proposed: r-fold wound size reduction time, t(r-fold), is defined as the time when wound size reduces to 1/r of initial size. t(δ) is defined as the time when the rate of the wound healing/size change reduces to a predetermined threshold δ < 0. Healing rate differs from patient to patient. Model development and validation indicates that accurate monitoring of wound geometry can adaptively predict healing progression and that larger wounds heal more rapidly. Accuracy of the prediction curve in the current model improves with each additional evaluation. Routine assessment of wounds using detailed stereophotogrammetric imaging can provide personalized predictions of wound healing time. Application of a valid model will help the clinical team to determine wound management care pathways. Published by Elsevier Ltd.

  11. How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants.

    PubMed

    Chapman, Simon N; Mumby, Hannah S; Crawley, Jennie A H; Mar, Khyne U; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi

    2016-01-01

    Information on an organism's body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings.

  12. Mean Expected Error in Prediction of Total Body Water: A True Accuracy Comparison between Bioimpedance Spectroscopy and Single Frequency Regression Equations

    PubMed Central

    Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar

    2015-01-01

    For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications. PMID:26137489

  13. How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants

    PubMed Central

    Chapman, Simon N.; Mumby, Hannah S.; Crawley, Jennie A. H.; Mar, Khyne U.; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi

    2016-01-01

    Information on an organism’s body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings. PMID:26938085

  14. The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.

    1996-01-01

    The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.

  15. Numerical study of single and two interacting turbulent plumes in atmospheric cross flow

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh-Dehghan, M. R.; König, C. S.; Robins, A. G.

    The paper presents a numerical study of two interacting full-scale dry plumes issued into neutral boundary layer cross flow. The study simulates plumes from a mechanical draught cooling tower. The plumes are placed in tandem or side-by-side. Results are first presented for plumes with a density ratio of 0.74 and plume-to-crosswind speed ratio of 2.33, for which data from a small-scale wind tunnel experiment were available and were used to assess the accuracy of the numerical results. Further results are then presented for the more physically realistic density ratio of 0.95, maintaining the same speed ratio. The sensitivity of the results with respect to three turbulence models, namely, the standard k- ɛ model, the RNG k- ɛ model and the Differential Flux Model (DFM) is presented. Comparisons are also made between the predicted rise height and the values obtained from existing integral models. The formation of two counter-rotating vortices is well predicted. The results show good agreement for the rise height predicted by different turbulence models, but the DFM predicts temperature profiles more accurately. The values of predicted rise height are also in general agreement. However, discrepancies between the present results for the rise height for single and multiple plumes and the values obtained from known analytical relations are apparent and possible reasons for these are discussed.

  16. Prediction of inspired oxygen fraction for targeted arterial oxygen tension following open heart surgery in non-smoking and smoking patients.

    PubMed

    Bou-Khalil, Pierre; Zeineldine, Salah; Chatburn, Robert; Ayyoub, Chakib; Elkhatib, Farouk; Bou-Akl, Imad; El-Khatib, Mohamad

    2017-10-01

    Simple and accurate expressions describing the P a O 2 -F i O 2 relationship in mechanically ventilated patients are lacking. The current study aims to validate a novel mathematical expression for accurate prediction of the fraction of inspired oxygen that will result in a targeted arterial oxygen tension in non-smoking and smoking patients receiving mechanical ventilation following open heart surgeries. One hundred P a O 2 -F i O 2 data pairs were obtained from 25 non-smoking patients mechanically ventilated following open heart surgeries. One data pair was collected at each of F i O 2 of 40, 60, 80, and 100% while maintaining same mechanical ventilation support settings. Similarly, another 100 hundred P a O 2 -F i O 2 data pairs were obtained from 25 smoking patients mechanically ventilated following open heart surgeries. The utility of the new mathematical expression in accurately describing the P a O 2 -F i O 2 relationship in these patients was assessed by the regression and Bland-Altman analyses. Significant correlations were seen between the true and estimated F i O 2 values in non-smoking (r 2  = 0.9424; p < 0.05) and smoking (r 2  = 0.9466; p < 0.05) patients. Tight biases between the true and estimated F i O 2 values for non-smoking (3.1%) and smoking (4.1%) patients were observed. Also, significant correlations were seen between the true and estimated P a O 2 /F i O 2 ratios in non-smoking (r 2  = 0.9530; p < 0.05) and smoking (r 2  = 0.9675; p < 0.05) patients. Tight biases between the true and estimated P a O 2 /F i O 2 ratios for non-smoking (-18 mmHg) and smoking (-16 mmHg) patients were also observed. The new mathematical expression for the description of the P a O 2 -F i O 2 relationship is valid and accurate in non-smoking and smoking patients who are receiving mechanical ventilation for post cardiac surgery.

  17. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    NASA Astrophysics Data System (ADS)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  18. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  19. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    PubMed Central

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.

    2016-01-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050

  20. Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait

    NASA Astrophysics Data System (ADS)

    Cherlet, J.; Besio, G.; Blondeaux, P.; van Lancker, V.; Verfaillie, E.; Vittori, G.

    2007-06-01

    The capability of the model of Besio et al. (2006) to predict the main geometrical characteristics (crest orientation, wavelength,…) of tidal sand waves is tested by comparing the theoretical predictions with field data. In particular the field observations carried out by Mouchet (1990) and Van Lancker et al. (2005) along the continental shelf of Belgium are used. Additional comparisons are carried out against the field measurements described by Le Bot (2001) and Le Bot and Trenteseaux (2004) which were carried out in an adjacent region. Attention is focused on the prediction of the wavelength of the bottom forms. Indeed, the capability of a linear stability analysis to predict the occurrence of sand waves has been already tested by Hulscher and van den Brink (2001) and more recently by van der Veen et al. (2006). The obtained results show that the theoretical predictions fairly agree with field observations even though some of the comparisons suggest that the accuracy of the predictions depends on the accurate evaluation of the local current and sediment characteristics.

  1. Fuzzy association rule mining and classification for the prediction of malaria in South Korea.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Guven, Erhan; Ramac-Thomas, Liane C; Elbert, Yevgeniy; Babin, Steven M; Lewis, Sheri H

    2015-06-18

    Malaria is the world's most prevalent vector-borne disease. Accurate prediction of malaria outbreaks may lead to public health interventions that mitigate disease morbidity and mortality. We describe an application of a method for creating prediction models utilizing Fuzzy Association Rule Mining to extract relationships between epidemiological, meteorological, climatic, and socio-economic data from Korea. These relationships are in the form of rules, from which the best set of rules is automatically chosen and forms a classifier. Two classifiers have been built and their results fused to become a malaria prediction model. Future malaria cases are predicted as Low, Medium or High, where these classes are defined as a total of 0-2, 3-16, and above 17 cases, respectively, for a region in South Korea during a two-week period. Based on user recommendations, HIGH is considered an outbreak. Model accuracy is described by Positive Predictive Value (PPV), Sensitivity, and F-score for each class, computed on test data not previously used to develop the model. For predictions made 7-8 weeks in advance, model PPV and Sensitivity are 0.842 and 0.681, respectively, for the HIGH classes. The F0.5 and F3 scores (which combine PPV and Sensitivity) are 0.804 and 0.694, respectively, for the HIGH classes. The overall FARM results (as measured by F-scores) are significantly better than those obtained by Decision Tree, Random Forest, Support Vector Machine, and Holt-Winters methods for the HIGH class. For the Medium class, Random Forest and FARM obtain comparable results, with FARM being better at F0.5, and Random Forest obtaining a higher F3. A previously described method for creating disease prediction models has been modified and extended to build models for predicting malaria. In addition, some new input variables were used, including indicators of intervention measures. The South Korea malaria prediction models predict Low, Medium or High cases 7-8 weeks in the future. This paper demonstrates that our data driven approach can be used for the prediction of different diseases.

  2. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes.

    PubMed

    Zhu, Huaiqiu; Hu, Gang-Qing; Yang, Yi-Fan; Wang, Jin; She, Zhen-Su

    2007-03-16

    Despite a remarkable success in the computational prediction of genes in Bacteria and Archaea, a lack of comprehensive understanding of prokaryotic gene structures prevents from further elucidation of differences among genomes. It continues to be interesting to develop new ab initio algorithms which not only accurately predict genes, but also facilitate comparative studies of prokaryotic genomes. This paper describes a new prokaryotic genefinding algorithm based on a comprehensive statistical model of protein coding Open Reading Frames (ORFs) and Translation Initiation Sites (TISs). The former is based on a linguistic "Entropy Density Profile" (EDP) model of coding DNA sequence and the latter comprises several relevant features related to the translation initiation. They are combined to form a so-called Multivariate Entropy Distance (MED) algorithm, MED 2.0, that incorporates several strategies in the iterative program. The iterations enable us to develop a non-supervised learning process and to obtain a set of genome-specific parameters for the gene structure, before making the prediction of genes. Results of extensive tests show that MED 2.0 achieves a competitive high performance in the gene prediction for both 5' and 3' end matches, compared to the current best prokaryotic gene finders. The advantage of the MED 2.0 is particularly evident for GC-rich genomes and archaeal genomes. Furthermore, the genome-specific parameters given by MED 2.0 match with the current understanding of prokaryotic genomes and may serve as tools for comparative genomic studies. In particular, MED 2.0 is shown to reveal divergent translation initiation mechanisms in archaeal genomes while making a more accurate prediction of TISs compared to the existing gene finders and the current GenBank annotation.

  3. Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.

    PubMed

    The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L

    2007-12-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.

  4. A dual-process account of auditory change detection.

    PubMed

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  5. Application of dynamic Monte Carlo technique in proton beam radiotherapy using Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Guan, Fada

    Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.

  6. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  7. Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy.

    PubMed

    Anjos, Ofélia; Santos, António J A; Paixão, Vasco; Estevinho, Letícia M

    2018-02-01

    This study aimed to evaluate the potential of FT-Raman spectroscopy in the prediction of the chemical composition of Lavandula spp. monofloral honey. Partial Least Squares (PLS) regression models were performed for the quantitative estimation and the results were correlated with those obtained using reference methods. Good calibration models were obtained for electrical conductivity, ash, total acidity, pH, reducing sugars, hydroxymethylfurfural (HMF), proline, diastase index, apparent sucrose, total flavonoids content and total phenol content. On the other hand, the model was less accurate for pH determination. The calibration models had high r 2 (ranging between 92.8% and 99.9%), high residual prediction deviation - RPD (ranging between 4.2 and 26.8) and low root mean square errors. These results confirm the hypothesis that FT-Raman is a useful technique for the quality control and chemical properties' evaluation of Lavandula spp honey. Its application may allow improving the efficiency, speed and cost of the current laboratory analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. BAC-MP4 predictions of thermochemistry for the gas-phase tin compounds in the Sn-H-C-Cl system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allendorf, Mark D.; Melius, Carl F.

    2004-09-01

    In this work, the BAC-MP4 method is extended for the first time to compounds in the fourth row of the periodic table, resulting in a self-consistent set of thermochemical data for 56 tin-containing molecules in the Sn-H-C-Cl system. The BAC-MP4 method combines ab initio electronic structure calculations with empirical corrections to obtain accurate heats of formation. To obtain electronic energies for tin-containing species, the standard 6-31G(d,p) basis set used in BAC-MP4 calculations is augmented with a relativistic effective core potential to describe the electronic structure of the tin atom. Both stable compounds and radical species are included in this study.more » Trends within homologous series and calculated bond dissociation energies are consistent with previous BAC-MP4 predictions for group 14 compounds and the limited data available from the literature, indicating that the method is performing well for these compounds.« less

  9. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements

    NASA Technical Reports Server (NTRS)

    Vijgen, P. M. H. W.; Hardin, J. D.; Yip, L. P.

    1992-01-01

    Accurate prediction of surface-pressure distributions, merging boundary-layers, and separated-flow regions over multi-element high-lift airfoils is required to design advanced high-lift systems for efficient subsonic transport aircraft. The availability of detailed measurements of pressure distributions and both averaged and time-dependent boundary-layer flow parameters at flight Reynolds numbers is critical to evaluate computational methods and to model the turbulence structure for closure of the flow equations. Several detailed wind-tunnel measurements at subscale Reynolds numbers were conducted to obtain detailed flow information including the Reynolds-stress component. As part of a subsonic-transport high-lift research program, flight experiments are conducted using the NASA-Langley B737-100 research aircraft to obtain detailed flow characteristics for support of computational and wind-tunnel efforts. Planned flight measurements include pressure distributions at several spanwise locations, boundary-layer transition and separation locations, surface skin friction, as well as boundary-layer profiles and Reynolds stresses in adverse pressure-gradient flow.

  10. A probabilistic and adaptive approach to modeling performance of pavement infrastructure

    DOT National Transportation Integrated Search

    2007-08-01

    Accurate prediction of pavement performance is critical to pavement management agencies. Reliable and accurate predictions of pavement infrastructure performance can save significant amounts of money for pavement infrastructure management agencies th...

  11. Quicksilver: Fast predictive image registration - A deep learning approach.

    PubMed

    Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc

    2017-09-01

    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning.

    PubMed

    Kesler, Shelli R; Rao, Arvind; Blayney, Douglas W; Oakley-Girvan, Ingrid A; Karuturi, Meghan; Palesh, Oxana

    2017-01-01

    We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34-65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy ( p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables ( p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment.

  13. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning

    PubMed Central

    Kesler, Shelli R.; Rao, Arvind; Blayney, Douglas W.; Oakley-Girvan, Ingrid A.; Karuturi, Meghan; Palesh, Oxana

    2017-01-01

    We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34–65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy (p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables (p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment. PMID:29187817

  14. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  15. Predictive values of diagnostic codes for identifying serious hypocalcemia and dermatologic adverse events among women with postmenopausal osteoporosis in a commercial health plan database.

    PubMed

    Wang, Florence T; Xue, Fei; Ding, Yan; Ng, Eva; Critchlow, Cathy W; Dore, David D

    2018-04-10

    Post-marketing safety studies of medicines often rely on administrative claims databases to identify adverse outcomes following drug exposure. Valid ascertainment of outcomes is essential for accurate results. We aim to quantify the validity of diagnostic codes for serious hypocalcemia and dermatologic adverse events from insurance claims data among women with postmenopausal osteoporosis (PMO). We identified potential cases of serious hypocalcemia and dermatologic events through ICD-9 diagnosis codes among women with PMO within claims from a large US healthcare insurer (June 2005-May 2010). A physician adjudicated potential hypocalcemic and dermatologic events identified from the primary position on emergency department (ED) or inpatient claims through medical record review. Positive predictive values (PPVs) and 95% confidence intervals (CIs) quantified the fraction of potential cases that were confirmed. Among 165,729 patients with PMO, medical charts were obtained for 40 of 55 (73%) potential hypocalcemia cases; 16 were confirmed (PPV 40%, 95% CI 25-57%). The PPV was higher for ED than inpatient claims (82 vs. 24%). Among 265 potential dermatologic events (primarily urticaria or rash), we obtained 184 (69%) charts and confirmed 128 (PPV 70%, 95% CI 62-76%). The PPV was higher for ED than inpatient claims (77 vs. 39%). Diagnostic codes for hypocalcemia and dermatologic events may be sufficient to identify events giving rise to emergency care, but are less accurate for identifying events within hospitalizations.

  16. Understanding the retention and fate prediction of copper ions in single and competitive system in two soils: An experimental and numerical investigation.

    PubMed

    Buragohain, Poly; Garg, Ankit; Feng, Song; Lin, Peng; Sreedeep, S

    2018-09-01

    The concept of sponge city has become very popular with major thrust on design of waste containment systems such as biofilter and green roofs. Factors that may influence pollutant ions retention in these systems will be soil type and also their interactions. The study investigated single and competitive interaction of copper in two soils and its influence on the fate prediction. Freundlich and Langmuir nonlinear isotherms were selected to quantify the retention results. Series of numerical simulations were conducted to model 1 D advection-dispersion transport for the two soils and analyse the role of isotherms. The results indicated that contaminant fate prediction of copper-soil interaction based on the two non-linear isotherms was different for both single and that in competition. Retardation factor obtained from Freundlich (R F ) isotherm predicts more than Langmuir (R La ). This observation is more explicit at the higher range of equilibrium concentration. Fate prediction based on retardation value obtained from retention isotherms exhibited some anomalous trends contradicting the experimental findings due to inherent assumptions in governing equations. The necessity to have an approximate assessment of contaminant concentration in the field to effectively use contaminant retention results for accurate fate prediction is highlighted here. The study is important for modellers in design or analysis of biolfilter system (sponge city), where multiple ions tend to exist in waste water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Prediction of anaerobic power values from an abbreviated WAnT protocol.

    PubMed

    Stickley, Christopher D; Hetzler, Ronald K; Kimura, Iris F

    2008-05-01

    The traditional 30-second Wingate anaerobic test (WAnT) is a widely used anaerobic power assessment protocol. An abbreviated protocol has been shown to decrease the mild to severe physical discomfort often associated with the WAnT. Therefore, the purpose of this study was to determine whether a 20-second WAnT protocol could be used to accurately predict power values of a standard 30-second WAnT. In 96 college females, anaerobic power variables were assessed using a standard 30-second WAnT protocol. Maximum power values as well as instantaneous power at 10, 15, and 20 seconds were recorded. Based on these results, stepwise regression analysis was performed to determine the accuracy with which mean power, minimum power, 30-second power, and percentage of fatigue for a standard 30-second WAnT could be predicted from values obtained during the first 20 seconds of testing. Mean power values showed the highest level of predictability (R2 = 0.99) from the 20-second values. Minimum power, 30-second power, and percentage of fatigue also showed high levels of predictability (R2 = 0.91, 0.84, and 0.84, respectively) using only values obtained during the first 20 seconds of the protocol. An abbreviated (20-second) WAnT protocol appears to effectively predict results of a standard 30-second WAnT in college-age females, allowing for comparison of data to published norms. A shortened test may allow for a decrease in unwanted side effects associated with the traditional WAnT protocol.

  18. Numerical simulation of flow in a high head Francis turbine with prediction of efficiency, rotor stator interaction and vortex structures in the draft tube

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.; Morgut, M.; Mežnar, P.; Nobile, E.

    2015-01-01

    The paper presents numerical simulations of flow in a model of a high head Francis turbine and comparison of results to the measurements. Numerical simulations were done by two CFD (Computational Fluid Dynamics) codes, Ansys CFX and OpenFOAM. Steady-state simulations were performed by k-epsilon and SST model, while for transient simulations the SAS SST ZLES model was used. With proper grid refinement in distributor and runner and with taking into account losses in labyrinth seals very accurate prediction of torque on the shaft, head and efficiency was obtained. Calculated axial and circumferential velocity components on two planes in the draft tube matched well with experimental results.

  19. Secondary wastewater polishing with ultrafiltration membranes for unrestricted reuse: fouling and flushing modeling.

    PubMed

    Gillerman, Leonid; Bick, Amos; Buriakovsky, Nisan; Oron, Gideon

    2006-11-01

    The effects of operating parameters such astransmembrane pressure, retentate, and recirculation volumetric flow rates on the productivity of an ultrafiltration membrane were studied using field data and development of a management model. Correlation equations for predicting the volumetric permeate flow rates were derived from general membrane blocking laws and experimental data. The experimental data were obtained from a pilot study carried out in the Arad wastewater treatment system (a pilot plant operating in feed and bleed operation mode) located several kilometers west of the City of Arad, Israel. Correlation predictions were confirmed with the independent experimental results. The results enabled us to develop a mathematical expression accurately describing the decline in flux due to fouling.

  20. Evaluating Micrometeoroid and Orbital Debris Risk Assessments Using Anomaly Data

    NASA Technical Reports Server (NTRS)

    Squire, Michael

    2017-01-01

    The accuracy of micrometeoroid and orbital debris (MMOD) risk assessments can be difficult to evaluate. A team from the National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) has completed a study that compared MMOD-related failures on operational satellites to predictions of how many of those failures should occur using NASA's TM"s MMOD risk assessment methodology and tools. The study team used the Poisson probability to quantify the degree of inconsistency between the predicted and reported numbers of failures. Many elements go into a risk assessment, and each of those elements represent a possible source of uncertainty or bias that will influence the end result. There are also challenges in obtaining accurate and useful data on MMOD-related failures.

  1. Numerical study of the defect adamantine compound CuGaGeSe4

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Zhang, Xianzhou; Lu, Hai; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect adamantine compound CuGaGeSe4 in ? structure are systematically investigated using first-principles calculations. Through detailed calculation and comparison, we obtain three independent atomic arrangements and predict the most stable atomic arrangement according to the lattice constants and enthalpy formation energies. The elastic constants are calculated, which can be used to predict the axial thermal expansion coefficients accurately. The optical properties of compound CuGaGeSe4, including the dielectric function, refractive index and absorption spectrum, are depicted for a more intuitive understanding. Our calculated zero-frequency limits ɛ1(0) and n(0) are very close to the other theoretical values, which proves that our calculations are reliable.

  2. Aeroservoelasticity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.

    1990-01-01

    The paper describes recent accomplishments and current research projects along four main thrusts in aeroservoelasticity at NASA Langley. One activity focuses on enhancing the modeling and analysis procedures to accurately predict aeroservoelastic interactions. Improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise low-order models for design and simulation tasks. Recent extensions in aerodynamic correction-factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to matched filter theory and random process theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. Two research projects leading towards improved design capability are also summarized: (1) an integrated structure/control design capability and (2) procedures for obtaining low-order robust digital control laws for aeroelastic applications.

  3. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  4. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance

    PubMed Central

    Papesh, Melissa A.; Folmer, Robert L.; Gallun, Frederick J.

    2017-01-01

    Binaural sensitivity is an important contributor to the ability to understand speech in adverse acoustical environments such as restaurants and other social gatherings. The ability to accurately report on binaural percepts is not commonly measured, however, as extensive training is required before reliable measures can be obtained. Here, we investigated the use of auditory evoked potentials (AEPs) as a rapid physiological indicator of detection of interaural phase differences (IPDs) by assessing cortical responses to 180° IPDs embedded in amplitude-modulated carrier tones. We predicted that decrements in encoding of IPDs would be evident in middle age, with further declines found with advancing age and hearing loss. Thus, participants in experiment #1 were young to middle-aged adults with relatively good hearing thresholds while participants in experiment #2 were older individuals with typical age-related hearing loss. Results revealed that while many of the participants in experiment #1 could encode IPDs in stimuli up to 1,000 Hz, few of the participants in experiment #2 had discernable responses to stimuli above 750 Hz. These results are consistent with previous studies that have found that aging and hearing loss impose frequency limits on the ability to encode interaural phase information present in the fine structure of auditory stimuli. We further hypothesized that AEP measures of binaural sensitivity would be predictive of participants' ability to benefit from spatial separation between sound sources, a phenomenon known as spatial release from masking (SRM) which depends upon binaural cues. Results indicate that not only were objective IPD measures well correlated with and predictive of behavioral SRM measures in both experiments, but that they provided much stronger predictive value than age or hearing loss. Overall, the present work shows that objective measures of the encoding of interaural phase information can be readily obtained using commonly available AEP equipment, allowing accurate determination of the degree to which binaural sensitivity has been reduced in individual listeners due to aging and/or hearing loss. In fact, objective AEP measures of interaural phase encoding are actually better predictors of SRM in speech-in-speech conditions than are age, hearing loss, or the combination of age and hearing loss. PMID:28377706

  5. Cortical Measures of Binaural Processing Predict Spatial Release from Masking Performance.

    PubMed

    Papesh, Melissa A; Folmer, Robert L; Gallun, Frederick J

    2017-01-01

    Binaural sensitivity is an important contributor to the ability to understand speech in adverse acoustical environments such as restaurants and other social gatherings. The ability to accurately report on binaural percepts is not commonly measured, however, as extensive training is required before reliable measures can be obtained. Here, we investigated the use of auditory evoked potentials (AEPs) as a rapid physiological indicator of detection of interaural phase differences (IPDs) by assessing cortical responses to 180° IPDs embedded in amplitude-modulated carrier tones. We predicted that decrements in encoding of IPDs would be evident in middle age, with further declines found with advancing age and hearing loss. Thus, participants in experiment #1 were young to middle-aged adults with relatively good hearing thresholds while participants in experiment #2 were older individuals with typical age-related hearing loss. Results revealed that while many of the participants in experiment #1 could encode IPDs in stimuli up to 1,000 Hz, few of the participants in experiment #2 had discernable responses to stimuli above 750 Hz. These results are consistent with previous studies that have found that aging and hearing loss impose frequency limits on the ability to encode interaural phase information present in the fine structure of auditory stimuli. We further hypothesized that AEP measures of binaural sensitivity would be predictive of participants' ability to benefit from spatial separation between sound sources, a phenomenon known as spatial release from masking (SRM) which depends upon binaural cues. Results indicate that not only were objective IPD measures well correlated with and predictive of behavioral SRM measures in both experiments, but that they provided much stronger predictive value than age or hearing loss. Overall, the present work shows that objective measures of the encoding of interaural phase information can be readily obtained using commonly available AEP equipment, allowing accurate determination of the degree to which binaural sensitivity has been reduced in individual listeners due to aging and/or hearing loss. In fact, objective AEP measures of interaural phase encoding are actually better predictors of SRM in speech-in-speech conditions than are age, hearing loss, or the combination of age and hearing loss.

  6. Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression.

    PubMed

    Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y

    2011-05-15

    There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.

  8. Predictability of the 2012 Great Arctic Cyclone on medium-range timescales

    NASA Astrophysics Data System (ADS)

    Yamagami, Akio; Matsueda, Mio; Tanaka, Hiroshi L.

    2018-03-01

    Arctic Cyclones (ACs) can have a significant impact on the Arctic region. Therefore, the accurate prediction of ACs is important in anticipating their associated environmental and societal costs. This study investigates the predictability of the 2012 Great Arctic Cyclone (AC12) that exhibited a minimum central pressure of 964 hPa on 6 August 2012, using five medium-range ensemble forecasts. We show that the development and position of AC12 were better predicted in forecasts initialized on and after 4 August 2012. In addition, the position of AC12 was more predictable than its development. A comparison of ensemble members, classified by the error in predictability of the development and position of AC12, revealed that an accurate prediction of upper-level fields, particularly temperature, was important for the prediction of this event. The predicted position of AC12 was influenced mainly by the prediction of the polar vortex, whereas the predicted development of AC12 was dependent primarily on the prediction of the merging of upper-level warm cores. Consequently, an accurate prediction of the polar vortex position and the development of the warm core through merging resulted in better prediction of AC12.

  9. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method.

    PubMed

    Kefal, Adnan; Yildiz, Mehmet

    2017-11-30

    This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  10. Abdominal multi-organ segmentation from CT images using conditional shape–location and unsupervised intensity priors

    PubMed Central

    Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki

    2015-01-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape–location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape–location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. PMID:26277022

  11. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H.

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME andmore » plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.« less

  12. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-03-01

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.

  13. Module modified acute physiology and chronic health evaluation II: predicting the mortality of neuro-critical disease.

    PubMed

    Su, Yingying; Wang, Miao; Liu, Yifei; Ye, Hong; Gao, Daiquan; Chen, Weibi; Zhang, Yunzhou; Zhang, Yan

    2014-12-01

    This study aimed to conduct and assess a module modified acute physiology and chronic health evaluation (MM-APACHE) II model, based on disease categories modified-acute physiology and chronic health evaluation (DCM-APACHE) II model, in predicting mortality more accurately in neuro-intensive care units (N-ICUs). In total, 1686 patients entered into this prospective study. Acute physiology and chronic health evaluation (APACHE) II scores of all patients on admission and worst 24-, 48-, 72-hour scores were obtained. Neurological diagnosis on admission was classified into five categories: cerebral infarction, intracranial hemorrhage, neurological infection, spinal neuromuscular (SNM) disease, and other neurological diseases. The APACHE II scores of cerebral infarction, intracranial hemorrhage, and neurological infection patients were used for building the MM-APACHE II model. There were 1386 cases for cerebral infarction disease, intracranial hemorrhage disease, and neurological infection disease. The logistic linear regression showed that 72-hour APACHE II score (Wals  =  173.04, P < 0.001) and disease classification (Wals  =  12.51, P  =  0.02) were of importance in forecasting hospital mortality. Module modified acute physiology and chronic health evaluation II model, built on the variables of the 72-hour APACHE II score and disease category, had good discrimination (area under the receiver operating characteristic curve (AU-ROC  =  0.830)) and calibration (χ2  =  12.518, P  =  0.20), and was better than the Knaus APACHE II model (AU-ROC  =  0.778). The APACHE II severity of disease classification system cannot provide accurate prognosis for all kinds of the diseases. A MM-APACHE II model can accurately predict hospital mortality for cerebral infarction, intracranial hemorrhage, and neurologic infection patients in N-ICU.

  14. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2015-12-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Examining ion channel properties using free-energy methods.

    PubMed

    Domene, Carmen; Furini, Simone

    2009-01-01

    Recent advances in structural biology have revealed the architecture of a number of transmembrane channels, allowing for these complex biological systems to be understood in atomistic detail. Computational simulations are a powerful tool by which the dynamic and energetic properties, and thereby the function of these protein architectures, can be investigated. The experimentally observable properties of a system are often determined more by energetic than dynamics, and therefore understanding the underlying free energy (FE) of biophysical processes is of crucial importance. Critical to the accurate evaluation of FE values are the problems of obtaining accurate sampling of complex biological energy landscapes, and of obtaining accurate representations of the potential energy of a system, this latter problem having been addressed through the development of molecular force fields. While these challenges are common to all FE methods, depending on the system under study, and the questions being asked of it, one technique for FE calculation may be preferable to another, the choice of method and simulation protocol being crucial to achieve efficiency. Applied in a correct manner, FE calculations represent a predictive and affordable computational tool with which to make relevant contact with experiments. This chapter, therefore, aims to give an overview of the most widely implemented computational methods used to calculate the FE associated with particular biochemical or biophysical events, and to highlight their recent applications to ion channels. Copyright © 2009 Elsevier Inc. All rights reserved.

  16. Spectroscopic investigations of microwave generated plasmas

    NASA Technical Reports Server (NTRS)

    Hawley, Martin C.; Haraburda, Scott S.; Dinkel, Duane W.

    1991-01-01

    The study deals with the plasma behavior as applied to spacecraft propulsion from the perspective of obtaining better design and modeling capabilities. The general theory of spectroscopy is reviewed, and existing methods for converting emission-line intensities into such quantities as temperatures and densities are outlined. Attention is focused on the single-atomic-line and two-line radiance ratio methods, atomic Boltzmann plot, and species concentration. Electronic temperatures for a helium plasma are determined as a function of pressure and a gas-flow rate using these methods, and the concentrations of ions and electrons are predicted from the Saha-Eggert equations using the sets of temperatures obtained as a function of the gas-flow rate. It is observed that the atomic Boltzmann method produces more reliable results for the electronic temperature, while the results obtained from the single-line method reflect the electron temperatures accurately.

  17. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    PubMed

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  18. Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.

    1999-01-01

    Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.

  19. Structure and electronic properties of azadirachtin.

    PubMed

    de Castro, Elton A S; de Oliveira, Daniel A B; Farias, Sergio A S; Gargano, Ricardo; Martins, João B L

    2014-02-01

    We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.

  20. Influence of 2D Finite Element Modeling Assumptions on Debonding Prediction for Composite Skin-stiffener Specimens Subjected to Tension and Bending

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  1. Principal pitch of frequency-modulated tones with asymmetrical modulation waveform: a comparison of models.

    PubMed

    Etchemendy, Pablo E; Eguia, Manuel C; Mesz, Bruno

    2014-03-01

    In this work, the overall perceived pitch (principal pitch) of pure tones modulated in frequency with an asymmetric waveform is studied. The dependence of the principal pitch on the degree of asymmetric modulation was obtained from a psychophysical experiment. The modulation waveform consisted of a flat portion of constant frequency and two linear segments forming a peak. Consistent with previous results, significant pitch shifts with respect to the time-averaged geometric mean were observed. The direction of the shifts was always toward the flat portion of the modulation. The results from the psychophysical experiment, along with those obtained from previously reported studies, were compared with the predictions of six models of pitch perception proposed in the literature. Even though no single model was able to predict accurately the perceived pitch for all experiments, there were two models that give robust predictions that are within the range of acceptable tuning of modulated tones for almost all the cases. Both models point to the existence of an underlying "stability sensitive" mechanism for the computation of pitch that gives more weight to the portion of the stimuli where the frequency is changing more slowly.

  2. Optimization of Biomathematical Model Predictions for Cognitive Performance Impairment in Individuals: Accounting for Unknown Traits and Uncertain States in Homeostatic and Circadian Processes

    PubMed Central

    Van Dongen, Hans P. A.; Mott, Christopher G.; Huang, Jen-Kuang; Mollicone, Daniel J.; McKenzie, Frederic D.; Dinges, David F.

    2007-01-01

    Current biomathematical models of fatigue and performance do not accurately predict cognitive performance for individuals with a priori unknown degrees of trait vulnerability to sleep loss, do not predict performance reliably when initial conditions are uncertain, and do not yield statistically valid estimates of prediction accuracy. These limitations diminish their usefulness for predicting the performance of individuals in operational environments. To overcome these 3 limitations, a novel modeling approach was developed, based on the expansion of a statistical technique called Bayesian forecasting. The expanded Bayesian forecasting procedure was implemented in the two-process model of sleep regulation, which has been used to predict performance on the basis of the combination of a sleep homeostatic process and a circadian process. Employing the two-process model with the Bayesian forecasting procedure to predict performance for individual subjects in the face of unknown traits and uncertain states entailed subject-specific optimization of 3 trait parameters (homeostatic build-up rate, circadian amplitude, and basal performance level) and 2 initial state parameters (initial homeostatic state and circadian phase angle). Prior information about the distribution of the trait parameters in the population at large was extracted from psychomotor vigilance test (PVT) performance measurements in 10 subjects who had participated in a laboratory experiment with 88 h of total sleep deprivation. The PVT performance data of 3 additional subjects in this experiment were set aside beforehand for use in prospective computer simulations. The simulations involved updating the subject-specific model parameters every time the next performance measurement became available, and then predicting performance 24 h ahead. Comparison of the predictions to the subjects' actual data revealed that as more data became available for the individuals at hand, the performance predictions became increasingly more accurate and had progressively smaller 95% confidence intervals, as the model parameters converged efficiently to those that best characterized each individual. Even when more challenging simulations were run (mimicking a change in the initial homeostatic state; simulating the data to be sparse), the predictions were still considerably more accurate than would have been achieved by the two-process model alone. Although the work described here is still limited to periods of consolidated wakefulness with stable circadian rhythms, the results obtained thus far indicate that the Bayesian forecasting procedure can successfully overcome some of the major outstanding challenges for biomathematical prediction of cognitive performance in operational settings. Citation: Van Dongen HPA; Mott CG; Huang JK; Mollicone DJ; McKenzie FD; Dinges DF. Optimization of biomathematical model predictions for cognitive performance impairment in individuals: accounting for unknown traits and uncertain states in homeostatic and circadian processes. SLEEP 2007;30(9):1129-1143. PMID:17910385

  3. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  4. Validity of the BodyGem calorimeter and prediction equations for the assessment of resting energy expenditure in overweight and obese Saudi males.

    PubMed

    Almajwal, Ali M; Williams, Peter G; Batterham, Marijka J

    2011-07-01

    To assess the accuracy of resting energy expenditure (REE) measurement in a sample of overweight and obese Saudi males, using the BodyGem device (BG) with whole room calorimetry (WRC) as a reference, and to evaluate the accuracy of predictive equations. Thirty-eight subjects (mean +/- SD, age 26.8+/- 3.7 years, body mass index 31.0+/- 4.8) were recruited during the period from 5 February 2007 to 28 March 2008. Resting energy expenditure was measured using a WRC and BG device, and also calculated using 7 prediction equations. Mean differences, bias, percent of bias (%bias), accurate estimation, underestimation and overestimation were calculated. Repeated measures with the BG were not significantly different (accurate prediction: 81.6%; %bias 1.1+/- 6.3, p>0.24) with limits of agreement ranging from +242 to -200 kcal. Resting energy expenditure measured by BG was significantly less than WRC values (accurate prediction: 47.4%; %bias: 11.0+/- 14.6, p = 0.0001) with unacceptably wide limits of agreement. Harris-Benedict, Schofield and World Health Organization equations were the most accurate, estimating REE within 10% of measured REE, but none seem appropriate to predict the REE of individuals. There was a poor agreement between the REE measured by WRC compared to BG or predictive equations. The BG assessed REE accurately in 47.4% of the subjects on an individual level.

  5. Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer’s disease progression

    PubMed Central

    Martinez-Torteya, Antonio; Rodriguez-Rojas, Juan; Celaya-Padilla, José M.; Galván-Tejada, Jorge I.; Treviño, Victor; Tamez-Peña, Jose

    2014-01-01

    Abstract. Early diagnoses of Alzheimer’s disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different (p-value=2.04e−11). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones. PMID:26158047

  6. Comparison of Predicted Thermoelectric Energy Conversion Efficiency by Cumulative Properties and Reduced Variables Approaches

    NASA Astrophysics Data System (ADS)

    Linker, Thomas M.; Lee, Glenn S.; Beekman, Matt

    2018-06-01

    The semi-analytical methods of thermoelectric energy conversion efficiency calculation based on the cumulative properties approach and reduced variables approach are compared for 21 high performance thermoelectric materials. Both approaches account for the temperature dependence of the material properties as well as the Thomson effect, thus the predicted conversion efficiencies are generally lower than that based on the conventional thermoelectric figure of merit ZT for nearly all of the materials evaluated. The two methods also predict material energy conversion efficiencies that are in very good agreement which each other, even for large temperature differences (average percent difference of 4% with maximum observed deviation of 11%). The tradeoff between obtaining a reliable assessment of a material's potential for thermoelectric applications and the complexity of implementation of the three models, as well as the advantages of using more accurate modeling approaches in evaluating new thermoelectric materials, are highlighted.

  7. An elastic-plastic contact model for line contact structures

    NASA Astrophysics Data System (ADS)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  8. Experimental demonstration of Klyshko's advanced-wave picture using a coincidence-count based, camera-enabled imaging system

    NASA Astrophysics Data System (ADS)

    Aspden, Reuben S.; Tasca, Daniel S.; Forbes, Andrew; Boyd, Robert W.; Padgett, Miles J.

    2014-04-01

    The Klyshko advanced-wave picture is a well-known tool useful in the conceptualisation of parametric down-conversion (SPDC) experiments. Despite being well-known and understood, there have been few experimental demonstrations illustrating its validity. Here, we present an experimental demonstration of this picture using a time-gated camera in an image-based coincidence measurement. We show an excellent agreement between the spatial distributions as predicted by the Klyshko picture and those obtained using the SPDC photon pairs. An interesting speckle feature is present in the Klyshko predictive images due to the spatial coherence of the back-propagated beam in the multi-mode fibre. This effect can be removed by mechanically twisting the fibre, thus degrading the spatial coherence of the beam and time-averaging the speckle pattern, giving an accurate correspondence between the predictive and SPDC images.

  9. Modeling a multivariable reactor and on-line model predictive control.

    PubMed

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  10. Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element

    NASA Technical Reports Server (NTRS)

    Barut, Atila; Madenci, Erdogan; Tessler, Alexander

    2013-01-01

    This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.

  11. Artificial neural network modeling of the water quality index using land use areas as predictors.

    PubMed

    Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin

    2015-02-01

    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.

  12. Analysis of two-equation turbulence models for recirculating flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.

    1991-01-01

    The two-equation kappa-epsilon model is used to analyze turbulent separated flow past a backward-facing step. It is shown that if the model constraints are modified to be consistent with the accepted energy decay rate for isotropic turbulence, the dominant features of the flow field, namely the size of the separation bubble and the streamwise component of the mean velocity, can be accurately predicted. In addition, except in the vicinity of the step, very good predictions for the turbulent shear stress, the wall pressure, and the wall shear stress are obtained. The model is also shown to provide good predictions for the turbulence intensity in the region downstream of the reattachment point. Estimated long time growth rates for the turbulent kinetic energy and dissipation rate of homogeneous shear flow are utilized to develop an optimal set of constants for the two equation kappa-epsilon model. The physical implications of the model performance are also discussed.

  13. Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.

    1993-01-01

    We predict the present-day rates of change of the lengths of 19 North American baselines due to the glacial isostatic adjustment process. Contrary to previously published research, we find that the three-dimensional motion of each of the sites defining a baseline, rather than only the radial motions of these sites, needs to be considered to obtain an accurate estimate of the rate of change of the baseline length. Predictions are generated using a suite of Earth models and late Pleistocene ice histories; these include specific combinations of the two which have been proposed in the literature as satisfying a variety of rebound related geophysical observations from the North American region. A number of these published models are shown to predict rates which differ significantly from the Very Long Base Interferometry (VLBI) observations.

  14. Development of a recursion RNG-based turbulence model

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Vahala, George; Thangam, S.

    1993-01-01

    Reynolds stress closure models based on the recursion renormalization group theory are developed for the prediction of turbulent separated flows. The proposed model uses a finite wavenumber truncation scheme to account for the spectral distribution of energy. In particular, the model incorporates effects of both local and nonlocal interactions. The nonlocal interactions are shown to yield a contribution identical to that from the epsilon-renormalization group (RNG), while the local interactions introduce higher order dispersive effects. A formal analysis of the model is presented and its ability to accurately predict separated flows is analyzed from a combined theoretical and computational stand point. Turbulent flow past a backward facing step is chosen as a test case and the results obtained based on detailed computations demonstrate that the proposed recursion -RNG model with finite cut-off wavenumber can yield very good predictions for the backstep problem.

  15. Continuous Metabolic Monitoring Based on Multi-Analyte Biomarkers to Predict Exhaustion

    PubMed Central

    Kastellorizios, Michail; Burgess, Diane J.

    2015-01-01

    This work introduces the concept of multi-analyte biomarkers for continuous metabolic monitoring. The importance of using more than one marker lies in the ability to obtain a holistic understanding of the metabolism. This is showcased for the detection and prediction of exhaustion during intense physical exercise. The findings presented here indicate that when glucose and lactate changes over time are combined into multi-analyte biomarkers, their monitoring trends are more sensitive in the subcutaneous tissue, an implantation-friendly peripheral tissue, compared to the blood. This unexpected observation was confirmed in normal as well as type 1 diabetic rats. This study was designed to be of direct value to continuous monitoring biosensor research, where single analytes are typically monitored. These findings can be implemented in new multi-analyte continuous monitoring technologies for more accurate insulin dosing, as well as for exhaustion prediction studies based on objective data rather than the subject’s perception. PMID:26028477

  16. Continuous metabolic monitoring based on multi-analyte biomarkers to predict exhaustion.

    PubMed

    Kastellorizios, Michail; Burgess, Diane J

    2015-06-01

    This work introduces the concept of multi-analyte biomarkers for continuous metabolic monitoring. The importance of using more than one marker lies in the ability to obtain a holistic understanding of the metabolism. This is showcased for the detection and prediction of exhaustion during intense physical exercise. The findings presented here indicate that when glucose and lactate changes over time are combined into multi-analyte biomarkers, their monitoring trends are more sensitive in the subcutaneous tissue, an implantation-friendly peripheral tissue, compared to the blood. This unexpected observation was confirmed in normal as well as type 1 diabetic rats. This study was designed to be of direct value to continuous monitoring biosensor research, where single analytes are typically monitored. These findings can be implemented in new multi-analyte continuous monitoring technologies for more accurate insulin dosing, as well as for exhaustion prediction studies based on objective data rather than the subject's perception.

  17. Accurate prediction of bond dissociation energies of large n-alkanes using ONIOM-CCSD(T)/CBS methods

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Ning, Hongbo; Ma, Liuhao; Ren, Wei

    2018-05-01

    Accurate determination of the bond dissociation energies (BDEs) of large alkanes is desirable but practically impossible due to the expensive cost of high-level ab initio methods. We developed a two-layer ONIOM-CCSD(T)/CBS method which treats the high layer with CCSD(T) method and the low layer with DFT method, respectively. The accuracy of this method was validated by comparing the calculated BDEs of n-hexane with that obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. On this basis, the C-C BDEs of C6-C20 n-alkanes were calculated systematically using the ONIOM [CCSD(T)/CBS(D-T):M06-2x/6-311++G(d,p)] method, showing a good agreement with the data available in the literature.

  18. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hfmore » splittings in astronomical spectra has been discussed.« less

  19. Improving stamping simulation accuracy by accounting for realistic friction and lubrication conditions: Application to the door-outer of the Mercedes-Benz C-class Coupé

    NASA Astrophysics Data System (ADS)

    Hol, J.; Wiebenga, J. H.; Stock, J.; Wied, J.; Wiegand, K.; Carleer, B.

    2016-08-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. Only then, one can obtain reliable and realistic simulation results that correspond to the actual try-out and mass production conditions. In this work, the TriboForm software is used to accurately account for tribology-, friction-, and lubrication conditions in stamping simulations. The enhanced stamping simulations are applied and validated for the door-outer of the Mercedes- Benz C-Class Coupe. The project results demonstrate the improved prediction accuracy of stamping simulations with respect to both part quality and actual stamping process conditions.

  20. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

Top