Sample records for obtain detailed structural

  1. Dynamic Relaxation: A Technique for Detailed Thermo-Elastic Structural Analysis of Transportation Structures

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Riad, Mourad Y.; McBride, Kevyn C.

    2006-08-01

    Dynamic relaxation is a technique developed to solve static problems through an explicit integration in finite element. The main advantage of such a technique is the ability to solve a large problem in a relatively short time compared with the traditional implicit techniques, especially when using nonlinear material models. This paper describes the use of such a technique in analyzing large transportation structures as dowel jointed concrete pavements and 306-m-long, reinforced concrete bridge superstructure under the effect of temperature variations. The main feature of the pavement model is the detailed modeling of dowel bars and their interfaces with the surrounding concrete using extremely fine mesh of solid elements, while in the bridge structure it is the detailed modeling of the girder-deck interface as well as the bracing members between the girders. The 3DFE results were found to be in a good agreement with experimentally measured data obtained from an instrumented pavements sections and a highway bridge constructed in West Virginia. Thus, such a technique provides a good tool for analyzing the response of large structures to static loads in a fraction of the time required by traditional, implicit finite element methods.

  2. Study on Detailing Design of Precast Concrete Frame Structure

    NASA Astrophysics Data System (ADS)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  3. Aircraft empennage structural detail design

    NASA Technical Reports Server (NTRS)

    Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo

    1993-01-01

    This project involved the detailed design of the aft fuselage and empennage structure, vertical stabilizer, rudder, horizontal stabilizer, and elevator for the Triton primary flight trainer. The main design goals under consideration were to illustrate the integration of the control systems devices used in the tail surfaces and their necessary structural supports as well as the elevator trim, navigational lighting system, electrical systems, tail-located ground tie, and fuselage/cabin interface structure. Accommodations for maintenance, lubrication, adjustment, and repairability were devised. Weight, fabrication, and (sub)assembly goals were addressed. All designs were in accordance with the FAR Part 23 stipulations for a normal category aircraft.

  4. INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  5. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    PubMed

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  6. Automating a Detailed Cognitive Task Analysis for Structuring Curriculum

    DTIC Science & Technology

    1991-08-01

    1991-- ] Aleeo/i ISM’-19# l Title: Automating a Detailed Cognitive Task Analysis for Structuring Curriculum Activities: To date we have completed task...The Institute for Management Sciences. Although the particular application of the modified GOMS cognitive task analysis technique under development is...Laboratories 91 9 23 074 Automnating a Detailed Cognitive Task Analysis For Stucuring Curriculum Research Plan Year 1 Task 1.0 Design Task 1.1 Conduct body

  7. Structural details below roadway, looking north from south abutment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structural details below roadway, looking north from south abutment. - Pleasantville Covered Bridge, Spanning Little Manatawny Creek at Covered Bridge Road (State Route 1030), Manatawny, Berks County, PA

  8. Marguerite Arnet Residence, exterior roof structure detail, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Marguerite Arnet Residence, exterior roof structure detail, looking northwest. - Adam & Bessie Arnet Homestead, Marguerite Arnet Residence, 560 feet northeast of Adam & Bessie Arnet Residence, Model, Las Animas County, CO

  9. 32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  10. 31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  11. 39. OUTLET WORKS: CONTROL HOUSE STRUCTURAL DETAILS. Sheet 33, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. OUTLET WORKS: CONTROL HOUSE - STRUCTURAL DETAILS. Sheet 33, August 20, 1938. File no. SA 121/72. - Prado Dam, Outlet Works, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  12. DETAIL VIEW OF THE STRUCTURE OF THE BASE OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE STRUCTURE OF THE BASE OF THE TEST STAND AND THE TAIL SECTION OF A REDSTONE (JUPITER) ROCKET. NOTE THE FLAME DEFLECTOR BEHIND THE STRUCTURE IN THE FOREGROUND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  13. Battery Berry Observation Station, detail, frame structure meeting older masonry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Battery Berry Observation Station, detail, frame structure meeting older masonry building on west side of structure; view east - Fort McKinley, Battery Berry Observation Station, North side of Wood Side Drive approximately 80 feet east of Spring Cove Lane, Great Diamond Island, Portland, Cumberland County, ME

  14. Method for obtaining structure and interactions from oriented lipid bilayers

    PubMed Central

    Lyatskaya, Yulia; Liu, Yufeng; Tristram-Nagle, Stephanie; Katsaras, John; Nagle, John F.

    2009-01-01

    Precise calculations are made of the scattering intensity I(q) from an oriented stack of lipid bilayers using a realistic model of fluctuations. The quantities of interest include the bilayer bending modulus Kc , the interbilayer interaction modulus B, and bilayer structure through the form factor F(qz). It is shown how Kc and B may be obtained from data at large qz where fluctuations dominate. Good estimates of F(qz) can be made over wide ranges of qz by using I(q) in q regions away from the peaks and for qr≠0 where details of the scattering domains play little role. Rough estimates of domain sizes can also be made from smaller qz data. Results are presented for data taken on fully hydrated, oriented DOPC bilayers in the Lα phase. These results illustrate the advantages of oriented samples compared to powder samples. PMID:11304287

  15. Photograph of elevation and details of structure 841, used for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photograph of elevation and details of structure 841, used for repair project, dated 1973. Drawing in collection of Caretaker Site Office, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure No. 841, Delaware Avenue between East Fourth Street & Webster Avenue, League Island, Philadelphia, Philadelphia County, PA

  16. Structural and Dynamical Details of Biotin

    NASA Astrophysics Data System (ADS)

    Korter, Timothy; Dunmire, David; Romero, Danilo; Middleton, Chris; Jenkins, Tim; Hudson, Bruce; Hight Walker, Angela

    2003-03-01

    Biotin, one of the B vitamins, is a key cofactor of enzymes that transfer units of CO2. Chemically linked to a lysine residue via its carboxylic acid side chain, biotin exhibits incredible flexibility when performing its intraprotein transport role. Not only does Biotin play a critical role in gluconeogenesis, it also is commonly used throughout biotechnology research due to its strong binding affinity for attachment, tethering and labeling chemistries. Therefore, a detailed probe of the structure and dynamics of biotin is important both metabolically and to aid further research. Here, we used several vibrational techniques, THz, IR, Raman and Inelastic Neutron Scattering, to gain a comprehensive understanding of biotin's structure, flexibility and dynamics. Specifically our interests are in hydrogen bonding interactions, torsional vibrations, and conformational changes with varying environments, which frequently lie in the far-infrared region of the spectrum below 200 cm-1. Interpretation and comparison of our multi-technique data are guided by high-level ab initio calculations.

  17. 36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ARCHITECTURAL AND STRUCTURAL DETAILS OF ELEVATOR HOUSING, NaK HEATER STACK ROOF FLASHING, HOOD ELEVATION DETAIL. INCLUDES PARTIAL 'BILL OF MATERIAL.' INEEL DRAWING NUMBER 200-0633-00-287-106361. FLUOR NUMBER 5775-CPP-633-A-11. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  18. View northeast; interior structural detail Naval Base PhiladelphiaPhiladelphia Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast; interior structural detail - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  19. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  20. Visitor center flight room, detail of twin structural piers at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Visitor center flight room, detail of twin structural piers at northeast corner supporting flight room dome - Wright Brothers National Memorial Visitor Center, Highway 158, Kill Devil Hills, Dare County, NC

  1. 15. Detail, cracks evidencing structural failure, northeast rear, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail, cracks evidencing structural failure, northeast rear, view to southwest, 90mm lens. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  2. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1999-01-01

    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  3. 16. Detail, looking northwest, of the concrete structure of Trestle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, looking northwest, of the concrete structure of Trestle 16. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  4. 38. Launch Area, Underground Missile Storage Structure, detail of conduit ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Launch Area, Underground Missile Storage Structure, detail of conduit service junction - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  5. 12. Exterior detail view of roof structure at eave, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Exterior detail view of roof structure at eave, showing exposed rafter tails, skip sheathing and gutter - American Railway Express Company Freight Building, 1060 Northeast Division Street, Bend, Deschutes County, OR

  6. 37. Launch Area, Underground Missile Storage Structure, detail of personnel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Launch Area, Underground Missile Storage Structure, detail of personnel entrance VIEW NORTH - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  7. 35. MISCELLANEOUS ARCHITECTURAL AND STRUCTURAL DETAILS. INEEL DRAWING NUMBER 200063300287106359. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. MISCELLANEOUS ARCHITECTURAL AND STRUCTURAL DETAILS. INEEL DRAWING NUMBER 200-0633-00-287-106359. FLUOR NUMBER 5775-CPP-633-A-9. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  8. Detail of antenna tower structure, looking northnorthwest OvertheHorizon Backscatter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of antenna tower structure, looking north-northwest - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Five Antenna Array, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  9. 40. Launch Area, Underground Missile Storage Structure, detail of escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Launch Area, Underground Missile Storage Structure, detail of escape hatch and decontamination shower VIEW WEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  10. 2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL OF STRUCTURAL SYSTEM FOR CANTILEVERED HOG RUN; BUILDING 168 (1960 HOG KILL) IS BENEATH HOG RUN - Rath Packing Company, Cantilevered Hog Run, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  11. 42. Launch Area, Underground Missile Storage Structure, detail of escape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Launch Area, Underground Missile Storage Structure, detail of escape hatch, elevator and air vent VIEW SOUTH - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  12. 36. Launch Area, Underground Missile Storage Structure, detail showing elevator, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Launch Area, Underground Missile Storage Structure, detail showing elevator, air ventilators and personnel entrance VIEW SOUTHEAST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  13. 14. Detail, crack evidencing structural failure, northeast rear, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, crack evidencing structural failure, northeast rear, view to southwest, 90mm lens. Note failure of sandstone lintel above window. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  14. 21. DETAIL OF STRUCTURAL BAY ON NORTH ELEVATION OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF STRUCTURAL BAY ON NORTH ELEVATION OF BUILDING 216 (AMMUNITION MAINTENANCE SHOP) IN ASSEMBLY AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  15. 7. Interior of Building 1015 (land plane hangar), structural detail, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Interior of Building 1015 (land plane hangar), structural detail, looking northeast - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  16. 8. Interior of Building 1015 (land plane hangar), structural detail, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Interior of Building 1015 (land plane hangar), structural detail, looking northeast - Naval Air Station Chase Field, Building 1015, Byrd Street, .82 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  17. 11. DETAIL VIEW OF DAM 87, SHOWING STOPLOG STRUCTURE (PARTIALLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF DAM 87, SHOWING STOPLOG STRUCTURE (PARTIALLY HIDDEN BY MARSH GRASSES IN LOWER PART OF PHOTO) AT RIGHT (WEST) END OF SPILLWAY - Upper Souris National Wildlife Refuge, Dam 87, Souris River Basin, Foxholm, Surrey (England), ND

  18. 18. DETAIL VIEW OF THE HIGH BAY STRUCTURAL SYSTEM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL VIEW OF THE HIGH BAY STRUCTURAL SYSTEM AND WINDOW ILLUMINATION AT THE SHRINK PIT AREA, S END OF B BAY; LOOKING SSE. (Ceronie) - Watervliet Arsenal, Building No. 135, Gillespie Road, South of Parker Road, Watervliet, Albany County, NY

  19. 25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO TOP FLOOR OF MILL, LOOKING SOUTH FROM SECOND FLOOR OF MILL. PORTION OF ORE BIN ON RIGHT, STAIRS ON LEFT. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. 31. Detail of Southeast Light lens and roof structure of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Detail of Southeast Light lens and roof structure of light gallery, 1985. Taken day after Hurricane Gloria, courtesy of Gerald F. Abbott and Block Island Historical Society. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  1. View south; interior structural detail at column A13 south bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south; interior structural detail at column A13 south bay - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  2. 6. Exterior view, showing structural details and instrumentation at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Exterior view, showing structural details and instrumentation at the walk-in entry level (bottom) of Test Cell 6, Systems Integration Laboratory Building (T-28), looking southwest. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  3. 10. Exterior view, showing the structural details and tanks above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Exterior view, showing the structural details and tanks above at walk-in entry level (bottom) of Test Cell 7, Systems Integration Laboratory Building (T-28), looking west. - Air Force Plant PJKS, Systems Integration Laboratory, Systems Integration Laboratory Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    NASA Technical Reports Server (NTRS)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  5. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    PubMed Central

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856

  6. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    PubMed

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  7. Crack propagation modelling for high strength steel welded structural details

    NASA Astrophysics Data System (ADS)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  8. STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103079. ALTERNATE ID NUMBER 542-11-B-73. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Detailed requirements document for the integrated structural analysis system, phase B

    NASA Technical Reports Server (NTRS)

    Rainey, J. A.

    1976-01-01

    The requirements are defined for a software system entitled integrated Structural Analysis System (ISAS) Phase B which is being developed to provide the user with a tool by which a complete and detailed analysis of a complex structural system can be performed. This software system will allow for automated interface with numerous structural analysis batch programs and for user interaction in the creation, selection, and validation of data. This system will include modifications to the 4 functions developed for ISAS, and the development of 25 new functions. The new functions are described.

  10. Evaluating the roles of detailed endocardial structures on right ventricular haemodynamics by means of CFD simulations.

    PubMed

    Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin

    2018-06-11

    Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.

  11. 60. DETAIL VIEW OF TWO STEEL STRUCTURAL COLUMNS THAT REPLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. DETAIL VIEW OF TWO STEEL STRUCTURAL COLUMNS THAT REPLACED THE ORIGINAL BRICK SUPPORTS FOR THE SOUTHERNMOST ARCH ON THE BUILDING'S W WALL WHEN THE S SECTION OF THE BUILDING WAS 'OPENED-UP' DURING THE SECOND WORLD WAR; LOOKING NW. (Ceronie) - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  12. Content, Structure, and Sequence of the Detailing Discipline at Kendall College of Art and Design.

    ERIC Educational Resources Information Center

    Mulder, Bruce E.

    A study identified the appropriate general content, structure, and sequence for a detailing discipline that promoted student achievement to professional levels. Its focus was the detailing discipline, a sequence of studio courses within the furniture design program at Kendall College of Art and Design, Grand Rapids, Michigan. (Detailing, an…

  13. 26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ABOVE ORE BIN, LOOKING WEST FROM TOP OF STAIRWAY IN CA-290-25. THE PIPE AT CENTER WAS USED TO SPREAD CRUSHED ORE COMING FROM THE JAW CRUSHER EVENLY TO ALL AREA OF THE ORE BIN BELOW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  14. 5. STANDPIPE STRUCTURE DETAIL SHOWING CONNECTIONS TO PENSTOCKS, RIVETED SECTIONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STANDPIPE STRUCTURE DETAIL SHOWING CONNECTIONS TO PENSTOCKS, RIVETED SECTIONAL CONSTRUCTION OF TWO OF THE THREE ORIGINAL STANDPIPES (PHOTO RIGHT), WELDED SECTIONAL CONSTRUCTION OF FOURTH STANDPIPE, AND MODERN VENTILATION VALVES ON FIFTH PENSTOCK AT PHOTO LEFT CENTER BETWEEN FOURTH STANDPIPE AND ORIGINAL TWO. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  15. Structure A, architectural sections & details. Drawing no. H2, revised ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, architectural sections & details. Drawing no. H2, revised as-built dated October 11, 1951. Original drawing by Black & Veatch, consulting engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  16. DETAIL VIEW, STRUCTURAL TIMBER AND FLOOR JOISTS, SOUTH GARRET. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, STRUCTURAL TIMBER AND FLOOR JOISTS, SOUTH GARRET. THIS TIMBER IS ONE OF TWO EXTENDING OUT FROM THE HOUSE AND JOINED TO VERTICAL POSTS LOCATED WITHIN THE WOOD TUSCAN COLUMNS LOCATED AT THE PORTICO’S TWO OUTER CORNERS. THE TIMBERS AND THE VISIBLE FLOOR JOISTS WERE PART OF THE HOUSE’S INITIAL CA. 1770 CONSTRUCTION - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  17. GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass

    2015-01-01

    The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.

  18. DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD THE REAR OF THE STRUCTURE. THE WHEELS AT THE TOP OF THE TRAM BUCKETS RODE OFF THE STATIONARY CABLES ONTO THE TRACK SUPPORTED BY THE "C" IRONS SUSPENDED FROM THE TOP TIMBERS, CLEARLY SEEN AT THE TOP OF THE FRAME. THE ANCHOR POINTS FOR THE TWO STATIONARY CABLES ARE AT BOTTOM CENTER, JUST BELOW THE CABLE WHEEL. THE MAIN CABLE WHEEL IS IN THE DISTANCE AT CENTER LEFT. THE ORE CHUTES COMING FROM THE ORE BIN ARE AT LEFT CENTER EDGE. TRAM BUCKETS WERE CHARGED HERE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  19. Detail of pier structure and wood fenders of Facility No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of pier structure and wood fenders of Facility No. B-1, showing floats in foreground and bollards on pier, view facing east - U.S. Naval Base, Pearl Harbor, South Quay Wall & Repair Wharf, L-shaped portion of quay walls starting at east side of mouth of Dry Dock No. 1, continuing along ocean side of Sixth Street, adjacent to Pier B-2, Pearl City, Honolulu County, HI

  20. Detail View looking at the protected structure and landing gear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail View looking at the protected structure and landing gear housing in the void created by the removal of the Forward Reaction Control System Module from the forward section of the Orbiter Discovery. This view was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Detailed pressure distribution measurements obtained on several configurations of an aspect-ratio-7 variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.

    1985-01-01

    Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided.

  2. Detailed electromagnetic simulation for the structural color of butterfly wings.

    PubMed

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  3. 5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. 12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  5. 9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  6. Structure A, reinforcing details. Drawing No. H2302, as built, Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, reinforcing details. Drawing No. H2-302, as built, Original drawing by Black & Veatch, Consulting Engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  7. Detailed fault structure of the Tarutung Pull-Apart Basin in Sumatra, Indonesia, derived from local earthquake data

    NASA Astrophysics Data System (ADS)

    Muksin, Umar; Haberland, Christian; Nukman, Mochamad; Bauer, Klaus; Weber, Michael

    2014-12-01

    The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north-south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE-SW to NW-SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.

  8. 115. Stage Level floor structure. Detail of the ends of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. Stage Level floor structure. Detail of the ends of three movable stage floor sections. An inclined steel angle track attached to the web of the floor beam allows the sections to roll under the fixed floor. The upper section of the inclined track is hinged so it can be moved upward by a cam mechanism to raise the end of the movable section level with the stage floor. A similar mechanism was used to open and close the floor sections for the star lifts (see sheet 4 of 9, note 6; sheet 8 of 9, details 5, 6A and 6B; sheet 6 of 9, notes 2A, 2B, and 3; and photo IL-1007-120). The pulley, and tongue extending out from the end of the movable section, were used to move the sections back and forth. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  9. Structure A, protective alarm installation details. Drawing no. H3709, revised ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, protective alarm installation details. Drawing no. H3-709, revised as-built dated August 28, 1952. Original drawing by Black & Veatch, consulting engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  10. DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING SOUTH TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING SOUTH TOWARD THE FRONT OF THE STRUCTURE. THE WHEELS AT THE TOP OF THE TRAM BUCKETS RODE OFF THE STATIONARY CABLES ONTO THE TRACK SUPPORTED BY THE "C" IRONS SUSPENDED FROM THE TOP TIMBERS ON THE LEFT AND RIGHT. THE BUCKET OPENING MECHANISM IS ON THE LEFT, AND PART OF THE CLOSING MECHANISM ON THE RIGHT EDGE OF THE FRAME. THE TWO CABLES AT CENTER ARE THE STATIONARY TRAM CABLES THAT RUN ALONG THE TOP OF THE SUPPORT TOWERS ON WHICH THE WHEELS OF THE TRAM BUCKETS RODE. THEY ARE ANCHORED AT GROUND LEVEL JUST OFF FRAME TO THE LOWER LEFT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. Structure of welded joints obtained by contact weld in nanostructured titanium

    NASA Astrophysics Data System (ADS)

    Klimenov, V. A.; Klopotov, A. A.; Gnysov, S. F.; Vlasov, V. A.; Lychagin, D. V.; Chumaevskii, A. V.

    2015-10-01

    The paper presents the research of the weld structure of two Ti specimens of the type VT6 that have nano- and submicrocrystalline structures. Electrical contact welding is used to obtain welds. The acicular structure is formed in the weld area. Two types of defects are detected, namely micropores and microcracks.

  12. 9. DETAIL OF DIVERSION STRUCTURE WEST OF DERBY LAKE (SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF DIVERSION STRUCTURE WEST OF DERBY LAKE (SECTION 2) SHOWING DIVERSION GATE TO LAKE LADORA. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  13. Detailed Structural Analyses of KOH Activated Carbon from Waste Coffee Beans

    NASA Astrophysics Data System (ADS)

    Takahata, Tomokazu; Toda, Ikumi; Ono, Hiroki; Ohshio, Shigeo; Akasaka, Hiroki; Himeno, Syuji; Kokubu, Toshinori; Saitoh, Hidetoshi

    2009-11-01

    The relationship of the detailed structural change of KOH activated carbon and hydrogen storage ability was investigated in activated carbon materials fabricated from waste coffee beans. The specific surface area of porous carbon materials calculated from N2 adsorption isotherms stood at 2070 m2/g when the weight ratio of KOH to carbon materials was 5:1, and pore size was in the range of approximately 0.6 to 1.1 nm as micropores. In the structural analysis, X-ray diffraction analysis and Raman spectroscopy indicated structural change in these carbon materials through KOH activation. The order of the graphite structure changed to a smaller scale with this activation. It is theorized that specific surface area increased using micropores provided by carbon materials developed from the descent of the graphite structure. Hydrogen storage ability improved with these structural changes, and reached 0.6 wt % at 2070 m2/g. These results suggest that hydrogen storage ability is conferred by the chemical effect on graphite of carbon materials.

  14. Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Doludenko, I. M.; Khmelenin, D. N.; Zagorskiy, D. L.; Bedin, S. A.; Ivanov, I. M.

    2018-05-01

    The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni ( Fm3m) and Cu ( Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.

  15. Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration

    PubMed Central

    Miller, Thomas F.

    2017-01-01

    We present a coarse-grained simulation model that is capable of simulating the minute-timescale dynamics of protein translocation and membrane integration via the Sec translocon, while retaining sufficient chemical and structural detail to capture many of the sequence-specific interactions that drive these processes. The model includes accurate geometric representations of the ribosome and Sec translocon, obtained directly from experimental structures, and interactions parameterized from nearly 200 μs of residue-based coarse-grained molecular dynamics simulations. A protocol for mapping amino-acid sequences to coarse-grained beads enables the direct simulation of trajectories for the co-translational insertion of arbitrary polypeptide sequences into the Sec translocon. The model reproduces experimentally observed features of membrane protein integration, including the efficiency with which polypeptide domains integrate into the membrane, the variation in integration efficiency upon single amino-acid mutations, and the orientation of transmembrane domains. The central advantage of the model is that it connects sequence-level protein features to biological observables and timescales, enabling direct simulation for the mechanistic analysis of co-translational integration and for the engineering of membrane proteins with enhanced membrane integration efficiency. PMID:28328943

  16. 12. "OBSERVATION POSTS, STRUCTURAL PLANS AND DETAILS." Specifications No. OC25572; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "OBSERVATION POSTS, STRUCTURAL PLANS AND DETAILS." Specifications No. OC2-55-72; Drawing No. 60-09-12; sheet 89 of 148; file no. 1321/40, Rev. A. Very faint stamp above note reads: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Uncovering the Detailed Structure and Dynamics of Andromeda's Complex Stellar Disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire; Guhathakurta, Puragra; Seth, Anil; Dalcanton, Julianne; Widrow, Larry; Splash Team, Phat Team

    2015-01-01

    Lambda cold dark matter (LCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion ~150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LCDM cosmological

  18. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S

  19. Detailed temporal structure of communication networks in groups of songbirds.

    PubMed

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  20. NMR Crystallography of Enzyme Active Sites: Probing Chemically-Detailed, Three-Dimensional Structure in Tryptophan Synthase

    PubMed Central

    Dunn, Michael F.

    2013-01-01

    Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR

  1. A statistical approach to develop a detailed soot growth model using PAH characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Abhijeet; Celnik, Matthew; Shirley, Raphael

    A detailed PAH growth model is developed, which is solved using a kinetic Monte Carlo algorithm. The model describes the structure and growth of planar PAH molecules, and is referred to as the kinetic Monte Carlo-aromatic site (KMC-ARS) model. A detailed PAH growth mechanism based on reactions at radical sites available in the literature, and additional reactions obtained from quantum chemistry calculations are used to model the PAH growth processes. New rates for the reactions involved in the cyclodehydrogenation process for the formation of 6-member rings on PAHs are calculated in this work based on density functional theory simulations. Themore » KMC-ARS model is validated by comparing experimentally observed ensembles on PAHs with the computed ensembles for a C{sub 2}H{sub 2} and a C{sub 6}H{sub 6} flame at different heights above the burner. The motivation for this model is the development of a detailed soot particle population balance model which describes the evolution of an ensemble of soot particles based on their PAH structure. However, at present incorporating such a detailed model into a population balance is computationally unfeasible. Therefore, a simpler model referred to as the site-counting model has been developed, which replaces the structural information of the PAH molecules by their functional groups augmented with statistical closure expressions. This closure is obtained from the KMC-ARS model, which is used to develop correlations and statistics in different flame environments which describe such PAH structural information. These correlations and statistics are implemented in the site-counting model, and results from the site-counting model and the KMC-ARS model are in good agreement. Additionally the effect of steric hindrance in large PAH structures is investigated and correlations for sites unavailable for reaction are presented. (author)« less

  2. An attempt to obtain a detailed declination chart from the United States magnetic anomaly map

    USGS Publications Warehouse

    Alldredge, L.R.

    1989-01-01

    Modern declination charts of the United States show almost no details. It was hoped that declination details could be derived from the information contained in the existing magnetic anomaly map of the United States. This could be realized only if all of the survey data were corrected to a common epoch, at which time a main-field vector model was known, before the anomaly values were computed. Because this was not done, accurate declination values cannot be determined. In spite of this conclusion, declination values were computed using a common main-field model for the entire United States to see how well they compared with observed values. The computed detailed declination values were found to compare less favourably with observed values of declination than declination values computed from the IGRF 1985 model itself. -from Author

  3. Structure and photochromic properties of molybdenum-containing silica gels obtained by molecular-lamination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belotserkovskaya, N.G.; Dobychin, D.P.; Pak, V.N.

    1992-05-10

    The structure and physicochemical properties of molybdenum-containing silica gels obtained by molecular lamination have been studied quite extensively. Up to the present, however, no studies have been made of the influence of the pore structure of the original silica gel on the structure and properties of molybdenum-containing silica gels (MSG). The problem is quite important, since molybdenum silicas obtained by molecular lamination may find applications in catalysis and as sensors of UV radiation. In either case, the structure of the support is not a factor to be ignored. Here, the authors are reporting on an investigation of the structure ofmore » MSG materials with different pore structures and their susceptibility to reduction of the Mo(VI) oxide groupings when exposed to UV radiation. 16 refs., 2 figs., 2 tabs.« less

  4. Imaging the internal structure of fluid upflow zones with detailed digital Parasound echosounder surveys

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Zuehlsdorff, L.; von Lom-Keil, H.; Schwenk, T.

    2001-12-01

    Sites of venting fluids both with continuous and episodic supply often reveal complex surface and internal structures, which are difficult to image and cause problems to transfer results from local sampling towards a structural reconstruction and a quantification of (average) flux rates. Detailed acoustic and seismic surveys would be required to retrieve this information, but also an appropriate environment, where fluid migration can be properly imaged from contrasts to unaffected areas. Hemipelagic sediments are most suitable, since typically reflectors are coherent and of low lateral amplitude variation and structures are continuous over distances much longer than the scale of fluid migration features. During RV Meteor Cruise M473 and RV Sonne Cruise SO 149 detailed studies were carried out in the vicinity of potential fluid upflow zones in the Lower Congo Basin at 5oS in 3000 m water depth and at the Northern Cascadia Margin in 1000 m water depth. Unexpected sampling of massive gas hydrates from the sea floor as well as of carbonate concretions, shell fragments and different liveforms indicated active fluid venting in a typically hemipelagic realm. The acoustic signature of such zones includes columnar blanking, pockmark depressions at the sea floor, association with small offset faults (< 1m). A dedicated survey with closely spaced grid lines was carried out with the Parasound sediment echosounder (4 kHz), which data were digitally acquired with the ParaDigMA System for further processing and display, to image the spatial structure of the upflow zones. Due to the high data density amplitudes and other acoustic properties could be investigated in a 3D volume and time slices as well as reflector surfaces were analyzed. Pronounced lateral variations of reflection amplitudes within a complex pattern indicate potential pathways for fluid/gas migration and occurrences of near-surface gas hydrate deposits, which may be used to trace detailed surface evidence from side

  5. Yes, one can obtain better quality structures from routine X-ray data collection.

    PubMed

    Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof

    2016-01-01

    Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also

  6. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    PubMed

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  7. Calculation methods study on hot spot stress of new girder structure detail

    NASA Astrophysics Data System (ADS)

    Liao, Ping; Zhao, Renda; Jia, Yi; Wei, Xing

    2017-10-01

    To study modeling calculation methods of new girder structure detail's hot spot stress, based on surface extrapolation method among hot spot stress method, a few finite element analysis models of this welded detail were established by finite element software ANSYS. The influence of element type, mesh density, different local modeling methods of the weld toe and extrapolation methods was analyzed on hot spot stress calculation results at the toe of welds. The results show that the difference of the normal stress in the thickness direction and the surface direction among different models is larger when the distance from the weld toe is smaller. When the distance from the toe is greater than 0.5t, the normal stress of solid models, shell models with welds and non-weld shell models tends to be consistent along the surface direction. Therefore, it is recommended that the extrapolated point should be selected outside the 0.5t for new girder welded detail. According to the results of the calculation and analysis, shell models have good grid stability, and extrapolated hot spot stress of solid models is smaller than that of shell models. So it is suggested that formula 2 and solid45 should be carried out during the hot spot stress extrapolation calculation of this welded detail. For each finite element model under different shell modeling methods, the results calculated by formula 2 are smaller than those of the other two methods, and the results of shell models with welds are the largest. Under the same local mesh density, the extrapolated hot spot stress decreases gradually with the increase of the number of layers in the thickness direction of the main plate, and the variation range is within 7.5%.

  8. To select the best tool for generating 3D maintenance data and to set the detailed process for obtaining the 3D maintenance data

    NASA Astrophysics Data System (ADS)

    Prashanth, B. N.; Roy, Kingshuk

    2017-07-01

    Three Dimensional (3D) maintenance data provides a link between design and technical documentation creating interactive 3D graphical training and maintenance material. It becomes difficult for an operator to always go through huge paper manuals or come running to the computer for doing maintenance of a machine which makes the maintenance work fatigue. Above being the case, a 3D animation makes maintenance work very simple since, there is no language barrier. The research deals with the generation of 3D maintenance data of any given machine. The best tool for obtaining the 3D maintenance is selected and the tool is analyzed. Using the same tool, a detailed process for extracting the 3D maintenance data for any machine is set. This project aims at selecting the best tool for obtaining 3D maintenance data and to select the detailed process for obtaining 3D maintenance data. 3D maintenance reduces use of big volumes of manuals which creates human errors and makes the work of an operator fatiguing. Hence 3-D maintenance would help in training and maintenance and would increase productivity. 3Dvia when compared with Cortona 3D and Deep Exploration proves to be better than them. 3Dvia is good in data translation and it has the best renderings compared to the other two 3D maintenance software. 3Dvia is very user friendly and it has various options for creating 3D animations. Its Interactive Electronic Technical Publication (IETP) integration is also better than the other two software. Hence 3Dvia proves to be the best software for obtaining 3D maintenance data of any machine.

  9. Detailed and reduced chemical-kinetic descriptions for hydrocarbon combustion

    NASA Astrophysics Data System (ADS)

    Petrova, Maria V.

    Numerical and theoretical studies of autoignition processes of fuels such as propane are in need of realistic simplified chemical-kinetic descriptions that retain the essential features of the detailed descriptions. These descriptions should be computationally feasible and cost-effective. Such descriptions are useful for investigating ignition processes that occur, for example, in homogeneous-charge compression-ignition engines, for studying the structures and dynamics of detonations and in fields such as multi-dimensional Computational Fluid Dynamics (CFD). Reduced chemistry has previously been developed successfully for a number of other hydrocarbon fuels, however, propane has not been considered in this manner. This work focuses on the fuels of propane, as well propene, allene and propyne, for several reasons. The ignition properties of propane resemble those of other higher hydrocarbons but are different from those of the lower hydrocarbons (e.g. ethylene and acetylene). Propane, therefore, may be the smallest hydrocarbon that is representative of higher hydrocarbons in ignition and detonation processes. Since the overall activation energy and ignition times for propane are similar to those of other higher hydrocarbons, including liquid fuels that are suitable for many applications, propane has been used as a model fuel for several numerical and experimental studies. The reason for studying elementary chemistry of propene and C3H4 (allene or propyne) is that during the combustion process, propane breaks down to propene and C3H4 before proceeding to products. Similarly, propene combustion includes C3H4 chemistry. In studying propane combustion, it is therefore necessary to understand the underlying combustion chemistry of propene as well as C3H 4. The first part of this thesis focuses on obtaining and testing a detailed chemical-kinetic description for autoignition of propane, propene and C 3H4, by comparing predictions obtained with this detailed mechanism

  10. Investigating structural details of lipid-cholesterol-A β interactions

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Anunciado, Divina; Heller, William; O'Neill, Hugh; Urban, Volker; Qian, Shuo

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia and is predicted to affect 1 in 85 people around the world by 2050. Amyloid beta (A β) -peptide, a peptide composed of 40- 42 amino acids that is the product of cleavage from the amyloid precursor protein (APP), is regarded to play a major role in the development of AD. In addition, accumulating evidence points to a positive association between cholesterol and AD. Here, we present results from our studies about A β-peptide and cholesterol in bilayer by small-angle neutron scattering (SANS) using a combination of dimyristoyl, phosphocholine (DMPC) and partially deuterated cholesterol (cholesterol-d7) with and without A β. We compare the results using grazing incidence and transmission SANS on lipid bilayer films and unilamellar vesicles respectively. The structural details on vesicles and bilayers work in conjunction with the circular dichroism on peptide in solution and oriented circular dichroism in bilayer films. The studies confirm a positive association of A β with the membrane layers. The results from different studies will be compared and contrasted in presentation.

  11. Micro-structurally detailed model of a therapeutic hydrogel injectate in a rat biventricular cardiac geometry for computational simulations

    PubMed Central

    Sirry, Mazin S.; Davies, Neil H.; Kadner, Karen; Dubuis, Laura; Saleh, Muhammad G.; Meintjes, Ernesta M.; Spottiswoode, Bruce S.; Zilla, Peter; Franz, Thomas

    2013-01-01

    Biomaterial injection based therapies have showed cautious success in restoration of cardiac function and prevention of adverse remodelling into heart failure after myocardial infarction (MI). However, the underlying mechanisms are not well understood. Computational studies utilised simplified representations of the therapeutic myocardial injectates. Wistar rats underwent experimental infarction followed by immediate injection of polyethylene glycol hydrogel in the infarct region. Hearts were explanted, cryo-sectioned and the region with the injectate histologically analysed. Histological micrographs were used to reconstruct the dispersed hydrogel injectate. Cardiac magnetic resonance imaging (CMRI) data from a healthy rat were used to obtain an end-diastolic biventricular geometry which was subsequently adjusted and combined with the injectate model. The computational geometry of the injectate exhibited microscopic structural details found the in situ. The combination of injectate and cardiac geometry provides realistic geometries for multiscale computational studies of intra-myocardial injectate therapies for the rat model that has been widely used for MI research. PMID:23682845

  12. On the structure and dynamics of Ellerman bombs. Detailed study of three events and modelling of Hα

    NASA Astrophysics Data System (ADS)

    Bello González, N.; Danilovic, S.; Kneer, F.

    2013-09-01

    Aims: We study the structure and dynamics of three Ellerman bombs (EBs) observed in an evolving active region. Methods: The active region NOAA 11271 was observed with the Vacuum Tower Telescope at Observatorio del Teide/Tenerife on August 18, 2011. We used the two-dimensional Triple Etalon SOlar Spectrometer (TESOS) to obtain time sequences of the active region and of EBs in Hα at a cadence of 15 s. Simultaneously, we obtained full Stokes profiles with the Tenerife Infrared Polarimeter (TIP II) in the two magnetically sensitive Fe i infrared lines (IR) at 1.56 μ, scanning spatial sections of the area with cadences of 28-46 s. The Hα data were reconstructed with speckle methods to study the evolution of the atmospheric stratification. Two methods were used to extract magnetic field information from the IR Stokes profiles: 1) fitting of the (Q,U,V) profiles by Gaussians; and 2) applying the Milne-Eddington approximation, assuming two separate magnetic structures in the resolution element and fitting by trial and error some profiles from the EB areas. Data from SDO-HMI and -AIA were also used. We performed two-dimensional (2D) non-LTE radiative transfer calculations of Hα in parameterised models of EBs. Results: The three EBs studied in detail occurred in a complex active region near sunspots. They were very bright with a factor of 1.5-2.8 brighter than the nearby area. They lived for 1/2 h and longer. They were related to broadband faculae, but the latter were not the brightest features in the field of view. The EBs occurred in magnetic field configurations with opposite polarity close together. One EB was located at the outskirts of a penumbra of a complex sunspot and showed repeated "flaring" in SDO-AIA data. Another was close to a strong field patch and moved into this during the end of its lifetime. The third EB showed clear changes of field structure during the time it was observed. We obtained from the 2D modelling that heating and increase in Hα opacity

  13. Process for using surface strain measurements to obtain operational loads for complex structures

    NASA Technical Reports Server (NTRS)

    Ko, William L. (Inventor); Richards, William Lance (Inventor)

    2010-01-01

    The invention is an improved process for using surface strain data to obtain real-time, operational loads data for complex structures that significantly reduces the time and cost versus current methods.

  14. Structural Studies of Silver Nanoparticles Obtained Through Single-Step Green Synthesis

    NASA Astrophysics Data System (ADS)

    Prasad Peddi, Siva; Abdallah Sadeh, Bilal

    2015-10-01

    Green synthesis of silver Nanoparticles (AGNP's) has been the most prominent among the metallic nanoparticles for research for over a decade and half now due to both the simplicity of preparation and the applicability of biological species with extensive applications in medicine and biotechnology to reduce and trap the particles. The current article uses Eclipta Prostrata leaf extract as the biological species to cap the AGNP's through a single step process. The characterization data obtained was used for the analysis of the sample structure. The article emphasizes the disquisition of their shape and size of the lattice parameters and proposes a general scheme and a mathematical model for the analysis of their dependence. The data of the synthesized AGNP's has been used to advantage through the introduction of a structural shape factor for the crystalline nanoparticles. The properties of the structure of the AGNP's proposed and evaluated through a theoretical model was undeviating with the experimental consequences. This modus operandi gives scope for the structural studies of ultrafine particles prepared using biological methods.

  15. A new numerical method for inverse Laplace transforms used to obtain gluon distributions from the proton structure function

    NASA Astrophysics Data System (ADS)

    Block, Martin M.; Durand, Loyal

    2011-11-01

    We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F2^{γ p}(x,Q2). We numerically inverted the function g( s), s being the variable in Laplace space, to G( v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g( s)→0 less rapidly than 1/ s as s→∞, e.g., as 1/ s β for 0< β<1. In this note, we derive a new numerical algorithm for such cases, which holds for all positive and non-integer negative values of β. The new algorithm is exact if the original function G( v) is given by the product of a power v β-1 and a polynomial in v. We test the algorithm numerically for very small positive β, β=10-6 obtaining numerical results that imitate the Dirac delta function δ( v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q 2=5 GeV2 down to the lower virtuality Q 2=1.69 GeV2. For devolution, β is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail.

  16. LASER BIOLOGY AND MEDICINE: Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    NASA Astrophysics Data System (ADS)

    Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.

    2002-11-01

    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.

  17. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.

    PubMed

    Dornas, João V; Braun, Jochen

    2018-01-15

    Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Andac, M. Gurhan; Cracchiola, Brad; Egolfopoulos, Fokion N.; Campbell, Charles S.

    1999-01-01

    Dusty reacting flows are of particular interest for a wide range of applications. Inert particles can alter the flammability and extinction limits of a combustible mixture. Reacting particles can release substantial amount of heat and can be used either for power generation or propulsion. Accumulation of combustible particles in air can result in explosions which, for example, can occur in grain elevators, during lumber milling and in mine galleries. Furthermore, inert particles are used as flow velocity markers in reacting flows, and their velocity is measured by non-intrusive laser diagnostic techniques. Despite their importance, dusty reacting flows have been less studied and understood compared to gas phase as well as sprays. The addition of solid particles in a flowing gas stream can lead to strong couplings between the two phases, which can be of dynamic, thermal, and chemical nature. The dynamic coupling between the two phases is caused by the inertia that causes the phases to move with different velocities. Furthermore, gravitational, thermophoretic, photophoretic, electrophoretic, diffusiophoretic, centrifugal, and magnetic forces can be exerted on the particles. In general, magnetic, electrophoretic, centrifugal, photophoretic, and diffusiophoretic can be neglected. On the other hand, thermophoretic forces, caused by steep temperature gradients, can be important. The gravitational forces are almost always present and can affect the dynamic response of large particles. Understanding and quantifying the chemical coupling between two phases is a challenging task. However, all reacting particles begin this process as inert particles, and they must be heated before they participate in the combustion process. Thus, one must first understand the interactions of inert particles in a combustion environment. The in-detail understanding of the dynamics and structure of dusty flows can be only advanced by considering simple flow geometries such as the opposed

  19. 10. DETAIL, CAB SIDE. DETAIL, END OF BOOM. DETAIL, LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL, CAB SIDE. DETAIL, END OF BOOM. DETAIL, LOWER PART OF TOWER, SHOWING METAL WHEELS AND CABLE SPOOLS. DETAIL, LOOKING UP AT THE UNDERSIDE OF THE REVOLVING PLATFORM ATOP THE TOWER. - United Engineering Company Shipyard, Crane, 2900 Main Street, Alameda, Alameda County, CA

  20. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies.

    PubMed

    Davis, Michael J; Janke, Robert

    2018-01-04

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  1. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert

    2018-05-01

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  2. The quest to achieve the detailed structural and functional characterization of CymA.

    PubMed

    Louro, Ricardo O; Paquete, Catarina M

    2012-12-01

    Shewanella oneidensis MR-1 is a sediment organism capable of dissimilatory reduction of insoluble metal compounds such as those of Fe(II) and Mn(IV). This bacterium has been used as a model organism for potential applications in bioremediation of contaminated environments and in the production of energy in microbial fuel cells. The capacity of Shewanella to perform extracellular reduction of metals is linked to the action of several multihaem cytochromes that may be periplasmic or can be associated with the inner or outer membrane. One of these cytochromes is CymA, a membrane-bound tetrahaem cytochrome localized in the periplasm that mediates the electron transfer between the quinone pool in the cytoplasmic membrane and several periplasmic proteins. Although CymA has the capacity to regulate multiple anaerobic respiratory pathways, little is known about the structure and functional mechanisms of this focal protein. Understanding the structure and function of membrane proteins is hampered by inherent difficulties associated with their purification since the choice of the detergents play a critical role in the protein structure and stability. In the present mini-review, we detail the current state of the art in the characterization of CymA, and add recent information on haem structural behaviour for CymA solubilized in different detergents. These structural differences are deduced from NMR spectroscopy data that provide information on the geometry of the haem axial ligands. At least two different conformational forms of CymA are observed for different detergents, which seem to be related to the micelle size. These results provide guidance for the discovery of the most promising detergent that mimics the native lipid bilayer and is compatible with biochemical and structural studies.

  3. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  4. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB)more » by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.« less

  5. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    NASA Astrophysics Data System (ADS)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  6. SEPAC flight software detailed design specifications, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.

  7. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on

  8. Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex*

    PubMed Central

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P.; Chait, Brian T.

    2014-01-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. PMID:25161197

  9. Strengthening of competence planning truss through instructional media development details

    NASA Astrophysics Data System (ADS)

    Handayani, Sri; Nurcahyono, M. Hadi

    2017-03-01

    Competency-Based Learning is a model of learning in which the planning, implementation, and assessment refers to the mastery of competencies. Learning in lectures conducted in the framework for comprehensively realizing student competency. Competence means the orientation of the learning activities in the classroom must be given to the students to be more active learning, active search for information themselves and explore alone or with friends in learning activities in pairs or in groups, learn to use a variety of learning resources and printed materials, electronic media, as well as environment. Analysis of learning wooden structure known weakness in the understanding of the truss detail. Hence the need for the development of media that can provide a clear picture of what the structure of the wooden horses and connection details. Development of instructional media consisted of three phases of activity, namely planning, production and assessment. Learning Media planning should be tailored to the needs and conditions necessary to provide reinforcement to the mastery of competencies, through the table material needs. The production process of learning media is done by using hardware (hardware) and software (software) to support the creation of a medium of learning. Assessment of the media poduk yan include feasibility studies, namely by subject matter experts, media experts, while testing was done according to the student's perception of the product. The results of the analysis of the materials for the instructional aspects of the results obtained 100% (very good) and media analysis for the design aspects of the media expressed very good with a percentage of 88.93%. While the analysis of student perceptions expressed very good with a percentage of 84.84%. Media Learning Truss Details feasible and can be used in the implementation of learning wooden structure to provide capacity-building in planning truss

  10. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  11. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides.

    PubMed

    Tharmalingam, Tharmala; Adamczyk, Barbara; Doherty, Margaret A; Royle, Louise; Rudd, Pauline M

    2013-02-01

    Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.

  12. Fast-NPS-A Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements

    NASA Astrophysics Data System (ADS)

    Eilert, Tobias; Beckers, Maximilian; Drechsler, Florian; Michaelis, Jens

    2017-10-01

    The analysis tool and software package Fast-NPS can be used to analyse smFRET data to obtain quantitative structural information about macromolecules in their natural environment. In the algorithm a Bayesian model gives rise to a multivariate probability distribution describing the uncertainty of the structure determination. Since Fast-NPS aims to be an easy-to-use general-purpose analysis tool for a large variety of smFRET networks, we established an MCMC based sampling engine that approximates the target distribution and requires no parameter specification by the user at all. For an efficient local exploration we automatically adapt the multivariate proposal kernel according to the shape of the target distribution. In order to handle multimodality, the sampler is equipped with a parallel tempering scheme that is fully adaptive with respect to temperature spacing and number of chains. Since the molecular surrounding of a dye molecule affects its spatial mobility and thus the smFRET efficiency, we introduce dye models which can be selected for every dye molecule individually. These models allow the user to represent the smFRET network in great detail leading to an increased localisation precision. Finally, a tool to validate the chosen model combination is provided. Programme Files doi:http://dx.doi.org/10.17632/7ztzj63r68.1 Licencing provisions: Apache-2.0 Programming language: GUI in MATLAB (The MathWorks) and the core sampling engine in C++ Nature of problem: Sampling of highly diverse multivariate probability distributions in order to solve for macromolecular structures from smFRET data. Solution method: MCMC algorithm with fully adaptive proposal kernel and parallel tempering scheme.

  13. Basic as well as detailed neurosonograms can be performed by offline analysis of three-dimensional fetal brain volumes.

    PubMed

    Bornstein, E; Monteagudo, A; Santos, R; Strock, I; Tsymbal, T; Lenchner, E; Timor-Tritsch, I E

    2010-07-01

    To evaluate the feasibility and the processing time of offline analysis of three-dimensional (3D) brain volumes to perform a basic, as well as a detailed, targeted, fetal neurosonogram. 3D fetal brain volumes were obtained in 103 consecutive healthy fetuses that underwent routine anatomical survey at 20-23 postmenstrual weeks. Transabdominal gray-scale and power Doppler volumes of the fetal brain were acquired by one of three experienced sonographers (an average of seven volumes per fetus). Acquisition was first attempted in the sagittal and coronal planes. When the fetal position did not enable easy and rapid access to these planes, axial acquisition at the level of the biparietal diameter was performed. Offline analysis of each volume was performed by two of the authors in a blinded manner. A systematic technique of 'volume manipulation' was used to identify a list of 25 brain dimensions/structures comprising a complete basic evaluation, intracranial biometry and a detailed targeted fetal neurosonogram. The feasibility and reproducibility of obtaining diagnostic-quality images of the different structures was evaluated, and processing times were recorded, by the two examiners. Diagnostic-quality visualization was feasible in all of the 25 structures, with an excellent visualization rate (85-100%) reported in 18 structures, a good visualization rate (69-97%) reported in five structures and a low visualization rate (38-54%) reported in two structures, by the two examiners. An average of 4.3 and 5.4 volumes were used to complete the examination by the two examiners, with a mean processing time of 7.2 and 8.8 minutes, respectively. The overall agreement rate for diagnostic visualization of the different brain structures between the two examiners was 89.9%, with a kappa coefficient of 0.5 (P < 0.001). In experienced hands, offline analysis of 3D brain volumes is a reproducible modality that can identify all structures necessary to complete both a basic and a detailed

  14. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex.

    PubMed

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P; Chait, Brian T

    2014-11-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.

    PubMed

    Dhar, Sumitrajit; Shaffer, Lauren A

    2004-12-01

    The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.

  16. Detailed Northern Anatolian Fault Zone crustal structure from receiver functions

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.

    2013-12-01

    locations at either of the NAFZ fault branches. We observe first-order differences in crustal structure between the crustal blocks that are separated by the faults. Each crustal block also contains regions of strong anisotropy at various depths that will be analyzed further with the full seismological dataset and compared to petrofabric analyses of exhumed fault segments. We will compare our results with other seismological imaging techniques to attempt to resolve the distribution of fault zone deformation with respect to depth. This information will be useful to other complementary Faultlab techniques that will add a detailed insight into the fault structure and dynamics of the NAFZ and contribute more broadly into ongoing research into major strike-slip fault zones.

  17. Structure and Properties of Sio2 Nanopowder Obtained From High-Silica Raw Materials by Plasma Method

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-06-01

    The paper presents a plasma-assisted generation of nanodisperse powder obtained from diatomite, a natural high-silica material. The structure and properties of the obtained material are investigated using the transmission electron microscopy, energy dispersive X-Ray spectroscopy, infrared and X-ray photoelectron spectroscopies, and Brunauer-Emmett-Teller method. It is clearly shown that the obtained SiO2 nanoparticles are spherical, polydisperse and represented in the form of agglomerates. The specific surface of this nanopowder is 32 m2/g. Thermodynamic modeling of the plasma-assisted process is used to obtain the equilibrium compositions of condensed and gaseous reaction products. The plasma process is performed within the 300-5000 K temperature range.

  18. E-detailing: information technology applied to pharmaceutical detailing.

    PubMed

    Montoya, Isaac D

    2008-11-01

    E-detailing can be best described as the use of information technology in the field of pharmaceutical detailing. It is becoming highly popular among pharmaceutical companies because it maximizes the time of the sales force, cuts down the cost of detailing and increases physician prescribing. Thus, the application of information technology is proving to be beneficial to both physicians and pharmaceutical companies. When e-detailing was introduced in 1996, it was limited to the US; however, numerous other countries soon adopted this novel approach to detailing and now it is popular in many developed nations. The objective of this paper is to demonstrate the rapid growth of e-detailing in the field of pharmaceutical marketing. A review of e-detailing literature was conducted in addition to personal conversations with physicians. E-detailing has the potential to reduce marketing costs, increase accessibility to physicians and offer many of the advantages of face-to-face detailing. E-detailing is gaining acceptance among physicians because they can access the information of a pharmaceutical product at their own time and convenience. However, the drug safety aspect of e-detailing has not been examined and e-detailing remains a supplement to traditional detailing and is not yet a replacement to it.

  19. Structural analysis of β-glucosidase mutants derived from a hyperthermophilic tetrameric structure

    PubMed Central

    Nakabayashi, Makoto; Kataoka, Misumi; Mishima, Yumiko; Maeno, Yuka; Ishikawa, Kazuhiko

    2014-01-01

    β-Glucosidase from Pyrococcus furiosus (BGLPf) is a hyperthermophilic tetrameric enzyme which can degrade cellooligosaccharides to glucose under hyperthermophilic conditions and thus holds promise for the saccharification of lignocellulosic biomass at high temperature. Prior to the production of large amounts of this enzyme, detailed information regarding the oligomeric structure of the enzyme is required. Several crystals of BGLPf have been prepared over the past ten years, but its crystal structure had not been solved until recently. In 2011, the first crystal structure of BGLPf was solved and a model was constructed at somewhat low resolution (2.35 Å). In order to obtain more detailed structural data on BGLPf, the relationship between its tetrameric structure and the quality of the crystal was re-examined. A dimeric form of BGLPf was constructed and its crystal structure was solved at a resolution of 1.70 Å using protein-engineering methods. Furthermore, using the high-resolution crystal structural data for the dimeric form, a monomeric form of BGLPf was constructed which retained the intrinsic activity of the tetrameric form. The thermostability of BGLPf is affected by its oligomeric structure. Here, the biophysical and biochemical properties of engineered dimeric and monomeric BGLPfs are reported, which are promising prototype models to apply to the saccharification reaction. Furthermore, details regarding the oligomeric structures of BGLPf and the reasons why the mutations yielded improved crystal structures are discussed. PMID:24598756

  20. Structure investigations of ferromagnetic Co-Ni-Al alloys obtained by powder metallurgy.

    PubMed

    Maziarz, W; Dutkiewicz, J; Lityńska-Dobrzyńska, L; Santamarta, R; Cesari, E

    2010-03-01

    Elemental powders of Co, Ni and Al in the proper amounts to obtain Co(35)Ni(40)Al(25) and Co(40)Ni(35)Al(25) nominal compositions were ball milled in a high-energy mill for 80 h. After 40 h of milling, the formation of a Co (Ni, Al) solid solution with f.c.c. structure was verified by a change of the original lattice parameter and crystallite size. Analytical transmission electron microscopy observations and X-ray diffraction measurements of the final Co (Ni, Al) solid solution showed that the crystallite size scattered from 4 to 8 nm and lattice parameter a = 0.36086 nm. The chemical EDS point analysis of the milled powder particles allowed the calculation of the e/a ratio and revealed a high degree of chemical homogeneity of the powders. Hot pressing in vacuum of the milled powders resulted in obtaining compacts with a density of about 70% of the theoretical one. An additional heat treatment increased the density and induced the martensitic transformation in a parent phase. Selected area diffraction patterns and dark field images obtained from the heat-treated sample revealed small grains around 300 nm in diameter consisting mainly of the ordered gamma phase (gamma'), often appearing as twins, and a small amount of the L1(0) ordered martensite.

  1. Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice.

    PubMed

    Henderson, Richard; McMullan, Greg

    2013-02-01

    Theoretical considerations together with simulations of single-particle electron cryomicroscopy images of biological assemblies in ice demonstrate that atomic structures should be obtainable from images of a few thousand asymmetric units, provided the molecular weight of the whole assembly being studied is greater than the minimum needed for accurate position and orientation determination. However, with present methods of specimen preparation and current microscope and detector technologies, many more particles are needed, and the alignment of smaller assemblies is difficult or impossible. Only larger structures, with enough signal to allow good orientation determination and with enough images to allow averaging of many hundreds of thousands or even millions of asymmetric units, have successfully produced high-resolution maps. In this review, we compare the contrast of experimental electron cryomicroscopy images of two smaller molecular assemblies, namely apoferritin and beta-galactosidase, with that expected from perfect simulated images calculated from their known X-ray structures. We show that the contrast and signal-to-noise ratio of experimental images still require significant improvement before it will be possible to realize the full potential of single-particle electron cryomicroscopy. In particular, although reasonably good orientations can be obtained for beta-galactosidase, we have been unable to obtain reliable orientation determination from experimental images of apoferritin. Simulations suggest that at least 2-fold improvement of the contrast in experimental images at ~10 Å resolution is needed and should be possible.

  2. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-11-01

    Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  3. Leading-Edge Votex-System Details Obtained on F-106B Aircraft Using a Rotating Vapor Screen and Surface Techniques

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Brandon, Jay; Stacy, Kathryn; Johnson, Thomas D., Jr.; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A flight research program to study the flow structure and separated-flow origins over an F-106B aircraft wing is described. The flight parameters presented include Mach numbers from 0.26 to 0.81, angles of attack from 8.5 deg to 22.5 deg, Reynolds numbers from 22.6 x 10(exp 6) to 57.3 x 10(exp 6) and load factors from 0.9 to 3.9 times the acceleration due to gravity. Techniques for vapor screens, image enhancement, photogrammetry, and computer graphics are integrated to analyze vortex-flow systems. Emphasis is placed on the development and application of the techniques. The spatial location of vortex cores and their tracks over the wing are derived from the analysis. Multiple vortices are observed and are likely attributed to small surface distortions in the wing leading-edge region. A major thrust is to correlate locations of reattachment lines obtained from the off-surface (vapor-screen) observations with those obtained from on-surface oil-flow patterns and pressure-port data. Applying vapor-screen image data to approximate reattachment lines is experimental, but depending on the angle of attack, the agreement with oil-flow results is generally good. Although surface pressure-port data are limited, the vapor-screen data indicate reattachment point occurrences consistent with the available data.

  4. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation

    NASA Astrophysics Data System (ADS)

    Köster, Stefan; van Pee, Katharina; Hudel, Martina; Leustik, Martin; Rhinow, Daniel; Kühlbrandt, Werner; Chakraborty, Trinad; Yildiz, Özkan

    2014-04-01

    Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca2+ oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca2+ uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.

  5. A new debate for Turkish physicians: e-detailing.

    PubMed

    Ventura, Keti; Baybars, Miray; Dedeoglu, Ayla Ozhan

    2012-01-01

    The study presents an empirical analysis of the attitudes of Turkish physicians towards e-detailing practices compared to face-to-face detailing. The findings reveal that although physicians have positive attitudes toward e-detailing, on some points they are still undecided and/or have doubts. The structural model revealed that affect, convenience, and informative content influence their attitude in a positive manner, whereas the personal interaction was found to be a negative factor. Physicians' age and frequency of calls received from representatives are moderators. The present study can be seen as an addition to pharmaceutical marketing, an underresearched study field in Turkey, and e-detailing particularly.

  6. Pb(core)/ZnO(shell) nanowires obtained by microwave-assisted method

    PubMed Central

    2011-01-01

    In this study, Pb-filled ZnO nanowires [Pb(core)/ZnO(shell)] were synthesized by a simple and novel one-step vapor transport and condensation method by microwave-assisted decomposition of zinc ferrite. The synthesis was performed using a conventional oven at 1000 W and 5 min of treatment. After synthesis, a spongy white cotton-like material was obtained in the condensation zone of the reaction system. HRTEM analysis revealed that product consists of a Pb-(core) with (fcc) cubic structure that preferentially grows in the [111] direction and a hexagonal wurtzite ZnO-(Shell) that grows in the [001] direction. Nanowire length was more than 5 μm and a statistical analysis determined that the shell and core diameters were 21.00 ± 3.00 and 4.00 ± 1.00 nm, respectively. Experimental, structural details, and synthesis mechanism are discussed in this study. PMID:21985637

  7. Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence

    USGS Publications Warehouse

    Fukuyama, E.; Ellsworth, W.L.; Waldhauser, F.; Kubo, A.

    2003-01-01

    We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (Mw 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P- and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107??E, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130??E was possible as an alternative solution of stress tensor inversion.

  8. Occupation Competency Profile: Steel Detailer Program.

    ERIC Educational Resources Information Center

    Alberta Learning, Edmonton. Apprenticeship and Industry Training.

    This document presents information about the apprenticeship training program of Alberta, Canada, in general and the steel detailer program in particular. The first part of the document discusses the following items: Alberta's apprenticeship and industry training system; the apprenticeship and industry training committee structure; local…

  9. Influences on physicians' adoption of electronic detailing (e-detailing).

    PubMed

    Alkhateeb, Fadi M; Doucette, William R

    2009-01-01

    E-detailing means using digital technology: internet, video conferencing and interactive voice response. There are two types of e-detailing: interactive (virtual) and video. Currently, little is known about what factors influence physicians' adoption of e-detailing. The objectives of this study were to test a model of physicians' adoption of e-detailing and to describe physicians using e-detailing. A mail survey was sent to a random sample of 2000 physicians practicing in Iowa. Binomial logistic regression was used to test the model of influences on physician adoption of e-detailing. On the basis of Rogers' model of adoption, the independent variables included relative advantage, compatibility, complexity, peer influence, attitudes, years in practice, presence of restrictive access to traditional detailing, type of specialty, academic affiliation, type of practice setting and control variables. A total of 671 responses were received giving a response rate of 34.7%. A total of 141 physicians (21.0%) reported using of e-detailing. The overall adoption model for using either type of e-detailing was found to be significant. Relative advantage, peer influence, attitudes, type of specialty, presence of restrictive access and years of practice had significant influences on physician adoption of e-detailing. The model of adoption of innovation is useful to explain physicians' adoption of e-detailing.

  10. Chord Splicing & Joining Detail; Chord & CrossBracing Joint Details; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Splicing & Joining Detail; Chord & Cross-Bracing Joint Details; Cross Bracing Center Joint Detail; Chord & Diagonal Joint Detail - Vermont Covered Bridge, Highland Park, spanning Kokomo Creek at West end of Deffenbaugh Street (moved to), Kokomo, Howard County, IN

  11. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  12. Structural details of Al/Al 2O3 junctions and their role in the formation of electron tunnel barriers

    NASA Astrophysics Data System (ADS)

    Koberidze, M.; Puska, M. J.; Nieminen, R. M.

    2018-05-01

    We present a computational study of the adhesive and structural properties of the Al/Al 2O3 interfaces as building blocks of the metal-insulator-metal (MIM) tunnel devices, where electron transport is accomplished via tunneling mechanism through the sandwiched insulating barrier. The main goal of this paper is to understand, on the atomic scale, the role of the geometrical details in the formation of the tunnel barrier profiles. Initially, we concentrate on the adhesive properties of the interfaces. To provide reliable results, we carefully assess the accuracy of the traditional methods used to examine Al/Al 2O3 systems. These are the most widely employed exchange-correlation functionals—local-density approximation and two different generalized gradient approximations; the universal binding-energy relation for predicting equilibrium interfacial distances and adhesion energies; and the ideal work of separation as a measure of junction stability. In addition, we show that the established interpretation of the computed ideal work of separation might be misleading in predicting the optimal interface structures. Finally, we perform a detailed analysis of the atomic and interplanar relaxations in each junction, and identify their contributions to the tunnel barrier parameters. Our results imply that the structural irregularities on the surface of the Al film have a significant contribution to lowering the tunnel barrier height, while atomic relaxations at the interface and interplanar relaxations in Al2O3 may considerably change the width of the barrier and, thus, distort its uniformity. Both the effects may critically influence the performance of the MIM tunnel devices.

  13. New structural phase obtained by exerting high pressure on (Br2)n@AFI composite material

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Lv, Jia-Yin; Liu, Bo; Liu, Bing-Bing; Yang, Bai

    2018-06-01

    In this paper, we present a theoretical study on the high-pressure behaviors of a (Br2)n@AlPO4-5 (AFI) peapod structure. The influence of the encapsulated Br2 molecule on the structural deformation of AFI crystal is analyzed using the volume-pressure function. The bonding process of the linearly arrayed Br2 molecule transferring to the bromine atomic chain is analyzed by the electron density distribution. A new high-pressure phase with P2 point group symmetry is obtained as the pressure increases to 34 GPa. In addition, electron density difference calculations are used to study the systematic charge transformation. Further analysis indicates that the encapsulated Br2 molecules can significantly modify the electronic structure of the AFI crystal. The band gap of the (Br2)n@AFI decreases with pressure and closes at 9 GPa. Moreover, the calculated bulk modulus and electronic properties indicate that the new structural phase is metallic with a high hardness, providing a new strategy for exploring novel nanomaterials.

  14. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    NASA Astrophysics Data System (ADS)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  15. Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac.

    PubMed

    Cescutti, Paola; Campa, Cristiana; Delben, Franco; Rizzo, Roberto

    2002-11-29

    Dimers and trimers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac were analysed in order to obtain information on the saccharidic sequences present in the polymer. The polysaccharide was digested with cellulase and beta-mannanase and the oligomers produced were isolated by means of size-exclusion chromatography. They were structurally characterised using electrospray mass spectrometry, capillary electrophoresis, and NMR. The investigation revealed that many possible sequences were present in the polymer backbone suggesting a Bernoulli-type chain.

  16. A global/local analysis method for treating details in structural design

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.

    1993-01-01

    A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.

  17. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  18. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  19. Charon's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto's largest moon, Charon, was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Charon's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. All feature names on Pluto and Charon are informal. The global mosaic has been overlain with transparent, colorized topography data wherever on their surfaces stereo data is available. Standing out on Charon is the Caleuche Chasma ("C") in the far north, an enormous trough at least 350 kilometers (nearly 220 miles) long, and reaching 14 kilometers (8.5 miles) deep -- more than seven times as deep as the Grand Canyon. https://photojournal.jpl.nasa.gov/catalog/PIA21860

  20. Pluto's Surface in Detail

    NASA Image and Video Library

    2017-07-14

    On July 14, 2015, NASA's New Horizons spacecraft made its historic flight through the Pluto system. This detailed, high-quality global mosaic of Pluto was assembled from nearly all of the highest-resolution images obtained by the Long-Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. The mosaic is the most detailed and comprehensive global view yet of Pluto's surface using New Horizons data. It includes topography data of the hemisphere visible to New Horizons during the spacecraft's closest approach. The topography is derived from digital stereo-image mapping tools that measure the parallax -- or the difference in the apparent relative positions -- of features on the surface obtained at different viewing angles during the encounter. Scientists use these parallax displacements of high and low terrain to estimate landform heights. The global mosaic has been overlain with transparent, colorized topography data wherever on the surface stereo data is available. Terrain south of about 30°S was in darkness leading up to and during the flyby, so is shown in black. Examples of large-scale topographic features on Pluto include the vast expanse of very flat, low-elevation nitrogen ice plains of Sputnik Planitia ("P") -- note that all feature names in the Pluto system are informal -- and, on the eastern edge of the encounter hemisphere, the aligned, high-elevation ridges of Tartarus Dorsa ("T") that host the enigmatic bladed terrain, mountains, possible cryovolcanos, canyons, craters and more. https://photojournal.jpl.nasa.gov/catalog/PIA21861

  1. Understanding the structure of skill through a detailed analysis of Individuals' performance on the Space Fortress game.

    PubMed

    Towne, Tyler J; Boot, Walter R; Ericsson, K Anders

    2016-09-01

    In this paper we describe a novel approach to the study of individual differences in acquired skilled performance in complex laboratory tasks based on an extension of the methodology of the expert-performance approach (Ericsson & Smith, 1991) to shorter periods of training and practice. In contrast to more traditional approaches that study the average performance of groups of participants, we explored detailed behavioral changes for individual participants across their development on the Space Fortress game. We focused on dramatic individual differences in learning and skill acquisition at the individual level by analyzing the archival game data of several interesting players to uncover the specific structure of their acquired skill. Our analysis revealed that even after maximal values for game-generated subscores were reached, the most skilled participant's behaviors such as his flight path, missile firing, and mine handling continued to be refined and improved (Participant 17 from Boot et al., 2010). We contrasted this participant's behavior with the behavior of several other participants and found striking differences in the structure of their performance, which calls into question the appropriateness of averaging their data. For example, some participants engaged in different control strategies such as "world wrapping" or maintaining a finely-tuned circular flight path around the fortress (in contrast to Participant 17's angular flight path). In light of these differences, we raise fundamental questions about how skill acquisition for individual participants should be studied and described. Our data suggest that a detailed analysis of individuals' data is an essential step for generating a general theory of skill acquisition that explains improvement at the group and individual levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Annotation and structural elucidation of bovine milk oligosaccharides and determination of novel fucosylated structures

    PubMed Central

    Aldredge, Danielle L; Geronimo, Maria R; Hua, Serenus; Nwosu, Charles C; Lebrilla, Carlito B; Barile, Daniela

    2013-01-01

    Bovine milk oligosaccharides (BMOs) are recognized by the dairy and food industries, as well as by infant formula manufacturers, as novel, high-potential bioactive food ingredients. Recent studies revealed that bovine milk contains complex oligosaccharides structurally related to those previously thought to be present in only human milk. These BMOs are microbiotic modulators involved in important biological activities, including preventing pathogen binding to the intestinal epithelium and serving as nutrients for a selected class of beneficial bacteria. Only a small number of BMO structures are fully elucidated. To better understand the potential of BMOs as a class of biotherapeutics, their detailed structure analysis is needed. This study initiated the development of a structure library of BMOs and a comprehensive evaluation of structure-related specificity. The bovine milk glycome was profiled by high-performance mass spectrometry and advanced separation techniques to obtain a comprehensive catalog of BMOs, including several novel, lower abundant neutral and fucosylated oligosaccharides that are often overlooked during analysis. Structures were identified using isomer-specific tandem mass spectroscopy and targeted exoglycosidase digestions to produce a BMO library detailing retention time, accurate mass and structure to allow their rapid identification in future studies. PMID:23436288

  3. 64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE SUPPORT STRUCTURE, STRUCTURE. April 20, 1948. 1048. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. IPUMS: Detailed global data on population characteristics

    NASA Astrophysics Data System (ADS)

    Kugler, T.

    2017-12-01

    Many new and exciting sources of data on human population distributions based on remote sensing, mobile technology, and other mechanisms are becoming available. These new data sources often provide fine scale spatial and/or temporal resolution. However, they typically focus on the location of population, with little or no information on population characteristics. The large and growing collection of data available through the IPUMS family of products complements datasets that provide spatial and temporal detail but little attribute detail by providing the full depth of characteristics covered by population censuses, including demographic, household structure, economic, employment, education, and housing characteristics. IPUMS International provides census microdata for 85 countries. Microdata provide the responses to every census question for each individual in a sample of households. Microdata identify the sub-national geographic unit in which a household is located, but for confidentiality reasons, identified units must include a minimum population, typically 20,000 people. Small-area aggregate data often describe much smaller geographic units, enabling study of detailed spatial patterns of population characteristics. However the structure of aggregate data tables is highly heterogeneous across countries, census years, and even topics within a given census, making these data difficult to work with in any systematic way. A recently funded project will assemble small-area aggregate population and agricultural census data published by national statistical offices. Through preliminary work collecting and cataloging over 10,000 tables, we have identified a small number of structural families that can be used to organize the many different structures. These structural families will form the basis for software tools to document and standardize the tables for ingest into a common database. Both the microdata and aggregate data are made available through IPUMS Terra

  5. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  6. A Review of Crashworthiness of Composite Aircraft Structures

    DTIC Science & Technology

    1990-02-01

    proprietary, or other reaons . Details on the availability of these publications may be obtained from: Graphics Section, National Research Council Canada...bottoming out, good energy-absorbing and load-limiting ability, good post-crushing structural integrity and no significant load rate sensitivity. In a... good energy absorption capability under compressive loadings. However, under tensile or bending conditions, structural integrity may be lost at initial

  7. Featured Image: A Detailed Look at the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  8. Detailed flow-field measurements over a 75 deg swept delta wing

    NASA Technical Reports Server (NTRS)

    Kjelgaard, Scott O.; Sellers, William L., III

    1990-01-01

    Results from an experimental investigation documenting the flowfield over a 75 deg swept delta wing at an angle-of-attack of 20.5 deg are presented. Results obtained include surface flow visualization, off-body flow visualization, and detailed flowfield surveys for various Reynolds numbers. Flowfield surveys at Reynolds numbers of 0.5, 1.0, and 1.5 million based on the root chord were conducted with both a Pitot pressure probe and a 5-hole pressure probe; and 3-component laser velocimeter surveys were conducted at a Reynolds number of 1.0 million. The Pitot pressure surveys were obtained at 5 chordwise stations, the 5-hole probe surveys were obtained at 3 chordwise stations and the laser velocimeter surveys were obtained at one station. The results confirm the classical roll up of the flow into a pair of primary vortices over the delta wing. The velocity measurements indicate that Reynolds number has little effect on the global structure of the flowfield for the Reynolds number range investigated. Measurements of the non-dimensional axial velocity in the core of the vortex indicate a jet like flow with values greater than twice freestream. Comparisons between velocity measurements from the 5-hole pressure probe and the laser velocimeter indicate that the pressure probe does a reasonable job of measuring the flowfield quantities where the velocity gradients in the flowfield are low.

  9. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    NASA Astrophysics Data System (ADS)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  10. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    PubMed

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  11. Resolving the Detailed Structure of Cortical and Thalamic Neurons in the Adult Rat Brain with Refined Biotinylated Dextran Amine Labeling

    PubMed Central

    Ling, Changying; Hendrickson, Michael L.; Kalil, Ronald E.

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes. PMID:23144777

  12. Flight loads measurements obtained from calibrated strain-gage bridges mounted externally on the skin of a low-aspect-ratio wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1976-01-01

    Flight-test measurements of wingloads (shear, bending moment, and torque) were obtained by means of strain-gage bridges mounted on the exterior surface of a low-aspect-ratio, thin, swept wing which had a structural skin, full-depth honeycomb core, sandwich construction. Details concerning the strain-gage bridges, the calibration procedures used, and the flight-test results are presented along with some pressure measurements and theoretical calculations for comparison purposes.

  13. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    PubMed

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  14. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading

    NASA Astrophysics Data System (ADS)

    Xiao, Y.; White, R. G.; Aglietti, G. S.

    2005-05-01

    The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported. .

  15. Detailed mechanism for oxidation of benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1990-01-01

    A detailed mechanism for the oxidation of benzene is presented and used to compute experimentally obtained concentration profiles and ignition delay times over a wide range of equivalence ratio and temperature. The computed results agree qualitatively with all the experimental trends. Quantitative agreement is obtained with several of the composition profiles and for the temperature dependence of the ignition delay times. There are indications, however, that some important reactions are as yet undiscovered in this mechanism. Recent literature expressions have been used for the rate coefficients of most important reactions, except for some involving phenol. The discrepancy between the phenol pyrolysis rate coefficient used in this work and a recent literature expression remains to be explained.

  16. Study of the detail content of Apollo orbital photography

    NASA Technical Reports Server (NTRS)

    Kinzly, R. E.

    1972-01-01

    The results achieved during a study of the Detail Content of Apollo Orbital Photography are reported. The effect of residual motion smear or image reproduction processes upon the detail content of lunar surface imagery obtained from the orbiting command module are assessed. Data and conclusions obtained from the Apollo 8, 12, 14 and 15 missions are included. For the Apollo 8, 12 and 14 missions, the bracket-mounted Hasselblad camera had no mechanism internal to the camera for motion compensation. If the motion of the command module were left totally uncompensated, these photographs would exhibit a ground smear varying from 12 to 27 meters depending upon the focal length of the lens and the exposure time. During the photographic sequences motion compensation was attempted by firing the attitude control system of the spacecraft at a rate to compensate for the motion relative to the lunar surface. The residual smear occurring in selected frames of imagery was assessed using edge analyses methods to obtain and achieved modulation transfer function (MTF) which was compared to a baseline MTF.

  17. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  18. Cornice Detail of Rake, Cornice Detail of Eave, Wood DoubleHung ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cornice Detail of Rake, Cornice Detail of Eave, Wood Double-Hung Window Details, Wood Door Details - Boxley Grist Mill, Boxley vicinity on State Route 43, Buffalo National River, Ponca, Newton County, AR

  19. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    NASA Technical Reports Server (NTRS)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  20. Results of availability imposed configuration details developed for K-DEMO

    DOE PAGES

    Brown, Tom; Titus, Peter; Brooks, Art; ...

    2016-02-05

    We completed a two year study using the Korean fusion demonstration reactor (K-DEMO) where we looked at key Tokamak components and configuration options in preparation of a conceptual design phase. A key part of a device configuration centers on defining an arrangement that enhances the ability to reach high availability values by defining design solutions that foster simplified maintenance operations. In order to maximize the size and minimize the number of in-vessel components enlarged TF coils were defined that incorporate a pair of windings within each coil to mitigate pressure drop issues and to reduce the cost of the coils.more » Furthermore, we defined a semi-permanent shield structure in order to develop labyrinth interfaces between double-null plasma contoured shield modules, provide an entity to align blanket components and provide support against disruption loads—with a load path that equilibrates blanket, TF and PF loads through a base structure. Blanket piping services and auxiliary systems that interface with in-vessel components have played a major role in defining the overall device arrangement—concept details will be presented along with general arrangement features and preliminary results obtained from disruption analysis.« less

  1. Accuracy assessment of modeling architectural structures and details using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Kedzierski, M.; Walczykowski, P.; Orych, A.; Czarnecka, P.

    2015-08-01

    One of the most important aspects when performing architectural documentation of cultural heritage structures is the accuracy of both the data and the products which are generated from these data: documentation in the form of 3D models or vector drawings. The paper describes an assessment of the accuracy of modelling data acquired using a terrestrial phase scanner in relation to the density of a point cloud representing the surface of different types of construction materials typical for cultural heritage structures. This analysis includes the impact of the scanning geometry: the incidence angle of the laser beam and the scanning distance. For the purposes of this research, a test field consisting of samples of different types of construction materials (brick, wood, plastic, plaster, a ceramic tile, sheet metal) was built. The study involved conducting measurements at different angles and from a range of distances for chosen scanning densities. Data, acquired in the form of point clouds, were then filtered and modelled. An accuracy assessment of the 3D model was conducted by fitting it with the point cloud. The reflection intensity of each type of material was also analyzed, trying to determine which construction materials have the highest reflectance coefficients, and which have the lowest reflection coefficients, and in turn how this variable changes for different scanning parameters. Additionally measurements were taken of a fragment of a building in order to compare the results obtained in laboratory conditions, with those taken in field conditions.

  2. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  3. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  4. Patient-specific academic detailing for smoking cessation

    PubMed Central

    Jin, Margaret; Gagnon, Antony; Levine, Mitchell; Thabane, Lehana; Rodriguez, Christine; Dolovich, Lisa

    2014-01-01

    Abstract Objective To describe and to determine the feasibility of a patient-specific academic detailing (PAD) smoking cessation (SC) program in a primary care setting. Design Descriptive cohort feasibility study. Setting Hamilton, Ont. Participants Pharmacists, physicians, nurse practitioners, and their patients. Interventions Integrated pharmacists received basic academic detailing training and education on SC and then delivered PAD to prescribers using structured verbal education and written materials. Data were collected using structured forms. Main outcome measures Five main feasibility criteria were generated based on Canadian academic detailing programs: PAD coordinator time to train pharmacists less than 40 hours; median time of SC education per pharmacist less than 20 hours; median time per PAD session less than 60 minutes for initial visit; percentage of prescribers receiving PAD within 3 months greater than 50%; and number of new SC referrals to pharmacists at 6 months more than 10 patients per 1.0 full-time equivalent (FTE) pharmacist (total of approximately 30 patients). Results Eight pharmacists (5.8 FTE) received basic academic detailing training and education on SC PAD. Forty-eight physicians and 9 nurse practitioners consented to participate in the study. The mean PAD coordinator training time was 29.1 hours. The median time for SC education was 3.1 hours. The median times for PAD sessions were 15 and 25 minutes for an initial visit and follow-up visit, respectively. The numbers of prescribers who had received PAD at 3 and 6 months were 50 of 64 (78.1%) and 57 of 64 (89.1%), respectively. The numbers of new SC referrals at 3 and 6 months were 11 patients per FTE pharmacist (total of 66 patients) and 34 patients per FTE pharmacist (total of 200 patients), respectively. Conclusion This study met the predetermined feasibility criteria with respect to the management, resources, process, and scientific components. Further study is warranted to determine

  5. Structural Design and Sizing of a Metallic Cryotank Concept

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  6. Detail of sheet steel bulkhead, wharf A, looking northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of sheet steel bulkhead, wharf A, looking northwest - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  7. View southwest, wharf A, detail of rebuilt section failure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southwest, wharf A, detail of rebuilt section failure - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  8. Internal kinematic and physical properties in a BCD galaxy: Haro 15 in detail

    NASA Astrophysics Data System (ADS)

    Firpo, V.; Bosch, G.; Hägele, G. F.; Díaz, A. I.; Morrell, N.

    2011-11-01

    We present a detailed study of the kinematic and physical properties of the ionized gas in multiple knots of the blue compact dwarf galaxy Haro 15. Using echelle and long slit spectroscopy data, obtained with different instruments at Las Campanas Observatory, we study the internal kinematic and physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions and in their different components. On the other hand, our echelle spectra show complex kinematics in several conspicuous knots within the galaxy. To perform an in-depth 2D spectroscopic study we complete this work with high spatial and spectral resolution spectroscopy using the Integral Field Unit mode on the Gemini Multi-Object Spectrograph instrument at the Gemini South telescope. With these data we are able to resolve the complex kinematical structure within star forming knots in Haro 15 galaxy.

  9. Detail-enhanced multimodality medical image fusion based on gradient minimization smoothing filter and shearing filter.

    PubMed

    Liu, Xingbin; Mei, Wenbo; Du, Huiqian

    2018-02-13

    In this paper, a detail-enhanced multimodality medical image fusion algorithm is proposed by using proposed multi-scale joint decomposition framework (MJDF) and shearing filter (SF). The MJDF constructed with gradient minimization smoothing filter (GMSF) and Gaussian low-pass filter (GLF) is used to decompose source images into low-pass layers, edge layers, and detail layers at multiple scales. In order to highlight the detail information in the fused image, the edge layer and the detail layer in each scale are weighted combined into a detail-enhanced layer. As directional filter is effective in capturing salient information, so SF is applied to the detail-enhanced layer to extract geometrical features and obtain directional coefficients. Visual saliency map-based fusion rule is designed for fusing low-pass layers, and the sum of standard deviation is used as activity level measurement for directional coefficients fusion. The final fusion result is obtained by synthesizing the fused low-pass layers and directional coefficients. Experimental results show that the proposed method with shift-invariance, directional selectivity, and detail-enhanced property is efficient in preserving and enhancing detail information of multimodality medical images. Graphical abstract The detailed implementation of the proposed medical image fusion algorithm.

  10. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less

  11. Flexural strength and reliability of monolithic and trilayer ceramic structures obtained by the CAD-on technique.

    PubMed

    Basso, G R; Moraes, R R; Borba, M; Griggs, J A; Della Bona, A

    2015-12-01

    To evaluate the flexural strength, Weibull modulus, fracture toughness, and failure behavior of ceramic structures obtained by the CAD-on technique, testing the null hypothesis that trilayer structures show similar properties to monolithic structures. Bar-shaped (1.8mm×4mm×16mm) monolithic specimens of zirconia (IPS e.max ZirCAD - Ivoclar Vivadent) and trilayer specimens of zirconia/fusion ceramic/lithium dissilicate (IPS e.max ZirCAD/IPS e.max CAD Crystall./Connect/IPS e.max CAD, Ivoclar Vivadent) were fabricated (n=30). Specimens were tested in flexure in 37°C deionized water using a universal testing machine at a crosshead speed of 0.5mm/min. Failure loads were recorded, and the flexural strength values were calculated. Fractography principles were used to examine the fracture surfaces under optical and scanning electron microscopy. Data were statistically analyzed using Student's t-test and Weibull statistics (α=0.05). Monolithic and trilayer specimens showed similar mean flexural strengths, characteristic strengths, and Weibull moduli. Trilayer structures showed greater mean critical flaw and fracture toughness values than monolithic specimens (p<0.001). Most critical flaws in the trilayer groups were located on the Y-TZP surface subjected to tension and propagated catastrophically. Trilayer structures showed no flaw deflection at the interface. Considering the CAD-on technique, the trilayer structures showed greater fracture toughness than the monolithic zirconia specimens. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  13. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen; Nguyen, Catherine Quynh Nhu; Shiea, Christopher; Reid, Gavin E.

    2017-07-01

    Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon-carbon and acyl chain carbon-carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N-C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.

  14. Obtaining macroscopic quantities for the contact line problem from Density Functional Theory using asymptotic methods

    NASA Astrophysics Data System (ADS)

    Sibley, David; Nold, Andreas; Kalliadasis, Serafim

    2015-11-01

    Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.

  15. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial fabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating (1) complex composite structural behavior in general and (2) specific aerospace propulsion structural components in particular.

  16. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  17. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  18. INTERIOR; DETAIL OF ANTENNA TRUNK OPENING, LOOKING EAST. Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR; DETAIL OF ANTENNA TRUNK OPENING, LOOKING EAST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI

  19. Detailed imaging of flowing structures at depth using microseismicity: a tool for site investigation?

    NASA Astrophysics Data System (ADS)

    Pytharouli, S.; Lunn, R. J.; Shipton, Z. K.

    2011-12-01

    Field evidence shows that faults and fractures can act as focused pathways or barriers for fluid migration. This is an important property for modern engineering problems, e.g., CO2 sequestration, geological radioactive waste disposal, geothermal energy exploitation, land reclamation and remediation. For such applications the detailed characterization of the location, orientation and hydraulic properties of existing fractures is necessary. These investigations are expensive, requiring the hire of expensive equipment (excavator or drill rigs), which incur standing charges when not in use. In addition, they only provide information for discrete sample 'windows'. Non-intrusive methods have the ability to gather information across an entire area. Methods including electrical resistivity/conductivity and ground penetrating radar (GRP), have been used as tools for site investigations. Their imaging ability is often restricted due to unfavourable on-site conditions e.g. GRP is not useful in cases where a layer of clay or reinforced concrete is present. Our research has shown that high quality seismic data can be successfully used in the detailed imaging of sub-surface structures at depth; using induced microseismicity data recorded beneath the Açu reservoir in Brazil we identified orientations and values of average permeability of open shear fractures at depths up to 2.5km. Could microseismicity also provide information on the fracture width in terms of stress drops? First results from numerical simulations showed that higher stress drop values correspond to narrower fractures. These results were consistent with geological field observations. This study highlights the great potential of using microseismicity data as a supplementary tool for site investigation. Individual large-scale shear fractures in large rock volumes cannot currently be identified by any other geophysical dataset. The resolution of the method is restricted by the detection threshold of the local

  20. Different structures of monoclinic martensitic phases in titanium nickelide

    NASA Astrophysics Data System (ADS)

    Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.

    2000-03-01

    The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.

  1. Fast moving plasma structures in the distant magnetotail

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Smith, E. J.

    1984-01-01

    The paper reports for the first time the detailed time behavior of the intensities and the angular distributions of energetic protons and electrons in the distant magnetotail of the earth at 220 earth radii and 110 earth radii. The data have been obtained by the Max-Planck-Institut/University of Maryland sensor system on ISEE 3 during the spacecraft's first deep tail passage. Three energetic particle bursts are studied in detail. It is suggested that the satellite encounters detached plasma structures evidenced by the isotropic electrons. These structures, probably plasmoids, move with high velocities (about 800 km/s) down the tail. The energetic electrons and protons stream ahead of these fast tailward moving plasma structures, which leads to the various time dispersion effects. This allows, in principle, a determination of the source distance from the satellite.

  2. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy

    PubMed Central

    Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.

    2008-01-01

    Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719

  3. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    PubMed Central

    Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297

  4. Revealing Structural Details of SiCO Ceramics with GIPAW Calculations of Model Structures and Analysis of Experimental 29Si Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nimmo, John; Kroll, Peter

    2015-03-01

    The occurrence of the various SiCxO4-x (1 <=x <=4) mixed tetrahedra in silicon oxycarbide (SiCO) is often quantified by means of experimental 29Si nuclear magnetic resonance. The structural centers are assigned to individual peaks in the spectrum, which can be integrated to give the relative populations. Using a recently-developed method, we show that is is also possible to recover information on the connectivity of these tetrahedra. By combining a huge library of model structures an GIPAW calculations, we show that simple relations exist between the Si-O-Si linking angles and the 29Si NMR chemical shift. In this work, we perform detailed analyses of SiCO 29Si NMR spectra available in literature. We extract angular distributions in agreement with the experimental X-ray and neutron diffraction data. Furthermore, in glasses with large amounts of so-called ``free'' carbon, we observe a significant portion of the {Si}O4 tetrahedra which have disproportionately large angles. These angles indicate the presence of internal SiO2 surfaces or cages-like voids, similar to those found in zeolites or clathrates. This analysis suggests that in SiCO, the ``free'' carbon is incorporated into these voids, which produces strain on the bonding angles of the surrounding host glass.

  5. On 3D flow-structures behind an inclined plate

    NASA Astrophysics Data System (ADS)

    Uruba, Václav; Pavlík, David; Procházka, Pavel; Skála, Vladislav; Kopecký, Václav

    Stereo PIV measurements has been performed behind the inclined plate, angle of attack 5 and 10 deg. Occurrence and dynamics of streamwise structures behind the plate trailing edge have been studied in details using POD method. The streamwise structures are represented by vortices and low- and highvelocity regions, probably streaks. The obtained results support the hypothesis of an airfoil-flow force interaction by Hoffman and Johnson [1,2].

  6. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong

    2012-11-01

    Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).

  7. IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution

    NASA Astrophysics Data System (ADS)

    Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław

    2018-07-01

    Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.

  8. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  9. 10. Detail view of pendant lamps, laminated arch beams and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view of pendant lamps, laminated arch beams and ceiling structure, facing north - Mountain Home Air Force Base, Base Chapel, 350 Willow Street, Cantonment Area, Mountain Home, Elmore County, ID

  10. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  11. Structuration of lipid bases with fully hydrogenated crambe oil and sorbitan monostearate for obtaining zero-trans/low sat fats.

    PubMed

    Stahl, Marcella Aparecida; Buscato, Monise Helen Masuchi; Grimaldi, Renato; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan

    2018-05-01

    Several studies have shown that excessive intake of trans and saturated fatty acids is associated with an increased risk of cardiovascular disease. In this context, the food industry has sought alternatives for the development of healthy lipid bases, with higher levels of unsaturated fatty acids, adapting to current legislation. The incorporation of structuring agents into liquid oils has proven to be a potential alternative for obtaining semi-plastic lipid bases with reduced levels of saturated fatty acids. Thus, the objective of this study was to produce zero trans fat bases with lower saturated fatty acids levels. Palm oil (PO) was used as a zero trans-lipid base reference because of its technological functionality. Blends containing different proportions of high oleic sunflower oil (HOSO) and PO were prepared as follows: control 100: 0; 80:20; 60:40; 40:60; 20:80; and 100: 0 PO: HOSO (w/w%), respectively. Then, 3% of fully hydrogenated crambe oil (FHCO) and 3% sorbitan monostearate (SMS) were added to the blends as structuring agents, forming the structured (S) blends. The addition of HOSO to the PO decreased the saturated fatty acids by up to 30.6%, with consequent increase of unsaturated fatty acids, especially oleic acid. The joint action of the SMS and the FCHO allowed for obtaining structured blends with plastic and spreadability characteristics, as well as modifications throughout the crystallization process of the original blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. View northwest, wharf, A portion AA, detail showing timber groin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf, A portion AA, detail showing timber groin - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  13. 4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF SOUTH (FRONT) ELEVATION AT EAST END OF PORCH WITH STRUCTURAL SYSTEM OF WOOD FRAME WITH BRICK NOGGING REVEALED. - Andalusia, The Cottage, State Road vicinity (Bensalem Township), Andalusia, Bucks County, PA

  14. Detailed transient heme structures of Mb-CO in solution after CO dissociation: an X-ray transient absorption spectroscopic study.

    PubMed

    Stickrath, Andrew B; Mara, Michael W; Lockard, Jenny V; Harpham, Michael R; Huang, Jier; Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X

    2013-04-25

    Although understanding the structural dynamics associated with ligand photodissociation is necessary in order to correlate structure and function in biological systems, few techniques are capable of measuring the ultrafast dynamics of these systems in solution-phase at room temperature. We present here a detailed X-ray transient absorption (XTA) study of the photodissociation of CO-bound myoglobin (Fe(II)CO-Mb) in room-temperature aqueous buffer solution with a time resolution of 80 ps, along with a general procedure for handling biological samples under the harsh experimental conditions that transient X-ray experiments entail. The XTA spectra of (Fe(II)CO-Mb) exhibit significant XANES and XAFS alterations following 527 nm excitation, which remain unchanged for >47 μs. These spectral changes indicate loss of the CO ligand, resulting in a five-coordinate, domed heme, and significant energetic reorganization of the 3d orbitals of the Fe center. With the current experimental setup, each X-ray pulse in the pulse train, separated by ~153 ns, can be separately discriminated, yielding snapshots of the myoglobin evolution over time. These methods can be easily applied to other biological systems, allowing for simultaneous structural and electronic measurements of any biological system with both ultrafast and slow time resolutions, effectively mapping out all of the samples' relevant physiological processes.

  15. Detailed Anatomy of the Cranial Cervical Ganglion in the Dromedary Camel (Camelus dromedarius).

    PubMed

    Nourinezhad, Jamal; Mazaheri, Yazdan; Biglari, Zahra

    2015-08-01

    The detailed morphology and topography of the cranial cervical ganglion (CCG) with its surrounding structures were studied in 10 sides of five heads of adult one-humped camel to determine its general arrangement as well as its differences and similarities to other animals. The following detailed descriptions were obtained: (1) the bilateral CCG was constantly present caudal to cranial base at the rostroventral border of the occipital condyle over the caudolateral part of nasopharynx; (2) the CCG was always in close relations medially with the longus capitis muscle, rostrolaterally with the internal carotid artery, and caudally with the vagus nerve; and (3) the branches of the CCG were the internal carotid and external carotid nerves, jugular nerve, cervical interganglionic branch, laryngopharyngeal branch, carotid sinus branch and communicating branches to the vagus, and first spinal nerves. In conclusion, there was no variation regarding topography of dromedary CCG among the specimens, in spite of typical variations in number, and mainly in origin of nerve branches ramifying from the CCG. In comparative anatomy aspect, the close constant relations, and presence of major nerves (internal/external carotid and jugular nerves) of dromedary CCG exhibited a typical reported animal's pattern. However, the shape, structures lateral to the CCG, the origin and course pattern of external carotid and jugular nerves, the number of the major nerves branches, the communicating branches of the CCG to the spinal and cranial nerves, and the separation of most rostral parts of vagosympathetic trunk of dromedary were different from those of most reported animals. © 2015 Wiley Periodicals, Inc.

  16. Electronic structure of the organic semiconductor copper phthalocyanine: experiment and theory.

    PubMed

    Aristov, V Yu; Molodtsova, O V; Maslyuk, V V; Vyalikh, D V; Zhilin, V M; Ossipyan, Yu A; Bredow, T; Mertig, I; Knupfer, M

    2008-01-21

    The electronic structure of the organic semiconductor copper-phthalocyanine (CuPc) has been determined by a combination of conventional and resonant photoemission, near-edge x-ray absorption, as well as by the first-principles calculations. The experimentally obtained electronic valence band structure of CuPc is in very good agreement with the calculated density of states results, allowing the derivation of detailed site specific information.

  17. Well-ordered structure of methylene blue monolayers on Au(111) surface: electrochemical scanning tunneling microscopy studies.

    PubMed

    Song, Yonghai; Wang, Li

    2009-02-01

    Well-ordered structure of methylene blue (MB) monolayers on Au(111) surface has been successfully obtained by controlling the substrate potential. Electrochemical scanning tunneling microscopy (ECSTM) examined the monolayers of MB on Au(111) in 0.1 M HClO(4) and showed long-range ordered, interweaved arrays of MB with quadratic symmetry on the substrate in the potential range of double-layer charging. High-resolution ECSTM image further revealed the details of the MB monolayers structure of c(5 x 5 radical 3)rect and the flat-lying orientation of ad-molecules. The dependence of molecular organization on the substrate potential and the formation mechanism of well-ordered structure on Au(111) surface were investigated in detail. The obtained well-ordered structure at the interface between a metal and an aqueous electrolyte might possibly be used as high-density device for signal memory and templates for the advanced nanopatterning of surfaces. (c) 2008 Wiley-Liss, Inc.

  18. Cryogenic Tank Structure Sizing With Structural Optimization Method

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Johnson, T. F.; Sleight, D. W.; Saether, E.

    2001-01-01

    Structural optimization methods in MSC /NASTRAN are used to size substructures and to reduce the weight of a composite sandwich cryogenic tank for future launch vehicles. Because the feasible design space of this problem is non-convex, many local minima are found. This non-convex problem is investigated in detail by conducting a series of analyses along a design line connecting two feasible designs. Strain constraint violations occur for some design points along the design line. Since MSC/NASTRAN uses gradient-based optimization procedures. it does not guarantee that the lowest weight design can be found. In this study, a simple procedure is introduced to create a new starting point based on design variable values from previous optimization analyses. Optimization analysis using this new starting point can produce a lower weight design. Detailed inputs for setting up the MSC/NASTRAN optimization analysis and final tank design results are presented in this paper. Approaches for obtaining further weight reductions are also discussed.

  19. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  20. 44. Detail, bridge land span outboard girder brackets carrying utility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Detail, bridge land span outboard girder brackets carrying utility conduit. Structure rests on granite blocks mounted on granite piers. - Broadway Bridge, Spanning Foundry Street, MBTA Yard, Fort Point Channel, & Lehigh Street, Boston, Suffolk County, MA

  1. 6. DETAIL OF ENTRY ON NORTH ELEVATION OF BUILDING 260 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF ENTRY ON NORTH ELEVATION OF BUILDING 260 (STORAGE STRUCTURE) IN STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

  2. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  3. Contrast-detail curves in chest radiography

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Scalzetti, Ernest; Huda, Walter; Saluja, Jasjeet; Lavallee, Robert

    2005-04-01

    We investigated how size and lesion location affect detection of simulated mass lesions in chest radiography. Simulated lesions were added to the center of 10 cm x 10 cm regions of digital chest radiographs, and used in 4-Alternative Forced-Choice (4-AFC) experiments. We determined the lesion contrast required to achieve a 92% correct detection rate I(92%). The mass size was manipulated to range from 1 to 10 mm, and we investigated lesion detection in the lung apex, hilar region, and in the sub-diaphragmatic region. In these experiments, the observer obtained I(92%) from randomized repeats obtained at each of seven lesion sizes, with the results plotted as I(92%) versus lesion size. In addition we investigated the effect of using the same background in the four 4-AFC experiments (twinned) and random backgrounds from the same anatomical region taken from 20 different radiographs. In all three anatomical regions investigated, the slopes of the contrast detail curve for the random background experiments were negative for lesion sizes less than 2.5, 3.5, and 5.5 mm in the hilar (slope of -0.26), apex (slope of -0.54), and sub-diaphragmatic (slope of -0.53) regions, respectively. For lesion sizes greater than these, the slopes were 0.34, 0.23, and 0.40 in the hilar, apex, and sub-diaphragmatic regions, respectively. The positive slopes for portions of the contrast-detail curves in chest radiography are a result of the anatomical background, and show that larger lesions require more contrast for visualization.

  4. 13. Detail, typical window with fireproof shutters closed, northeast rear, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, typical window with fireproof shutters closed, northeast rear, view to southwest, 135mm lens. Note cracks evidencing structural failure. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  5. 12. Detail, typical window with fireproof shutters open, northeast rear, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail, typical window with fireproof shutters open, northeast rear, view to southwest, 135mm lens. Note cracks evidencing structural failure. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  6. View northwest, wharf B, timber framing, detail of cross bracing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf B, timber framing, detail of cross bracing, charred piers, recent galvanized fastenings - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  7. Historic American Buildings Survey, A.S. Burns, Photographer December, 1933 DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Historic American Buildings Survey, A.S. Burns, Photographer December, 1933 DETAIL OF BRIDGE IN PENNSYLVANIA - Structures on Old National Trail, Bridge, U.S. Route 40, Pittsburgh, Allegheny County, PA

  8. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  9. Manpower Cost Analysis of a Distributed En Route Support Structure versus a Consolidated En Route Support Structure

    DTIC Science & Technology

    2010-03-01

    structure. Table 10 below provides a depiction of all the scenarios analyzed and the following subsections detail the advantages and disadvantages of...total cost of approximately $1 million more. Advantageously , the number of bases required to sustain the necessary throughput capability is...is easier to obtain. This is a particular advantage over the first scenario, as long as the host nation(s) is supportive of a two-shift operation

  10. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenne, R.; Homyonfer, M.; Feldman, Y.

    Using the paradigm of carbon fullerenes, it is shown that nanoparticles of inorganic compounds with a layered structure, like MoS{sub 2}, are unstable against bending and form hollow closed clusters, designated inorganic fullerene-like structures (IF). The analogy can be extended to similar nanostructures, like nanotubes (NT), nested fullerenes, fullerenes with negative curvature (Schwartzites), etc. Various synthetic routes are described to obtain isolated phases of IF. Pentagons and heptagons are expected to play a primodal role in the folding of these nanostructures but no direct evidence for their presence or their detailed structure exits so far. Depending on the structure ofmore » the unit cell of the layered compound, apexes of a different topology, like triangles or rectangles, are believed to be stable elements in IF. Applications of such nanoparticles as solid lubricants in mixtures with lubricating fluids are described.« less

  11. Detail of Triton's Surface

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This color photo of Neptune's large satellite Triton was obtained on Aug. 24 1989 at a range of 530,000 kilometers(330,000 miles). The resolution is about 10 kilometers (6.2 miles), sufficient to begin to show topographic detail. The image was made from pictures taken through the green, violet and ultraviolet filters. In this technique, regions that are highly reflective in the ultraviolet appear blue in color. In reality, there is no part of Triton that would appear blue to the eye. The bright southern hemisphere of Triton, which fills most of this frame, is generally pink in tone as is the even brighter equatorial band. The darker regions north of the equator also tend to be pink or reddish in color.

    JPL manages the Voyager project for NASA's Office of Space Science.

  12. Interior detail of south wall with shed roofs showing steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of south wall with shed roofs showing steel structure, paint room on lower right, view facing west-southwest - U.S. Naval Base, Pearl Harbor, Boat Shop, Seventh Street near Avenue E, Pearl City, Honolulu County, HI

  13. 4. DETAIL OF CAST AND WROUGHT IRON RAILING WITH SUPPORTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF CAST AND WROUGHT IRON RAILING WITH SUPPORTING STRUCTURES AND STEEL BEAM, FROM THE NORTH BANK LOOKING SOUTHEAST AT THE WEST (UPSTREAM) SIDE - Railroad Avenue Bridge, Spanning Mispillion River on Church Street, Milford, Sussex County, DE

  14. View south, wharf B, timber framing, detail of cross bracing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south, wharf B, timber framing, detail of cross bracing, recent galvanized straps, bolts and washers - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  15. Automatically inserted technical details improve radiology report accuracy.

    PubMed

    Abujudeh, Hani H; Govindan, Siddharth; Narin, Ozden; Johnson, Jamlik Omari; Thrall, James H; Rosenthal, Daniel I

    2011-09-01

    To assess the effect of automatically inserted technical details on the concordance of a radiology report header with the actual procedure performed. The study was IRB approved and informed consent was waived. We obtained radiology report audit data from the hospital's compliance office from the period of January 2005 through December 2009 spanning a total of 20 financial quarters. A "discordance percentage" was defined as the percentage of total studies in which a procedure code change was made during auditing. Using Chi-square analysis we compared discordance percentages between reports with manually inserted technical details (MITD) and automatically inserted technical details (AITD). The second quarter data of 2007 was not included in the analysis as the switch from MITD to AITD occurred during this quarter. The hospital's compliance office audited 9,110 studies from 2005-2009. Excluding the 564 studies in the second quarter of 2007, we analyzed a total of 8,546 studies, 3,948 with MITD and 4,598 with AITD. The discordance percentage in the MITD group was 3.95% (156/3,948, range per quarter, 1.5- 6.1%). The AITD discordance percentage was 1.37% (63/4,598, range per quarter, 0.0-2.6%). A Chi-square analysis determined a statistically significant difference between the 2 groups (P < 0.001). There was a statistically significant improvement in the concordance of a radiology report header with the performed procedure using automatically inserted technical details compared to manually inserted details. Copyright © 2011 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  16. An efficient and practical approach to obtain a better optimum solution for structural optimization

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu; Huang, Jyun-Hao

    2013-08-01

    For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.

  17. Simulating immersed particle collisions: the Devil's in the details

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  18. The Devil Is in the Details: Evidence from the GED on the Role of Examination System Details in Determining Who Passes. NCSALL Reports #16.

    ERIC Educational Resources Information Center

    Tyler, John H.; Murnane, Richard J.; Willett, John B.

    A study used data from a long-standing examination system, the General Educational Development (GED) certificate, to illustrate that the details of examination systems have marked impacts on the number of test takers who obtain the desired credential and on the racial/ethnic composition of passers. Data provided by the Florida Department of…

  19. 9. DETAIL OF UMBILICAL MAST BASE WITH STEEL STOPS AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF UMBILICAL MAST BASE WITH STEEL STOPS AT EAST END OF MOBILE SERVICE STRUCTURE RAIL; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  20. Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.

    PubMed

    Maximova, Tatiana; Plaku, Erion; Shehu, Amarda

    2016-07-07

    Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths at atomistic detail.

  1. The effect of magnesium ions on chromosome structure as observed by helium ion microscopy.

    PubMed

    Dwiranti, Astari; Hamano, Tohru; Takata, Hideaki; Nagano, Shoko; Guo, Hongxuan; Onishi, Keiko; Wako, Toshiyuki; Uchiyama, Susumu; Fukui, Kiichi

    2014-02-01

    One of the few conclusions known about chromosome structure is that Mg2+ is required for the organization of chromosomes. Scanning electron microscopy is a powerful tool for studying chromosome morphology, but being nonconductive, chromosomes require metal/carbon coating that may conceal information about the detailed surface structure of the sample. Helium ion microscopy (HIM), which has recently been developed, does not require sample coating due to its charge compensation system. Here we investigated the structure of isolated human chromosomes under different Mg2+ concentrations by HIM. High-contrast and resolution images from uncoated samples obtained by HIM enabled investigation on the effects of Mg2+ on chromosome structure. Chromatin fiber information was obtained more clearly with uncoated than coated chromosomes. Our results suggest that both overall features and detailed structure of chromatin are significantly affected by different Mg2+ concentrations. Chromosomes were more condensed and a globular structure of chromatin with 30 nm diameter was visualized with 5 mM Mg2+ treatment, while 0 mM Mg2+ resulted in a less compact and more fibrous structure 11 nm in diameter. We conclude that HIM is a powerful tool for investigating chromosomes and other biological samples without requiring metal/carbon coating.

  2. The amino-terminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Chen, Zhenhang; Fu, Yanjun; He, Qingzhong; Jiang, Lun; Zheng, Jiangge; Gao, Yina; Mei, Pinchao; Chen, Zhongzhou; Ren, Xueqin

    2015-03-01

    Flexibility is an intrinsic property of proteins and essential for their biological functions. However, because of structural flexibility, obtaining high-quality crystals of proteins with heterogeneous conformations remain challenging. Here, we show a novel approach to immobilize traditional precipitants onto molecularly imprinted polymers (MIPs) to facilitate protein crystallization, especially for flexible proteins. By applying this method, high-quality crystals of the flexible N-terminus of human fragile X mental retardation protein are obtained, whose absence causes the most common inherited mental retardation. A novel KH domain and an intermolecular disulfide bond are discovered, and several types of dimers are found in solution, thus providing insights into the function of this protein. Furthermore, the precipitant-immobilized MIPs (piMIPs) successfully facilitate flexible protein crystal formation for five model proteins with increased diffraction resolution. This highlights the potential of piMIPs for the crystallization of flexible proteins.

  3. 9. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: REINFORCEMENT DETAILS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. UPSTREAM EXTENSION TO 60' INFILTRATION PIPE: REINFORCEMENT DETAILS OF VALVE CONTROL STRUCTURE. Sheet A-20, July, 1939. File no. SA 342/29. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  4. 9. Detail of a typical window and a ventilator just ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of a typical window and a ventilator just below the window sill - the only instance of such placement of this feature in the structure. - Perry Township School No. 3, Middle Mount Vernon & Eickhoff Roads, Evansville, Vanderburgh County, IN

  5. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    ERIC Educational Resources Information Center

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  6. Detailed requirements for a next generation nuclear data structure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.

    2016-07-05

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as found in the ENDF format. This set of requirements will be used to guide the development of a new data structure to replace the legacy ENDF format.

  7. DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WING WALL ON OUTLET SIDE OF CULVERT. NOTE THE INCLUSIONS IN THE CONCRETE. OBLIQUE VIEW TO THE SOUTH-SOUTHWEST. 21 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure 58.1X, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  8. 21. Building 202, underside of test stand A, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

  9. View northeast, wharf A, portion AA, details showing earlier piers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast, wharf A, portion AA, details showing earlier piers and braces sloping toward water, reused charred plates for existing decking - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  10. 17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE SERVICE STRUCTURE RAIL WITH STEEL STOPS AND CONCRETE TIE-DOWN BLOCK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    PubMed

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. [Lymphoscintigrams with anatomical landmarks obtained with vector graphics].

    PubMed

    Rubini, Giuseppe; Antonica, Filippo; Renna, Maria Antonia; Ferrari, Cristina; Iuele, Francesca; Stabile Ianora, Antonio Amato; Losco, Matteo; Niccoli Asabella, Artor

    2012-11-01

    Nuclear medicine images are difficult to interpret because they do not include anatomical details. The aim of this study was to obtain lymphoscintigrams with anatomical landmarks that could be easily interpreted by General Physicians. Traditional lymphoscintigrams were processed with Adobe© Photoshop® CS6 and converted into vector images created by Illustrator®. The combination with a silhouette vector improved image interpretation, without resulting in longer radiation exposure or acquisition times.

  13. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  14. A mixed optimization method for automated design of fuselage structures.

    NASA Technical Reports Server (NTRS)

    Sobieszczanski, J.; Loendorf, D.

    1972-01-01

    A procedure for automating the design of transport aircraft fuselage structures has been developed and implemented in the form of an operational program. The structure is designed in two stages. First, an overall distribution of structural material is obtained by means of optimality criteria to meet strength and displacement constraints. Subsequently, the detailed design of selected rings and panels consisting of skin and stringers is performed by mathematical optimization accounting for a set of realistic design constraints. The practicality and computer efficiency of the procedure is demonstrated on cylindrical and area-ruled large transport fuselages.

  15. Detailed Design Documentation, without the Pain

    NASA Astrophysics Data System (ADS)

    Ramsay, C. D.; Parkes, S.

    2004-06-01

    Producing detailed forms of design documentation, such as pseudocode and structured flowcharts, to describe the procedures of a software system:(1) allows software developers to model and discuss their understanding of a problem and the design of a solution free from the syntax of a programming language,(2) facilitates deeper involvement of non-technical stakeholders, such as the customer or project managers, whose influence ensures the quality, correctness and timeliness of the resulting system,(3) forms comprehensive documentation of the system for its future maintenance, reuse and/or redeployment.However, such forms of documentation require effort to create and maintain.This paper describes a software tool which is currently being developed within the Space Systems Research Group at the University of Dundee which aims to improve the utility of, and the incentive for, creating detailed design documentation for the procedures of a software system. The rationale for creating such a tool is briefly discussed, followed by a description of the tool itself, a summary of its perceived benefits, and plans for future work.

  16. Global/local stress analysis of composite structures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1989-01-01

    A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.

  17. HUBBLE CAPTURES DETAILED IMAGE OF URANUS' ATMOSPHERE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere. Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail. The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere. Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal. This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2. CREDIT: Erich Karkoschka (University of Arizona Lunar and Planetary Lab) and NASA

  18. 7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF UPPER SECTIONS OF WEST SIDE SHOWING WHITE INSULATED DUCTWORK VENTILATING CLEAN ROOM AT TOP LEVELS OF MOBILE SERVICE STRUCTURE; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28417, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  19. Detailed Mapping of the Alu Volcano, Ethiopia

    NASA Astrophysics Data System (ADS)

    Agrain, Guillaume; Buso, Roxane; Carlier, Jean; van Wyk de Vries, Benjamin

    2017-04-01

    The Alu volcano in the Danakil Depression is interpreted as a forced-fold related uplift, related to progressive intrusions of sills, or similar tabular intrusions. Alu is in a very isolated and difficult to access area, but Google Earth provides high resolution images that can be used for mapping the structure and volcanic features. We use the imagery to map in as much detail as possible all the morphological features of Alu, which we separate into primary volcanic features and secondary structural features. The mapping has been undertaken by a group undergraduates, graduates and researchers. The group has checked and validated the interpretation of each feature mapped. The data set is available as a kmz, and has been imported into QGIS. The detailed mapping reveals a complex history of multiple lava fields and fissure eruptions, some which pre-date uplift, while others have occurred during uplift, but are subsequently deformed. Similarly, there are cross-cutting structures, and we are able to set up a chronology of events. This shows that uplift grew in an area which was already covered by lavas, that some lava has been probably erupted from Alu's flanks, while most eruptions have been from around the base of Alu. Early in the deformation, thrust faults developed on the lower flanks, similar to those described near the Grosmanaux uplift (van Wyk de Vries et al 2014). These are cut by the larger faults, and by minor fissures. The mapping provides an accessible way of preparing for dedicated fieldwork in preparation of an eventual field expedition to Alu, while extracting the most from remote sensing data.

  20. How glutamate receptor subunits mix and match: details uncovered.

    PubMed

    Hansen, Kasper B; Traynelis, Stephen F

    2011-07-28

    Until now, the atomic details explaining why certain subunits prefer to coassemble has been lacking in our understanding of glutamate receptor biogenesis. In this issue, Kumar et al. describe the structural basis by which preferential subunit assembly occurs for homomeric and heteromeric kainate-type glutamate receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. NUCLEAR ESPIONAGE: Report Details Spying on Touring Scientists.

    PubMed

    Malakoff, D

    2000-06-30

    A congressional report released this week details dozens of sometimes clumsy attempts by foreign agents to obtain nuclear secrets from U.S. nuclear scientists traveling abroad, ranging from offering scientists prostitutes to prying off the backs of their laptop computers. The report highlights the need to better prepare traveling researchers to safeguard secrets and resist such temptations, say the two lawmakers who requested the report and officials at the Department of Energy, which employs the scientists.

  2. Unfolding and refolding details of lysozyme in the presence of β-casein micelles.

    PubMed

    Wu, Fu-Gen; Luo, Jun-Jie; Yu, Zhi-Wu

    2011-02-28

    In this work, we selected a small globular protein, lysozyme, to study how it unfolds and refolds in the presence of micelles composed of the unstructured β-casein proteins by using microcalorimetry and circular dichroism spectroscopy. It was found that a partially unfolded structure of lysozyme starts to form when the β-casein/lysozyme molar ratio is above 0.7, and the structure forms exclusively when the β-casein/lysozyme molar ratio is above 1.6. This partially unfolded state of lysozyme loses most of its tertiary structure and after heating, the denatured lysozyme molecules are trapped in the charged coatings of β-casein micelles and cannot refold upon cooling. The thus obtained protein complex can be viewed as a kind of special polyelectrolyte complex micelle. The net charge ratios of the two proteins and the ionic strength of the dispersions can significantly modulate the electrostatic and hydrophobic interactions between the two proteins. Our present work may have implications for the nanoparticle protein engineering therapy in the biomedicine field and may provide a better understanding of the principles governing the protein-protein interactions. Besides, the heating-cooling-reheating procedure employed in this work can also be used to study the unfolding and refolding details of the target protein in other protein-protein, protein-polymer and protein-small solute systems.

  3. Design of Structurally Efficient Tapered Struts

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2010-01-01

    This report describes the analytical study of two full-scale tapered composite struts. The analytical study resulted in the design of two structurally efficient carbon/epoxy struts in accordance with NASA-specified geometries and loading conditions. Detailed stress analysis was performed of the insert, end fitting, and strut body to obtain an optimized weight with positive margins. Two demonstration struts were fabricated based on a well-established design from a previous Space Shuttle strut development program.

  4. Wood-Polymer composites obtained by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, J.; Lopez, A.; Rodriguez, J.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  5. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    PubMed

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Detailed seismic evaluation of bridges along I-24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    This report presents a seismic rating system and a detailed evaluation procedure for selected highway bridges on/over I-24 in Western Kentucky near the New Madrid Seismic Zone (MNSZ). The rating system, based upon structural vulnerability, seismic an...

  7. 13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW OF BUTTRESS 4 SHOWING THE RESULTS OF POOR CONSTRUCTION WORK. THOUGH NOT A SERIOUS STRUCTURAL DEFICIENCY, THE 'HONEYCOMB' TEXTURE OF THE CONCRETE SURFACE WAS THE RESULT OF INADEQUATE TAMPING AT THE TIME OF THE INITIAL 'POUR'. - Hume Lake Dam, Sequioa National Forest, Hume, Fresno County, CA

  8. Detail of tension bars at end posts western truss. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of tension bars at end posts western truss. Shows adjustable bars at top of structure; diagonal and vertical members on truss are not adjustable. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  9. Influence of annealing temperature on optical properties of the photonic-crystal structures obtained by self-organization of colloidal microspheres of polystyrene and silica

    NASA Astrophysics Data System (ADS)

    Mikhnev, L. V.; Bondarenko, E. A.; Chapura, O. M.; Skomorokhov, A. A.; Kravtsov, A. A.

    2018-01-01

    The influence of annealing temperature on the transmission spectra of photonic crystals composed of polystyrene and silicon dioxide microspheres was studied. It was found that annealing of photonic crystals based on polystyrene and silica leads to a shift in the photonic band gap to the short-wavelength region. Based on the results of optical studies, the dependences of the structural parameters of the obtained opal-like crystals on annealing temperature were obtained. In the case of polystyrene photonic crystals, the displacement of the photonic band gap is observed in a narrow temperature range above the glass transition temperature. For SiO2 photonic crystals, it was found that the process of microspheres sintering is complex and involves three stages of structural modification.

  10. Structure and mechanical properties of parts obtained by selective laser melting of metal powder based on intermetallic compounds Ni3Al

    NASA Astrophysics Data System (ADS)

    Smelov, V. G.; Sotov, A. V.; Agapovichev, A. V.; Nosova, E. A.

    2018-03-01

    The structure and mechanical properties of samples are obtained from metal powder based on intermetallic compound by selective laser melting. The chemical analysis of the raw material and static tensile test of specimens were made. Change in the samples’ structure and mechanical properties after homogenization during four and twenty-four hours were investigated. A small-sized combustion chamber of a gas turbine engine was performed by the selective laser melting method. The print combustion chamber was subjected to the gas-dynamic test in a certain temperature and time range.

  11. Importance of Laser Scanning Resolution in the Process of Recreating the Architectural Details of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Pawłowicz, Joanna A.

    2017-10-01

    The TLS method (Terrestrial Laser Scanning) may replace the traditional building survey methods, e.g. those requiring the use measuring tapes or range finders. This technology allows for collecting digital data in the form of a point cloud, which can be used to create a 3D model of a building. In addition, it allows for collecting data with an incredible precision, which translates into the possibility to reproduce all architectural features of a building. This data is applied in reverse engineering to create a 3D model of an object existing in a physical space. This study presents the results of a research carried out using a point cloud to recreate the architectural features of a historical building with the application of reverse engineering. The research was conducted on a two-storey residential building with a basement and an attic. Out of the building’s façade sticks a veranda featuring a complicated, wooden structure. The measurements were taken at the medium and the highest resolution using a ScanStation C10 laser scanner by Leica. The data obtained was processed using specialist software, which allowed for the application of reverse engineering, especially for reproducing the sculpted details of the veranda. Following digitization, all redundant data was removed from the point cloud and the cloud was subjected to modelling. For testing purposes, a selected part of the veranda was modelled by means of two methods: surface matching and Triangulated Irregular Network. Both modelling methods were applied in the case of data collected at medium and the highest resolution. Creating a model based on data obtained at medium resolution, both by means of the surface matching and the TIN method, does not allow for a precise recreation of architectural details. The study presents certain sculpted elements recreated based on the highest resolution data with superimposed TIN juxtaposed against a digital image. The resulting model is very precise. Creating good models

  12. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    PubMed Central

    Kovalevsky, Andrey; Hanson, B. Leif; Mason, Sax A.; Forsyth, V. Trevor; Fisher, Zoe; Mustyakimov, Marat; Blakeley, Matthew P.; Keen, David A.; Langan, Paul

    2012-01-01

    d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni2+ cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg2+ ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni2+ ions occupying the catalytic metal site (M2) were found at two locations, while Mg2+ in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH. PMID:22948921

  13. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  14. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic

  15. Detailed analysis of the flow in the inducer of a transonic centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Buffaz, Nicolas; Trébinjac, Isabelle

    2012-02-01

    Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. A detailed analysis of the flow in the inducer (i.e. the entry zone of the impeller between the main blade leading edge and the splitter blade leading edge) is proposed from choke to surge. Steady and unsteady simulations were performed using the code elsA, which uses a multi-domain approach on structured meshes and solves the compressible RANS equations, associated with a two-equation turbulence model k-l in the rotating frame of reference. The 1MW LMFA-ECL test rig was used for carrying out the tests in the compressor stage. Unsteady pressure measurements up to 150 kHz and Laser Doppler Anemometry measurements were performed in the inducer. A good agreement is obtained between the experimental and numerical data even if an over dissipation is noticed in the numerical results. The change in flow pattern from choke to surge is mainly due to a change in the tip leakage flow trajectory which straightens, leading to a flow blockage of an individual passage near shroud. A spectral analysis shows that only the blade passing frequency and its harmonics compose the various spectra obtained from choke to surge.

  16. Structural Design of Ares V Interstage Composite Structure

    NASA Technical Reports Server (NTRS)

    Sleigh, David W.; Sreekantamurthy, Thammaiah; Kosareo, Daniel N.; Martin, Robert A.; Johnson, Theodore F.

    2011-01-01

    Preliminary and detailed design studies were performed to mature composite structural design concepts for the Ares V Interstage structure as a part of NASA s Advanced Composite Technologies Project. Aluminum honeycomb sandwich and hat-stiffened composite panel structural concepts were considered. The structural design and analysis studies were performed using HyperSizer design sizing software and MSC Nastran finite element analysis software. System-level design trade studies were carried out to predict weight and margins of safety for composite honeycomb-core sandwich and composite hat-stiffened skin design concepts. Details of both preliminary and detailed design studies are presented in the paper. For the range of loads and geometry considered in this work, the hat-stiffened designs were found to be approximately 11-16 percent lighter than the sandwich designs. A down-select process was used to choose the most favorable structural concept based on a set of figures of merit, and the honeycomb sandwich design was selected as the best concept based on advantages in manufacturing cost.

  17. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    NASA Astrophysics Data System (ADS)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  18. 8. DETAIL OF COMPUTER SCREEN AND CONTROL BOARDS: LEFT SCREEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF COMPUTER SCREEN AND CONTROL BOARDS: LEFT SCREEN TRACKS RESIDUAL CHLORINE; INDICATES AMOUNT OF SUNLIGHT WHICH ENABLES OPERATOR TO ESTIMATE NEEDED CHLORINE; CENTER SCREEN SHOWS TURNOUT STRUCTURES; RIGHT SCREEN SHOWS INDICATORS OF ALUMINUM SULFATE TANK FARM. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  19. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  20. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Machado, Thales R.; Sczancoski, Júlio C.; Beltrán-Mir, Héctor; Nogueira, Içamira C.; Li, Máximo S.; Andrés, Juan; Cordoncillo, Eloisa; Longo, Elson

    2017-05-01

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca10(PO4)6(OH)2] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200-800 °C). Intense and broad emission profiles were achieved at 350 °C (380-750 nm) and 400 °C (380-800 nm). UV-Vis spectroscopy revealed band gap energies (5.58-5.78 eV) higher than the excitation energies ( 3.54 and 2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details.

  1. New method for obtaining position and time structure of source in HDR remote afterloading brachytherapy unit utilizing light emission from scintillator

    PubMed Central

    Hanada, Takashi; Katsuta, Shoichi; Yorozu, Atsunori; Maruyama, Koichi

    2009-01-01

    When using a HDR remote afterloading brachytherapy unit, results of treatment can be greatly influenced by both source position and treatment time. The purpose of this study is to obtain information on the source of the HDR remote afterloading unit, such as its position and time structure, with the use of a simple system consisting of a plastic scintillator block and a charge‐coupled device (CCD) camera. The CCD camera was used for recording images of scintillation luminescence at a fixed rate of 30 frames per second in real time. The source position and time structure were obtained by analyzing the recorded images. For a preset source‐step‐interval of 5 mm, the measured value of the source position was 5.0±1.0mm, with a pixel resolution of 0.07 mm in the recorded images. For a preset transit time of 30 s, the measured value was 30.0±0.6 s, when the time resolution of the CCD camera was 1/30 s. This system enabled us to obtain the source dwell time and movement time. Therefore, parameters such as I192r source position, transit time, dwell time, and movement time at each dwell position can be determined quantitatively using this plastic scintillator‐CCD camera system. PACS number: 87.53.Jw

  2. Formation routes and structural details of the CaF1 layer on Si(111) from high-resolution noncontact atomic force microscopy data

    NASA Astrophysics Data System (ADS)

    Rahe, Philipp; Smith, Emily F.; Wollschläger, Joachim; Moriarty, Philip J.

    2018-03-01

    We investigate the CaF1/Si (111 ) interface using a combination of high-resolution scanning tunneling and noncontact atomic force microscopy operated at cryogenic temperature as well as x-ray photoelectron spectroscopy. Submonolayer CaF1 films grown at substrate temperatures between 550 and 600 ∘C on Si (111 ) surfaces reveal the existence of two island types that are distinguished by their edge topology, nucleation position, measured height, and inner defect structure. Our data suggest a growth model where the two island types are the result of two reaction pathways during CaF1 interface formation. A key difference between these two pathways is identified to arise from the excess species during the growth process, which can be either fluorine or silicon. Structural details as a result of this difference are identified by means of high-resolution noncontact atomic force microscopy and add insights into the growth mode of this heteroepitaxial insulator-on-semiconductor system.

  3. Investigating the Structural Impact of the Glutamine Repeat in Huntingtin Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevozchikova, Tatiana; Stanley, Christopher B; McWilliams-Koeppen, Helen P

    2014-01-01

    Acquiring detailed structural information about the various aggregation states of the huntingtin-exon1 protein (Htt-exon1) is crucial not only for identifying the true nature of the neurotoxic species responsible for Huntington s disease (HD) but also for designing effective therapeutics. Using time-resolved small-angle neutron scattering (TR-SANS), we followed the conformational changes that occurred during fibrillization of the pathologic form of Htt-exon1 (NtQ42P10) and compared the results with those obtained for the wild-type (NtQ22P10). Our results show that the aggregation pathway of NtQ22P10 is very different from that of NtQ42P10, as the initial steps require a monomer to 7-mer transition stage. Inmore » contrast, the earliest species identified for NtQ42P10 are monomer and dimer. The divergent pathways ultimately result in NtQ22P10 fibrils that possess a pack- ing arrangement consistent with the common amyloid sterical zipper model, whereas NtQ42P10 fibrils present a better fit to the Perutz b-helix structural model. The structural details obtained by TR-SANS should help to delineate the key mechanisms that underpin Htt-exon1 aggregation leading to HD.« less

  4. The virtual dissecting room: Creating highly detailed anatomy models for educational purposes.

    PubMed

    Zilverschoon, Marijn; Vincken, Koen L; Bleys, Ronald L A W

    2017-01-01

    Virtual 3D models are powerful tools for teaching anatomy. At the present day, there are a lot of different digital anatomy models, most of these commercial applications are based on a 3D model of a human body reconstructed from images with a 1mm intervals. The use of even smaller intervals may result in more details and more realistic appearances of 3D anatomy models. The aim of this study was to create a realistic and highly detailed 3D model of the hand and wrist based on small interval cross-sectional images, suitable for undergraduate and postgraduate teaching purposes with the possibility to perform a virtual dissection in an educational application. In 115 transverse cross-sections from a human hand and wrist, segmentation was done by manually delineating 90 different structures. With the use of Amira the segments were imported and a surface model/polygon model was created, followed by smoothening of the surfaces in Mudbox. In 3D Coat software the smoothed polygon models were automatically retopologied into a quadrilaterals formation and a UV map was added. In Mudbox, the textures from 90 structures were depicted in a realistic way by using photos from real tissue and afterwards height maps, gloss and specular maps were created to add more level of detail and realistic lightning on every structure. Unity was used to build a new software program that would support all the extra map features together with a preferred user interface. A 3D hand model has been created, containing 100 structures (90 at start and 10 extra structures added along the way). The model can be used interactively by changing the transparency, manipulating single or grouped structures and thereby simulating a virtual dissection. This model can be used for a variety of teaching purposes, ranging from undergraduate medical students to residents of hand surgery. Studying the hand and wrist anatomy using this model is cost-effective and not hampered by the limited access to real dissecting

  5. The Scottish Structural Proteomics Facility: targets, methods and outputs.

    PubMed

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A; Liu, Huanting; McMahon, Stephen A; Yan, Xuan; Kerou, Melina; Weikart, Nadine D; Kadi, Nadia; Sheikh, Md Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M; van Niekerk, C A Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A; Prangishvili, David; Botting, Catherine H; Coote, Peter J; Dryden, David T F; Barton, Geoffrey J; Schwarz-Linek, Ulrich; Challis, Gregory L; Taylor, Garry L; White, Malcolm F; Naismith, James H

    2010-06-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.

  6. CA-LOD: Collision Avoidance Level of Detail for Scalable, Controllable Crowds

    NASA Astrophysics Data System (ADS)

    Paris, Sébastien; Gerdelan, Anton; O'Sullivan, Carol

    The new wave of computer-driven entertainment technology throws audiences and game players into massive virtual worlds where entire cities are rendered in real time. Computer animated characters run through inner-city streets teeming with pedestrians, all fully rendered with 3D graphics, animations, particle effects and linked to 3D sound effects to produce more realistic and immersive computer-hosted entertainment experiences than ever before. Computing all of this detail at once is enormously computationally expensive, and game designers as a rule, have sacrificed the behavioural realism in favour of better graphics. In this paper we propose a new Collision Avoidance Level of Detail (CA-LOD) algorithm that allows games to support huge crowds in real time with the appearance of more intelligent behaviour. We propose two collision avoidance models used for two different CA-LODs: a fuzzy steering focusing on the performances, and a geometric steering to obtain the best realism. Mixing these approaches allows to obtain thousands of autonomous characters in real time, resulting in a scalable but still controllable crowd.

  7. A Computational Observer For Performing Contrast-Detail Analysis Of Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Loew, M. H.

    1988-06-01

    Contrast-Detail (C/D) analysis allows the quantitative determination of an imaging system's ability to display a range of varying-size targets as a function of contrast. Using this technique, a contrast-detail plot is obtained which can, in theory, be used to compare image quality from one imaging system to another. The C/D plot, however, is usually obtained by using data from human observer readings. We have shown earlier(7) that the performance of human observers in the task of threshold detection of simulated lesions embedded in random ultrasound noise is highly inaccurate and non-reproducible for untrained observers. We present an objective, computational method for the determination of the C/D curve for ultrasound images. This method utilizes digital images of the C/D phantom developed at CDRH, and lesion-detection algorithms that simulate the Bayesian approach using the likelihood function for an ideal observer. We present the results of this method, and discuss the relationship to the human observer and to the comparability of image quality between systems.

  8. Acoustic detail guides attention allocation in a selective listening task.

    PubMed

    Wöstmann, Malte; Schröger, Erich; Obleser, Jonas

    2015-05-01

    The flexible allocation of attention enables us to perceive and behave successfully despite irrelevant distractors. How do acoustic challenges influence this allocation of attention, and to what extent is this ability preserved in normally aging listeners? Younger and healthy older participants performed a masked auditory number comparison while EEG was recorded. To vary selective attention demands, we manipulated perceptual separability of spoken digits from a masking talker by varying acoustic detail (temporal fine structure). Listening conditions were adjusted individually to equalize stimulus audibility as well as the overall level of performance across participants. Accuracy increased, and response times decreased with more acoustic detail. The decrease in response times with more acoustic detail was stronger in the group of older participants. The onset of the distracting speech masker triggered a prominent contingent negative variation (CNV) in the EEG. Notably, CNV magnitude decreased parametrically with increasing acoustic detail in both age groups. Within identical levels of acoustic detail, larger CNV magnitude was associated with improved accuracy. Across age groups, neuropsychological markers further linked early CNV magnitude directly to individual attentional capacity. Results demonstrate for the first time that, in a demanding listening task, instantaneous acoustic conditions guide the allocation of attention. Second, such basic neural mechanisms of preparatory attention allocation seem preserved in healthy aging, despite impending sensory decline.

  9. Data Mining of Macromolecular Structures.

    PubMed

    van Beusekom, Bart; Perrakis, Anastassis; Joosten, Robbie P

    2016-01-01

    The use of macromolecular structures is widespread for a variety of applications, from teaching protein structure principles all the way to ligand optimization in drug development. Applying data mining techniques on these experimentally determined structures requires a highly uniform, standardized structural data source. The Protein Data Bank (PDB) has evolved over the years toward becoming the standard resource for macromolecular structures. However, the process selecting the data most suitable for specific applications is still very much based on personal preferences and understanding of the experimental techniques used to obtain these models. In this chapter, we will first explain the challenges with data standardization, annotation, and uniformity in the PDB entries determined by X-ray crystallography. We then discuss the specific effect that crystallographic data quality and model optimization methods have on structural models and how validation tools can be used to make informed choices. We also discuss specific advantages of using the PDB_REDO databank as a resource for structural data. Finally, we will provide guidelines on how to select the most suitable protein structure models for detailed analysis and how to select a set of structure models suitable for data mining.

  10. Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands.

    PubMed

    Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu

    2005-04-21

    Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.

  11. Using ecological zones to increase the detail of Landsat classifications

    NASA Technical Reports Server (NTRS)

    Fox, L., III; Mayer, K. E.

    1981-01-01

    Changes in classification detail of forest species descriptions were made for Landsat data on 2.2 million acres in northwestern California. Because basic forest canopy structures may exhibit very similar E-M energy reflectance patterns in different environmental regions, classification labels based on Landsat spectral signatures alone become very generalized when mapping large heterogeneous ecological regions. By adding a seven ecological zone stratification, a 167% improvement in classification detail was made over the results achieved without it. The seven zone stratification is a less costly alternative to the inclusion of complex collateral information, such as terrain data and soil type, into the Landsat data base when making inventories of areas greater than 500,000 acres.

  12. Development of a thermal and structural model for a NASTRAN finite-element analysis of a hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Lameris, J.

    1984-01-01

    The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.

  13. 8. Detail, typical shedroofed entry on south side. The current ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail, typical shed-roofed entry on south side. The current project will replace these with similar structures that will allow handicap access to the lean-to portion of the building containing offices, restrooms, and other employee spaces. - Interurban Electric Railway Bridge Yard Shop, Interstate 80 at Alameda County Postmile 2.0, Oakland, Alameda County, CA

  14. Detail of wharf A timber framing, showing piers and pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wharf A timber framing, showing piers and pier caps or plates stepping down for a sloped launching deck, now built-up for a flat deck, interior of sheet steel bulkhead is visible at wharf edge - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  15. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  16. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  17. 4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  18. Fractal bimetallic plasmonic structures obtained by laser deposition of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bukharov, D. N.; Arakelyan, S. M.; Kutrovskaya, S. V.; Kucherik, A. O.; Osipov, A. V.; Istratov, A. V.; Vartanyan, T. A.; Itina, T. E.; Kavokin, A. V.

    2017-09-01

    We produce bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. After several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness and morphology. By changing laser scanning parameters, the film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness and spacing between the particles. The transmittance spectra of the deposited films are shown to be governed by their morphology.

  19. NASA experiments on the B-720 structure and seats

    NASA Astrophysics Data System (ADS)

    Alfaro-Bou, E.

    1986-01-01

    Two experiments onboard a remotely piloted transport aircraft that was crashed on landing are discussed. The structural experiment deals with the location and distribution of the instrumentation throughout the airplane structure. In the seat experiment, the development and testing of an energy absorbing seat are discussed. The objective of the structural experiment was to obtain a data base of structural crash loads for use in the advancement of crashworthy technology of materials (such as composites) in structural design and for use in the comparison between computer and experimental results. The objective of the seat experiment was to compare the performance of an energy absorbing transport seat and a standard seat when subjected to similar crash pulses. Details are given on the location of instrumentation, on the dynamic seat test pulse and headward acceleration limits.

  20. Imaging the Alpine Fault: preliminary results from a detailed 3D-VSP experiment at the DFDP-2 drill site in Whataroa, New Zealand

    NASA Astrophysics Data System (ADS)

    Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew

    2017-04-01

    The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data

  1. 5 CFR 532.411 - Details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Details. 532.411 Section 532.411 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PREVAILING RATE SYSTEMS Pay Administration § 532.411 Details. An appropriated fund employee detailed to a position other than the position to...

  2. Nanostructured MgTiO3 thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.

    2015-12-01

    A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.

  3. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less

  4. Detail, Facture, and Colour in the Architecture of Polish Single-Family Houses after 1989

    NASA Astrophysics Data System (ADS)

    Sztafrowski, Marek

    2017-10-01

    The article presents single-family houses architecture transformations since 1989, with particularly close attention paid to the significance of detail, facture, and colour. The article presents the architecture as an art of designing and building facilities with both use and aesthetic value, an art of shaping space and building forms. Architectural work should correspond to the intended function, technique, economic and aesthetic requirements, thus shaping all elements of human immediate environment, both inside and outside of the building. Architecture of the building is perceived as form, structure, and function, as well as detail, facture, and colour. Facture and colour are created through materials used for external finishes. The solid of the building is noticed first while looking at the building, then the finishes detail such as colour, facture, and detail. Materials for external finishes are commonly selected for their aesthetic value equally with their technical characteristics. The detail was always a characteristic element of style. However, currently the fashion for details can be observed, the fashion for usage of materials for external finishes and inter-connected with that colour and facture. The architecture of Polish single-family houses underwent considerable metamorphosis after system change of 1989 - from destitute in form, devoid in detail and colour socmodernism, to architecture extremely varied in terms of form, utilised structures, materials, and detail. Hence, appearance of the phenomenon called fashion can be observed in the architecture, understood as constant changeability, seeking novelty, and creation based on opinion-forming centres. The architectural fashion consists of form, function, structure, building materials, detail, facture, and colour trends, e.g. after rejecting socmodernism, steep roofs characteristic for single-family houses trend started. After 1989, initially individual single-family house projects were created; however

  5. Structure influence on mechanical and acoustic properties of freeze-dried gels obtained with the use of hydrocolloids.

    PubMed

    Ciurzyńska, Agnieszka; Marzec, Agata; Mieszkowska, Arleta; Lenart, Andrzej

    2017-04-01

    The influence of the structure formed by the type of hydrocolloids (low-methoxyl pectin, the mixture of xanthan gum, and locust bean gum, and mixture of xanthan gum, and guar gum) and the aeration time (3, 5, 7, and 9 min) on textural properties of freeze-dried gels were investigated. The hardest texture generating the strongest acoustic emission was obtained by freeze-dried pectin gel, characterised by the lowest porosity and the largest pore diameter. Aeration time significantly affected mechanical and acoustic properties of the pectin gel lyophilisate. No effect of gel aeration time on tested characteristics of samples with mixture of hydrocolloids was observed. Strong positive correlations between acoustic energy as well as the maximum force and work and negative ones between porosity and pore diameter indicate that greater resilience and stronger acoustic emission of freeze-dried gels was caused by the reduction of porosity and the increase in the pore size of the material. The research is expected to show the phenomenon of structure formation when preparing and freeze-drying gels and explain the influence of the process parameters (time of aeration, the type of hydrocolloids) on the formation of the internal structure and physical properties of a dried product, especially mechanical and acoustic properties. This achievement will contribute to the development of the science of food and human nutrition, especially within the context of the popular research on aerated diet products. The expected result will be the ability to develop a new technology for producing food with a delicate texture, using the phenomenon of sublimation. As a result, designing changes in the structure of freeze-dried fruit gels with a delicate structure will be possible due to the choice of ingredients and aeration parameters in order to develop innovative food characterised by favorable nutritional, health and functional properties, which will be attractive for the consumers. © 2016

  6. Carbon nanofibers obtained from electrospinning process

    NASA Astrophysics Data System (ADS)

    Bovi de Oliveira, Juliana; Müller Guerrini, Lília; Sizuka Oishi, Silvia; Rogerio de Oliveira Hein, Luis; dos Santos Conejo, Luíza; Cerqueira Rezende, Mirabel; Cocchieri Botelho, Edson

    2018-02-01

    In recent years, reinforcements consisting of carbon nanostructures, such as carbon nanotubes, fullerenes, graphenes, and carbon nanofibers have received significant attention due mainly to their chemical inertness and good mechanical, electrical and thermal properties. Since carbon nanofibers comprise a continuous reinforcing with high specific surface area, associated with the fact that they can be obtained at a low cost and in a large amount, they have shown to be advantageous compared to traditional carbon nanotubes. The main objective of this work is the processing of carbon nanofibers, using polyacrylonitrile (PAN) as a precursor, obtained by the electrospinning process via polymer solution, with subsequent use for airspace applications as reinforcement in polymer composites. In this work, firstly PAN nanofibers were produced by electrospinning with diameters in the range of (375 ± 85) nm, using a dimethylformamide solution. Using a furnace, the PAN nanofiber was converted into carbon nanofiber. Morphologies and structures of PAN and carbon nanofibers were investigated by scanning electron microscopy, Raman Spectroscopy, thermogravimetric analyses and differential scanning calorimeter. The resulting residual weight after carbonization was approximately 38% in weight, with a diameters reduction of 50%, and the same showed a carbon yield of 25%. From the analysis of the crystalline structure of the carbonized material, it was found that the material presented a disordered structure.

  7. Mapping the magnetic and crystal structure in cobalt nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantu-Valle, Jesus; Betancourt, Israel; Sanchez, John E.

    2015-07-14

    Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precession-electron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magneticmore » properties at the nanometric scale.« less

  8. Interaction of polyphenol oxidase of Solanum tuberosum with β-cyclodextrin: Process details and applications.

    PubMed

    Singh, Virendra; Jadhav, Swati B; Singhal, Rekha S

    2015-09-01

    Polysaccharides differing in structure and chemical nature were screened for their ability to bind non-covalently with polyphenol oxidase (PPO) from potato (as a model) and their effect on enzyme activity. All the polysaccharides selected inhibited the PPO but β-cyclodextrin showed maximum inhibition under optimum conditions. Process details for the inhibition of PPO were studied with respect to concentration of β-cyclodextrin, temperature, pH, and time. Higher inhibition constant and lower half life was obtained at 40 °C than at 30 °C in the presence of inhibitor. β-Cyclodextrin showed mixed type of inhibition of PPO. β-Cyclodextrin was further exploited as anti-browning agent in selected fruit juices. It not only showed a significant anti-browning effect on freshly prepared potato juice but was also effective in other fruit juices. Better effect was seen in pineapple, apple and pear as compared to banana, sugarcane and guava fruit juices. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Detailed Gas Chimney Structures in Joetsu Area at Southeastern Margin of Japan Sea, Revealed by High-Resolution 3D Seismic Survey (HR3D)

    NASA Astrophysics Data System (ADS)

    Ohkawa, S.; Hiruta, A.; Yanagimoto, Y.; Matsumoto, R.; Asakawa, E.

    2016-12-01

    To delineate the detailed structure of the gas chimneys, a high-resolution three-dimensional seismic survey (HR3D) was carried out in Joetsu area, at the southeastern margin of Japan Sea where hydrate-related mound and pockmark systems with gas chimneys are widely developed. HR3D data have successfully revealed the fine structure of gas chimneys which were not clearly imaged by the existing seismic data, such as sub-bottom profilers and conventional large-scale 3D surveys for petroleum exploration. HR3D data are also useful to interpolate and extrapolate spatially the geological/geophysical information obtained at wells most of which were drilled into the gas hydrate concentrated zones (GHCZs.) In the areas of low hydrate concentration, the reflections show a parallel-stratified pattern and the bottom simulating reflector (BSR) is parallel to the sea floor reflections. On the other hand, GHCZs are seismologically characterized by (1) strong sea floor reflections on the chimney mounds, (2) chaotic reflection patterns in the chimneys, and (3) pull-up of bottom simulating reflector (BSR) as shown in the attached figure. Strong sea floor reflections suggest that solid hydrates deposit in the very shallow part beneath the sea floor and the chaotic reflections indicate the hydrates are not continuously layered but interspersedly distributed. The BSR pull-up phenomena as much as 70 80msec are caused by high-velocity materials existing between the sea floor and the BSR. The sonic logs acquired by LWD at wells drilled into GHCZs show high velocity up to 3,800 m/s in the massive hydrates. The pull-up times estimated from the sonic data are consistent in general with the observed pull-up times on HR3D sections, suggesting the pull-up times could be useful for a preliminary evaluation of hydrate zones before drilling and/or in the areas without well data. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI

  10. Quantum chemical characterization of N-(2-hydroxybenzylidene)acetohydrazide (HBAH): a detailed vibrational and NLO analysis.

    PubMed

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-01-03

    The molecular modeling of N-(2-hydroxybenzylidene)acetohydrazide (HBAH) was carried out using B3LYP, CAMB3LYP and PBE1PBE levels of density functional theory (DFT). The molecular structure of HBAH was solved by means of IR, NMR and UV-vis spectroscopies. In order to find the stable conformers, conformational analysis was performed based on B3LYP level. A detailed vibrational analysis was made on the basis of potential energy distribution (PED). HOMO and LUMO energies were calculated, and the obtained energies displayed that charge transfer occurs in HBAH. NLO analysis indicated that HBAH can be used as an effective NLO material. NBO analysis also proved that charge transfer, conjugative interactions and intramolecular hydrogen bonding interactions occur through HBAH. Additionally, major contributions from molecular orbitals to the electronic transitions were investigated theoretically. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Detailed gravimetric geoid for the United States.

    NASA Technical Reports Server (NTRS)

    Strange, W. E.; Vincent, S. F.; Berry, R. H.; Marsh, J. G.

    1972-01-01

    A detailed gravimetric geoid was computed for the United States using a combination of satellite-derived spherical harmonic coefficients and 1 by 1 deg mean gravity values from surface gravimetry. Comparisons of this geoid with astrogeodetic geoid data indicate that a precision of plus or minus 2 meters has been obtained. Translations only were used to convert the NAD astrogeodetic geoid heights to geocentric astrogeodetic heights. On the basis of the agreement between the geocentric astrogeodetic geoid heights and the gravimetric geoid heights, no evidence is found for rotation in the North American datum. The value of the zero-order undulation can vary by 10 to 20 meters, depending on which investigator's station positions are used to establish it.

  12. PBF (PER620) interior. Detail view across top of reactor tank. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF (PER-620) interior. Detail view across top of reactor tank. Camera facing northeast. Ait tubing is cleanup equipment. Note projections from reactor structure above water level in tank. Date: May 2004. INEEL negative no. HD-41-5-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. 5 CFR 317.903 - Details.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) or the temporary assignment of a non-SES member to an SES position, with the expectation that the... use competitive procedures when detailing a non-SES employee to an SES position for more than 240 days... OPM approval for a detail of more than 240 days if the detail is of: (i) A non-SES employee to an SES...

  14. 5 CFR 317.903 - Details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) or the temporary assignment of a non-SES member to an SES position, with the expectation that the... use competitive procedures when detailing a non-SES employee to an SES position for more than 240 days... OPM approval for a detail of more than 240 days if the detail is of: (i) A non-SES employee to an SES...

  15. 5 CFR 317.903 - Details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) or the temporary assignment of a non-SES member to an SES position, with the expectation that the... use competitive procedures when detailing a non-SES employee to an SES position for more than 240 days... OPM approval for a detail of more than 240 days if the detail is of: (i) A non-SES employee to an SES...

  16. Features of the structure of a TiB2-based powder material obtained under self-propagating high-temperature synthesis and shear deformation

    NASA Astrophysics Data System (ADS)

    Bazhin, P. M.; Stolin, A. M.; Konstantinov, A. S.; Mukhina, N. I.; Pazniak, A.

    2018-04-01

    The results of an experimental study of TiB2-based powder material obtained under the combination of SHS processes with shear deformation are presented. The effects of the rotor velocity and the delay time before shear deformation application upon the structure of the synthesized powder are studied. The grain structure of titanium diboride is shown to become predominantly round with particles size of 1-5 μm with increasing the rotor velocity from 120 to 600 rpm. At the same time, particles of 200-400 nm size can be observed on the surface of the agglomerates.

  17. Aziridinyl-substituted benzo-1,4-quinones: A preliminary investigation on the theoretical and experimental studies of their structure and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Šarlauskas, Jonas; Tamulienė, Jelena; Čėnas, Narimantas

    2017-05-01

    The detailed structure, chemical and spectroscopic properties of the derivatives of the selected 2,5-bis(1-aziridinyl)-benzo-1,4-quinone conformers were studied by applying quantum chemical and experimental methods. The relationship between the structure and chemical activity of the selected 3 bifunctional bioreductive quinonic anticancer agents - aziridinyl benzoquinones (AzBQ compounds) was obtained. The results obtained showed that the position of aziridine rings influenced by the chemical activity of the investigated compound were more significant than the substitutions of the benzene ring of the AzBQ compounds. The solvents influencing this activity were obtained, too.

  18. A detailed study of the structure of the nested planetary nebula, Hb 12, the Matryoshka nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. M.; López, J. A.; Edwards, M. L.

    We present near-IR, integral field spectroscopic observations of the planetary nebula (PN) Hb 12 using Near-infrared Integral Field Spectrograph (NIFS) on Gemini-North. Combining NIFS with the adaptive optics system Altair, we provide a detailed study of the core and inner structure of this PN. We focus the analysis in the prominent emission lines [Fe II] (1.6436 μm), He I (2.0585 μm), H{sub 2} (2.1214 μm), and Br{sub γ} (2.16553 μm). We find that the [Fe II] emission traces a tilted system of bipolar lobes, with the northern lobe being redshifted and the southern lobe blueshifted. The [Fe II] emission ismore » very faint at the core and only present close to the systemic velocity. There is no H{sub 2} emission in the core, whereas the core is prominent in the He I and Br{sub γ} recombination lines. The H{sub 2} emission is concentrated in equatorial arcs of emission surrounding the core and expanding at ∼30 km s{sup –1}. These arcs are compared with Hubble Space Telescope images and shown to represent nested loops belonging to the inner sections of a much larger bipolar structure that replicates the inner one. The He I and Br{sub γ} emission from the core clearly show a cylindrical central cavity that seems to represent the inner walls of an equatorial density enhancement or torus. The torus is 0.''2 wide (≡200 AU radius at a distance of 2000 pc) and expanding at ≤30 km s{sup –1}. The eastern wall of the inner torus is consistently more intense than the western wall, which could indicate the presence of an off-center star, such as is observed in the similar hourglass PN, MyCn 18. A bipolar outflow is also detected in Br{sub γ} emerging within 0.''1 from the core at ∼ ± 40 km s{sup –1}.« less

  19. Software For Drawing Design Details Concurrently

    NASA Technical Reports Server (NTRS)

    Crosby, Dewey C., III

    1990-01-01

    Software system containing five computer-aided-design programs enables more than one designer to work on same part or assembly at same time. Reduces time necessary to produce design by implementing concept of parallel or concurrent detailing, in which all detail drawings documenting three-dimensional model of part or assembly produced simultaneously, rather than sequentially. Keeps various detail drawings consistent with each other and with overall design by distributing changes in each detail to all other affected details.

  20. The detailed balance requirement and general empirical formalisms for continuum absorption

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1994-01-01

    Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.

  1. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory

    PubMed Central

    Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of “central” and “peripheral” details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting. PMID:26773100

  2. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory.

    PubMed

    Sekeres, Melanie J; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-02-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of "central" and "peripheral" details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting. © 2016 Sekeres et al.; Published by Cold Spring Harbor Laboratory Press.

  3. A detailed study of the proton structure functions in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A. W.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration

    1985-09-01

    The x and Q2 dependence of the single photon exchange cross section d 2σ/d Q2d x and the proton structure functions F2( x, Q2) and R( x, Q2) have been measured in deep inelastic muon proton scattering in the region 0.02 < x < 0.8 and 3 < Q2 < 190 GeV 2. By comparing data at different incident muon energies R was found to have little kinematic dependence and an average value of -0.010 ± 0.037 (stat.) ± 0.102 (stat.). The observed deviations from scaling gave the value of Λ overlineMS, the QCD mass scale parameter, to be 105 -45+55 (stat.) -45+85 (syst.) MeV. The fraction of the momentum of the nucleon carried by gluons was found to be ˜56% at Q2˜22.5 GeV 2. It is shown that to obtain a description of the data for F2( x, Q2) together with that measured in deep inelastic electron-proton scattering at lower Q2 it is necessary to include additional higher twist contributions. The value of Λ overlineMS remains unchanged with the inclusion of these contributions which were found to have an x-dependence of the form x3/(1 - x).

  4. Revisiting the Seductive Details Effect in Multimedia Learning: Context-Dependency of Seductive Details

    ERIC Educational Resources Information Center

    Ozdemir, Devrim; Doolittle, Peter

    2015-01-01

    The purpose of this study was to investigate the effects of context-dependency of seductive details on recall and transfer in multimedia learning environments. Seductive details were interesting yet irrelevant sentences in the instructional text. Two experiments were conducted. The purpose of Experiment 1 was to identify context-dependent and…

  5. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    PubMed Central

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel. PMID:26134107

  6. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    PubMed

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  7. Advanced Structural Analyses by Third Generation Synchrotron Radiation Powder Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakata, M.; Aoyagi, S.; Ogura, T.

    2007-01-19

    Since the advent of the 3rd generation Synchrotron Radiation (SR) sources, such as SPring-8, the capabilities of SR powder diffraction increased greatly not only in an accurate structure refinement but also ab initio structure determination. In this study, advanced structural analyses by 3rd generation SR powder diffraction based on the Large Debye-Scherrer camera installed at BL02B2, SPring-8 is described. Because of high angular resolution and high counting statistics powder data collected at BL02B2, SPring-8, ab initio structure determination can cope with a molecular crystals with 65 atoms including H atoms. For the structure refinements, it is found that a kindmore » of Maximum Entropy Method in which several atoms are omitted in phase calculation become very important to refine structural details of fairy large molecule in a crystal. It should be emphasized that until the unknown structure is refined very precisely, the obtained structure by Genetic Algorithm (GA) or some other ab initio structure determination method using real space structural knowledge, it is not possible to tell whether the structure obtained by the method is correct or not. In order to determine and/or refine crystal structure of rather complicated molecules, we cannot overemphasize the importance of the 3rd generation SR sources.« less

  8. Escape rate for nonequilibrium processes dominated by strong non-detailed balance force

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Xu, Song; Ao, Ping

    2018-02-01

    Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.

  9. Detailed seismic evaluation of bridges on and over the parkways in Western Kentucky.

    DOT National Transportation Integrated Search

    2008-06-01

    The report outlines a rating system and details an evaluation procedure for the seismic evaluation of highway bridges. These processes are later used to investigate the structural integrity of selected highway bridges on and over the parkways in West...

  10. Solar power satellite. Concept evaluation. Activities report. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Comparative data are presented among various design approaches to thermal engine and photovoltaic SPS (Solar Power System) concepts, to provide criteria for selecting the most promising systems for more detailed definition. The major areas of the SPS system to be examined include solar cells, microwave power transmission, transportation, structure, rectenna, energy payback, resources, and environmental issues.

  11. Multiscale assessment of landscape structure in heterogeneous forested area

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Pignatti, S.; Carone, M. T.; Fusilli, L.; Lanfredi, M.; Coppola, R.; Santini, F.

    2010-05-01

    The characterization of landscape structure in space or time is fundamental to infer ecological processes (Ingegnoli, 2002). Landscape pattern arrangements strongly influence forest ecological functioning and biodiversity, as an example landscape fragmentation can induce habitat degradation reducing forest species populations or limiting their recolonization. Such arrangements are spatially correlated and scale-dependent, therefore they have distinctive operational-scales at which they can be best characterized (Wu, 2004). In addition, the detail of the land cover classification can have substantial influences on resulting pattern quantification (Greenberg et al.2001). In order to evaluate the influence of the observational scales and labelling details, we investigated a forested area (Pollino National Park; southern Italy) by analyzing the patch arrangement derived from three remote sensing sensors having different spectral and spatial resolutions. In particular, we elaborated data from the hyperspectral MIVIS (102 bands; ~7m) and Hyperion (220 bands; 30m), and the multispectral Landsat-TM (7 bands; 30m). Moreover, to assess the landscape evolution we investigated the hierarchical structure of the study area (landscape, class, patch) by elaborating two Landsat-TM acquired in 1987 and 1998. Preprocessed data were classified by adopting a supervised procedure based on the Minimum Distance classifier. The obtained labelling correspond to Corine level 5 for the high resolution MIVIS data, to Corine level 4 for Hyperion and to an intermediate level 4-3 for TM data. The analysis was performed by taking into account patch density, diversity and evenness at landscape level; mean patch size and interdispersion at class level; patch structure and perimeter regularity at patch level. The three sensors described a landscape with a quite high level of richness and distribution. The high spectral and spatial resolution of MIVIS data provided the highest diversity level (SHDI

  12. Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification

    NASA Technical Reports Server (NTRS)

    Miller, A. N.; Linden, A. W.

    1972-01-01

    The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.

  13. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical

  14. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    NASA Astrophysics Data System (ADS)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  15. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  16. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregated adversemore » effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. However, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  17. Influence of Network Model Detail on Estimated Health Effects of Drinking Water Contamination Events

    DOE PAGES

    Davis, Michael J.; Janke, Robert

    2015-01-01

    Network model detail can influence the accuracy of results from analyses of water distribution systems. Some previous work has shown the limitations of skeletonized network models when considering water quality and hydraulic effects. Loss of model detail is potentially less important for aggregated effects such as the systemwide health effects associated with a contamination event, but has received limited attention. The influence of model detail on such effects is examined here by comparing results obtained for contamination events using three large network models and several skeletonized versions of the models. Loss of model detail decreases the accuracy of estimated aggregatedmore » adverse effects related to contamination events. It has the potential to have a large negative influence on the results of consequence assessments and the design of contamination warning systems. But, the adverse influence on analysis results can be minimized by restricting attention to high percentile effects (i.e., 95th percentile or higher).« less

  18. Evaluation of normal findings using a detailed and focused technique for transcutaneous abdominal ultrasonography in the horse

    PubMed Central

    2014-01-01

    Background Ultrasonography is an important diagnostic tool in the investigation of abdominal disease in the horse. Several factors may affect the ability to image different structures within the abdomen. The aim of the study was to describe the repeatability of identification of abdominal structures in normal horses using a detailed ultrasonographic examination technique and using a focused, limited preparation technique. Methods A detailed abdominal ultrasound examination was performed in five normal horses, repeated on five occasions (total of 25 examinations). The abdomen was divided into ten different imaging sites, and structures identified in each site were recorded. Five imaging sites were then selected for a single focused ultrasound examination in 20 normal horses. Limited patient preparation was performed. Structures were recorded as ‘identified’ if ultrasonographic features could be distinguished. The location of organs and their frequency of identification were recorded. Data from both phases were analysed to determine repeatability of identification of structures in each examination (irrespective of imaging site), and for each imaging site. Results Caecum, colon, spleen, liver and right kidney were repeatably identified using the detailed technique, and had defined locations. Large colon and right kidney were identified in 100% of examinations with both techniques. Liver, spleen, caecum, duodenum and other small intestine were identified more frequently with the detailed examination. Small intestine was most frequently identified in the ventral abdomen, its identification varied markedly within and between horses, and required repeated examinations in some horses. Left kidney could not be identified in every horse using either technique. Sacculated colon was identified in all ventral sites, and was infrequently identified in dorsal sites. Conclusions Caecum, sacculated large intestine, spleen, liver and right kidney were consistently identified

  19. Dataset on the structural characterization of organosolv lignin obtained from ensiled Poaceae grass and load-dependent molecular weight changes during thermoplastic processing.

    PubMed

    Dörrstein, Jörg; Scholz, Ronja; Schwarz, Dominik; Schieder, Doris; Sieber, Volker; Walther, Frank; Zollfrank, Cordt

    2018-04-01

    This article presents experimental data of organosolv lignin from Poacea grass and structural changes after compounding and injection molding as presented in the research article "Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites" [1]. It supplements the article with morphological (SEM), spectroscopic ( 31 P NMR, FT-IR) and chromatographic (GPC, EA) data of the starting lignin as well as molar mass characteristics (mass average molar mass (M w ) and Polydispersity (D)) of the extracted lignin. Refer to Schwarz et al. [2] for a detailed description of the production of the organosolv residue and for further information on the raw material used for lignin extraction. The dataset is made publicly available and can be useful for extended lignin research and critical analyzes.

  20. Dynamism & Detail

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2004-01-01

    New material discovered in the study of cell research is presented for the benefit of biology teachers. Huge amounts of data are being generated in fields like cellular dynamics, and it is felt that people's understanding of the cell is becoming much more complex and detailed.

  1. 6. Credit BG. Detail view looking north at Building 4306 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit BG. Detail view looking north at Building 4306 (Boiler House) located at southwest corner of Building 4305 (Unicon Portable Hangar). Building retains its original World War II wooden construction and finish. Number sign for Building 4302 belongs to nearby sump pump structure (See HAER photo number CA-170-RR-1) - Edwards Air Force Base, North Base, Unicon Portable Hangar, First & C Streets, Boron, Kern County, CA

  2. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbank, Brian D.; Smith, Nicole

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2more » drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology

  3. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less

  4. Entering an era of dynamic structural biology….

    PubMed

    Orville, Allen M

    2018-05-31

    A recent paper in BMC Biology presents a general method for mix-and-inject serial crystallography, to facilitate the visualization of enzyme intermediates via time-resolved serial femtosecond crystallography (tr-SFX). They apply their method to resolve in near atomic detail the cleavage and inactivation of the antibiotic ceftriaxone by a β-lactamase enzyme from Mycobacterium tuberculosis. Their work demonstrates the general applicability of time-resolved crystallography, from which dynamic structures, at atomic resolution, can be obtained.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0524-5 .

  5. Unraveling protein folding mechanism by analyzing the hierarchy of models with increasing level of detail

    NASA Astrophysics Data System (ADS)

    Hayashi, Tomohiko; Yasuda, Satoshi; Škrbić, Tatjana; Giacometti, Achille; Kinoshita, Masahiro

    2017-09-01

    Taking protein G with 56 residues for a case study, we investigate the mechanism of protein folding. In addition to its native structure possessing α-helix and β-sheet contents of 27% and 39%, respectively, we construct a number of misfolded decoys with a wide variety of α-helix and β-sheet contents. We then consider a hierarchy of 8 different models with increasing level of detail in terms of the number of entropic and energetic physical factors incorporated. The polyatomic structure is always taken into account, but the side chains are removed in half of the models. The solvent is formed by either neutral hard spheres or water molecules. Protein intramolecular hydrogen bonds (H-bonds) and protein-solvent H-bonds (the latter is present only in water) are accounted for or not, depending on the model considered. We then apply a physics-based free-energy function (FEF) corresponding to each model and investigate which structures are most stabilized. This special approach taken on a step-by-step basis enables us to clarify the role of each physical factor in contributing to the structural stability and separately elucidate its effect. Depending on the model employed, significantly different structures such as very compact configurations with no secondary structures and configurations of associated α-helices are optimally stabilized. The native structure can be identified as that with lowest FEF only when the most detailed model is employed. This result is significant for at least the two reasons: The most detailed model considered here is able to capture the fundamental aspects of protein folding notwithstanding its simplicity; and it is shown that the native structure is stabilized by a complex interplay of minimal multiple factors that must be all included in the description. In the absence of even a single of these factors, the protein is likely to be driven towards a different, more stable state.

  6. Combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.

    1989-01-01

    An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.

  7. Hubble Captures Detailed Image of Uranus' Atmosphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.

    Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.

    The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.

    Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.

    This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Subangstrom resolution X-ray structure details aquaporin-water interactions.

    PubMed

    Eriksson, Urszula Kosinska; Fischer, Gerhard; Friemann, Rosmarie; Enkavi, Giray; Tajkhorshid, Emad; Neutze, Richard

    2013-06-14

    Aquaporins are membrane channels that facilitate the flow of water across biological membranes. Two conserved regions are central for selective function: the dual asparagine-proline-alanine (NPA) aquaporin signature motif and the aromatic and arginine selectivity filter (SF). Here, we present the crystal structure of a yeast aquaporin at 0.88 angstrom resolution. We visualize the H-bond donor interactions of the NPA motif's asparagine residues to passing water molecules; observe a polarized water-water H-bond configuration within the channel; assign the tautomeric states of the SF histidine and arginine residues; and observe four SF water positions too closely spaced to be simultaneously occupied. Strongly correlated movements break the connectivity of SF waters to other water molecules within the channel and prevent proton transport via a Grotthuss mechanism.

  9. Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin.

    PubMed

    Lu, Yao; Wei, Xian-Yong; Cao, Jing-Pei; Li, Peng; Liu, Fang-Jing; Zhao, Yun-Peng; Fan, Xing; Zhao, Wei; Rong, Liang-Ce; Wei, Yan-Bin; Wang, Shou-Ze; Zhou, Jun; Zong, Zhi-Min

    2012-07-01

    Detailed compositional analysis of a bio-oil (BO) from pyrolysis of rice husk was carried out. The BO was extracted sequentially with n-hexane, CCl(4), CS(2), benzene and CH(2)Cl(2). In total, 167 organic species were identified with GC/MS in the extracts and classified into alkanes, alcohols, hydroxybenzenes, alkoxybenzenes, dioxolanes, aldehydes, ketones, carboxylic acids, esters, nitrogen-containing organic compounds and other species. The benzene ring-containing species (BRCCs) were attributed to the degradation of lignin while most of the rests were derived from the degradation of cellulose and hemicellulose. Along with guaiacyl and p-hydroxyphenyl units as the main components, a new type of linkage was suggested, i.e., C(ar)-CH(2)-C(ar) in 4,4'-methylenebis(2,6-dimethoxyphenol). Based on the species identified, a possible macromolecular structure of the lignin and the mechanism for its pyrolysis are proposed. The BO was also extracted with petroleum ether in ca. 17.8% of the extract yield and about 82.1% of the extracted components are BRCCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    PubMed

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.

  11. Low frequency mechanical modes of viruses with atomic detail

    NASA Astrophysics Data System (ADS)

    Dykeman, Eric; Sankey, Otto

    2008-03-01

    The low frequency mechanical modes of viruses can provide important insights into the large global motions that a virus may exhibit. Recently it has been proposed that these large global motions may be excited using impulsive stimulated Raman scattering producing permanent damage to the virus. In order to understand the coupling of external probes to the capsid, vibrational modes with atomic detail are essential. The standard approach to find the atomic modes of a molecule with N atoms requires the formation and diagonlization of a 3Nx3N matrix. As viruses have 10^5 or more atoms, the standard approach is difficult. Using ideas from electronic structure theory, we have developed a method to construct the mechanical modes of large molecules such as viruses with atomic detail. Application to viruses such as the cowpea chlorotic mottle virus, satellite tobacco necrosis virus, and M13 bacteriophage show a fairly complicated picture of the mechanical modes.

  12. Detailed proteomic analysis on DM: insight into its hypoallergenicity.

    PubMed

    Bertino, Enrico; Gastaldi, Daniela; Monti, Giovanna; Baro, Cristina; Fortunato, Donatella; Perono Garoffo, Lorenza; Coscia, Alessandra; Fabris, Claudio; Mussap, Michele; Conti, Amedeo

    2010-01-01

    Successful therapy in cow milk (CM) protein allergy rests upon completely eliminating CM proteins from the child's diet: it is thus necessary to provide a replacement food. Donkey milk (DM) has recently aroused scientific and clinical interest, above all among paediatric allergologists. A deeper knowledge of proteins in DM is necessary to evaluate the immunological and physiological properties of this natural substitute for cow's milk. The paper offers a detailed comparative analysis among the protein fractions of DM, CM and human milk, following an extensive proteomic study of the casein and whey proteins of DM performed by narrow pH range 2-DE. The detailed protein composition and structural features reported in this study provide insight into the molecular reasons for the hypoallergenicity of DM. Whole DM might constitute a valid substitute of CM in feeding children with CM protein allergy and it might also constitute the basis for formulas suitable for allergic subjects in the first year of life.

  13. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  14. Educational Outreach to Opioid Prescribers: The Case for Academic Detailing.

    PubMed

    Trotter Davis, Margot; Bateman, Brian; Avorn, Jerry

    2017-02-01

    Nonmedical use of opioid medications constitutes a serious health threat as the rates of addiction, overdoses, and deaths have risen in recent years. Increasingly, inappropriate and excessively liberal prescribing of opioids by physicians is understood to be a central part of the crisis. Public health officials, hospital systems, and legislators are developing programs and regulations to address the problem in sustained and systematic ways that both insures effective treatment of pain and appropriate limits on the availability of opioids. Three approaches have obtained prominence as means of avoiding excessive and inappropriate prescribing, including: providing financial incentives to physicians to change their clinical decision through pay-for-performance contracts, monitoring patient medications through Prescription Drug Monitoring Programs, and educational outreach to physicians. A promising approach to educational outreach to physicians is an intervention known as "academic detailing." It was developed in the 1980s to provide one-on-one educational outreach to physicians using similar methods as the pharmaceutical industry that sends "detailers" to market their products to physician practices. Core to academic detailing, however, is the idea that medical decisions should be based on evidence-based information, including managing conditions with updated assessment measures, behavioral, and nonpharmacological interventions. With the pharmaceutical industry spending billions of dollars to advertise their products, individual practitioners can have difficulty gathering unbiased information, especially as the number of approved medications grows each year. Academic detailing has successfully affected the management of health conditions, such as atrial fibrillation, chronic obstructive pulmonary disease, and recently, has targeted physicians who prescribe opioids. This article discusses the approach as a potentially effective preventative intervention to address the

  15. The devil is in the detail: children's recollection of details about their prior experiences.

    PubMed

    Strange, Deryn; Hayne, Harlene

    2013-01-01

    Adults sometimes report highly specific details of childhood events, including the weather, what they or others were wearing, as well as information about what they or others said or were thinking at the time. When these details are reported in the course of research they shape our theories of memory development; when they are reported in a criminal trial they influence jurors' evaluation of guilt or innocence. The key question is whether these details were encoded at the time the event took place or have been added after the fact. We addressed this question prospectively by examining the memory accounts of children. In Experiment 1 we coded the reports of 5- to 6-year-olds and 9- to 10-year-olds who had experienced a unique event. We found that spontaneous mentions of these specific details were exceedingly rare. In Experiment 2 we questioned additional children about a similar event using specific questions to extract those details. We found that 9- to 10-year-olds were able to accurately answer, while 5- to 6-year-olds had considerable difficulty. Moreover, when the younger children did respond they provided generic, forensically inadequate, information. These data have important implications for the courtroom and for current theories of memory development and childhood amnesia.

  16. Structural evolution of the methane cation in subfemtosecond photodynamics

    NASA Astrophysics Data System (ADS)

    Mondal, T.; Varandas, A. J. C.

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH 4+ in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X ˜ 2 T 2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ˜1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.

  17. Detailed α -decay study of 180Tl

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2017-11-01

    A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

  18. Numerical optimization of conical flow waveriders including detailed viscous effects

    NASA Technical Reports Server (NTRS)

    Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego

    1987-01-01

    A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.

  19. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  20. Detailed characterisation of the incident neutron beam on the TOSCA spectrometer

    NASA Astrophysics Data System (ADS)

    Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix

    2017-10-01

    We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.

  1. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.

    2016-08-01

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  2. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3.

    PubMed

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E

    2016-08-10

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  3. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  4. A new sensitivity analysis for structural optimization of composite rotor blades

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An

    1993-01-01

    This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.

  5. Sensitivity of control-augmented structure obtained by a system decomposition method

    NASA Technical Reports Server (NTRS)

    Sobieszczanskisobieski, Jaroslaw; Bloebaum, Christina L.; Hajela, Prabhat

    1988-01-01

    The verification of a method for computing sensitivity derivatives of a coupled system is presented. The method deals with a system whose analysis can be partitioned into subsets that correspond to disciplines and/or physical subsystems that exchange input-output data with each other. The method uses the partial sensitivity derivatives of the output with respect to input obtained for each subset separately to assemble a set of linear, simultaneous, algebraic equations that are solved for the derivatives of the coupled system response. This sensitivity analysis is verified using an example of a cantilever beam augmented with an active control system to limit the beam's dynamic displacements under an excitation force. The verification shows good agreement of the method with reference data obtained by a finite difference technique involving entire system analysis. The usefulness of a system sensitivity method in optimization applications by employing a piecewise-linear approach to the same numerical example is demonstrated. The method's principal merits are its intrinsically superior accuracy in comparison with the finite difference technique, and its compatibility with the traditional division of work in complex engineering tasks among specialty groups.

  6. A detailed mechanistic fragmentation analysis of methamphetamine and select regioisomers by GC/MS.

    PubMed

    Sachs, Sandra B; Woo, Francis

    2007-03-01

    A novel ring-substituted methamphetamine regioisomer, N,alpha,4-trimethyl phenmethylamine, was synthesized in order to study the validity of proposed structures for various mass spectrometry (MS)-derived peaks in a methamphetamine fragmentation pattern. While other research efforts have studied aspects of methamphetamine in detail, a full fragmentation study has not been reported previously. In addition to showing molecular structures represented by fragment peaks, mechanisms for selected processes are detailed. An empirically derived procedure to easily determine by simple spectral peak pattern recognition the geometry of dimethyl- or ethyl-substituted immonium ions (RRC = N+ RR) where m/z = 58 is outlined. These results are platform independent for electron ionization (EI) instruments, but have also proven to be helpful in explaining spectral peaks observed in spectra from ion trap systems. The spectrum for the synthesized methamphetamine regioisomer was accurately predicted using this methodology. While this approach is useful in some casework, the converse may be more useful: when an unexpected or unusual peak pattern arises in a spectrum, being able to analyze it to determine the structure of the molecule. This paper gives an analyst the means to begin such retro-synthetic analyses.

  7. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model

    NASA Astrophysics Data System (ADS)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2017-12-01

    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of

  8. Dimensional metrology of lab-on-a-chip internal structures: a comparison of optical coherence tomography with confocal fluorescence microscopy.

    PubMed

    Reyes, D R; Halter, M; Hwang, J

    2015-07-01

    The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Fatigue assessment for selected connections of structural steel bridge components using the finite elements method

    NASA Astrophysics Data System (ADS)

    Śledziewski, Krzysztof

    2018-01-01

    Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.

  10. Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis

    NASA Astrophysics Data System (ADS)

    Said-Galiev, E. E.; Vasil'kov, A. Yu.; Nikolaev, A. Yu.; Lisitsyn, A. I.; Naumkin, A. V.; Volkov, I. O.; Abramchuk, S. S.; Lependina, O. L.; Khokhlov, A. R.; Shtykova, E. V.; Dembo, K. A.; Erkey, C.

    2012-10-01

    Monometallic nanocomposites are obtained with the use of supercritical carbon dioxide (fluid technique) and metal-vapor synthesis (MVS), while bimetallic nanocomposites of Pt and Au noble metals and γ-Al2O3 oxide matrix are synthesized by a combination of these two methods. The structures, concentrations, and chemical states of metal atoms in composites are studied by means of small-angle X-ray scattering (SAXS), transparent electron microscopy (TEM), X-ray fluorescent analysis (XFA), and X-ray photoelectron spectroscopy (XPS). The neutral state of metal atoms in clusters is shown by XPS and their size distribution is found according to SAXS; as is shown, it is determined by the pore sizes of the oxide matrices and lies in the range of 1 to 50 nm. The obtained composites manifest themselves as effective catalysts in the oxidation of CO to CO2.

  11. Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Rietbrock, Andreas

    2001-06-01

    High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.

  12. Detailed 3D Geophysical Model of the Shallow Subsurface (Zancara River Basin, Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Carbonell, R.; Marzán, I.; Martí, D.; Lobo, A.; Jean, K.; Alvarez-Marrón, J.

    2016-12-01

    Detailed knowledge of the structure and lithologies of the shallow subsurface is required when designing and building singular geological storage facilities this is the case of the study area in Villar de Cañas (Cuenca, Central Spain). In which an extensive multidisciplinary data acquisition program has been carried out. This include studies on: geology, hydrology, geochemistry, geophysics, borehole logging, etc. Because of this data infrastructure, it can be considered a subsurface imaging laboratory to test and validate indirect underground characterization approaches. The field area is located in a Miocene syncline within the Záncara River Basin (Cuenca, Spain). The sedimentary sequence consists in a transition from shales to massive gypsums, and underlying gravels. The stratigraphic succession features a complex internal structure, diffused lithological boundaries and relatively large variability of properties within the same lithology, these makes direct geological interpretation very difficult and requires of the integration of all the measured physical properties. The ERT survey, the seismic tomography data and the logs have been used jointly to build a 3-D multi-parameter model of the subsurface in a surface of 500x500 m. The Vp model (a 10x20x5 m grid) is able to map the high velocities of the massive gypsum, however it was neither able to map the details of the shale-gypsm transition (low velocity contrast) nor to differentiate the outcropping altered gypsum from the weathered shales. The integration of the electrical resistivity and the log data by means of a supervised statistical tools (Linear Discriminant Analysis, LDA) resulted in a new 3D multiparametric subsurface model. This new model integrates the different data sets resolving the uncertainties characteristic of the models obtained independently by the different techniques separately. Furthermore, this test seismic dataset has been used to test FWI approaches in order to study their capacities

  13. Analysis of the Atomic-Scale Defect Chemistry at Interfaces in Fluorite Structured Oxides by Electron Energy Loss Spectroscopy

    DTIC Science & Technology

    2001-11-01

    electronic properties, i.e. oxygen coordination and cation valence at grain boundaries of the fluorite structured Gdo]2Ceo.gO 2_x ceramic membrane material...required to obtain a detailed understanding of the atomic scale phenomena in ceramics, as the polycrystalline nature of Gdo.2Ceo.802- ceramic membrane material

  14. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  15. Obtaining Parts

    Science.gov Websites

    The Cosmic Connection Computer Interface For each count, the detector sends out a signal that is room temperature on the upper plot and the cosmic ray count rate per minute on the lower scale. Please contact us for more details on this setup. Sample Data for Cosmic Ray Detector Last modified: April 27

  16. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  17. Exploring representations of protein structure for automated remote homology detection and mapping of protein structure space

    PubMed Central

    2014-01-01

    Background Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to transfer functional information from the homologs to the given protein. Sequence-based comparison cannot detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure. Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations have been proposed that allow fast detection of remote homologs with reasonable accuracy. These representations have also been used to obtain linearly-reducible maps of protein structure space. It has been shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of the protein structure space. Methods Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures to provide an alternative route for remote homology detection and organization of the protein structure space in few dimensions. Various techniques based on natural language processing are proposed and employed to aid the analysis of topics in the protein structure domain. Results We show that a topic-based representation is just as effective as a fragment-based one at automated detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the information content in the topic-based representation, showing that topics have semantic meaning. The fragment-based and topic-based representations are also shown to allow prediction of superfamily membership. Conclusions This work opens exciting venues in designing novel

  18. The Scottish Structural Proteomics Facility: targets, methods and outputs

    PubMed Central

    Oke, Muse; Carter, Lester G.; Johnson, Kenneth A.; Liu, Huanting; McMahon, Stephen A.; Yan, Xuan; Kerou, Melina; Weikart, Nadine D.; Kadi, Nadia; Sheikh, Md. Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M.; van Niekerk, C. A. Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A.; Prangishvili, David; Botting, Catherine H.; Coote, Peter J.; Dryden, David T. F.; Barton, Geoffrey J.; Schwarz-Linek, Ulrich; Challis, Gregory L.; Taylor, Garry L.; White, Malcolm F.

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology. Electronic supplementary material The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users. PMID:20419351

  19. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    PubMed

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  20. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    NASA Technical Reports Server (NTRS)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  1. Detailed assessment of global transport-energy models’ structures and projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Sonia; Mishra, Gouri Shankar; Fulton, Lew

    This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in partmore » to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.« less

  2. Estimation of principal deviatoric stresses imposed on an individual metachert: detailed application of the microboudin palaeopiezometer

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Masuda, T.

    2017-12-01

    The microboudinage structure of columnar mineral grain is an useful marker for the stress imposed on the metamorphic rock. In this presentation, we report a detailed application of the microboudin palaeopiezometer to an individual metachert specimen that includes microboudinaged tourmaline grains. The microboudin palaeostress analysis is conducted to the number of 3621 tourmaline grains divided into every 10° of their long axes on the foliation surface. The analysis revealed that the group of mean orientation ± 15° and perpendicular to the mean orientation ± 15° showed the value of σ1 - σ3 and σ1 - σ2 as 10.2 MPa and 5.3 MPa, respectively. Using both values of σ1 - σ3 and σ1 - σ2, magnitude of principal deviatoric stresses (σ'1, σ'2 and σ'3) are obtained as σ'1 = 5.3 MPa, σ'2 = -0.1 MPa and σ'3 = -5.1 MPa. In this stress state, the stress ratio (σ2 - σ3)/(σ1 - σ3) is 0.48 that indicates typical triaxial compression. As the microboudinage structure is considered to develop immediately before the matrix mineral encountered the cessation of the plastic flow, these values correspond to conditions at ≧ 300 °C on the later stage of the metamorphism.

  3. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  4. Low void content autoclave molded titanium alloy and polyimide graphite composite structures.

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Creedon, J. F.

    1972-01-01

    This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.

  5. AFM imaging of milk casein micelles: evidence for structural rearrangement upon acidification.

    PubMed

    Ouanezar, Mustapha; Guyomarc'h, Fanny; Bouchoux, Antoine

    2012-03-20

    Milk casein micelles are natural association colloids that we all encounter in everyday life, yet we still lack an accurate description of their internal structure and the interactions that stabilize it. In this letter, we provide for the first time detailed images of intact casein micelles as obtained through atomic force microscopy under liquid conditions close to physiological. The micelles appear as heterogeneous raspberry-like particles, which is consistent with a hierarchical/spongelike structure made of connected 10-40 nm dense casein regions. Upon in situ acidification to pH 5, the micelles decrease in size and lose their surface heterogeneities, indicating that this structure is highly sensitive to variations in mineral content and caseins net charge.

  6. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    NASA Astrophysics Data System (ADS)

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  7. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  8. Challenges and recommendations for obtaining chemical structures of industry-provided repurposing candidates.

    PubMed

    Southan, Christopher; Williams, Antony J; Ekins, Sean

    2013-01-01

    There is an expanding amount of interest directed at the repurposing and repositioning of drugs, as well as how in silico methods can assist these endeavors. Recent repurposing project tendering calls by the National Center for Advancing Translational Sciences (USA) and the Medical Research Council (UK) have included compound information and pharmacological data. However, none of the internal company development code names were assigned to chemical structures in the official documentation. This not only abrogates in silico analysis to support repurposing but consequently necessitates data gathering and curation to assign structures. Here, we describe the approaches, results and major challenges associated with this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  10. Lightning activity and radar observations of the multicell thunderstorm system passing over Swider Observatory (Poland) on 19 July 2015 and its dynamic and electric charge structure obtained from the WRF_ELEC model

    NASA Astrophysics Data System (ADS)

    Kubicki, Marek; Konarski, Jerzy; Gajda, Wojciech; Barański, Piotr; Guzikowski, Jakub; Kryza, Maciej

    2017-04-01

    characteristic type of the particular lightning flashes that were initiated by different adjacent thunderstorm cells developed in this time. On the other hand, the recorded E-field signatures of the lightning strokes by the LLDN measuring station have enabled us to differentiate between the variety of their types indicating the complex electric charge structure of the particular thunderstorm cells which developed in this storm system. Moreover, on the base of the supplementary numerical simulations of the considered thunderstorm episode by applying the WRF_ELEC model to the post-time analysis we were able to obtain the more detailed picture with more thermodynamic parameters not only about the specific electric charge structure of the considered thunderstorm cells, and how their thermodynamic pattern created the suitable conditions to initiate the observed lightning stroke types. Atmospheric electricity observations at Swider have been supported within the statutory activities of Institute of Geophysics, PAS, grant No. 3841/E-41/S/2016 and 3841/E-41/S/2017 of the Ministry of Science and Higher Education of Poland.

  11. Devil in the details? Developmental dyslexia and visual long-term memory for details.

    PubMed

    Huestegge, Lynn; Rohrßen, Julia; van Ermingen-Marbach, Muna; Pape-Neumann, Julia; Heim, Stefan

    2014-01-01

    Cognitive theories on causes of developmental dyslexia can be divided into language-specific and general accounts. While the former assume that words are special in that associated processing problems are rooted in language-related cognition (e.g., phonology) deficits, the latter propose that dyslexia is rather rooted in a general impairment of cognitive (e.g., visual and/or auditory) processing streams. In the present study, we examined to what extent dyslexia (typically characterized by poor orthographic representations) may be associated with a general deficit in visual long-term memory (LTM) for details. We compared object- and detail-related visual LTM performance (and phonological skills) between dyslexic primary school children and IQ-, age-, and gender-matched controls. The results revealed that while the overall amount of LTM errors was comparable between groups, dyslexic children exhibited a greater portion of detail-related errors. The results suggest that not only phonological, but also general visual resolution deficits in LTM may play an important role in developmental dyslexia.

  12. Thermoelectric generator based on composites obtained by sintering of detonation nanodiamonds

    NASA Astrophysics Data System (ADS)

    Eidelman, E. D.; Meilakhs, A. P.; Semak, B. V.; Shakhov, F. M.

    2017-11-01

    A model of a thermoelectric generator is proposed, in which composite materials obtained by sintering diamond nanoparticles are used as the main component. To increase the useful conversion of heat into electric current, it is proposed to use the effect of electron drag by ballistic phonons. To reduce the ineffective heat spread, it is proposed to use the effect of thermal resistance of the boundaries between the graphite-like and diamond-like phases of the composite. An experimental confirmation of the existence of an optimal volume ratio between graphite-like and diamond-like phases of the composite is predicted and obtained. The highest achieved value of thermoelectric coefficient in the actual structure is 80 µV K-1 (which means 20 times increase compared to that of composites not of the optimal structure), with a thermal conductivity of 50 W m-1 K-1. These results were obtained with constant electrical conductivity. The combined influence of these two effects in case of the ideal composite structure should result in an increase of the thermoelectric efficiency parameter by three orders of magnitude.

  13. Improving identification and management of partner violence: examining the process of academic detailing: a qualitative study

    PubMed Central

    2011-01-01

    Background Many physicians do not routinely inquire about intimate partner violence. Purpose This qualitative study explores the process of academic detailing as an intervention to change physician behavior with regard to intimate partner violence (IPV) identification and documentation. Method A non-physician academic detailer provided a seven-session modular curriculum over a two-and-a-half month period. The detailer noted written details of each training session. Audiotapes of training sessions and semi-structured exit interviews with each physician were recorded and transcribed. Transcriptions were qualitatively and thematically coded and analyzed using Atlas ti®. Results All three study physicians reported increased clarity with regard to the scope of their responsibility to their patients experiencing IPV. They also reported increased levels of comfort in the effective identification and appropriate documentation of IPV and the provision of ongoing support to the patient, including referrals to specialized community services. Conclusion Academic detailing, if presented by a supportive and knowledgeable academic detailer, shows promise to improve physician attitudes and practices with regards to patients in violent relationships. PMID:21679450

  14. Structural, spectroscopic and DFT study of 4-methoxybenzohydrazide Schiff bases. A new series of polyfunctional ligands.

    PubMed

    Ferraresi-Curotto, Verónica; Echeverría, Gustavo A; Piro, Oscar E; Pis-Diez, Reinaldo; González-Baró, Ana C

    2015-02-25

    Five Schiff bases obtained from condensation of 4-methoxybenzohydrazide with related aldehydes, namely o-vanillin, vanillin, 5-bromovanillin, 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde were prepared. A detailed structural and spectroscopic study is reported. The crystal structures of four members of the family were determined and compared with one another. The hydrazones obtained from 5-chlorosalicylaldehyde and 5-bromosalicylaldehyde resulted to be isomorphic to each other. The solid-state structures are stabilized by intra-molecular O-H⋯N interactions in salicylaldehyde derivatives between the O-H moiety from the aldehyde and the hydrazone nitrogen atom. All crystals are further stabilized by inter-molecular H-bonds mediated by the crystallization water molecule. A comparative analysis between experimental and theoretical results is presented. The conformational space was searched and geometries were optimized both in gas phase and including solvent effects. The structure is predicted for the compound for which the crystal structure was not determined. Infrared and electronic spectra were measured and assigned with the help of data obtained from computational methods based on the Density Functional Theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    PubMed

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  16. SAbDab: the structural antibody database

    PubMed Central

    Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Baker, Terry; Fuchs, Angelika; Georges, Guy; Shi, Jiye; Deane, Charlotte M.

    2014-01-01

    Structural antibody database (SAbDab; http://opig.stats.ox.ac.uk/webapps/sabdab) is an online resource containing all the publicly available antibody structures annotated and presented in a consistent fashion. The data are annotated with several properties including experimental information, gene details, correct heavy and light chain pairings, antigen details and, where available, antibody–antigen binding affinity. The user can select structures, according to these attributes as well as structural properties such as complementarity determining region loop conformation and variable domain orientation. Individual structures, datasets and the complete database can be downloaded. PMID:24214988

  17. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    NASA Astrophysics Data System (ADS)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  18. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    PubMed

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  19. Structure and properties of slow-resorbing nanofibers obtained by (co-axial) electrospinning as tissue scaffolds in regenerative medicine

    PubMed Central

    Gola, Joanna; Ghavami, Saeid; Skonieczna, Magdalena; Markowski, Jarosław; Likus, Wirginia; Lewandowska, Magdalena; Maziarz, Wojciech

    2017-01-01

    With the rapid advancement of regenerative medicine technologies, there is an urgent need for the development of new, cell-friendly techniques for obtaining nanofibers—the raw material for an artificial extracellular matrix production. We investigated the structure and properties of PCL10 nanofibers, PCL5/PCL10 core-shell type nanofibers, as well as PCL5/PCLAg nanofibres prepared by electrospinning. For the production of the fiber variants, a 5–10% solution of polycaprolactone (PCL) (Mw = 70,000–90,000), dissolved in a mixture of formic acid and acetic acid at a ratio of 70:30 m/m was used. In order to obtain fibers containing PCLAg 1% of silver nanoparticles was added. The electrospin was conducted using the above-described solutions at the electrostatic field. The subsequent bio-analysis shows that synthesis of core-shell nanofibers PCL5/PCL10, and the silver-doped variant nanofiber core shell PCL5/PCLAg, by using organic acids as solvents, is a robust technique. Furthermore, the incorporation of silver nanoparticles into PCL5/PCLAg makes such nanofibers toxic to model microbes without compromising its biocompatibility. Nanofibers obtained such way may then be used in regenerative medicine, for the preparation of extracellular scaffolds: (i) for controlled bone regeneration due to the long decay time of the PCL, (ii) as bioscaffolds for generation of other types of artificial tissues, (iii) and as carriers of nanocapsules for local drug delivery. Furthermore, the used solvents are significantly less toxic than the solvents for polycaprolactone currently commonly used in electrospin, like for example chloroform (CHCl3), methanol (CH3OH), dimethylformamide (C3H7NO) or tetrahydrofuran (C4H8O), hence the presented here electrospin technique may allow for the production of multilayer nanofibres more suitable for the use in medical field. PMID:29302386

  20. Comparison of alternative image reformatting techniques in micro-computed tomography and tooth clearing for detailed canal morphology.

    PubMed

    Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-03-01

    Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Clinical professional governance for detailed clinical models.

    PubMed

    Goossen, William; Goossen-Baremans, Anneke

    2013-01-01

    This chapter describes the need for Detailed Clinical Models for contemporary Electronic Health Systems, data exchange and data reuse. It starts with an explanation of the components related to Detailed Clinical Models with a brief summary of knowledge representation, including terminologies representing clinic relevant "things" in the real world, and information models that abstract these in order to let computers process data about these things. Next, Detailed Clinical Models are defined and their purpose is described. It builds on existing developments around the world and accumulates in current work to create a technical specification at the level of the International Standards Organization. The core components of properly expressed Detailed Clinical Models are illustrated, including clinical knowledge and context, data element specification, code bindings to terminologies and meta-information about authors, versioning among others. Detailed Clinical Models to date are heavily based on user requirements and specify the conceptual and logical levels of modelling. It is not precise enough for specific implementations, which requires an additional step. However, this allows Detailed Clinical Models to serve as specifications for many different kinds of implementations. Examples of Detailed Clinical Models are presented both in text and in Unified Modelling Language. Detailed Clinical Models can be positioned in health information architectures, where they serve at the most detailed granular level. The chapter ends with examples of projects that create and deploy Detailed Clinical Models. All have in common that they can often reuse materials from earlier projects, and that strict governance of these models is essential to use them safely in health care information and communication technology. Clinical validation is one point of such governance, and model testing another. The Plan Do Check Act cycle can be applied for governance of Detailed Clinical Models

  2. Effect of SiN x diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol-gel dip coating and reactive magnetron sputtering.

    PubMed

    Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier

    2015-01-01

    We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.

  3. Water vapour condensation in a partly closed structure. Comparison between results obtained with an inside wet or dry bottom wall

    NASA Astrophysics Data System (ADS)

    Batina, Jean; Peyrous, René

    2018-04-01

    We are interested in the determination of the more significant parameters acting on the water vapour condensation in a partly closed structure, submitted to external constraints (temperature and humidity), in view to recover the generated droplets as an additional source of potable water. External temperature variations, by inducing temperature differences between outside and inside of the structure, lead to convective movements and thermal variations inside this structure. Through an orifice, these movements permit a renewing of the humid inner air and can lead to the condensation of the water vapour initially contained in the inner air volume and/or on the walls. With the above hypotheses, and by using a numerical simulation [1] based on the ambient air characteristics and a finite volumes method, it appears that condensed water quantities are mainly depending on the boundary conditions imposed. These conditions are: 1) dimensions of the structure; 2) external temperature and relative hygrometry; 3) the phase φ (T/RH) linking thermal and hydrometric conditions; 4) the air renewing and its hygrometry for each phase; and 5) for each case, the fact that the inside bottom wall can be wet or dry. The resulting condensed water vapour quantities obtained, for the width section, point out clearly that they are very depending on this phase φ (T/RH) which appears as the more significant parameter and can be modified by the presence or not of a thin layer of water vapour on the inside bottom wall. Condensation phenomenon could be increased if φ could be optimized.

  4. Towards Crustal Structure of Java Island (Sunda Arc) from Ambient Seismic Noise Tomography

    NASA Astrophysics Data System (ADS)

    Widiyantoro, Sri; Zulhan, Zulfakriza; Martha, Agustya; Saygin, Erdinc; Cummins, Phil

    2015-04-01

    In our previous studies, P- and S-wave velocity structures beneath the Sunda Arc were successfully imaged using a global data set and a nested regional-global tomographic method was employed. To obtain more detailed P- and S-wave velocity structures beneath Java, in the central part of the Sunda Arc, we then used local data sets, i.e. newline from the MErapi AMphibious EXperiment (MERAMEX) and the Meteorological, Climatological and Geophysical Agency (MCGA), as well as employed a double-difference technique for tomographic imaging. The results of the imaging show e.g. that P- and S-wave velocities are significantly reduced in the uppermost mantle beneath central Java. In order to obtain detailed crustal structure information beneath Java, the Ambient Noise Tomography (ANT) method was used. The application of this method to the MERAMEX data has produced a good crustal model beneath central Java. We continue our experiment to image crustal structure of eastern Java. We have used seismic waveform data recorded by 22 MCGA stationary seismographic stations and 25 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms of cross-correlated noise between pairs of seismographic stations. Our preliminary results presented here indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly (as shown by our tomographic images). In future work we will install more seismographic stations in eastern Java as well as in western Java to conduct ANT imaging for the whole of Java Island. The expected result combined with the mantle velocity models resulting from our body wave tomography will allow for accurate location of earthquake hypocenters and determination of regional tectonic structures. Both of these are valuable for understanding seismic hazard in Java, the most densely populated

  5. Hierarchical macro-mesoporous structures in the system TiO{sub 2}-Al{sub 2}O{sub 3}, obtained by hydrothermal synthesis using Tween-20 as a directing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-Garcia, M.E., E-mail: eucontre@zeus.umich.mx

    2009-12-15

    Macro-mesoporous powders of titania, alumina, and mixed titania-20%alumina systems were obtained by hydrothermal synthesis employing surfactant Tween-20 as structural directing agent in order to promote the textural properties of titania. The effect of the alumina in the titania phase and on textural properties was analyzed. The obtained powders presented a macroporous channel structure that was characterized by X-ray diffractometry, scanning and transmission electron microscopy, N{sub 2} adsorption-desorption analysis, pore size distribution, Fourier transform infrared spectrometry, and thermogravimetric analysis. It was found that alumina content retarded the anatase phase crystallization and increased the Brunauer-Emmet-Teller surface area from 136 to 210 m{supmore » 2}/g. The powders calcined at 400 deg. C are thermally stable and possess an interconnected macro-mesoporous hierarchical structure; the results indicate that this synthesis can be employed to prepare mixed titania-alumina with good textural properties.« less

  6. Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures

    NASA Astrophysics Data System (ADS)

    Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.

    2017-12-01

    Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.

  7. Crowdsourcing detailed flood data

    NASA Astrophysics Data System (ADS)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  8. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  9. High throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy

    PubMed Central

    Dumitriu, Dani; Rodriguez, Alfredo; Morrison, John H.

    2012-01-01

    Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high resolution confocal microscopy, deconvolution and image analysis using NeuronStudio. Recent technical advancements include better preservation of tissue resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual Z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically for the identification of both optimal resolution as well as highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing 3 experimental groups with 8 subjects in each can take as little as one month if optimized for speed, or approximately 4 to 5 months if the highest resolution and morphometric detail is sought. PMID:21886104

  10. Language-General Biases and Language-Specific Experience Contribute to Phonological Detail in Toddlers' Word Representations

    ERIC Educational Resources Information Center

    Tsuji, Sho; Fikkert, Paula; Yamane, Naoto; Mazuka, Reiko

    2016-01-01

    Although toddlers in their 2nd year of life generally have phonologically detailed representations of words, a consistent lack of sensitivity to certain kinds of phonological changes has been reported. The origin of these insensitivities is poorly understood, and uncovering their cause is crucial for obtaining a complete picture of early…

  11. The structure of aqueous sodium hydroxide solutions: a combined solution x-ray diffraction and simulation study.

    PubMed

    Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál

    2008-01-28

    To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.

  12. Structural, morphological, and thermal characterization of kraft lignin and its charcoals obtained at different heating rates

    NASA Astrophysics Data System (ADS)

    Rodrigues Brazil, Tayra; Nunes Costa, Rogeria; Massi, Marcos; Cerqueira Rezende, Mirabel

    2018-04-01

    Biomass is a renewable resource that is becoming more import due to environmental concerns and possible oil crisis. Thus, optimizing its use is a current challenge for many researchers. Lignin, which is a macromolecule with complex chemical structure, valuable physicochemical properties, and varied chemical composition, is available in large quantities in pulp and paper companies. The objective of this work is the physicochemical characterization of two Kraft lignin samples with different purities, and the study of its thermal conversion into charcoal. The lignin characterization was based on chemical, TGA, DSC, FT-IR, particle sizes, and FEG-SEM analyses. These analyses show that the lignins are mainly composed of guaiacyl and syringyl units, with residues of 30–36 wt.%, in inert atmosphere, depending on the lignin purity. From these results, the more purified lignin with higher carbon yield (%C) was selected for charcoal production. The heat treatment (HT) for carbonization of lignin, at different times (90, 180, and 420 min), resulted in different %C (41–44 wt.%). Longer HT resulted in higher %C and in charcoals with smaller pore sizes. Nanopores (∼50 nm) are observed for the charcoal obtained with the longest HT.

  13. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  14. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  15. 5 CFR 352.305 - Eligibility for detail.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 352.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS REEMPLOYMENT RIGHTS Detail and Transfer of Federal Employees to International Organizations § 352.305 Eligibility for detail. An employee is eligible for detail to an international organization with the rights provided for...

  16. Lanthanide complexes with aromatic o-phosphorylated ligands: synthesis, structure elucidation and photophysical properties.

    PubMed

    Shuvaev, Sergey; Utochnikova, Valentina; Marciniak, Łukasz; Freidzon, Alexandra; Sinev, Ilya; Van Deun, Rik; Freire, Ricardo O; Zubavichus, Yan; Grünert, Wolfgang; Kuzmina, Natalia

    2014-02-28

    Lanthanide complexes LnL3 (Ln = Sm, Eu, Tb, Dy, Tm, Yb, Lu) with aromatic o-phosphorylated ligands (HL(1) and HL(2)) have been synthesized and identified. Their molecular structure was proposed on the basis of a new complex approach, including DFT calculations, Sparkle/PM3 modelling, EXAFS spectroscopy and luminescent probing. The photophysical properties of all of the complexes were investigated in detail to obtain a deeper insight into the energy transfer processes.

  17. MTR WING A, TRA604, INTERIOR. BASEMENT. DETAIL OF A19 LAB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING A, TRA-604, INTERIOR. BASEMENT. DETAIL OF A-19 LAB AREA ALONG SOUTH WALL. SIGN ON FLOOR DIRECTS WORKERS TO OBTAIN WHOLE BODY FRISK UPON LEAVING AREA. SIGN ON EQUIPMENT IN CENTER OF VIEW REQUESTS WORKERS TO "NOTIFY HEALTH PHYSICS BEFORE WORKING ON THIS SYSTEM." CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-13-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  19. The relationship between the structures of four beta-lactamases obtained from Bacillus cereus.

    PubMed

    Cid, H; Carrillo, O; Bunster, M; Martínez, J; Vargas, V

    1988-06-01

    Bacillus cereus has proved to be one of the most interesting microorganisms in the study of beta-lactamases. It secrets these enzymes very efficiently and, frequently, in multiple forms. Three different forms are produced by strain 569/H; mutant 5/B of the same microorganism is constitutive for the secretion of beta-lactamases I and II. The present study, based on secondary structure prediction by two independent methods, states the relationship among the structures of beta-lactamases I, II and III produced by B. cereus 569/H and beta-lactamase I from the strain 5/B of this microorganism. A strong similarity is also established for the enzyme type III of B. cereus and the enzyme type I produced by B. licheniformis which could have an evolutionary explanation. A structural analysis of the leader peptide regions of these enzymes by the method of Mohana and Argos is also reported.

  20. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste.

    PubMed

    Serranti, Silvia; Luciani, Valentina; Bonifazi, Giuseppe; Hu, Bin; Rem, Peter C

    2015-01-01

    An innovative recycling process, based on magnetic density separation (MDS) and hyperspectral imaging (HSI), to obtain high quality polypropylene and polyethylene as secondary raw materials, is presented. More in details, MDS was applied to two different polyolefin mixtures coming from household waste. The quality of the two separated PP and PE streams, in terms of purity, was evaluated by a classification procedure based on HSI working in the near infrared range (1000-1700 nm). The classification model was built using known PE and PP samples as training set. The results obtained by HSI were compared with those obtained by classical density analysis carried in laboratory on the same polymers. The results obtained by MDS and the quality assessment of the plastic products by HSI showed that the combined action of these two technologies is a valid solution that can be implemented at industrial level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  2. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  3. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  4. Standards for detailed clinical models as the basis for medical data exchange and decision support.

    PubMed

    Coyle, Joseph F; Mori, Angelo Rossi; Huff, Stanley M

    2003-03-01

    Detailed clinical models are necessary to exchange medical data between heterogeneous computer systems and to maintain consistency in a longitudinal electronic medical record system. At Intermountain Health Care (IHC), we have a history of designing detailed clinical models. The purpose of this paper is to share our experience and the lessons we have learned over the last 5 years. IHC's newest model is implemented using eXtensible Markup Language (XML) Schema as the formalism, and conforms to the Health Level Seven (HL7) version 3 data types. The centerpiece of the new strategy is the Clinical Event Model, which is a flexible name-value pair data structure that is tightly linked to a coded terminology. We describe IHC's third-generation strategy for representing and implementing detailed clinical models, and discuss the reasons for this design.

  5. GUARD HOUSE AND BARRACKS, SECTIONS AND DETAILS. Navy Department, Bureau ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GUARD HOUSE AND BARRACKS, SECTIONS AND DETAILS. Navy Department, Bureau of Yards & Docks, Navy Yard, Mare Island, CA. H.J. Brunnier, Structural Engineer, Sharon Building, San Francisco, CA. Sheet 7 of 15, accompanying specification Noy-4675. Submitted May 8, 1941, last revised July 7, 1941. Yards & Docks drawing no. 160692; P.W. (Public Works) drawing no. 10388-31; file no. 930-CR-7. Scale three eighths inch to one foot. 73 cm x 129 cm. Ink on vellum - Mare Island Naval Shipyard, Guard House & Barracks, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA

  6. Detail view looking aft along the starboard side of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view looking aft along the starboard side of the Orbiter Discovery where the forward section meets the mid-fuselage. Note the head of the jack stand and its mechanism to connect to the one of the forward hoist attach points of the orbiter. Also note the support structure of the service platforms. This view was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. Closeup detail of the jackstand head and the attach mechanism ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up detail of the jack-stand head and the attach mechanism connection to the hoist attach point on the starboard forward fuselage of the Orbiter Discovery. Note the profile of the wing intersection with the fuselage and the payload bay door in an open position with the strongback support structure attached. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. 5 CFR 370.104 - Length of details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Length of details. 370.104 Section 370.104 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS INFORMATION TECHNOLOGY EXCHANGE PROGRAM § 370.104 Length of details. (a) Details may be for a period of between 3 months...

  9. Automated method to differentiate between native and mirror protein models obtained from contact maps.

    PubMed

    Kurczynska, Monika; Kotulska, Malgorzata

    2018-01-01

    Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters-the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing

  10. Structure of liquid tricalcium aluminate

    NASA Astrophysics Data System (ADS)

    Drewitt, James W. E.; Barnes, Adrian C.; Jahn, Sandro; Kohn, Simon C.; Walter, Michael J.; Novikov, Alexey N.; Neuville, Daniel R.; Fischer, Henry E.; Hennet, Louis

    2017-02-01

    The atomic-scale structure of aerodynamically levitated and laser-heated liquid tricalcium aluminate (Ca3Al2O6 ) was measured at 2073(30) K by using the method of neutron diffraction with Ca isotope substitution (NDIS). The results enable the detailed resolution of the local coordination environment around calcium and aluminum atoms, including the direct determination of the liquid partial structure factor, SCaCa(Q ) , and partial pair distribution function, gCaCa(r ) . Molecular dynamics (MD) simulation and reverse Monte Carlo (RMC) refinement methods were employed to obtain a detailed atomistic model of the liquid structure. The composition Ca3Al2O6 lies at the CaO-rich limit of the CaO:Al2O3 glass-forming system. Our results show that, although significantly depolymerized, liquid Ca3Al2O6 is largely composed of AlO4 tetrahedra forming an infinite network with a slightly higher fraction of bridging oxygen atoms than expected for the composition. Calcium-centered polyhedra exhibit a wide distribution of four- to sevenfold coordinated sites, with higher coordinated calcium preferentially bonding to bridging oxygens. Analysis of the MD configuration reveals the presence of ˜10 % unconnected AlO4 monomers and Al2O7 dimers in the liquid. As the CaO concentration increases, the number of these isolated units increases, such that the upper value for the glass-forming composition of CaO:Al2O3 liquids could be described in terms of a percolation threshold at which the glass can no longer support the formation of an infinitely connected AlO4 network.

  11. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  12. Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath

    NASA Technical Reports Server (NTRS)

    Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.; hide

    2016-01-01

    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.

  13. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  14. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system details. 25.685 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming...

  15. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Control system details. 25.685 Section 25...

  16. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system details. 25.685 Section 25...

  17. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system details. 25.685 Section 25...

  18. 14 CFR 25.685 - Control system details.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.685 Control system details. (a) Each detail of each control system must be designed and installed to prevent jamming... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system details. 25.685 Section 25...

  19. 14 CFR 27.685 - Control system details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.685 Control system details. (a) Each detail of each control system must be designed to prevent jamming, chafing, and... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system details. 27.685 Section 27...

  20. 14 CFR 29.685 - Control system details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.685 Control system details. (a) Each detail of each control system must be designed to prevent jamming, chafing, and... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system details. 29.685 Section 29...

  1. Optical and diffractive properties of polymer: nanoparticles periodic structures obtained by holographic method

    NASA Astrophysics Data System (ADS)

    Smirnova, T. N.; Sakhno, O. V.; Goldberg, L.; Stumpe, J.

    2007-06-01

    The ordering of nanoparticles in polymer matrix using holographic photopolymerization is investigated. The general approach to the selection of the photopolymerizable compounds is proposed. The nonlinear and luminescent properties of obtained gratings are studied.

  2. Detailed study of the structure of the low-energy magnetic excitations in overdoped La1.75Sr0.25CuO4

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Kazuhiko; Kikuchi, Tatsuya; Nakajima, Kenji; Kajimoto, Ryoichi; Wakimoto, Shuichi; Fujita, Masaki

    2018-05-01

    To examine the detailed structure of low-energy magnetic excitations in a high-transition-temperature superconducting cuprate with heavily hole-doping, we performed inelastic neutron scattering experiments on La1.75Sr0.25CuO4. We observed clear dispersion relations of the previously reported incommensurate (IC) magnetic correlations at Qtet = (0.5 ± δ , 0.5) / (0.5 , 0.5 ± δ) [1]. In addition, we show the emergence of continuum magnetic excitations with a ring shape centered at Γ point Qtet = (0.5 , 0.5) in a constant energy spectrum at T = 50 K . The radius of the ring (r = 0.109) is smaller than the incommensurability (δ = 0.118) . This suggests that the origin of the ring-like excitations is different from that of the IC magnetic correlations, and the low-energy magnetic excitations of the La2-xSrxCuO4 system are inherently composed of these two kinds of excitations.

  3. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

    PubMed

    Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik

    2011-08-01

    The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge. © 2011 John Wiley & Sons A/S.

  4. Intelligent Multi-scale Sensors for Damage Identification and Mitigation in Woven Composites for Aerospace Structural Applications

    DTIC Science & Technology

    2012-08-15

    Bragg grating ( FBG ) sensors within these composite structures allows one to correlate sensor response features to “critical damage events” within the...material. The unique capabilities of this identification strategy are due to the detailed information obtained from the FBG sensors and the... FBG sensors relate to damage states not merely strain amplitudes. The research objectives of this project were therefore to:  demonstrate FBG

  5. Fine resolution mapping of population age-structures for health and development applications

    PubMed Central

    Alegana, V. A.; Atkinson, P. M.; Pezzulo, C.; Sorichetta, A.; Weiss, D.; Bird, T.; Erbach-Schoenberg, E.; Tatem, A. J.

    2015-01-01

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings. PMID:25788540

  6. Fine resolution mapping of population age-structures for health and development applications.

    PubMed

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  7. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  9. Structural model of the SARS coronavirus E channel in LMPG micelles.

    PubMed

    Surya, Wahyu; Li, Yan; Torres, Jaume

    2018-06-01

    Coronaviruses (CoV) cause common colds in humans, but are also responsible for the recent Severe Acute, and Middle East, respiratory syndromes (SARS and MERS, respectively). A promising approach for prevention are live attenuated vaccines (LAVs), some of which target the envelope (E) protein, which is a small membrane protein that forms ion channels. Unfortunately, detailed structural information is still limited for SARS-CoV E, and non-existent for other CoV E proteins. Herein, we report a structural model of a SARS-CoV E construct in LMPG micelles with, for the first time, unequivocal intermolecular NOEs. The model corresponding to the detergent-embedded region is consistent with previously obtained orientational restraints obtained in lipid bilayers and in vivo escape mutants. The C-terminal domain is mostly α-helical, and extramembrane intermolecular NOEs suggest interactions that may affect the TM channel conformation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Behaviour of several fatigue prone bridge details

    NASA Astrophysics Data System (ADS)

    Kubiš, Petr; Ryjáček, Pavel

    2017-09-01

    Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.

  11. PC-based Multiple Information System Interface (PC/MISI) detailed design and implementation plan

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The design plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intended to be used as a blueprint for the implementation of the system. Each component is described in the detail necessary to allow programmers to implement the system. A description of the system data flow and system file structures is given.

  12. Seismic and Restoration Assessment of Monumental Masonry Structures

    PubMed Central

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  13. Seismic and Restoration Assessment of Monumental Masonry Structures.

    PubMed

    Asteris, Panagiotis G; Douvika, Maria G; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-08-02

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  14. Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, B.; Nam, M. J.; Son, J. S.

    2017-12-01

    Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.

  15. Detail in architecture: Between arts & crafts

    NASA Astrophysics Data System (ADS)

    Dulencin, Juraj

    2016-06-01

    Architectural detail represents an important part of architecture. Not only can it be used as an identifier of a specific building but at the same time enhances the experience of the realized project. Within it lie the signs of a great architect and clues to understanding his or her way of thinking. It is therefore the central topic of a seminar offered to architecture students at the Brno University of Technology. During the course of the semester-long class the students acquaint themselves with atypical architectural details of domestic and international architects by learning to read them, understand them and subsequently draw them by creating architectural blueprints. In other words, by general analysis of a detail the students learn theoretical thinking of its architect who, depending on the nature of the design, had to incorporate a variety of techniques and crafts. Students apply this analytical part to their own architectural detail design. The methodology of the seminar consists of experiential learning by project management and is complemented by a series of lectures discussing a diversity of details as well as materials and technologies required to implement it. The architectural detail design is also part of students' bachelors thesis, therefore, the realistic nature of their blueprints can be verified in the production process of its physical counterpart. Based on their own documentation the students choose the most suitable manufacturing process whether it is supplied by a specific technology or a craftsman. Students actively participate in the production and correct their design proposals in real scale with the actual material. A student, as a future architect, stands somewhere between a client and an artisan, materializes his or her idea and adjusts the manufacturing process so that the final detail fulfills aesthetic consistency and is in harmony with its initial concept. One of the very important aspects of the design is its economic cost, an

  16. Integrating prior information into microwave tomography Part 1: Impact of detail on image quality.

    PubMed

    Kurrant, Douglas; Baran, Anastasia; LoVetri, Joe; Fear, Elise

    2017-12-01

    The authors investigate the impact that incremental increases in the level of detail of patient-specific prior information have on image quality and the convergence behavior of an inversion algorithm in the context of near-field microwave breast imaging. A methodology is presented that uses image quality measures to characterize the ability of the algorithm to reconstruct both internal structures and lesions embedded in fibroglandular tissue. The approach permits key aspects that impact the quality of reconstruction of these structures to be identified and quantified. This provides insight into opportunities to improve image reconstruction performance. Patient-specific information is acquired using radar-based methods that form a regional map of the breast. This map is then incorporated into a microwave tomography algorithm. Previous investigations have demonstrated the effectiveness of this approach to improve image quality when applied to data generated with two-dimensional (2D) numerical models. The present study extends this work by generating prior information that is customized to vary the degree of structural detail to facilitate the investigation of the role of prior information in image formation. Numerical 2D breast models constructed from magnetic resonance (MR) scans, and reconstructions formed with a three-dimensional (3D) numerical breast model are used to assess if trends observed for the 2D results can be extended to 3D scenarios. For the blind reconstruction scenario (i.e., no prior information), the breast surface is not accurately identified and internal structures are not clearly resolved. A substantial improvement in image quality is achieved by incorporating the skin surface map and constraining the imaging domain to the breast. Internal features within the breast appear in the reconstructed image. However, it is challenging to discriminate between adipose and glandular regions and there are inaccuracies in both the structural properties of

  17. 14 CFR 23.685 - Control system details.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Control Systems § 23.685 Control system details. (a) Each detail of each control system must be designed... cables or tubes against other parts. (d) Each element of the flight control system must have design... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system details. 23.685 Section 23...

  18. 14 CFR 23.685 - Control system details.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Control Systems § 23.685 Control system details. (a) Each detail of each control system must be designed... cables or tubes against other parts. (d) Each element of the flight control system must have design... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system details. 23.685 Section 23...

  19. 14 CFR 23.685 - Control system details.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Control Systems § 23.685 Control system details. (a) Each detail of each control system must be designed... cables or tubes against other parts. (d) Each element of the flight control system must have design... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system details. 23.685 Section 23...

  20. 14 CFR 23.685 - Control system details.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Control Systems § 23.685 Control system details. (a) Each detail of each control system must be designed... cables or tubes against other parts. (d) Each element of the flight control system must have design... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Control system details. 23.685 Section 23...

  1. 14 CFR 23.685 - Control system details.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Control Systems § 23.685 Control system details. (a) Each detail of each control system must be designed... cables or tubes against other parts. (d) Each element of the flight control system must have design... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system details. 23.685 Section 23...

  2. The effects of design details on cost and weight of fuselage structures

    NASA Technical Reports Server (NTRS)

    Swanson, G. D.; Metschan, S. L.; Morris, M. R.; Kassapoglou, C.

    1993-01-01

    Crown panel design studies showing the relationship between panel size, cost, weight, and aircraft configuration are compared to aluminum design configurations. The effects of a stiffened sandwich design concept are also discussed. This paper summarizes the effect of a design cost model in assessing the cost and weight relationships for fuselage crown panel designs. Studies were performed using data from existing aircraft to assess the effects of different design variables on the cost and weight of transport fuselage crown panel design. Results show a strong influence of load levels, panel size, and material choices on the cost and weight of specific designs. A design tool being developed under the NASA ACT program is used in the study to assess these issues. The effects of panel configuration comparing postbuckled and buckle resistant stiffened laminated structure is compared to a stiffened sandwich concept. Results suggest some potential economy with stiffened sandwich designs for compression dominated structure with relatively high load levels.

  3. Structure of the Rigor Actin-Tropomyosin-Myosin Complex

    PubMed Central

    Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan

    2014-01-01

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895

  4. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer.

    PubMed

    Bocian, Wojciech; Borowicz, Piotr; Mikołajczyk, Jerzy; Sitkowski, Jerzy; Tarnowska, Anna; Bednarek, Elzbieta; Głabski, Tadeusz; Tejchman-Małecka, Bozena; Bogiel, Monika; Kozerski, Lech

    2008-10-01

    A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc.

  5. Detailed Structure of the Outer Disk Around HD 169142 with Polarized Light in H-band

    NASA Technical Reports Server (NTRS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; hide

    2015-01-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.''2=r=1.''2, or 29=r=174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 AU and r = 81.2-145 AU respectively show r-3-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r <50 AU) is derived to be =0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.

  6. Conductivity and local structure in LaNiO3

    NASA Astrophysics Data System (ADS)

    Fowlie, Jennifer; Gibert, Marta; Tieri, Giulio; Gloter, Alexandre; à+/-Iguez, Jorge; Filippetti, Alessio; Catalano, Sara; Gariglio, Stefano; StéPhan, Odile; Triscone, Jean-Marc

    In this study we approach the thickness-dependence of the properties of LaNiO3 films along multiple, complementary avenues: sophisticated ab initio calculations, scanning transmission electron microscopy and electronic transport. Specifically, we find an unexpected maximum in conductivity in films of thickness 6 - 10 unit cells (3 nm) for several series of LaNiO3 films. Ab initio transport based on the detailed crystal structure also reveals a maximum in conductivity at the same thickness. In agreement with the structure obtained from scanning transmission electron microscopy (STEM), our simulated structures reveal that the substrate- and surface-induced distortions lead to three types of local structure (heterointerface, interior-layer, surface). Based on this observation, a 3-element parallel conductor model neatly reproduces the trend of conductivity with thickness. This study addresses the question of how structural distortions at the atomic scale evolve in a thin film under the influence of the substrate and the surface. This topic is key to the understanding of the physics of heterostructures and the design of functional oxides.

  7. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  8. Introducing DeBRa: a detailed breast model for radiological studies

    NASA Astrophysics Data System (ADS)

    Ma, Andy K. W.; Gunn, Spencer; Darambara, Dimitra G.

    2009-07-01

    Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast. DeBRa (Detailed Breast model for Radiological studies) is the most advanced, detailed, 3D computational model of the breast developed recently for breast imaging studies. A DeBRa phantom can be constructed to model a compressed breast, as in film/screen, digital mammography and digital breast tomosynthesis studies, or a non-compressed breast as in positron emission mammography and breast CT studies. Both the cranial-caudal and mediolateral oblique views can be modelled. The anatomical details inside the phantom include the lactiferous duct system, the Cooper ligaments and the pectoral muscle. The fibroglandular tissues are also modelled realistically. In addition, abnormalities such as microcalcifications, irregular tumours and spiculated tumours are inserted into the phantom. Existing sophisticated breast models require specialized simulation codes. Unlike its predecessors, DeBRa has elemental compositions and densities incorporated into its voxels including those of the explicitly modelled anatomical structures and the noise-like fibroglandular tissues. The voxel dimensions are specified as needed by any study and the microcalcifications are embedded into the voxels so that the microcalcification sizes are not limited by the voxel dimensions. Therefore, DeBRa works with general-purpose Monte Carlo codes. Furthermore, general-purpose Monte Carlo codes allow different types of imaging modalities and detector characteristics to be simulated with ease. DeBRa is a versatile and multipurpose model specifically designed for both x-ray and γ-ray imaging studies.

  9. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    PubMed

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.

  10. 18 CFR 401.122 - Supplementary details.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Supplementary details. 401.122 Section 401.122 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.122 Supplementary details. Forms...

  11. 77 FR 8892 - Detailed Planning To Consider Additional Land Protection on the Missouri River From Fort Randall...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... governments, and the public of our intentions and to obtain suggestions and information on the scope of issues to include in the environmental documents. Special mailings, newspaper articles, and other media... information necessary to complete detailed planning and prepare associated documents under the National...

  12. Academic detailing.

    PubMed

    Shankar, P R; Jha, N; Piryani, R M; Bajracharya, O; Shrestha, R; Thapa, H S

    2010-01-01

    There are a number of sources available to prescribers to stay up to date about medicines. Prescribers in rural areas in developing countries however, may not able to access some of them. Interventions to improve prescribing can be educational, managerial, and regulatory or use a mix of strategies. Detailing by the pharmaceutical industry is widespread. Academic detailing (AD) has been classically seen as a form of continuing medical education in which a trained health professional such as a physician or pharmacist visits physicians in their offices to provide evidence-based information. Face-to-face sessions, preferably on an individual basis, clear educational and behavioural objectives, establishing credibility with respect to objectivity, stimulating physician interaction, use of concise graphic educational materials, highlighting key messages, and when possible, providing positive reinforcement of improved practices in follow-up visits can increase success of AD initiatives. AD is common in developed countries and certain examples have been cited in this review. In developing countries the authors have come across reports of AD in Pakistan, Sudan, Argentina and Uruguay, Bihar state in India, Zambia, Cuba, Indonesia and Mexico. AD had a consistent, small but potentially significant impact on prescribing practices. AD has much less resources at its command compared to the efforts by the industry. Steps have to be taken to formally start AD in Nepal and there may be specific hindering factors similar to those in other developing nations.

  13. Development and Performance Evaluation of Image-Based Robotic Waxing System for Detailing Automobiles

    PubMed Central

    Hsu, Bing-Cheng

    2018-01-01

    Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme. PMID:29757940

  14. Development and Performance Evaluation of Image-Based Robotic Waxing System for Detailing Automobiles.

    PubMed

    Lin, Chi-Ying; Hsu, Bing-Cheng

    2018-05-14

    Waxing is an important aspect of automobile detailing, aimed at protecting the finish of the car and preventing rust. At present, this delicate work is conducted manually due to the need for iterative adjustments to achieve acceptable quality. This paper presents a robotic waxing system in which surface images are used to evaluate the quality of the finish. An RGB-D camera is used to build a point cloud that details the sheet metal components to enable path planning for a robot manipulator. The robot is equipped with a multi-axis force sensor to measure and control the forces involved in the application and buffing of wax. Images of sheet metal components that were waxed by experienced car detailers were analyzed using image processing algorithms. A Gaussian distribution function and its parameterized values were obtained from the images for use as a performance criterion in evaluating the quality of surfaces prepared by the robotic waxing system. Waxing force and dwell time were optimized using a mathematical model based on the image-based criterion used to measure waxing performance. Experimental results demonstrate the feasibility of the proposed robotic waxing system and image-based performance evaluation scheme.

  15. Foreign molecules and ions in beryl obtained by infrared and visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Jelić, Ivana; Logar, Mihovil; Milošević, Maja

    2017-04-01

    Beryl minerals of Serbia were slightly studied in the last century and despite that there is some obtainable data about main characteristics there is a limited amount of information about foreign molecules in the mineral structure. Two beryl samples from different locations in Serbia were examined in detail but infrared spectroscopy (IR) and spectrophotometry (VIS) was used for determination of foreign molecules and ions in the structure and the obtained data is shown in this paper. The infrared (IR) and visible spectra (VIS) of two natural beryl samples indicate the presence of two types of water molecule, Fe2+, Fe3+ ions and CO3. The spectra of two types of water molecules can be recognized with molecular fundamental vibrations at 3687 cm-1 (asymmetric stretching) for type I, at 3574 cm-1 and 3585 cm-1 both symmetric stretching, and with deformation vibrations at 1627 cm-1 and 1632 cm-1 for type II. In range of symmetric stretching there is broad vibrational band which can be explained by presence of water molecules type II near alkali ions. Overtones and combinations of these fundamental vibrations have been identified. The type I molecules have their C2 symmetry axes perpendicular to the crystal C6 axis, while the type II molecules are rotated by 90 degrees and have their C2 symmetry axes parallel to the crystal C6 axis. Vibrational absorption frequency of 1425 cm-1 indicate the presence of CO3. Pale blue beryl is colored according to the relative intensities of two spectral features attributable to iron ions: a) a broad band in the extraordinary ray (Er) at 16000 cm-1 due to Fe2+ in a channel site and b) a broad band in range of 22500-31400 cm-1 in both ordinary ray (Or) and Er due to octahedral Fe3+ in the Al3+ site. Two other features, also attributable to iron, do not produce any visible coloration: a) an absorption edge at 12350 cm-1 in Or is due to Fe2+ in the octahedral site and b) a broad band in Er and Or, centered around 12350 cm-1, is due to Fe2+ in

  16. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. Space Station truss structures and construction considerations

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Croomes, S. D.; Schneider, W.; Bush, H. G.; Nagy, K.; Pelischek, T.; Lake, M. S.; Wesselski, C.

    1985-01-01

    Although a specific configuration has not been selected for the Space Station, a gravity gradient stabilized station as a basis upon which to compare various structural and construction concepts is considered. The Space Station primary truss support structure is described in detail. Three approaches (see sketch A) which are believed to be representative of the major techniques for constructing large structures in space are also described in detail so that salient differences can be highlighted.

  18. The enhancement of friction ridge detail on brass ammunition casings using cold patination fluid.

    PubMed

    James, Richard Michael; Altamimi, Mohamad Jamal

    2015-12-01

    Brass ammunition is commonly found at firearms related crime scenes. For this reason, many studies have focused on evidence that can be obtained from brass ammunition such as DNA, gunshot residue and fingerprints. Latent fingerprints on ammunition can provide good forensic evidence, however; fingerprint development on ammunition casings has proven to be difficult. A method using cold patination fluid is described as a potential tool to enhance friction ridge detail on brass ammunition casings. Current latent fingerprint development methods for brass ammunition have either failed to provide the necessary quality of friction ridge detail or can be very time consuming and require expensive equipment. In this study, the enhancement of fingerprints on live ammunition has been achieved with a good level of detail whilst the development on spent casings has to an extent also been possible. Development with cold patination fluid has proven to be a quick, simple and cost-effective method for fingerprint development on brass ammunition that can be easily implemented for routine police work. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured from Detailed Military Specifications

    NASA Astrophysics Data System (ADS)

    Doherty, Kevin; Squillacioti, Richard; Cheeseman, Bryan; Placzankis, Brian; Gallardy, Denver

    For many years, the range of aluminum alloys for armor plate applications obtainable in accordance with detailed military specifications was very limited. However, the development of improved aluminum alloys for aerospace and other applications has provided an opportunity to modernize the Army portfolio for ground vehicle armor applications. While the benefits of offering additional alloy choices to vehicle designers is obvious, the process of creating detailed military specifications for armor plate applications is not trivial. A significant amount of material and testing is required to develop the details required by an armor plate specification. Due to the vast number of material programs that require standardization and with a limited amount of manpower and funds as a result of Standardization Reform in 1995, one typically requires a need statement from a vehicle program office to justify and sponsor the work. This presentation will focus on recent aluminum alloy armor plate specifications that have added capability to vehicle designers' selection of armor materials that offer possible benefits such as lower cost, higher strength, better ballistic and corrosion resistance, improved weldability, etc.

  20. Nanoparticles of CdI 2 with closed cage structures obtained via electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sallacan, N.; Popovitz-Biro, R.; Tenne, R.

    2003-06-01

    Nanoparticles of various layered compounds were shown to form closed cage or nanotubular structures, which were designated as inorganic fullerene-like ( IF) materials. In particular, closed cage structures and nanotubes were synthesized from NiCl 2 and CdCl 2 in the past. In the present work IF-CdI 2 nanoparticles were synthesized by electron-beam irradiation of the source powder leading to evaporation and subsequent recrystallization into closed nanoparticles with a non-hollow core. This process created polyhedral nanoparticles with hexagonal or elongated rectangular characters. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable under the electron-beam irradiation.

  1. Continuum modeling of three-dimensional truss-like space structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1978-01-01

    A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.

  2. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  3. Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models?

    PubMed Central

    Ponce, Carlos; Bravo, Carolina; Alonso, Juan Carlos

    2014-01-01

    Studies evaluating agri-environmental schemes (AES) usually focus on responses of single species or functional groups. Analyses are generally based on simple habitat measurements but ignore food availability and other important factors. This can limit our understanding of the ultimate causes determining the reactions of birds to AES. We investigated these issues in detail and throughout the main seasons of a bird's annual cycle (mating, postfledging and wintering) in a dry cereal farmland in a Special Protection Area for farmland birds in central Spain. First, we modeled four bird response parameters (abundance, species richness, diversity and “Species of European Conservation Concern” [SPEC]-score), using detailed food availability and vegetation structure measurements (food models). Second, we fitted new models, built using only substrate composition variables (habitat models). Whereas habitat models revealed that both, fields included and not included in the AES benefited birds, food models went a step further and included seed and arthropod biomass as important predictors, respectively, in winter and during the postfledging season. The validation process showed that food models were on average 13% better (up to 20% in some variables) in predicting bird responses. However, the cost of obtaining data for food models was five times higher than for habitat models. This novel approach highlighted the importance of food availability-related causal processes involved in bird responses to AES, which remained undetected when using conventional substrate composition assessment models. Despite their higher costs, measurements of food availability add important details to interpret the reactions of the bird community to AES interventions and thus facilitate evaluating the real efficiency of AES programs. PMID:25165523

  4. Featured Image: New Detail in the Toothbrush Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    This spectacular composite (click here for the full image) reveals the galaxy cluster 1RXS J0603.3+4214, known as the Toothbrush cluster due to the shape of its most prominent radio relic. Featured in a recent publication led by Kamlesh Rajpurohit (Thuringian State Observatory, Germany), this image contains new Very Large Array (VLA) 1.5-GHz observations (red) showing the radio emission within the cluster. This is composited with a Chandra view of the X-ray emitting gas of the cluster (blue) and an optical image of the background from Subaru data. The new deep VLA data totaling 26 hours of observations provides a detailed look at the complex structure within the Toothbrush relic, revealing enigmatic filaments and twists (see below). This new data will help us to explore the possible merger history of this cluster, which is theorized to have caused the unusual shapes we see today. For more information, check out the original article linked below.High resolution VLA 12 GHz image of the Toothbrush showing the complex, often filamentary structures. [Rajpurohit et al. 2018]CitationK. Rajpurohit et al 2018 ApJ 852 65. doi:10.3847/1538-4357/aa9f13

  5. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    PubMed Central

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  6. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    2017-07-05

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  7. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE PAGES

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...

    2017-07-05

    Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  8. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  9. Structure and optical properties of noble metal and oxide nanoparticles dispersed in various polysaccharide biopolymers

    NASA Astrophysics Data System (ADS)

    Djoković, V.; Božanic, D. K.; Vodnik, V. V.; Krsmanović, R. M.; Trandafilovic, L. V.; Dimitrijević-Branković, S.

    2011-10-01

    We present the results on the structure and the optical properties of noble metal (Ag, Au) and oxide (ZnO) nanoparticles synthesized by various methods in different polysaccharide matrices such as chitosan, glycogen, alginate and starch. The structure of the obtained nanoparticles was studied in detail with microscopic techniques (TEM, SEM), while the XPS spectroscopy was used to investigate the effects at the nanoparticle-biomolecule interfaces. The antimicrobial activity of the nanocomposite films with Ag nanoparticles was tested against the Staphylococcus aureus, Escherichia coli and Candida albicans pathogens. In addition, we will present the results on the structure and optical properties of the tryptophan amino acid functionalized silver nanoparticles dispersed in water soluble polymer matrices.

  10. Detail view in engine bay three in the the aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view in engine bay three in the the aft fuselage of the Orbiter Discovery. This view shows the engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the large plugged and capped orifices. Note the handwritten references on the thrust plate in proximity to the actuators that read E3 Pitch and E3 Yaw. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. 9. Detail view of columns on first floor. This row ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view of columns on first floor. This row of columns indicates the former location of the exterior mill wall before World War II era expansion. The unusual column and beam connection was a key part of the mill structural system patented by Providence, Rhode Island engineers Charles Praray and Charles Makepeace in 1894. Each column was originally located in the apex of triangular window bay, but not connected to the exterior wall. Modifications on the right side of each column support the beams of the addition. - Dixie Cotton Mill, 710 Greenville Street, La Grange, Troup County, GA

  12. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process

    USGS Publications Warehouse

    Dodge, D.A.; Beroza, G.C.; Ellsworth, W.L.

    1996-01-01

    We find that foreshocks provide clear evidence for an extended nucleation process before some earthquakes. In this study, we examine in detail the evolution of six California foreshock sequences, the 1986 Mount Lewis (ML, = 5.5), the 1986 Chalfant (ML = 6.4), the. 1986 Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (MW= 6.1), and the 1992 Landers (MW = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too large to establish the geometry of foreshock sequences and hence to understand their evolution. However, the similarity of location and focal mechanisms for the events in these sequences leads to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative locations. We use these results to identify small-scale fault zone structures that could influence nucleation and to determine the stress evolution leading up to the mainshock. In general, these foreshock sequences are not compatible with a cascading failure nucleation model in which the foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater the number of foreshocks. The size of the nucleation region, as measured by the extent of the foreshock sequence, appears to scale with mainshock moment in the same manner as determined independently by measurements of the seismic nucleation phase. We also find evidence for slip localization as predicted by some models of earthquake nucleation. Copyright 1996 by the American Geophysical Union.

  13. Advanced structural analysis of nanoporous materials by thermal response measurements.

    PubMed

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-07

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

  14. Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.

    2001-01-01

    The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.

  15. Oxidation of gallium arsenide in a plasma multipole device. Study of the MOS structures obtained

    NASA Technical Reports Server (NTRS)

    Gourrier, S.; Mircea, A.; Simondet, F.

    1980-01-01

    The oxygen plasma oxidation of GaAs was studied in order to obtain extremely high frequency responses with MOS devices. In the multipole system a homogeneous oxygen plasma of high density can easily be obtained in a large volume. This system is thus convenient for the study of plasma oxidation of GaAs. The electrical properties of the MOS diodes obtained in this way are controlled by interface states, located mostly in the upper half of the band gap where densities in the 10 to the 13th power/(sq cm) (eV) range can be estimated. Despite these interface states the possibility of fabricating MOSFET transistors working mostly in the depletion mode for a higher frequency cut-off still exists.

  16. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    PubMed

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  18. New Details on Pluto

    NASA Image and Video Library

    2015-07-10

    This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705

  19. Automated method to differentiate between native and mirror protein models obtained from contact maps

    PubMed Central

    Kurczynska, Monika

    2018-01-01

    Mirror protein structures are often considered as artifacts in modeling protein structures. However, they may soon become a new branch of biochemistry. Moreover, methods of protein structure reconstruction, based on their residue-residue contact maps, need methodology to differentiate between models of native and mirror orientation, especially regarding the reconstructed backbones. We analyzed 130 500 structural protein models obtained from contact maps of 1 305 SCOP domains belonging to all 7 structural classes. On average, the same numbers of native and mirror models were obtained among 100 models generated for each domain. Since their structural features are often not sufficient for differentiating between the two types of model orientations, we proposed to apply various energy terms (ETs) from PyRosetta to separate native and mirror models. To automate the procedure for differentiating these models, the k-means clustering algorithm was applied. Using total energy did not allow to obtain appropriate clusters–the accuracy of the clustering for class A (all helices) was no more than 0.52. Therefore, we tested a series of different k-means clusterings based on various combinations of ETs. Finally, applying two most differentiating ETs for each class allowed to obtain satisfying results. To unify the method for differentiating between native and mirror models, independent of their structural class, the two best ETs for each class were considered. Finally, the k-means clustering algorithm used three common ETs: probability of amino acid assuming certain values of dihedral angles Φ and Ψ, Ramachandran preferences and Coulomb interactions. The accuracies of clustering with these ETs were in the range between 0.68 and 0.76, with sensitivity and selectivity in the range between 0.68 and 0.87, depending on the structural class. The method can be applied to all fully-automated tools for protein structure reconstruction based on contact maps, especially those analyzing

  20. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less

  1. A comparison of Gemini and ERTS imagery obtained over southern Morocco

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Anderson, A. T.

    1973-01-01

    A mosaic constructed from three ERTS MSS band 5 images enlarged to 1:500,000 compares favorably with a similar scale geologic map of southern Morocco, and a near-similar scale Gemini 5 photo pair. A comparative plot of lineations and generalized geology on the three formats show that a significantly greater number of probable fractures are visible on the ERTS imagery than on the Gemini photography, and that both orbital formats show several times more lineaments than were previously mapped. A plot of mineral occurrences on the structural overlays indicates that definite structure-mineralization relationships exist; this finding is used to define underdeveloped areas which are prospective for mineralization. More detailed mapping is possible using MSS imagery than on Gemini 5 photographs, and in addition, the ERTS format is not restricted to limited coverage.

  2. [Comparison of film-screen combination in a contrast detail diagram and with interactive image analysis. 1: Contrast detail diagram].

    PubMed

    Hagemann, G; Eichbaum, G

    1997-07-01

    The following three film-screen combinations were compared: a) a combination of anticrossover film and UV-light emitting screens, b) a combination of blue-light emitting screens and film, and c) a conventional green fluorescing screen film combination. Radiographs of a specially designed plexiglass phantom (0.2 x 0.2 x 0.12 m3) were obtained that contained bar patterns of lead and plaster (calcium sulfate) to test high and intermediate contrast resolution and bar patterns of air to test low contrast resolution, respectively. An aluminum step wedge was integrated to evaluate dose-density curves of the radiographs. The dose values for the various step thicknesses were measured as percentage of the dose value in air for 60, 81, and 117 kV. Exposure conditions were the following: 12 pulse generator, 0.6 mm focus size, 4.7 mm aluminum prefilter, a grid with 40 lines/cm (12:1), and a focus-detector distance of 1.15 m. The thresholds of visible bars of the various pattern materials were assessed by seven radiologists, one technician, and the authors. The resulting contrast detail diagram could not prove any significant differences between the three tested screen film combinations. The pairwise comparison, however, found 8 of the 18 paired differences to be statistically significant between the conventional and the two new screen-film combinations. The authors concluded that subjective visual assessment of the threshold in a contrast detail study alone is of only limited value to grade image quality if no well-defined criteria are used (BIR report 20 [1989] 137-139). The statistical approach of paired differences of the estimated means appeared to be more appropriate.

  3. False Memories Lack Perceptual Detail: Evidence from Implicit Word-Stem Completion and Perceptual Identification Tests

    ERIC Educational Resources Information Center

    Hicks, J.L.; Starns, J.J.

    2005-01-01

    We used implicit measures of memory to ascertain whether false memories for critical nonpresented items in the DRM paradigm (Deese, 1959; Roediger & McDermott, 1995) contain structural and perceptual detail. In Experiment 1, we manipulated presentation modality in a visual word-stem-completion task. Critical item priming was significant and…

  4. Proper source-receiver distance to obtain surface wave group velocity profile for flaw detection inside a concrete plate-like structure

    NASA Astrophysics Data System (ADS)

    Cheng, Chia-Chi; Hsu, Keng-Tsang; Wang, Hong-Hua; Chiang, Chih-Hung

    2018-04-01

    A technique leads to rapid flaw detection for concrete plate-like structure is realized by obtaining the group velocity dispersion profile of the fundamental antisymmetric mode of the plate (A0 mode). The depth of a delaminating crack, honeycomb or depth of weak surface layer on top of the sound concrete can all be evaluated by the change of velocity in the dispersion profile of A0 mode at the wavelength about twice of the depth. The testing method involves obtaining the A0 group slowness spectrogram produced by single test with one receiver placed away from the source of impact. The image of the spectrogram is obtained by Short-Time Fourier Transfer (STFT) and enhanced by reassigned method. The choice of window length in STFT and the ratio between impactor-receiver distance and plate thickness, d/T, is essential as the dominant surface wave response may simply a non-dispersive Rayleigh wave or following the A0 or S0 (fundamental symmetric mode) modal dispersion curve. In this study, the axisymmetric finite element model of a plate subject to transient load was constructed. The nodal vertical velocity waveforms for various distances were analyzed using various STFT window lengths. The results show, for certain d/T ratio, S0 mode would be dominant when longer window is used. The best window lengths for a d/T ratio as well as the corresponding largest wavelength which follows the A0 theoretical dispersion curve or Rayleigh wave were summarized. The information allows people to determine the proper impactor-receiver distance and analyzing window to successfully detect the depth of flaws inside a plate.

  5. Structural Polymorphism in “Kesterite” Cu 2ZnSnS 4 : Raman Spectroscopy and First-Principles Calculations Analysis

    DOE PAGES

    Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.; ...

    2017-03-06

    This work presents detailed structural and vibrational characterization of different Cu 2ZnSnS 4 (CZTS) polymorphs (space groups: Imore » $$\\bar{4}$$, P$$\\bar{4}$$2c, and P$$\\bar{4}$$2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. Lastly, the results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.« less

  6. Structural Polymorphism in “Kesterite” Cu 2ZnSnS 4 : Raman Spectroscopy and First-Principles Calculations Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.

    This work presents detailed structural and vibrational characterization of different Cu 2ZnSnS 4 (CZTS) polymorphs (space groups: Imore » $$\\bar{4}$$, P$$\\bar{4}$$2c, and P$$\\bar{4}$$2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. Lastly, the results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.« less

  7. Thermal Images of Seeds Obtained at Different Depths by Photoacoustic Microscopy (PAM)

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2015-06-01

    The objective of the present study was to obtain thermal images of a broccoli seed ( Brassica oleracea) by photoacoustic microscopy, at different modulation frequencies of the incident light beam ((0.5, 1, 5, and 20) Hz). The thermal images obtained in the amplitude of the photoacoustic signal vary with each applied frequency. In the lowest light frequency modulation, there is greater thermal wave penetration in the sample. Likewise, the photoacoustic signal is modified according to the structural characteristics of the sample and the modulation frequency of the incident light. Different structural components could be seen by photothermal techniques, as shown in the present study.

  8. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach.

    PubMed

    Pyta, Krystian; Klich, Katarzyna; Domagalska, Joanna; Przybylski, Piotr

    2014-09-12

    Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Morphology and physical-chemical properties of celluloses obtained by different methods

    NASA Astrophysics Data System (ADS)

    Anpilova, A. Yu.; Mastalygina, E. E.; Mikhaylov, I. A.; Popov, A. A.; Kartasheva, Z. S.

    2017-12-01

    The morphology and structural characteristics of celluloses obtained by different methods were studied. The objects of the investigation are cellulose from pulp source, commercial celluloses produced by sodium and acid hydrolysis, laboratory produced cellulose from bleached birch kraft pulp, and cellulose obtained by thermooxidative catalytic treatment of maple leaves by peroxide. According to a complex analysis of cellulose characteristics, several types of celluloses were offered as modifying additives for polymers.

  10. Detailed Facility Report Data Dictionary | ECHO | US EPA

    EPA Pesticide Factsheets

    The Detailed Facility Report Data Dictionary provides users with a list of the variables and definitions that have been incorporated into the Detailed Facility Report. The Detailed Facility Report provides a concise enforcement and compliance history for a facility.

  11. Atomic structure of a decagonal Al-Pd-Mn phase

    NASA Astrophysics Data System (ADS)

    Mihalkovič, Marek; Roth, Johannes; Trebin, Hans-Rainer

    2017-12-01

    We present a detailed structure solution for the 16 -Å decagonal quasicrystal in the Al-Pd-Mn system by means of cluster decoration and ab initio energy minimization. It is based on structure models of the ɛ and other approximant phases. The ɛ phases can be represented as subsets of a hexagon-boat-star (HBS) tiling. The decagonal phase comprises further HBS tiles. We have constructed several fictitious HBS approximants and optimized their structures individually. All tiles are decorated by two types of atomic clusters: the pseudo-Mackay icosahedron (PMI) and the large bicapped pentagonal prism (LBPP). It turns out that, whereas the PMI clusters can be kept essentially unchanged, the LBPP clusters must be adjusted in occupancy with Al atoms depending on their positions in the various tiles. In this way we obtain cluster decorations for all tiles of the decagonal quasicrystal. The calculations were confirmed by evaluation of an effective tile Hamiltonian.

  12. Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.

    2012-08-01

    A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.

  13. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    PubMed

    Mereghetti, Paolo; Wade, Rebecca C

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  14. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  15. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry

    PubMed Central

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-01-01

    Abstract The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body. PMID:29659988

  16. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry.

    PubMed

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-05-01

    The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.

  17. Cosmic structure and dynamics of the local Universe

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Erdoǧdu, Pirin; Nuza, Sebastián. E.; Khalatyan, Arman; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-11-01

    We present a cosmography analysis of the local Universe based on the recently released Two-Micron All-Sky Redshift Survey catalogue. Our method is based on a Bayesian Networks Machine Learning algorithm (the KIGEN-code) which self-consistently samples the initial density fluctuations compatible with the observed galaxy distribution and a structure formation model given by second-order Lagrangian perturbation theory (2LPT). From the initial conditions we obtain an ensemble of reconstructed density and peculiar velocity fields which characterize the local cosmic structure with high accuracy unveiling non-linear structures like filaments and voids in detail. Coherent redshift-space distortions are consistently corrected within 2LPT. From the ensemble of cross-correlations between the reconstructions and the galaxy field and the variance of the recovered density fields, we find that our method is extremely accurate up to k˜ 1 h Mpc-1 and still yields reliable results down to scales of about 3-4 h-1 Mpc. The motion of the Local Group we obtain within ˜80 h-1 Mpc (vLG = 522 ± 86 km s-1, lLG = 291° ± 16°, bLG = 34° ± 8°) is in good agreement with measurements derived from the cosmic microwave background and from direct observations of peculiar motions and is consistent with the predictions of ΛCDM.

  18. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S.

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we reportmore » template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.« less

  19. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  20. Making detailed predictions makes (some) predictions worse

    NASA Astrophysics Data System (ADS)

    Kelly, Theresa F.

    In this paper, we investigate whether making detailed predictions about an event makes other predictions worse. Across 19 experiments, 10,895 participants, and 415,960 predictions about 724 professional sports games, we find that people who made detailed predictions about sporting events (e.g., how many hits each baseball team would get) made worse predictions about more general outcomes (e.g., which team would win). We rule out that this effect is caused by inattention or fatigue, thinking too hard, or a differential reliance on holistic information about the teams. Instead, we find that thinking about game-relevant details before predicting winning teams causes people to give less weight to predictive information, presumably because predicting details makes information that is relatively useless for predicting the winning team more readily accessible in memory and therefore incorporated into forecasts. Furthermore, we show that this differential use of information can be used to predict what kinds of games will and will not be susceptible to the negative effect of making detailed predictions.