Sample records for obtain irradiation performance

  1. Effects of gamma irradiation on the performance of Jatropha (Jatropha curcas L.) accessions

    NASA Astrophysics Data System (ADS)

    Surahman, M.; Santosa, E.; Agusta, H.; Aisyah, S. I.; Nisya, F. N.

    2018-03-01

    This study aimed to assess the effects of mutation by using gamma ray on the performance of jatropha plants. The study was conducted at PAIR BATAN. Jatropha seeds obtained from the collection farm of SBRC LPPM IPB and PT Indocement Tunggal Prakarsa Tbk in Gunung Putri, Bogor, were irradiated. The irradiated seeds were grown in Jonggol Trial Farm of IPB. Gamma irradiation was conducted by using a GCM 4000A device. Treatments consisted of irradiation doses, irradiation methods, and accessions. Irradiation doses given were 175, 200, 225 Gy, and no irradiation (control). Irradiation methods consisted of acute, intermittent, and split-dose. Accessions used in this study were Dompu, Medan, Bima, Lombok, ITP II, IP2P, and Thailand. Results of the study were analysed until 5 months after planting showed that gamma ray mutation gave stimulating and inhibiting effects on similar traits. Irradiation dose of 225 Gy was good to be given in acute, intermittent, and split-dose methods. Irradiation effects were found to be significant in jatropha accessions. Effects of irradiation on production will be published soon.

  2. Irradiation of the Crude Venom of Bothrops jararacussu to Obtain Toxoid

    NASA Astrophysics Data System (ADS)

    Ferreira, Camila G.; Avalloni, Tânia M.; Oshima-Franco, Yoko; de J. Oliveira, Sara; de Oliveira, José M.; Cogo, José C.

    2011-08-01

    The aim of this work was to reduce the toxicity of Bothrops jararacussu venom using gamma-rays of low-energy coming from a source of Americium-241 (E = 59.6 keV and 3.7×109 Bq of activity) in order to obtain a toxoid. The radiation dose that each sample received was controlled by exposure time of the venom to the radiation beam. Mouse nerve phrenic-diaphragm preparation was used for testing the loss of venom toxicity, since the venom causes an irreversible neuromuscular blockade. In this condition, the several samples of irradiated venom, when assayed in neuromuscular preparation showed that with a dose of 0.051 Gy the paralysis caused by the irradiated venom was of 91%, at 0.360 Gy was of 79%, at 1.662 Gy was of 50% and at 2.448 Gy was of 42%. Therefore, it can be concluded that the irradiation model was able to induce a progressive loss of the venom toxicity.

  3. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    NASA Astrophysics Data System (ADS)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  4. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  5. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  6. Performance degradation of ferrofluidic feedthroughs in a mixed irradiation field

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Fernandes, S.; Mittig, Wolfgang; Pellemoine, Frederique; Avilov, M.; Kostin, M.; Mausner, L.; Ronningen, R.; Schein, M.; Bollen, G.

    2017-01-01

    Ferrofluidic feedthrough (FF) rotary seals containing either NdFeB or SmCo-type permanent magnets have been considered for use in the target and beam dump systems of the Facility for Rare Isotope Beams (FRIB). To evaluate their performance under irradiation three FF seals were irradiated in a mixed field consisting of fast neutrons, protons and γ-rays to an average absorbed dose of 0.2, 2.0, and 20.0 MGy at the Brookhaven Linac Isotope Producer facility (BLIP). The radiation types and energy profiles mimic those expected at the FRIB facility. Degradation of the operational performance of these devices due to irradiation is expected to be the result of the de-magnetization of the permanent magnets contained within the seal and the changes in the ferrofluid properties. Post-irradiation performance was evaluated by determining the ferrofluidic seal vacuum tightness and torque under static and dynamic conditions. The study revealed that the ferrofluidic feedthrough seal irradiated to a dose of 0.2 MGy maintained its vacuum tightness under both static and rotational condition while the one irradiated to a dose of 2.0 MGy exhibited signs of ferrofluid damage but no overall performance loss. At 20 MGy dose the effects of irradiation on the ferrofluid properties (viscosity and particle agglomeration) were shown to be severe. Furthermore, limited de-magnetization of the annular shaped Nd2Fe14B and Sm2Co17 magnets located within the irradiated FFs was observed for doses of 0.2 MGy and 20 MGy respectively.

  7. Cell performance and defect behavior in proton-irradiated lithium-counterdoped n(+)p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.

    1986-01-01

    Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.

  8. Performance of irradiated CVD diamond micro-strip sensors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Peitz, A.; Perera, L.; Pirollo, S.; Procario, M.; Riester, J. L.; Roe, S.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Wetstein, M.; White, C.; Zeuner, W.; Zoeller, M.; Plano, R.; Somalwar, S. V.; Thomson, G. B.

    2002-01-01

    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15/cm 2) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p/ cm2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π/ cm2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.

  9. Performance degradation of ferrofluidic feedthroughs in a mixed irradiation field

    DOE PAGES

    Simos, Nikolaos; Fernandes, S.; Mittig, Wolfgang; ...

    2016-10-06

    We present ferrofluidic feedthrough (FF) rotary seals containing either NdFeB or SmCo-type permanent magnets that have been considered for use in the target and beam dump systems of the Facility for Rare Isotope Beams (FRIB). To evaluate their performance under irradiation three FF seals were irradiated in a mixed field consisting of fast neutrons, protons and γ-rays to an average absorbed dose of 0.2, 2.0, and 20.0 MGy at the Brookhaven Linac Isotope Producer facility (BLIP). The radiation types and energy profiles mimic those expected at the FRIB facility. Degradation of the operational performance of these devices due to irradiationmore » is expected to be the result of the de-magnetization of the permanent magnets contained within the seal and the changes in the ferrofluid properties. Post-irradiation performance was evaluated by determining the ferrofluidic seal vacuum tightness and torque under static and dynamic conditions. The study revealed that the ferrofluidic feedthrough seal irradiated to a dose of 0.2 MGy maintained its vacuum tightness under both static and rotational condition while the one irradiated to a dose of 2.0 MGy exhibited signs of ferrofluid damage but no overall performance loss. Lastly, at 20 MGy dose the effects of irradiation on the ferrofluid properties (viscosity and particle agglomeration) were shown to be severe. Furthermore, limited de-magnetization of the annular shaped Nd 2Fe 14B and Sm 2Co 17 magnets located within the irradiated FFs was observed for doses of 0.2 MGy and 20 MGy respectively.« less

  10. Irradiation performance of HTGR recycle fissile fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO/sub 2/ and (Th,U)O/sub 2/ were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the rangemore » of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described.« less

  11. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, Taiki; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Radiology, The University of Tokyo Hospital, Tokyo

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatmentmore » planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.« less

  12. Spectral and photoelectric characteristics of the gamma irradiated intrinsic oxide-ІnSe heterostructures obtained under different conditions

    NASA Astrophysics Data System (ADS)

    Sydor, O. M.

    2016-09-01

    The investigations of photoelectric characteristics and photoresponce spectral dependences were carried out for intrinsic oxide-InSe heterostructures (HSs) and their changes induced by bremsstrahlung γ-quanta with an energy of 1-34 MeV at fluences of 1012-1015 cm-2. The thermal oxidation of the p-InSe:Cd substrates was carried out at a temperature of 420 °С. For three selected groups of samples the duration of the process was 15 min, 60 min, and 96 h. At a short-term oxidation (15 and 60 min) a layer of In2O3 appears. The only difference between the samples of these two groups is a higher photosensitivity in the range of energy 1.25-2.8 eV of the HSs obtained after the 60 min oxidation. At the long-term oxidation the photoresponce spectra η(hν) of the obtained HSs are characterized with a sharp short-wavelength decrease at hν≅2.0 eV. It is established that the intrinsic oxide films act as transparent barrier electrodes in the corresponding HSs and are low-sensitive to γ-irradiation in the all range of fluences. The shape of the photoresponce spectra for all the gamma irradiated HSs remains practically the same. However, it was found: (i) some decrease of photosensitivity at the long-wavelength edge, (ii) decreasing the width of η(hν) at half-height, (iii) the appearance of the exciton peak, (iv) the improvement of a slope of the low-energy edge of the photoresponce spectra with increasing irradiation dose whereas at the maximum fluence this parameter decreases, and (v) the slight extension of the spectral sensitivity to the short-wavelength range for the structures obtained after oxidation for 96 h. The photoelectric parameters of the intrinsic oxide-p-InSe HSs, open circuit voltage Voc, short-circuit current Jsc, current SIλmax and voltage SVλmax sensitivities become only improved after irradiation with the fluences 1012-1013 cm-2. At the maximum fluence a small decreasing of the values of Voc and Jsc was detected except for the structures obtained

  13. Method for improving performance of irradiated structural materials

    DOEpatents

    Megusar, Janez; Harling, Otto K.; Grant, Nicholas J.

    1989-01-01

    Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

  14. Design principles and field performance of a solar spectral irradiance meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reportedmore » by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.« less

  15. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  16. Effect of gamma-ray irradiation at low doses on the performance of PES ultrafiltration membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Niu, Lixia; Li, Fuzhi; Yu, Suping; Zhao, Xuan; Hu, Hongying

    2016-10-01

    The influence of gamma irradiation on the performance of polyether sulfone (PES) ultrafiltration (UF) membrane was investigated at low absorbed doses (0-75 kGy) using a cobalt source. The performance of the UF membranes was tested using low level radioactive wastewater (LLRW) containing three types of surfactants (anionic, cationic and nonionic surfactants). The physical and chemical properties of membrane surface were analyzed, and relationships between these properties and separation performance and fouling characteristics were determined. At 10-75 kGy irradiation, there were no significant changes observed in the membrane surface roughness or polymer functional groups, however the contact angle decreased sharply from 92° to ca. 70° at irradiation levels as low as 10 kGy. When membranes were exposed to the surfactant-containing LLRW, the flux decreased more sharply for higher dosed irradiated membranes, while flux in virgin membranes increased during the filtration processes. The study highlights that fouling properties of membrane may be changed due to the changes of surface hydrophilicity at low dose irradiation, while other surface properties and retentions remain stable. Therefore, a membrane fouling test with real or simulated wastewater is recommended to fully evaluate the membrane irradiation resistance.

  17. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. B. Robinson; D. M. Wachs; D. E. Burkes

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  18. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  19. [A case of brain metastasis discovered after surgery for lung cancer based on changes in CEA, in which long-term survival was obtained by repeated gammaknife irradiation].

    PubMed

    Kakeya, Hiroshi; Inoue, Yuichi; Sawai, Toyomitsu; Ikuta, Yasushi; Ohno, Hideaki; Yanagihara, Katsunori; Higashiyama, Yasuhito; Miyazaki, Yoshitsugu; Soda, Hiroshi; Tashiro, Takayoshi; Kohno, Shigeru

    2005-12-01

    A 58-year-old man underwent right lower lobectomy for lung adenocarcinoma in June 1998. Since a high level of tumor marker CEA persisted after surgery, chemotherapy was additionally performed, and the CEA level subsequently normalized. However, the CEA level increased in April 1999, and brain metastasis was found in the left occipital lobe, and the first gammaknife irradiation was performed. Multiple brain metastases were found when CEA increased again in August 1999, and the second gammaknife irradiation was performed. Moreover, brain metastases were found in the left frontal and occipital lobes in February 2000, and the third gammaknife irradiation was performed. CEA normalized thereafter, but increased in February 2001. Brain metastasis was found in the right occipital lobe, and the fourth gammaknife irradiation was performed. CEA has remained within the normal range for about 4 years thereafter. Long-term survival was possible by repeated gammaknife irradiation for brain metastases. Monitoring of CEA played an important role in finding recurrent brain metastasis in this patient.

  20. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  1. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  2. Irradiation performance of AGR-1 high temperature reactor fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; ...

    2015-10-23

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10 –4 to 5 × 10 –4 for 154Eu and 8 × 10 –7 to 3 × 10 –5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10 –6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10 5 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10 –5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium

  3. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGES

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; ...

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 10 13 cm -2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaNmore » P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  4. Effects of irradiated Ergosan on the growth performance and mucus biological components of rainbow trout Oncorhynchus mykiss

    NASA Astrophysics Data System (ADS)

    Sheikhzadeh, Najmeh; Chehrara, Fatemeh; Heidarieh, Marzieh; Nofouzi, Katayoon; Baradaran, Behzad

    2016-01-01

    Effects of irradiated and non-irradiated Ergosan extract (alginic acid) on rainbow trout growth performance and skin mucosal immunity were compared. Ergosan was irradiated at 30 kGy in a cobalt-60 irradiator. A total of 252 fish (128.03±9.4 g) were randomly divided into four equal groups, given the basal diet either unsupplemented with Ergosan (control group) or supplemented with crude Ergosan (5 g/kg), ethanol-extracted Ergosan (0.33 g/kg) or irradiated Ergosan (0.33 g/kg) according to this protocol: basal diet for 15 days, treatment diet for 15 days, basal diet for 10 days and treatment diet for 15 days. Highest growth performance was observed in fish fed irradiated Ergosan ( P <0.05). Dietary administration of different Ergosan types did not cause any changes in mucus protein level, but improved alkaline phosphatase level and hemagglutination titer compared with the control (basal diet without Ergosan) on day 55 of feeding trial ( P <0.05). Furthermore, the highest value of lysozyme activity was observed in gamma-irradiated Ergosan on day 55. In conclusion, gamma-irradiated Ergosan at 0.33 g/kg was found to improve growth performance and mucus biological components significantly in comparison with the control group (basal diet without Ergosan).

  5. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  6. Cryogenic irradiation of an EMCCD for the WFIRST coronagraph: preliminary performance analysis

    NASA Astrophysics Data System (ADS)

    Bush, Nathan; Hall, David; Holland, Andrew; Burgon, Ross; Murray, Neil; Gow, Jason; Jordan, Douglas; Demers, Richard; Harding, Leon K.; Nemati, Bijan; Hoenk, Michael; Michaels, Darren; Peddada, Pavani

    2016-08-01

    The Wide Field Infra-Red Survey Telescope (WFIRST) is a NASA observatory scheduled to launch in the next decade that will settle essential questions in exoplanet science. The Wide Field Instrument (WFI) offers Hubble quality imaging over a 0.28 square degree field of view and will gather NIR statistical data on exoplanets through gravitational microlensing. An on-board coronagraph will for the first time perform direct imaging and spectroscopic analysis of exoplanets with properties analogous to those within our own solar system, including cold Jupiters, mini Neptunes and potentially super Earths. The Coronagraph Instrument (CGI) will be required to operate with low signal flux for long integration times, demanding all noise sources are kept to a minimum. The Electron Multiplication (EM)-CCD has been baselined for both the imaging and spectrograph cameras due its ability to operate with sub-electron effective read noise values with appropriate multiplication gain setting. The presence of other noise sources, however, such as thermal dark signal and Clock Induced Charge (CIC), need to be characterized and mitigated. In addition, operation within a space environment will subject the device to radiation damage that will degrade the Charge Transfer Effciency (CTE) of the device throughout the mission lifetime. Irradiation at the nominal instrument operating temperature has the potential to provide the best estimate of performance degradation that will be experienced in-flight, since the final population of silicon defects has been shown to be dependent upon the temperature at which the sensor is irradiated. Here we present initial findings from pre- and post- cryogenic irradiation testing of the e2v CCD201-20 BI EMCCD sensor, baselined for the WFIRST coronagraph instrument. The motivation for irradiation at cryogenic temperatures is discussed with reference to previous investigations of a similar nature. The results are presented in context with those from a previous

  7. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  8. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    PubMed Central

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc′) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. PMID:25256247

  9. Wood-Polymer composites obtained by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, J.; Lopez, A.; Rodriguez, J.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  10. Fuels irradiation testing for the SP-100 program

    NASA Technical Reports Server (NTRS)

    Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.

    1991-01-01

    An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.

  11. Preliminary Analysis of the General Performance and Mechanical Behavior of Irradiated FeCrAl Base Alloys and Weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, Maxim N.; Field, Kevin G.; Briggs, Samuel A.

    The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in themore » frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and

  12. AGR-1 Post Irradiation Examination Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests tomore » simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel

  13. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua Daw; Joy Rempe; Darrell Knudson

    2009-04-01

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions.more » This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.« less

  14. Device performance and lifetime of polymer:fullerene solar cells with UV-ozone-irradiated hole-collecting buffer layers.

    PubMed

    Lee, Seungsoo; Nam, Sungho; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2011-11-18

    We report the influence of UV-ozone irradiation of the hole-collecting buffer layers on the performance and lifetime of polymer:fullerene solar cells. UV-ozone irradiation was targeted at the surface of the poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layers by varying the irradiation time up to 600 s. The change of the surface characteristics in the PEDOT:PSS after UV-ozone irradiation was measured by employing optical absorption spectroscopy, photoelectron yield spectroscopy, and contact angle measurements, while Raman and X-ray photoelectron spectroscopy techniques were introduced for more microscopic analysis. Results showed that the UV-ozone irradiation changed the chemical structure/composition of the surface of the PEDOT:PSS layers leading to the gradual increase of ionization potential with irradiation time in the presence of up-and-down variations in the contact angle (polarity). This surface property change was attributed to the formation of oxidative components, as evidenced by XPS and Auger electron images, which affected the sheet resistance of the PEDOT:PSS layers. Interestingly, device performance was slightly improved by short irradiation (up to 10 s), whereas it was gradually decreased by further irradiation. The short-duration illumination test showed that the lifetime of solar cells with the UV-ozone irradiated PEDOT:PSS layer was improved due to the protective role of the oxidative components formed upon UV-ozone irradiation against the attack of sulfonic acid groups in the PEDOT:PSS layer to the active layer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Delayed match-to-sample early performance decrement in monkeys after $sup 60$Co irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruner, A.; Bogo, V.; Jones, R.K.

    1975-07-01

    Sixteen monkeys were trained on a delayed match-to-sample task (DMTS) based on shock avoidance and irradiated with single, whole-body exposures of from 396 to 2000 rad $sup 60$Co (midbody dose) at between 163 and 233 rad/min. Pre- to post-irradiation performance changes were assessed using a penalty-scaling measure which differentially weighted incorrect responses, response omissions, and error-omission sequences. Thirteen of the animals displayed early performance decrement, including five incapacitations, at lower doses (less than 1000 rad) than heretofore found effective. This was considered a function of task complexity, measurement sensitivity, and gamma effectiveness. The minimum effective midbody dose for inducing decrementmore » using the DMTS task was estimated to be on the order of 500 rad. The nature of early, transient performance decrement seems to reflect more of an inability to perform than an inability to perform correctly. (auth)« less

  16. Novel bismuth tri-iodide nanostructures obtained by the hydrothermal method and electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura

    2017-01-01

    Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.

  17. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower partmore » of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg 3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep cracks were found in the

  18. A Systematic Approach for Obtaining Performance on Matrix-Like Operations

    NASA Astrophysics Data System (ADS)

    Veras, Richard Michael

    Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.

  19. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    PubMed

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  20. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  1. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  2. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  3. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  4. Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.

    This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less

  5. Methods of obtaining a uniform volume concentration of implanted ions

    NASA Astrophysics Data System (ADS)

    Reutov, V. F.

    1998-05-01

    Three simple practical methods of irradiation with high energy particles (>5 MeV/n), providing the conditions of obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to the movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method of obtaining a uniform volume concentration of the implanted ions in a massive sample consists of sample irradiation through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for mechanical tests, for example, the second one - for irradiation in different gaseous media, the third one - for obtaining high concentration of the implanted ions under controlled (regulated) thermal and deformation conditions.

  6. Photobiology eye safety for horticultural LED lighting: Transmittance performance of eyewear protection using high-irradiant monochromatic LEDs.

    PubMed

    Wu, Bo-Sen; Lefsrud, Mark G

    2018-02-01

    Light emitting diodes have slowly gained market share as horticultural lighting systems in greenhouses due to their rapid improvement in color performances and light outputs. These advancements have increased the availability of the full spectrum of visible wavelengths and the corresponding irradiance outputs available to plants. However, light emitting diodes owners have limited information on the proper options for personal eyewear protection as the irradiance levels have increased. The objective of this study was to measure the light transmittance performance of 12 eyewear protection including welding goggles, safety goggles, polarized glasses, and sunglasses across the human visible spectrum (380-740 nm) up to an irradiance level of 1500 W·m -2 from high-irradiant light emitting diodes assemblies. Based on the spectral measurements, certain transmitted spectra exhibited spectrum shifts or an alteration in the bimodal distribution which were different than the light emitting diodes spectra, due to the uneven transmittance efficiencies of the glasses. As for the measured transmittance percentages in two experiments, each type of eyewear protection showed distinct transmittance performances, and the performance of the tested eyewear protection was not impacted by irradiance but was dependent on the wavelength. The mean light transmittance was 1.77% for the welding glasses, 13.12% for the polarized glasses, 15.27% for the safety goggles, and 27.65% for the sunglasses. According to these measured results and the spectral weighting exposure limits from the International Electrotechnical Commission 62471 and EU directive 2006/25, consumers and workers using horticultural lighting can select welding goggles or polarized glasses, to limit the possible ocular impact of the high irradiance of monochromatic light in electrical lighting environment. Sunglasses and safety goggles would not be advised as protection, especially if infrared radiation was used.

  7. Maximum-performance fiber-optic irradiation with nonimaging designs.

    PubMed

    Fang, Y; Feuermann, D; Gordon, J M

    1997-10-01

    A range of practical nonimaging designs for optical fiber applications is presented. Rays emerging from a fiber over a restricted angular range (small numerical aperture) are needed to illuminate a small near-field detector at maximum radiative efficiency. These designs range from pure reflector (all-mirror), to pure dielectric (refractive and based on total internal reflection) to lens-mirror combinations. Sample designs are shown for a specific infrared fiber-optic irradiation problem of practical interest. Optical performance is checked with computer three-dimensional ray tracing. Compared with conventional imaging solutions, nonimaging units offer considerable practical advantages in compactness and ease of alignment as well as noticeably superior radiative efficiency.

  8. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  9. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  10. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  11. Target depth dependence of damage rate in metals by 150 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.

    2015-01-01

    A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).

  12. Irradiation testing of high density uranium alloy dispersion fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups ofmore » 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.« less

  13. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Byung Du; Park, Jin-Seong; Chung, K. B., E-mail: kbchung@dongguk.edu

    Device performance of InGaZnO (IGZO) thin film transistors (TFTs) are investigated as a function of hydrogen ion irradiation dose at room temperature. Field effect mobility is enhanced, and subthreshold gate swing is improved with the increase of hydrogen ion irradiation dose, and there is no thermal annealing. The electrical device performance is correlated with the electronic structure of IGZO films, such as chemical bonding states, features of the conduction band, and band edge states below the conduction band. The decrease of oxygen deficient bonding and the changes in electronic structure of the conduction band leads to the improvement of devicemore » performance in IGZO TFT with an increase of the hydrogen ion irradiation dose.« less

  14. Thermoluminscence of irradiated herbs and spices

    NASA Astrophysics Data System (ADS)

    Mamoon, A.; Abdul-Fattah, A. A.; Abulfaraj, W. H.

    1994-07-01

    Several types of herbs and spices from the local market were irradiated with different doses of γ radiations. Doses varied from a few kilograys to 10 kilograys. Thermoluminescence of the irradiated samples and their controls was investigated. For the same type of herb or spice glow curves of different magnitudes, corresponding somewhat to the doses given, were obtained from the irradiated samples. Most control samples gave little or insignificant glow. Glow curves from different herbs and spices irradiated with the same doses were not similar in the strength of the glow signal given. Samples of the black pepper obtained from different packages sometimes give glow curves of very different intensities. Samples from irradiated black pepper were found to show little fading of their glow curves even at 9 months postirradiation. All irradiations were done under the same experimental conditions and at a dose rate of approximately 1 kGy h-1. The glow curves were obtained using a heating rate of about 9°C s-1 and a constant nitrogen flow rate.

  15. Methods for routine control of irradiated food: Determination of the irradiation status of shellfish by thermoluminescence analysis

    NASA Astrophysics Data System (ADS)

    Schreiber, G. A.; Hoffmann, A.; Helle, N.; Bögl, K. W.

    1994-06-01

    In some countries, clearance has been given for treating certain types of shellfish by ionizing radiation in order to increase the shelf-life and to reduce health hazards which might be caused by contaminating microorganisms. In the present study, thermoluminescence (TL) analysis was used to examine the irradiation status of shellfish products purchased from local suppliers. For analysis minerals were isolated from the guts of the animals. Although on none of the examined products an irradiation treatment prior to analysis could be shown, the results obtained on non-irradiated and irradiated products have revealed that irradiation within the commercially used dose range can clearly be detected. Already first glow TL intensities of minerald indicated irradiation treatments. Normalized TL signals of non-irradiated and irradiated samples were clearly separated. By calculation of differences of TL intensities and TL signals between non-irradiated and irradiated samples in dependency of integration temperature an optimized integration area for glow curves was determined. The result of this study agree well with results obtained by two large-scale intercomparisons between food control laboratories to detect irradiation treatment of spices and herbal products as well as of fruit and vegetables by TL analysis of contaminating minerals.

  16. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    DOE PAGES

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; ...

    2016-01-14

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemore » and removes possible user-introduced error while standardizing the analysis. In addition, this method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.« less

  17. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance L.

    2016-03-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperature and removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.

  18. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  19. The Influence of Heat Treatment on the Electrical Characteristics of Semi-Insulating SiC Layers Obtained by Irradiating n-SiC with High-Energy Argon Ions

    NASA Astrophysics Data System (ADS)

    Ivanov, P. A.; Potapov, A. S.; Kudoyarov, M. F.; Kozlovskii, M. A.; Samsonova, T. P.

    2018-03-01

    Irradiation of crystalline n-type silicon carbide ( n-SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i-SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i-SiC layers has been studied. The most high-ohmic ion-irradiated i-SiC layers with room-temperature resistivity of no less than 1.6 × 1013 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 107 Ω cm.

  20. Improving the Mechanical Performance and Thermal Stability of a PVA-Clay Nanocomposite by Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Ebrahimi, D.

    2017-07-01

    The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.

  1. Assessment of simulated high-dose partial-body irradiation by PCC-R assay.

    PubMed

    Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe

    2013-09-01

    The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.

  2. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  3. Nanoparticles of CdI 2 with closed cage structures obtained via electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sallacan, N.; Popovitz-Biro, R.; Tenne, R.

    2003-06-01

    Nanoparticles of various layered compounds were shown to form closed cage or nanotubular structures, which were designated as inorganic fullerene-like ( IF) materials. In particular, closed cage structures and nanotubes were synthesized from NiCl 2 and CdCl 2 in the past. In the present work IF-CdI 2 nanoparticles were synthesized by electron-beam irradiation of the source powder leading to evaporation and subsequent recrystallization into closed nanoparticles with a non-hollow core. This process created polyhedral nanoparticles with hexagonal or elongated rectangular characters. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable under the electron-beam irradiation.

  4. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGES

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  5. Effects of irradiation of feed ingredients added to meal or pelleted diets on growth performance of weanling pigs.

    PubMed

    Groesbeck, C N; Derouchey, J M; Tokach, M D; Goodband, R D; Dritz, S S; Nelssen, J L

    2009-12-01

    Two experiments were conducted to evaluate the effects of irradiated ingredients in meal and pelleted diets on nursery pig performance. In Exp. 1, a total of 192 pigs (initial BW, 6.0 kg) were used in a 25-d experiment. Pigs were blocked by BW and randomly allotted in a 2 x 2 factorial arrangement of treatments with main effects of diet form (meal or pellet) and either irradiated (11.92 kGy) or nonirradiated spray-dried animal plasma (SDAP). Irradiated SDAP had less total bacterial amounts than nonirradiated SDAP, and pelleted diets also had less bacterial amounts than diets in meal form. However, the complete diets with and without irradiated SDAP had similar bacterial concentrations. There was a diet form x SDAP irradiation interaction (P < 0.05) for ADG from d 0 to 11 and d 0 to 25. Pigs fed irradiated SDAP in meal form had increased ADG compared with pigs fed the nonirradiated meal diet, with no change in ADG of pigs fed pelleted diets. In addition, from d 0 to 11, pigs fed irradiated SDAP or pelleted diets had greater G:F (P < 0.01) compared with pigs fed regular SDAP and meal diets, respectively. In Exp. 2, a total of 350 pigs (initial BW, 4.9 kg) were used in a 22-d experiment to determine the effects of feeding irradiated protein sources (SDAP, soybean meal, fish meal, or all 3) in meal and pellet diets on pig performance. Pigs were blocked by BW and randomly allotted to 1 of 10 treatments consisting of a single diet formulation fed in either meal or pellet form containing either no irradiated protein sources or irradiated SDAP, soybean meal, fish meal, or all 3 irradiated protein sources (10.20 kGy). Irradiated SDAP, soybean meal, and fish meal tended to have reduced total bacterial concentrations compared with nonirradiated plasma, and pelleted diets had reduced bacterial concentrations compared with diets in meal form. No irradiation x diet form interactions (P > 0.16) were observed. From d 0 to 11, pigs fed diets containing irradiated protein sources

  6. Interaction between age of irradiation and age of testing in the disruption of operant performance using a ground-based model for exposure to cosmic rays.

    PubMed

    Rabin, Bernard M; Joseph, James A; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty L

    2012-02-01

    Previous research has shown a progressive deterioration in cognitive performance in rats exposed to (56)Fe particles as a function of age. The present experiment was designed to evaluate the effects of age of irradiation independently of the age of testing. Male Fischer-344 rats, 2, 7, 12, and 16 months of age, were exposed to 25-200 cGy of (56)Fe particles (1,000 MeV/n). Following irradiation, the rats were trained to make an operant response on an ascending fixed-ratio reinforcement schedule. When performance was evaluated as a function of both age of irradiation and testing, the results showed a significant effect of age on the dose needed to produce a performance decrement, such that older rats exposed to lower doses of (56)Fe particles showed a performance decrement compared to younger rats. When performance was evaluated as a function of age of irradiation with the age of testing held constant, the results indicated that age of irradiation was a significant factor influencing operant responding, such that older rats tested at similar ages and exposed to similar doses of (56)Fe particles showed similar performance decrements. The results are interpreted as indicating that the performance decrement is not a function of age per se, but instead is dependent upon an interaction between the age of irradiation, the age of testing, and exposure to HZE particles. The nature of these effects and how age of irradiation affects cognitive performance after an interval of 15 to 16 months remains to be established.

  7. High temperature deformation behavior, thermal stability and irradiation performance in Grade 92 steel

    NASA Astrophysics Data System (ADS)

    Alsagabi, Sultan

    The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally

  8. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  9. Temperature and intensity dependence of the performance of an electron-irradiated (AlGa)As/GaAs solar cell

    NASA Technical Reports Server (NTRS)

    Swartz, C. K.; Hart, R. E., Jr.

    1979-01-01

    The performance of a Hughes, liquid-phase epitaxial 2 centimeter-by-2 centimeter, (AlGa)As/GaAs solar cell was measured before and after irradiations with 1 MeV electrons to fluences of 1 x 10 to the 16th power electrons/sq cm. The temperature dependence of performance was measured over the temperature range 135 to 415 K at each fluence level. In addition, temperature dependences were measured at five intensity levels from 137 to 2.57 mW/sq cm before irradiation and after a fluence of 1 x 10 to the 16th power electrons/sq cm. For the intermediate fluences, performance was measured as a function of intensity at 298 K only.

  10. The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton.

    PubMed

    Helinski, M E H; Knols, B G J

    2009-06-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments with a higher ratio of irradiated versus un-irradiated males were performed. Second, pupae were irradiated just prior to emergence and male mating competitiveness was determined. Males were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. Pupae were irradiated aged 20-26 h (young) as routinely performed, or the pupal stage was artificially prolonged by cooling and pupae were irradiated aged 42-48 h (old). Irradiated males competed at a ratio of 3:1:1 to un-irradiated males for mates in a large cage design. At the 3:1 ratio, the number of females inseminated by males irradiated with 70 Gy as young pupae was similar to the number inseminated by un-irradiated males for the majority of the replicates. At 120 Gy, significantly fewer females were inseminated by irradiated than by un-irradiated males. The irradiation of older pupae did not result in a significantly improved male mating competitiveness compared to the irradiation of young pupae. Our findings indicate that the loss of competitiveness after pupal stage irradiation can be compensated for by a threefold increase of irradiated males, but only for the partially-sterilizing dose. In addition, cooling might be a useful tool to facilitate handling processes of large numbers of mosquitoes in genetic control programmes.

  11. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  12. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  13. Hair dosimetry following neutron irradiation.

    PubMed

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  14. Statistical evaluation of the metallurgical test data in the ORR-PSF-PVS irradiation experiment. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.

    1984-08-01

    A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.

  15. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  16. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  17. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  18. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  19. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  20. Dosimetry Formalism and Implementation of a Homogenous Irradiation Protocol to Improve the Accuracy of Small Animal Whole-Body Irradiation Using a Cesium-137 Irradiator

    PubMed Central

    Brodin, N. Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A.

    2015-01-01

    Shielded 137Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A 137Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ±5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed, that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed, using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ±5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose. PMID:26710162

  1. In situ resistivity measurements of RAFM base alloys at cryogenic temperatures: The effect of proton irradiation

    NASA Astrophysics Data System (ADS)

    Gómez-Ferrer, B.; Vila, R.; Jiménez-Rey, D.; Ortiz, C. J.; Mota, F.; García, J. M.; Rodríguez, A.

    2014-04-01

    A four-probe technique for measurement of electrical resistance on low-temperature ion-irradiated metallic sheets is described. The design, temperature control system, preparation method of samples and the resistivity measurements are described in detail. The resistivity recovery (RR) curve has been measured on a Fe-5%Cr model alloy irradiated with 5 MeV protons. The procedure to obtain the RR derivative curve is outlined and experimental errors are identified and quantified. Special care has been taken to use a sample with very low impurity content and low dislocation density (1.2 × 108 cm-2). Thus, effects in recovery spectrum of the Fe-5%Cr alloy are only due to the presence of Cr and irradiation defects, which will be mainly Frenkel Pairs (FPs) given that the mean energy of the Primary Knock-on Atoms (PKA) is close to 0.35 keV. The results obtained for the Fe-5%Cr under 5 MeV proton irradiation are found to be in overall agreement with previous experimental measurements performed under electron irradiation although some differences appear probably due to the different spatial distribution of the created defects and the higher temperature resolution of annealing steps. The RR spectrum obtained reveals the appearance of the structure of stages I and II and also a partial suppression of the stage III peak with respect to previous results obtained after electron irradiation. The stage III suppression is explained as a superposition of vacancy recombination effects and short-range ordering (SRO) effects which are apparently dependent on the spatial distribution of defects created during irradiation. Moreover, recombination phenomena are observed beyond stage III up to 500 K.

  2. Carbon ion radiotherapy performed as re-irradiation using active beam delivery in patients with tumors of the brain, skull base and sacral region.

    PubMed

    Combs, Stephanie E; Kalbe, Adriana; Nikoghosyan, Anna; Ackermann, Benjamin; Jäkel, Oliver; Haberer, Thomas; Debus, Jürgen

    2011-01-01

    To asses carbon ion radiation therapy (RT) performed as re-irradiation in 28 patients with recurrent tumors. Twenty-eight patients were treated with carbon ion RT as re-irradiation for recurrent chordoma and chondrosarcoma of the skull base (n=16 and n=2), one chordoma and one chondrosarcoma of the os sacrum, high-risk meningioma (n=3), adenoid-cystic carcinoma (n=4) as well as one SCCHN. All patients were treated using active raster scanning, and treatment planning was performed on CT- and MRI-basis. All patients were followed prospectively during follow-up. In all patients re-irradiation could be applied safely without interruptions. For skull base tumors, local tumor control after re-irradiation was 92% at 24 months and 64% at 36 months. Survival after re-irradiation was 86% at 24 months, and 43% at 60 months. In all three meningiomas treated with C12 for re-irradiation, the tumor recurrence was located within the former RT-field. Two patients developed tumor progression at 6 months, and in one patient the tumor remained stable for 67 months. In patients with head-and-neck tumors, three patients developed local tumor progression at 12, 24 and 29 months after re-irradiation. Median local progression-free survival was 24 months. For sacral tumors, re-irradiation offered palliation with tumor control for 24 and 36 months. Due to the physical characteristics particle therapy offers a new treatment modality in cases with tumor recurrences. With carbon ions, the additional biological benefits may be exploited for long-term tumor control. Further evaluation in a larger patients' cohort will be performed in the future. Copyright © 2010. Published by Elsevier Ireland Ltd.

  3. Facile Preparation of Nano-Bi₂MoO₆/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation.

    PubMed

    Cai, Lu; Gong, Jiuyan; Liu, Jianshe; Zhang, Hailong; Song, Wendong; Ji, Lili

    2018-02-09

    In this work, a new nano-Bi₂MoO₆/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi₂MoO₆ crystals were well-deposited on the surface of Bi₂MoO₆/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi₂MoO₆/diatomite composite with the mass ratio of Bi₂MoO₆ to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h⁺ and•O 2- . As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  4. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    NASA Astrophysics Data System (ADS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  5. Cytogenetic damages in peripheral blood of monkey lymphocytes under simulation of cosmonauts irradiation.

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Ivanov, Alexandr; Barteneva, Svetlana; Snigiryeva, Galina; Shafirkin, Alexandr

    Earth modeling of crewmember exposure should be performed for correct estimating radiation hazard during the flight. Such modeling was planned in a monkey experiment for investigating consequences of exposure to a man during an interplanetary flight. It should reflect a chronic impact of galactic cosmic rays and acute and fractional irradiation specified for solar cosmic rays and radiation belts respectively. Due to the difficulty of modeling a chronic impact with the help of a charged particles accelerator it can be used the gamma source. While irradiating big animal groups during a long-term period of time it is preferably to replace chronic irradiation by an equal fractional one. In this case the chosen characteristics of fractional irradiation should ensure the appearances of radiobiological consequences equal to the ones caused by the modeled chronic exposure. So for developing an exposure scheme in the monkey experiment (with Macaca -Rhesus) the model of the acting residual dose, that takes into account repair and recovery processes in the exposed body was used. The total dose value was in the limits from 2.32 Gy up to 3.5 Gy depending on the exposure character. The acting residual dose in all versions of exposure was 2.0 Gy for every monkey. While performing the experiment all the requirements of bioethics for the work with animals were observed. The objects of interest were genomic damages in lymphocytes of monkey's peripheral blood. The data about the CAF during the exposure and at various time moments after exposure particularly directly after the completion of chronicle and fractional irradiation were analyzed. CAF -dose of acute single gamma-irradiation in the range 0 -1.5Gy relationship (calibration curve) was defined in vitro. In addition the rate of the aberrant cells elimination within three months after the irradiation completion was estimated. On the basis of the obtained CAF data we performed verification of applicability of cytogenetic analysis

  6. Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki

    2009-01-01

    Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less

  7. Application of Microbiological Method Direct Epifluorescence Filter Techique/Aerobic Plate Count Agar in the Identification of Irradiated Herbs and Spices

    PubMed Central

    Di Schiavi, Maria Teresa; Foti, Marina; Mosconi, Maria Cristina; Mattiolo, Giuseppina; Cavallina, Roberta

    2014-01-01

    Irradiation is a preservation technology used to improve the safety and hygienic quality of food. Aim of this study was to assess the applicability and validity of the microbiological screening method direct epifluorescence filter technique (DEFT)/aerobic plate count (APC) (EN 13783:2001) for the identification of irradiated herbs and spices. Tests on non-irradiated and irradiated samples of dried herbs and spices were performed. The method was based on the comparison of APC and count obtained using DEFT. In accordance with the standard reference, this method is not applicable to samples with APC<103 colony forming units (CFU)/g and this is its main limit. The results obtained in our laboratories showed that in 50% of cases of non-irradiated samples and in 96% of the samples treated with ionising radiation, the method was not applicable due to a value of CFU/g <103. PMID:27800348

  8. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  9. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key resultsmore » from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application

  10. Effect of gamma irradiation on properties of ultrafine rubbers as toughening filler in polybenzoxazine

    NASA Astrophysics Data System (ADS)

    Taewattana, Rapiphan; Jubsilp, Chanchira; Suwanmala, Phiriyatorn; Rimdusit, Sarawut

    2018-04-01

    Three types of ultrafine fully vulcanized powdered rubbers (UFRs), i.e. natural rubber (NR), carboxylated nitrile-butadiene rubber (XNBR), and carboxylated styrene-butadiene rubber (XSBR) were prepared by combined technology between gamma irradiation for crosslinking and spray drying. The effects of doses in a range of 0-250 kGy on swelling ratio, crosslink density, and thermal stability of UFRs were investigated. Smaller particle size of UFRs was obtained at higher dose. A decrease in the swelling ratio and an increase in crosslink density were well corresponded to crosslinking effect related with absorbed dose. The increase in dose was also found to improve thermal performance of URFs. The influence of irradiated UFRs on impact resistance and glass transition temperature (Tg) of polybenzoxazine composites was also evaluated. The highest impact resistance of the composites belonged to the composite filled with irradiated UFXNBR at 200 kGy. While the significantly enhanced Tg of the composite was obtained by an addition of irradiated UFRs with higher doses, i.e. Tg = 173 °C for the composite filled with irradiated UFXNBR at 250 kGy. As a consequence, the UFRs can be used to effectively modify thermal and mechanical properties, especially impact resistance of polybenzoxazine composites.

  11. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B.D. Miller; D.D. Keiser Jr.

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of themore » U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.« less

  12. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  13. Synthesis of vitamin D and erythemal irradiance obtained with a multiband filter radiometer and annual variation analysis in Río Gallegos, Argentina

    NASA Astrophysics Data System (ADS)

    Orte, P. F.; Wolfram, E. A.; Salvador, J.; D'Elia, R.; Paes Leme, N.; Quel, E. J.

    2011-01-01

    In this paper we examined the annual variability of the erythemal solar radiation (a health risk) and the solar irradiance for synthesis of vitamin D (a health benefit) in Río Gallegos, Argentina. We use ultraviolet radiation measurements made by a multiband filter radiometer GUV-541 and a Brewer spectrophotometer located at CEILAP-RG Station (CITEFA-CONICET) (51° 33' S, 69° 19' W). These measurements are weighted with action spectra published by the CIE (International Commission on Illumination). An action spectrum describes the relative effectiveness of different wavelengths in the generation of a particular biological response. The analyzed data correspond to September 2008-December 2009 period. The methodology used to obtain the erythemal irradiance and synthesis of vitamin D values combines irradiance measurements of a multiband filter radiometer with modeled values (output of radiative transfer model) and measurements of a Brewer spectrophotometer. This procedure increases the instrumental capabilities of this instrument. The synthesis of vitamin D and erythema are affected by UVB solar radiation. Therefore, its effect is strongly dependent of the stratospheric ozone amount, which undergoes large variations in the Río Gallegos city due to ozone hole passage and its influence on these sub-polar latitudes. We observed that could exist cases of sunburn for reasonable exposure in abnormal situations of low total ozone column, resulting in high levels of ultraviolet radiation. Furthermore, the synthesis of vitamin D through exposure to ultraviolet radiation would be lower than the appropriate values to the majority of the year for these latitudes. Therefore it is important to evaluate the annual variation of these quantities realizing seasonal balance between this health risk and this health benefit.

  14. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    PubMed

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [State of the reproductive systemin in male rats of 1st generation obtained from irradiated parents and exposed to electromagnetic radiation (897 MHz) during embryogenesis and postnatal development].

    PubMed

    Vereshchako, G G; Chueshova, N V; Gorokh, G A; Naumov, A D

    2014-01-01

    The consequences of prolonged exposure to electromagnetic radiation from cellular phone (897 MHz, daily 8 h/day) in male rats of the 1st generation obtained from irradiated parents and subjected to prolonged exposure to electromagnetic radiation of the range of mobile communications during ontogeny and postnatal development were studied. It has been found that irradiation causes a decrease in the number of births of animals, changing the sex ratio towards the increase in the number of males. It had a significant impact on the reproductive system of males, accelerating their sexual development, revealed at the age of two months. Radiation from cell phones led to significant disproportions in the cell number at different stages of spermatogenesis. It increased the number of mature spermatozoa which decreased viability.

  16. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice.

    PubMed

    Raber, Jacob; Torres, Eileen Ruth S; Akinyeke, Tunde; Lee, Joanne; Weber Boutros, Sydney J; Turker, Mitchell S; Kronenberg, Amy

    2018-04-20

    The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued

  17. DIPHTHERIA TOXIN OBTAINED ON MEDIA STERILIZED BY GAMMA RAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaulen, D.R.

    1959-08-01

    The possibility of radiation sterilization of liquid nntritive media for cultivating diphtheritic bacteria was studied. Gamma rays were employed at doses of 600,000, by irradiation does not deteriorate their nutritive properties, while the biochemical indices remain almost unchanged. The diphtheria toxin titer obtained on media sterilized by irradiation is not inferior to that derived from autoclaved media, while in a number of instances (irradiation with 600,000 r) it even surpasses it. Anatorins made of toxins from irradiated media were not inferior by their immunogenic and antigenic properties to the control preparations. These experimental data point to the possibility of cold''more » sterilization of liquid nutritive media. (auth)« less

  18. Photovoltaic-Model-Based Solar Irradiance Estimators: Performance Comparison and Application to Maximum Power Forecasting

    NASA Astrophysics Data System (ADS)

    Scolari, Enrica; Sossan, Fabrizio; Paolone, Mario

    2018-01-01

    Due to the increasing proportion of distributed photovoltaic (PV) production in the generation mix, the knowledge of the PV generation capacity has become a key factor. In this work, we propose to compute the PV plant maximum power starting from the indirectly-estimated irradiance. Three estimators are compared in terms of i) ability to compute the PV plant maximum power, ii) bandwidth and iii) robustness against measurements noise. The approaches rely on measurements of the DC voltage, current, and cell temperature and on a model of the PV array. We show that the considered methods can accurately reconstruct the PV maximum generation even during curtailment periods, i.e. when the measured PV power is not representative of the maximum potential of the PV array. Performance evaluation is carried out by using a dedicated experimental setup on a 14.3 kWp rooftop PV installation. Results also proved that the analyzed methods can outperform pyranometer-based estimations, with a less complex sensing system. We show how the obtained PV maximum power values can be applied to train time series-based solar maximum power forecasting techniques. This is beneficial when the measured power values, commonly used as training, are not representative of the maximum PV potential.

  19. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    NASA Astrophysics Data System (ADS)

    Durini, Daniel; Degenhardt, Carsten; Rongen, Heinz; Feoktystov, Artem; Schlösser, Mario; Palomino-Razo, Alejandro; Frielinghaus, Henrich; van Waasen, Stefan

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λn=5 Å or neutron energy of En=3.27 meV) up to a neutron dose of 6×1012 n/cm2. The dark signals as well as the breakdown voltages (Vbr) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped 6Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. Iout-Vbias measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  20. Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass

    NASA Astrophysics Data System (ADS)

    Caccavale, F.; De Marchi, G.; Gonella, F.; Mazzoldi, P.; Meneghini, C.; Quaranta, A.; Arnold, G. W.; Battaglin, G.; Mattei, G.

    1995-03-01

    Ion-exchanged glass samples were obtained by immersing soda-lime slides in molten salt baths of molar concentration in the range 1-20% AgNO 3 in NaNO 3, at temperatures varying from 320 to 350°C, and processing times of the order of a few minutes. Irradiations of exchanged samples were subsequently performed by using H +m, He +, N + ions at different energies in order to obtain comparable projected ranges. The fluence was varied between 5 × 10 15 and 2 × 10 17 ions/cm 2. Most of the samples were treated at current densities lower than 2 μA/cm 2, in order to avoid heating effects. Some samples were irradiated with 4 keV electrons, corresponding to a range of 250 nm. The formation of nanoclusters of radii in the range 1-10 nm has been observed after irradiation, depending on the treatment conditions. The precipitation process is governed by the electronic energy deposition of incident particles. The most desirable results are obtained for helium implants. The process was characterized by the use of Secondary Ion Mass Spectrometry (SIMS) and nuclear techniques (Rutherford Backscattering (RBS), Nuclear Reactions (NRA)), in order to determine concentration-depth profiles and by optical absorption and Transmission Electron Microscopy (TEM) measurements for the silver nanoclusters detection and size evaluation.

  1. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  2. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  3. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carriedmore » out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.« less

  4. SECONDARY TETANUS ANTITOXIN RESPONSES IN MICE ELICITED PRIOR TO IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, W.M.; Stoner, R.D.

    1963-02-01

    Secondary tetanus antitoxin responses were abolished in mice when sublethal radiation doses of 650 rads were delivered by short-term exposure 3 hr before the second injection of antigen. Nearly normal secondary responses were observed when the same radiation doses were delivered 4 days after antigenic stimulation, and sera were obtained 8 days later. Radiosensitivity of the seemingly radioresistart secondary antibody responses was demonstrated by ultimate repression of antitoxin titers when radiation was delivered 4 days after antigenic stimulation and sera were obtained 4 weeks after irradiation (32 days after the second injection of toxoid). It was possible to differentiate clearlymore » between the capacity of these irradiated animals to produce nearly normal secondary responses and failure of the same animals to respond to a third antigenic stimulus when radiation was delivered 4 days after the second stimulus, and a third injection of antigen was given 30 min after the single exposure to 650 rads. A marked incorporation of tritium activity appeared in antitoxin produced during secondary responses of irradiated and nonirradiated mice when tritium-labeled /sub L/-histidine was injected on days 4 and 5 and on days 6 and 7 after the second stimulus of tetanus toxoid. The data indicate that the antibody produced during secondary responses in irradiated and nonirradiated mice was not performed during the induction phase and merely released on days 4 or 5, following the second stimulus of antigen. These findings indicate the presence of antibodyproducing cells or their precursors that have proliferated in response to the second antigenic stimulus and survived long enough after irradiation to produce nearly normal secondary tetanus antitoxin responses. (auth)« less

  5. Effect of /sup 60/Co-irradiation on penicillin G procaine in veterinary mastitis products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, K.; Goetz, J.F.; Vanmeter, W.

    The effect of /sup 60/Co-irradation on penicillin G procaine in a peanut oil-based veterinary mastitis product was examined by reversed-phase high-performance liquid chromatography (HPLC). The HPLC method is capable of separating and quantifiying procaine, penicillin G, and various degradation compounds. Values obtained by the HPLC method on the product irradiated and stored at various temperatures correlated well with those of the microbiological assay. No significant decrease in the procaine was detected even after 4.0-Mrad irradiation. The HPLC method is applicable for analysis of other beta-lactam antibiotics.

  6. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating

  7. Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel

    DOE PAGES

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; ...

    2017-09-10

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating

  8. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGES

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; ...

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  9. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  10. Dyeing of γ-irradiated cotton with natural flavonoid dye extracted from irradiated onion shells (Allium cepa) powder

    NASA Astrophysics Data System (ADS)

    Rehman, Fazal-ur; Adeel, Shahid; Shahid, Muhammad; Bhatti, Ijaz Ahmad; Nasir, Faiza; Akhtar, Nasim; Ahmad, Zulfiqar

    2013-11-01

    Powder of Onion shells as a source of natural flavonoid dye (Quercetin) and cotton fabrics were exposed to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Irradiated and un-irradiated dye powder was used for extraction of quercetin as well as antibacterial, hemolytic and antioxidant activities were also determined to observe the effect of radiation. Furthermore, color strength and colourfastness of irradiated fabrics were improved by using pre and post-mordants such as alum and iron. It is found that 4 kGy is the optimal absorbed dose for extraction of natural quercetin extracted from onion shells while maximum color strength and acceptable fastness properties are obtained on dyeing of irradiated fabric at 60 °C keeping M:L of 1:30 using 10% alum as pre-mordant and 6% alum as post-mordant. Gamma irradiation has not only improved the color strength of the dye using irradiated cotton but also that of colourfastness properties.

  11. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma.

    PubMed

    Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian

    2018-02-01

    Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.

  12. Biological X-ray irradiator characterization for use with small animals and cells.

    PubMed

    Bruno, A Colello; Mazaro, S J; Amaral, L L; Rego, E M; Oliveira, H F; Pavoni, J F

    2017-03-02

    This study presents the characterization of an X-ray irradiator through dosimetric tests, which confirms the actual dose rate that small animals and cells will be exposed to during radiobiological experiments. We evaluated the linearity, consistency, repeatability, and dose distribution in the positions in which the animals or cells are placed during irradiation. In addition, we evaluated the performance of the X-ray tube (voltage and tube operating current), the radiometric survey (leakage radiation) and safety devices. The irradiator default setting was established as 160 kV and 25 mA. Tests showed that the dose rate was linear overtime (R2=1) and remained stable for long (constant) and short (repeatability) intervals between readings. The mean dose rate inside the animal cages was 1.27±0.06 Gy/min with a uniform beam of 95.40% (above the minimum threshold guaranteed by the manufacturer). The mean dose rate inside the cell plates was 0.92±0.19 Gy/min. The dose rate dependence with tube voltage and current presented a quadratic and linear relationship, respectively. There was no observed mechanical failure during evaluation of the irradiator safety devices and the radiometric survey obtained a maximum ambient equivalent dose rate of 0.26 mSv/h, which exempts it from the radiological protection requirements of the International Atomic Energy Agency. The irradiator characterization enables us to perform radiobiological experiments, and assists or even replaces traditional therapy equipment (e.g., linear accelerators) for cells and small animal irradiation, especially in early research stages.

  13. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.

    2005-07-01

    Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.

  14. Plasmodium falciparum: attenuation by irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waki, S.; Yonome, I.; Suzuki, M.

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed tomore » doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.« less

  15. An electron spin resonance study of some gamma-irradiated fruits

    NASA Astrophysics Data System (ADS)

    Maloney, Darren R.; Tabner, Brian J.; Tabner, Vivienne A.

    The ESR spectra of the seeds, skins and stalks of unirradiated and γ-irradiated Chilean white grapes have been obtained and the results compared to those previously reported for Cape black grapes. The high degree of reproducibility of the spectra obtained from the stalks of different varieties of grapes suggest that ESR spectroscopy could form the basis of a viable test to determine their irradiation history. The condition of the stalk prior to irradiation has been found to have little effect on the resulting spectra. The spectra from the stalks, skins and seeds of unirradiated and γ-irradiated apples, peers and cherries have also been examined. Although most of the spectra from irradiated components exhibit extra features, they are sometimes short-lived and restrict the development of ESR as a viable test.

  16. [Blood amylase: a biological marker in irradiation accidents? Preliminary results obtained at the Gustave-Roussy Institut (GRI) and a literature review].

    PubMed

    Hennequin, C; Cosset, J M; Cailleux, P E; Girinsky, T; Ganem, G; Hubert, D; Comoy, E; Dutreix, J

    1989-01-01

    The retrospective evaluation of the dose after an irradiation accident is of paramount importance; it allows an adequate selection of patients and the most appropriate treatment can then be proposed. Classical physical dosimetry often lacks precision for dose assessment in such accidents. Cytogenetics, usually more reliable, is not 100% accurate and cannot be used in some particular instances. At the Institut Gustave-Roussy, we studied amylasemia in 15 patients who received a total body irradiation (TBI) for bone marrow grafting, at various dose levels (10, 2 and 1.35 Gy). Hyperamylasemia was found to be constant and dose-dependent. Ten additional patients given a localized irradiation of 2 Gy in the Waldeyer ring had a similar rise in amylasemia as did TBI patients who had received the same dose. In contrast, 13 patients given a pancreatic irradiation (as part of a localized abdominal irradiation) did not show any increase in amylasemia. This study seems to confirm reported data, which suggested that post-TBI hyperamylasemia is almost only related to salivary gland irradiation. Amylasemia could possibly be used as a "biological dosimeter"; however, the dose-effect relationship should be more precisely defined, as well as individual variations. Moreover, the definition of a "threshold-dose" below which hyperamylasemia can never be detected, would be of interest for radioprotection.

  17. Low-angle X-ray scattering properties of irradiated spices

    NASA Astrophysics Data System (ADS)

    Almeida, A. P. G.; Braz, D.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The scattering of X-rays at low angles (LAXS) is a technique dominated by the coherent scattering process. One characteristic observation of low-angle coherent scattering is the so-called molecular interference effect, being characterized by the presence of one or more peaks in the forward direction of scattering. In the present study, LAXS profiles from five different spices are carefully measured in order to establish characteristic scattering signatures. Samples of Ceylon cinnamon, cumin, nutmeg, paprika and black pepper were bought in local market in Rio de Janeiro, Brazil. The LAXS patterns were obtained using a Shimadzu DRX 6000 diffractometer in reflection geometry. Coherent scattering patterns are measured for the samples for θ=5-35°. The data were collected in 0.05° increments every 3 s. In order to evaluate the possible molecular structure changes caused to the irradiation procedure, the signatures obtained for control (non-irradiated) spices were compared with spice samples irradiated with different doses varying from 3 to 40 kGy. The LAXS patterns of all samples were obtained after 30, 60, 90, 120 days to evaluate the effect of storage period. Scattering profiles from spices irradiated with different irradiation doses were obtained and the results compared. For each spice, there is no considerable deviation in shape in function of the irradiation dose. It indicates that the molecular structure of each analyzed spices is preserved considering the dose range chosen. The results show that the molecular structure was found to be stable during storage at the ambient temperature for up to 4 months.

  18. Data on total and spectral solar irradiance

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Gatlin, J. A.; Richmond, J. C.

    1983-01-01

    This paper presents a brief survey of the data available on solar constant and extraterrestrial solar spectral irradiance. The spectral distribution of solar radiation at ground surface, computed from extraterrestrial solar spectral irradiance for several air mass values and for four levels of atmospheric pollution, is also presented. The total irradiance at ground level is obtained by integration of the area under the spectral irradiance curves. It is significant that, as air mass increases or as turbidity increases, the amount of energy in the infrared relative to the total increases and that the energy in the UV and visible decreases.

  19. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di; Miao, Yinbin; Xu, Ruqing

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less

  20. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    PubMed

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  1. Effects of synchronous irradiance monitoring and correction of current-voltage curves on the outdoor performance measurements of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Doi, Takuya; Higa, Michiya; Ohshima, Hironori; Takenouchi, Takakazu; Yamagoe, Kengo

    2017-08-01

    Precise outdoor measurement of the current-voltage (I-V) curves of photovoltaic (PV) modules is desired for many applications such as low-cost onsite performance measurement, monitoring, and diagnosis. Conventional outdoor measurement technologies have a problem in that their precision is low when the solar irradiance is unstable, hence, limiting the opportunity of precise measurement only on clear sunny days. The purpose of this study is to investigate an outdoor measurement procedure, that can improve both the measurement opportunity and precision. Fast I-V curve measurements within 0.2 s and synchronous measurement of irradiance using a PV module irradiance sensor very effectively improved the precision. A small standard deviation (σ) of the module’s maximum output power (P max) in the range of 0.7-0.9% is demonstrated, based on the basis of a 6 month experiment, that mainly includes partly sunny days and cloudy days, during which the solar irradiance is unstable. The σ was further improved to 0.3-0.5% by correcting the curves for the small variation of irradiance. This indicates that the procedure of this study enables much more reproducible I-V curve measurements than a conventional usual procedure under various climatic conditions. Factors that affect measurement results are discussed, to further improve the precision.

  2. Effect of therapeutic irradiation on the immune responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, J.M.; Ngo, E.; Lau, B.H.S.

    1976-02-01

    The immune responses of 60 patients undergoing therapeutic irradiation were evaluated according to four anatomical sites irradiated. In vitro lymphocyte transformation tests with PHA, Con-A, and PWM and quantitative assays of IgG, IgA, and IgM were performed on blood obtained from each patient before and during therapy, and two weeks, two months, and six months after therapy. At these same testing intervals, skin tests with PPD, mumps antigen, Candida antigen, and SD-SK were performed. During irradiation, the mean values of all lymphocyte transformation tests were depressed, varying from 48 percent to 64 percent of pretreatment baseline. This depression persisted untilmore » about two months after completion of treatment. By six months, response rose to pretreatment values. When response was evaluated according to sites irradiated with all mitogens, the pelvic and pelvic plus abdominal groups showed consistently greater depression than the chest or head and neck groups. Radiation effected no significant changes in the mean values of IgG, IgA or IgM. A decrease in skin sensitivity was noted during radiation; 73 percent of the subjects responded positively before therapy while only 53 percent had at least one positive test during therapy. By two months postirradiation, 73 percent of the group clinically free of disease had positive skin tests. A comparison of clinical condition with test results is significant when one considers the 17 patients who developed metastatic disease or died from disease. The depression for all three mitogens during radiation therapy was greater for this group. Of the 17, only four had IgG levels in the normal range, and consistently fewer positive skin tests were demonstrated. (auth)« less

  3. Progress In Developing Laser Based Post Irradiation Examination Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James A.; Scott, Clark L.; Benefiel, Brad C.

    irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less

  4. SUMMARY OF FRUIT IRRADIATION AT WAGENINGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Zeeuw, D.

    Use was made of l Mev electrons produced by a normal Van de Graaff accelerator in fresh soft fruit. In order to obtain an even dose distribution over the surface of fruit, it was packed one layer thick in small plastic boxes. Both upper and lower sides of these boxes were irradiated. In case of firmer fruit species, such as plums, these were also placed on mechanically driven rollers on which they were slowly rotated during irradiation. With this method the irradiation time was chosen twice as long as for the packed fruit so as to meet the total dosemore » requirement. Dosimetry measurements were made by both chemical and physical methods. The dose rate was 2 Krad per second. Results obtained with 100 to 500 Krad doses are given for strawberries, raspberries, red and black currants, blackberries, cherries, and plums. (auth)« less

  5. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samplesmore » for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The

  6. Analysis of direct to diffuse partitioning of global solar irradiance at the radiometric station in Badajoz (Spain)

    NASA Astrophysics Data System (ADS)

    Sanchez, G.; Cancillo, M. L.; Serrano, A.

    2010-09-01

    This study is aimed at the analysis of the partitioning of global solar irradiance into its direct and diffuse components at the radiometric station in Badajoz (Spain). The detailed knowledge of the solar radiation field is of increasing interest in Southern Europe due to its use as renewable energy. In particular, the knowledge of the solar radiation partitioning into direct and diffuse radiation has become a major demand for the design and suitable orientation of solar panels in solar power plants. In this study the first measurements of solar diffuse irradiance performed in the radiometric station in Badajoz (Spain) are presented and analyzed in the framework of the partitioning of solar global radiation. Thus, solar global and diffuse irradiance were measured at one-minute basis from 23 November 2009 to 31 March 2010. Solar irradiances were measured by two Kipp&Zonen CMP11 pyranometers, using a Kipp&Zonen CM121 shadow ring for the measurements of solar diffuse irradiance. Diffuse measurements were corrected from the solid angle hidden by the ring and direct irradiance was calculated as the difference between global and diffuse measurements. Irradiance was obtained from the pyranomenters by applying calibration coefficients obtained in an inter-comparison campaign performed at INTA/El Arenosillo, in Huelva (Spain), last September 2009. There, calibration coefficients were calculated using as a reference a CMP11 pyranometer which had been previously calibrated by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre in Switzerland. In order to study the partitioning of the solar radiation, the global and diffuse irradiances have been analyzed for three typical different sky conditions: cloud-free, broken clouds and overcast. Particular days within the period of study have been selected by visual inspection. Along with the analysis of the global and diffuse irradiances themselves, ratios of these irradiances to the downward irradiance at the

  7. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence

    PubMed Central

    Abe, Tomoko; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Gulino, Marisa; Musumeci, Francesco; Romano, Francesco; Ryuto, Hiromichi; Scordino, Agata

    2016-01-01

    The optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity. In general, the assessment of the damage that radiation produces both in the target objects and in the surrounding tissues, requires considerable time because is based on biochemical analysis or on the examination of the evolution of the irradiated systems. The delayed luminescence technique could help to simplify this investigation. We have so started our studies performing irradiations of some relatively simple vegetable models. In this paper we report results obtained from mung bean (Vigna radiata) seeds submitted to a 12C ion beam at the energy of 62 MeV/nucleon. The dry seeds were irradiated at doses from 50 to 7000 Gy. The photoinduced delayed luminescence of each seed before and after ion irradiation was measured. The growth of seedlings after irradiation was compared with that of untreated seeds. A growth reduction on increasing the dose was registered. The results show strong correlations between the ion irradiation dose, seeds growth and delayed luminescence intensity. In particular, the delayed luminescence intensity is correlated by a logistic function to the seedlings elongation and, after performing a suitable measurement campaign based on blind tests, it could become a tool able to predict the growth of seeds after ion irradiation. Moreover these results demonstrate that measurements of delayed luminescence could be used as a fast and non-invasive technique to check the effects of ion beams on relatively simple biological systems. PMID:27936220

  8. Cost effective alternative to low irradiance measurements

    NASA Technical Reports Server (NTRS)

    Oleary, Scott T.

    1988-01-01

    Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels.

  9. Isoconversional approach for non-isothermal decomposition of un-irradiated and photon-irradiated 5-fluorouracil.

    PubMed

    Mohamed, Hala Sh; Dahy, AbdelRahman A; Mahfouz, Refaat M

    2017-10-25

    Kinetic analysis for the non-isothermal decomposition of un-irradiated and photon-beam-irradiated 5-fluorouracil (5-FU) as anti-cancer drug, was carried out in static air. Thermal decomposition of 5-FU proceeds in two steps. One minor step in the temperature range of (270-283°C) followed by the major step in the temperature range of (285-360°C). The non-isothermal data for un-irradiated and photon-irradiated 5-FU were analyzed using linear (Tang) and non-linear (Vyazovkin) isoconversional methods. The results of the application of these free models on the present kinetic data showed quite a dependence of the activation energy on the extent of conversion. For un-irradiated 5-FU, the non-isothermal data analysis indicates that the decomposition is generally described by A3 and A4 modeles for the minor and major decomposition steps, respectively. For a photon-irradiated sample of 5-FU with total absorbed dose of 10Gy, the decomposition is controlled by A2 model throughout the coversion range. The activation energies calculated in case of photon-irradiated 5-FU were found to be lower compared to the values obtained from the thermal decomposition of the un-irradiated sample probably due to the formation of additional nucleation sites created by a photon-irradiation. The decomposition path was investigated by intrinsic reaction coordinate (IRC) at the B3LYP/6-311++G(d,p) level of DFT. Two transition states were involved in the process by homolytic rupture of NH bond and ring secession, respectively. Published by Elsevier B.V.

  10. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.

    PubMed

    Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco

    2017-04-01

    Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean<600cGyE). After kilovoltage alignment, potential dose deviations in the upper and lower junctions were small (average 0.8% and 1.2% respectively). Due to imperfect modeling of range shifter, QA showed better agreements between measurements and calculations at depths >4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The effects of gamma irradiation on electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure

    NASA Astrophysics Data System (ADS)

    Salari, M. Abdolahpour; Güzeldir, B.; Saǧlam, M.

    2018-02-01

    In this research, we have investigated the electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure before and after 60Co gamma (γ)-ray source irradiation with the total dose range of 0-500 kGy at room temperature. Electrical measurements of this structure have been performed using current-voltage (I-V) and capacitance-voltage (C-V) techniques. Experimental results show that the values of the ideality factor obtained from I-V measurements increased and the values of the barrier height obtained from reverse-bias C-V measurements decreased after gamma-irradiation. The results show that the main effect of the radiation is the generation of laterally inhomogeneous defects near the semiconductor surface.

  12. Experimental Platform for Ultra-high Dose Rate FLASH Irradiation of Small Animals Using a Clinical Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, Emil; Trovati, Stefania; King, Gregory

    Purpose: A key factor limiting the effectiveness of radiation therapy is normal tissue toxicity, and recent preclinical data have shown that ultra-high dose rate irradiation (>50 Gy/s, “FLASH”) potentially mitigates this effect. However, research in this field has been strongly limited by the availability of FLASH irradiators suitable for small animal experiments. We present a simple methodologic approach for FLASH electron small animal irradiation with a clinically available linear accelerator (LINAC). Methods and Materials: We investigated the FLASH irradiation potential of a Varian Clinac 21EX in both clinical mode and after tuning of the LINAC. We performed detailed FLUKA Monte Carlomore » and experimental dosimetric characterization at multiple experimental locations within the LINAC head. Results: Average dose rates of ≤74 Gy/s were achieved in clinical mode, and the dose rate after tuning exceeded 900 Gy/s. We obtained 220 Gy/s at 1-cm depth for a >4-cm field size with 90% homogeneity throughout a 2-cm-thick volume. Conclusions: We present an approach for using a clinical LINAC for FLASH irradiation. We obtained dose rates exceeding 200 Gy/s after simple tuning of the LINAC, with excellent dosimetric properties for small animal experiments. This will allow for increased availability of FLASH irradiation to the general research community.« less

  13. Ultrasonic Transducer Irradiation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changesmore » (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 10 21 n/cm 2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two

  14. Quench protection diode irradiation tests by the Texas Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carcagno, R.; Weichold, M.; Welch, G.

    1986-07-14

    To date considerable progress has been made in the first stage of the TAC program to assess the use of Quench protection diodes (QPD) within the cold region of the SSC superconducting magnets. Our principle goal in this period was to experimentally obtain information that will assist us in designing apparatus for future tests. More specifically, we wished to address the following areas of uncertainty: operational difficulties associated with installing and operating an experiment at a nuclear reactor; diode behavior when subjected to neutron radiation while held close to the temperature of liquid nitrogen; and the extent to which diodesmore » can be annealed by heating them up to 593/degree/K. To gain information in these areas, we performed an irradiation of sixteen Westinghouse diodes at the Texas A and M Nuclear Science Center reactor. In the interest of avoiding the expense and long lead times associated with obtaining new equipment, we used apparatus that was on hand or which could be quickly obtained or constructed. Further tests of the irradiated diodes and analysis of the data already acquired will be continuing for some time, but the results already available will allow us to proceed with designing apparatus for accurate and reliable irradiation testing of diodes. The following is a summary of what we have learned in the three areas mentioned above, some cautions about interpreting the data, and the implications of this new information for our future activities. 14 figs., 1 tab.« less

  15. Static and Dynamic Performance of Newly Developed ITER Relevant Insulation Systems after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2006-03-01

    Fiber reinforced plastics will be used as insulation systems for the superconducting magnet coils of ITER. The fast neutron and gamma radiation environment present at the magnet location will lead to serious material degradation, particularly of the insulation. For this reason, advanced radiation-hard resin systems are of special interest. In this study various R-glass fiber / Kapton reinforced DGEBA epoxy and cyanate ester composites fabricated by the vacuum pressure impregnation method were investigated. All systems were irradiated at ambient temperature (340 K) in the TRIGA reactor (Vienna) to a fast neutron fluence of 1×1022 m-2 (E>0.1 MeV). Short-beam shear and static tensile tests were carried out at 77 K prior to and after irradiation. In addition, tension-tension fatigue measurements were used in order to assess the mechanical performance of the insulation systems under the pulsed operation conditions of ITER. For the cyanate ester based system the influence of interleaving Kapton layers on the static and dynamic material behavior was investigated as well.

  16. Irradiation caused performance losses of undulators equipped with Sm2Co17 magnets

    NASA Astrophysics Data System (ADS)

    Heidrich, S.; Aulenbacher, K.; Donders, S.; Nikipelov, A.

    2018-06-01

    The effects of beam losses on the performance of undulators equipped with Sm2Co17 magnets were investigated at the 855 MeV beamline of the Mainzer Microtron MAMI. Therefore, different cases containing undulator components as well as complete undulator assemblies were irradiated. Different types of shielding were used to distinguish the magnetic field degradation caused by neutrons from the degradation caused by electrons and photons. The results of each case were put in relation with the expected beam losses of a conceptional 10 kW free-electron-laser (FEL) based on an electron beam with 34 MW beam power.

  17. The ultrasound-enhanced bioscouring performance of four polygalacturonase enzymes obtained from rhizopus oryzae

    USDA-ARS?s Scientific Manuscript database

    An analytical and statistical method has been developed to measure the ultrasound-enhanced bioscouring performance of milligram quantities of endo- and exo-polygalacturonase enzymes obtained from Rhizopus oryzae fungi. UV-Vis spectrophotometric data and a general linear mixed models procedure indic...

  18. Thermal-mechanical performance modeling of thorium-plutonium oxide fuel and comparison with on-line irradiation data

    NASA Astrophysics Data System (ADS)

    Insulander Björk, Klara; Kekkonen, Laura

    2015-12-01

    Thorium-plutonium Mixed OXide (Th-MOX) fuel is considered for use in light water reactors fuel due to some inherent benefits over conventional fuel types in terms of neutronic properties. The good material properties of ThO2 also suggest benefits in terms of thermal-mechanical fuel performance, but the use of Th-MOX fuel for commercial power production demands that its thermal-mechanical behavior can be accurately predicted using a well validated fuel performance code. Given the scant operational experience with Th-MOX fuel, no such code is available today. This article describes the first phase of the development of such a code, based on the well-established code FRAPCON 3.4, and in particular the correlations reviewed and chosen for the fuel material properties. The results of fuel temperature calculations with the code in its current state of development are shown and compared with data from a Th-MOX test irradiation campaign which is underway in the Halden research reactor. The results are good for fresh fuel, whereas experimental complications make it difficult to judge the adequacy of the code for simulations of irradiated fuel.

  19. Afterglow dosimetry performance of beta particle irradiated lithium zirconate.

    PubMed

    Hernández-Pérez, T C; Bernal, R; Cruz-Vázquez, C; Brown, F; Mendoza-Córdova, A; Salas-Juárez, Ch J; Avilés-Monreal, R

    2018-08-01

    In this work, we report for the very first time on the thermoluminescence (TL) and afterglow (AG) properties of Li 2 ZrO 3 . The ternary oxide Li 2 ZrO 3 was synthesized by solid state reaction of a mixture of Li 2 CO 3 and ZrO 2 subjected to thermal annealing at 400°C for 2h and 1000°C during 24h in air. The characteristic glow curves of beta particle irradiated samples exhibit an intense TL emission located around 150°C. From the shape of the TL curve, a 0.4 form factor was determined, suggesting that first order kinetics processes are involved. The afterglow decay curves were recorded after exposure to beta particle irradiation in the dose range from 0.5 up to 2kGy. The AG integrated in the time interval from 510 to 600s after radiation exposure shows a linear dependence as a function of the irradiation dose from 0.5 up to 256Gy. A method is proposed to compute the lower detection limit and the AG sensitivity and applied to the studied phosphors. Structural and morphological characterization were carried out by X-ray diffraction and Scanning Electron Microscopy, respectively. From the results presented, it is concluded that the AG response of the synthesized Li 2 ZrO 3 presents features suitable to develop radiation detectors and dosimeters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Computation of diffuse sky irradiance from multidirectional radiance measurements

    NASA Technical Reports Server (NTRS)

    Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.

    1987-01-01

    Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.

  1. Cost of irradiating bacon and the associated energy savings. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynjolfsson, A.

    1979-03-01

    This paper is about costs and energy savings obtained by irradiating bacon. Sterilized by irradiation (25 kGy), bacon without added nitrite does not contain nitrosamines and does not constitute botulism hazard. If bacon is irradiation sterilized while refrigerated, the cost of irradiation is about $0.08/lb; if irradiation-sterilized while frozen, the costs of irradiation and freezing would be about $0.03/lb. Substerilizing irradiation doses of 7.5 to 15 kGy would give about 80 days extension of bacon stored and distributed refrigerated. The irradiation costs, in this case, would be about $0.07/lb.

  2. Ultrasound-Based Guidance for Partial Breast Irradiation Therapy

    DTIC Science & Technology

    2011-01-01

    and also are inexpensive. b. Collect US data from patient before the PBI treatment at the same time that CT is collected (months 2-14). We...introduces minimal divergence from the original workflow of PBI treatment. We have an approved institutional review board (IRB) protocol to obtain B...irradiation of only the in- volved area of the breast, partial breast irradiation ( PBI ), is as effective as whole breast irradiation [1]. Benefits of PBI

  3. Comparison of the TL responses of two different preparations of LiF:Mg,Cu,P irradiated by photons of various energies.

    PubMed

    González, P R; Furetta, C; Azorín, J

    2007-03-01

    The aim of this work is to present the results concerning the photon irradiation of a new phosphor, the LiF:Mg,Cu,P+PTFE, produced at the Instituto Nacional de Investigaciones Nucleares (ININ-Mexico). The photon irradiations were performed using X-rays of 16, 24, 34.5, 42, 100 and 145keV, and gamma rays from (137)Cs (662keV) and from (60)Co (1 252keV). The results obtained are normalized to the (60)Co response. The experimental data are then compared to those obtained using the commercial dosimeters TLD-100 and GR-200A.

  4. Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin

    NASA Astrophysics Data System (ADS)

    Chin, Michael S.; Freniere, Brian B.; Lo, Yuan-Chyuan; Saleeby, Jonathan H.; Baker, Stephen P.; Strom, Heather M.; Ignotz, Ronald A.; Lalikos, Janice F.; Fitzgerald, Thomas J.

    2012-02-01

    Studies examining acute oxygenation and perfusion changes in irradiated skin are limited. Hyperspectral imaging (HSI), a method of wide-field, diffuse reflectance spectroscopy, provides noninvasive, quantified measurements of cutaneous oxygenation and perfusion. This study examines whether HSI can assess acute changes in oxygenation and perfusion following irradiation. Skin on both flanks of nude mice (n=20) was exposed to 50 Gy of beta radiation from a strontium-90 source. Hyperspectral images were obtained before irradiation and on selected days for three weeks. Skin reaction assessment was performed concurrently with HSI. Desquamative injury formed in all irradiated areas. Skin reactions were first seen on day 7, with peak formation on day 14, and resolution beginning by day 21. HSI demonstrated increased tissue oxygenation on day 1 before cutaneous changes were observed (p<0.001). Further increases over baseline were seen on day 14, but returned to baseline levels by day 21. For perfusion, similar increases were seen on days 1 and 14. Unlike tissue oxygenation, perfusion was decreased below baseline on day 21 (p<0.002). HSI allows for complete visualization and quantification of tissue oxygenation and perfusion changes in irradiated skin, and may also allow prediction of acute skin reactions based on early changes seen after irradiation.

  5. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  6. Two-dimensional molybdenum disulphide nanoflakes synthesized by liquid-solid phase reaction method: regenerative photocatalytic performance under UV-visible light irradiation by advance oxidation process

    NASA Astrophysics Data System (ADS)

    Afsar, M. F.; Rafiq, M. A.; Siddique, Fizza; Saira, F.; Chaudhary, M. M.; Hasan, M. M.; Tok, A. I. Y.

    2018-05-01

    Molybdenum disulphide (MoS2) nanoflakes were prepared through liquid-solid phase reaction technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM) analysis revealed the formation of pure, polycrystalline, hexagonal phase of MoS2 nanoflakes. The texture coefficient (T{c}hkl) analysis showed that (100) plane was preferentially oriented. The specific surface area of the nanoflakes was 21 m2 g‑1 as determined using Brunaure-Emmett-Teller (BET) technique. A band gap of ∼2.05 eV for MoS2 nanoflakes was estimated from UV-visible spectrum. Regenerative photocatalytic activity of MoS2 nanoflakes was assessed by degrading methylene blue (MB) and safranin-o (SO) dyes under UV-visible light irradiation. Under light irradiation, degradation efficiency for MB was ∼99.58% in 100 min while for SO it was ∼99.89% in 70 min. The MoS2 nanoflakes exhibited excellent photocatalytic performance and good stability in a wide pH range (3–11). MoS2 nanoflakes showed a high reaction rate constant (k app ) for SO ∼ 0.104 49 min‑1 and MB ∼ 0.092 18 min‑1 as compared to other MoS2 nanostructures. The obtained exceptional photocatalytic performance of MoS2 nanoflakes offers potential applications for the treatment of polluted water as well as in other correlated fields.

  7. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  8. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  9. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  10. In-situ microwave irradiation synthesis of ZnO-graphene nanocomposite for high-performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Gunaseelan, R.; Venkatachalam, V.; Raj, A. Antony

    2018-04-01

    In this paper, the ZnO/G nanocomposite was synthesized by facile in-situ microwave irradiation method. The as-prepared ZnO/G composite has been characterized with X-ray powder diffraction. The electrochemical properties of the obtained composite electrode for supercapacitor have been studied by cyclic voltammetry and electrochemical impedance spectra analyses. The ZnO/G nanocomposites showed a good capacitive behavior with a higher specific capacitance of 140.4 F/g at a scan rate of 5 mV/s scan rate in 1M KOH electrolyte. Based on the electrochemical results revealed that the composite electrode is a suitable candidate for supercapacitor applications.

  11. White spot syndrome virus inactivation study by using gamma irradiation

    NASA Astrophysics Data System (ADS)

    Heidareh, Marzieh; Sedeh, Farahnaz Motamedi; Soltani, Mehdi; Rajabifar, Saeed; Afsharnasab, Mohammad; Dashtiannasab, Aghil

    2014-09-01

    The present study was conducted to investigate the effect of gamma irradiation on white spot syndrome virus (WSSV). White spot syndrome virus is a pathogen of major economic importance in cultured penaeid shrimp industries. White spot disease can cause mortalities reaching 100% within 3-10 days of gross signs appearing. During the period of culture, immunostimulant agents and vaccines may provide potential methods to protect shrimps from opportunistic and pathogenic microrganisms. In this study, firstly, WSSV was isolated from infected shrimp and then multiplied in crayfish. WSSV was purified from the infected crayfish haemolymph by sucrose gradient and confirmed by transmission electron microscopy. In vivo virus titration was performed in shrimp, Penaeus semisulcatus. The LD50 of live virus stock was calculated 10 5.4/mL. Shrimp post-larvae (1-2 g) were treated with gamma-irradiated (different doses) WSSV (100 to 10-4 dilutions) for a period of 10 days. The dose/survival curve for irradiated and un-irradiated WSSV was drawn; the optimum dose range for inactivation of WSSV and unaltered antigenicity was obtained 14-15 kGy. This preliminary information suggests that shrimp appear to benefit from treatment with gammairradiated WSSV especially at 14-15 KGy.

  12. Neutron irradiation effects on plasma facing materials

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  13. Hydrothermal Synthesis of Nanostructured MnO2 and Gamma Radiation Effects on Rechargeable Lithium Battery Performance.

    PubMed

    Seo, Sang-Ei; Kang, Yun Ok; Jung, Sung-Hee; Choi, Seong-Ho

    2015-09-01

    Nanostructured manganese dioxide (MnO2) was synthesized by the hydrothermal method under various experimental conditions such as reaction time and concentration in order to obtain nanostructure material with different morphologies, and it was found that the morphology of the MnO2 obtained had a nanoparticle-like structure, urchin-like structure, or nanorod-like structure depending on the experimental conditions. Among the as-prepared MnO2 samples, the highest surface area was seen for the urchin-like structure, and this was irradiated by γ-rays with a total radiation dose of 30 kGy at a rate 1.0 x 10(4) Gy/h in order to determine the effect of γ-irradiation on battery performance. There was a decrease in battery performance in terms of capacity and stability for irradiated samples during 100 cycles.

  14. Comparison of magnetic properties of austenitic stainless steel after ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Xue, Fei; Li, Yuanfei; Qian, Wangjie

    2018-07-01

    Specimens of austenitic stainless steel (ASS) were irradiated with H, Fe and Xe ions at room temperature. The vibrating sample magnetometer (VSM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the magnetic properties and martensite formation. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. Under the same damage level, Xe irradiation causes the most significant magnetization, Fe irradiation is the second, and H irradiation is the least. A similar martensite amount variation with irradiation can be obtained. The coercivity Hc increases first to 2 dpa and then decreases continuously with irradiation damage for Xe irradiation. At the same damage lever, H irradiation causes a largest Hc and Xe irradiation causes a minimal one.

  15. Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.

    2016-10-01

    Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.

  16. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun

    2017-06-01

    The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  17. Spectral irradiance standard for the ultraviolet - The deuterium lamp

    NASA Technical Reports Server (NTRS)

    Saunders, R. D.; Ott, W. R.; Bridges, J. M.

    1978-01-01

    A set of deuterium lamps is calibrated as spectral irradiance standards in the 200-350-nm spectral region utilizing both a high accuracy tungsten spectral irradiance standard and a newly developed argon mini-arc spectral radiance standard. The method which enables a transfer from a spectral radiance to a spectral irradiance standard is described. The following characteristics of the deuterium lamp irradiance standard are determined: sensitivity to alignment; dependence on input power and solid angle; reproducibility; and stability. The absolute spectral radiance is also measured in the 167-330-nm region. Based upon these measurements, values of the spectral irradiance below 200 nm are obtained through extrapolation.

  18. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    PubMed Central

    Gong, Jiuyan; Liu, Jianshe; Song, Wendong; Ji, Lili

    2018-01-01

    In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation. PMID:29425138

  19. Checking ozone amounts by measurements of UV-irradiances

    NASA Technical Reports Server (NTRS)

    Seckmeyer, Gunther; Kettner, Christiane; Thiel, Stephen

    1994-01-01

    Absolute measurements of UV-irradiances in Germany and New Zealand are used to determine the total amounts of ozone. UV-irradiances measured and calculated for clear skies and for solar zenith angles less than 60 deg generally show a good accordance. The UVB-irradiances, however, show that the actual Dobson values are about 5 percent higher in Germany and about 3 percent higher in New Zealand compared to those obtained by our method. Possible reasons for these deviations are discussed.

  20. Nanoindentation of ion-irradiated reactor pressure vessel steels - model-based interpretation and comparison with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.

    2018-04-01

    Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.

  1. SU-E-T-222: Investigation of Pre and Post Irradiation Fading of the TLD100 Thermoluminescence Dosimetry for Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sina, S; Sadeghi, M; Faghihi, R

    2014-06-01

    Purpose: The pre-irradiation and post-irradiation fading of the Thermoluminescense dosimeter signals were investigated in this study. Methods: Two groups of TLD chips with pre-determined ECC values were used in this study. The two groups were divided into 6 series, each composing of 5 TLD chips.The first group was used for pre-irradiation fading. 5 TLDs were exposed to a known amount of radiation from Cs-137 source, and were read out the next day. After seven days, the other 5 TLDs were exposed to the same amount of radiation and were read out after a day. The other series of 5 TLDsmore » were also exposed after 7,19,28, 59, and 90 days, and were read out a day after irradiation. The loss in TLD signal were obtained for all the above cases. The second group, was used for postirradiation fading. All the TLDs of this group were exposed to a known amount of radiation from Cs-137 source. The 6 series composed of 5 TLDs were read out after 1,7,19,28,59, and 90 days. The above-mentioned procedures for obtaining pre-irradiation, and post-irradiation fading were performed for three storage temperatures (25°C, 4°C, and −18°C). Results: According to the results obtained in this study, in case of pre-irradiation fading study, the signal losses after 90 days are 12%, 24%, and 17% for 25°C, 4°C, and −18°C respectively. In case of post-irradiation fading study, the sensitivity losses after 90 days are 25%, 216%, and 20% for 25°C, 4°C, and −18°C respectively. Conclusion: The results indicate that the optimized time between exposing and reading out, and also the optimized time between annealing and exposing is 1 day.The reduction of Storage temperature will reduce the post-irradiation fading, While temperature reduction does not have any effect on pre-irradiation fading.« less

  2. RESULTS OF THE CANADIAN POTATO IRRADIATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetherington, C.H.; MacQueen, K.F.

    1963-01-01

    Results of test irradiations of potatoes in Canada between October 1961 and March 1962 are reviewed. Completely effective sprout inhibition was obtained in all cases. Radiation treatment was observed to be more effective than other methods. A lower dosage level would probably be satisfactory on a commercial basis. There was no internal sprouting and irradiated potatoes remained firmer than controls. Some dry rot was present in both control and treated potatoes. Irradiated potatoes were found to be more resistant to light greening. The quality of chips, instant mashed potatoes, frozen French fries, and fresh boilers produced from irradiated potatoes wasmore » found to be good. Implications and plans for commercialization of the process are discussed. (H.M.G.)« less

  3. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  4. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations

    PubMed Central

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829

  5. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    NASA Astrophysics Data System (ADS)

    Wald, L.; Blanc, Ph.

    2010-09-01

    Satellite-derived assessments of surface downwelling solar irradiance are more and more used by engineering companies in solar energy. Performances are judged satisfactory for the time being. Nevertheless, requests for more accuracy are increasing, in particular in the spectral definition and in the decomposition of the global radiation into direct and diffuse radiations. One approach to reach this goal is to improve both the modelling of the radiative transfer and the quality of the inputs describing the optical state. Within their joint project Heliosat-4, DLR and MINES ParisTech have adopted this approach to create advanced databases of solar irradiance succeeding to the current ones HelioClim and SolEMi. Regarding the model, we have opted for libRadtran, a well-known model of proven quality. As many similar models, running libRadtran is very time-consuming when it comes to process millions or more pixels or grid cells. This is incompatible with real-time operational process. One may adopt the abacus approach, or look-up tables, to overcome the problem. The model is run for a limited number of cases, covering the whole range of values taken by the various inputs of the model. Abaci are such constructed. For each real case, the irradiance value is computed by interpolating within the abaci. In this way, real-time can be envisioned. Nevertheless, the computation of the abaci themselves requires large computing capabilities. In addition, searching the abaci to find the values to interpolate can be time-consuming as the abaci are very large: several millions of values in total. Moreover, it raises the extrapolation problem of parameter out-of-range during the utilisation of the abaci. Parameterisation, when possible, is a means to reduce the amount of computations to be made and subsequently, the computation effort to create the abaci, the size of the abaci, the extrapolation and the searching time. It describes in analytical manner and with a few parameters the

  6. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  7. Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model.

    PubMed

    Lim, WonBong; Choi, Hongran; Kim, Jisun; Kim, Sangwoo; Jeon, SangMi; Zheng, Hui; Kim, DoMan; Ko, Youngjong; Kim, Donghwi; Sohn, HongMoon; Kim, OkJoon

    2015-02-01

    Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief. As during laser treatment it is possible to irradiate only a small area of the surface body or wound and, correspondingly, of a very small volume of the circulating blood, it is necessary to explain how its photomodification can lead to a wide spectrum of therapeutic effects. To establish the experimental model for indirect irradiation, irradiation with 635 nm was performed on immortalized human gingival fibroblasts (IGFs) in the presence of Porphyromonas gingivalis lipopolysaccharides (LPS). The irradiated medium was transferred to non-irradiated IGFs which were compared with direct irradiated IGFs. The protein expressions were assessed by Western blot, and prostaglandin E2 (PGE2 ) was measured using an enzyme-linked immunoassay. Reactive oxygen species (ROS) were measured by DCF-DA; cytokine profiles were assessed using a human inflammation antibody array. Cyclooxygenase-2 (COX-2) protein expression and PGE2 production were significantly increased in the LPS-treated group and decreased in both direct and indirect irradiated IGFs. Unlike direct irradiated IGFs, ROS level in indirect irradiated IGFs was decreased by time-dependent manners. There were significant differences of released granulocyte colony-stimulating factor (G-CSF), regulated on activated normal T-cell expressed and secreted (RANTES), and I-TAC level observed compared with direct and indirect irradiated IGFs. In addition, in the indirect irradiation group, phosphorylations of C-Raf and Erk1/2 increased significantly compared with the direct irradiation group. Thus, we suggest that not only direct exposure with 635 nm light, but also indirect exposure with 635 nm light can inhibit activation of pro-inflammatory mediators and may be clinically useful as an anti-inflammatory tool. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Track membranes based on a 20-μm-thick polyethylene terephthalate film obtained with a beam of argon ions having a range shorter than the film thickness

    NASA Astrophysics Data System (ADS)

    Kudoyarov, M. F.; Kozlovskii, M. A.; Patrova, M. Ya.; Potokin, I. L.; Ankudinov, A. V.

    2016-07-01

    The possibility of performing an energy-efficient variant of irradiation of 20-μm-thick polyethylene terephthalate films to obtain track membranes was considered. Irradiation was done on both sides of a film with a beam of 53.4-MeV Ar+8 ions having energy insufficient for a through track to be formed. The characteristics of the resulting track membrane samples were studied. It was found that these membranes can be used in some cases as a basis for fabrication of composite gas-separating membranes.

  9. New Elastomeric Materials Based on Natural Rubber Obtained by Electron Beam Irradiation for Food and Pharmaceutical Use.

    PubMed

    Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela

    2016-12-21

    The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy-300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory-Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques.

  10. Microbiological decontamination of natural honey by irradiation

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  11. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  12. Development of radiation indicators to distinguish between irradiated and non-irradiated herbal medicines using HPLC and GC-MS.

    PubMed

    Kim, Min Jung; Ki, Hyeon A; Kim, Won Young; Pal, Sukdeb; Kim, Byeong Keun; Kang, Woo Suk; Song, Joon Myong

    2010-09-01

    The effects of high dose γ-irradiation on six herbal medicines were investigated using gas chromatography-mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC). Herbal medicines were irradiated at 0-50 kGy with (60)Co irradiator. HPLC was used to quantify changes of major components including glycyrrhizin, cinnamic acid, poncirin, hesperidin, berberine, and amygdalin in licorice, cinnamon bark, poncirin immature fruit, citrus unshiu peel, coptis rhizome, and apricot kernel. No significant differences were found between gamma-irradiated and non-irradiated samples with regard to the amounts of glycyrrhizin, berberine, and amygdalin. However, the contents of cinnamic acid, poncirin, and hesperidin were increased after irradiation. Volatile compounds were analyzed by GC/MS. The relative proportion of ketone in licorice was diminished after irradiation. The relative amount of hydrocarbons in irradiated cinnamon bark and apricot kernel was higher than that in non-irradiated samples. Therefore, ketone in licorice and hydrocarbons in cinnamon bark and apricot kernel can be considered radiolytic markers. Three unsaturated hydrocarbons, i.e., 1,7,10-hexadecatriene, 6,9-heptadecadiene, and 8-heptadecene, were detected only in apricot kernels irradiated at 25 and 50 kGy. These three hydrocarbons could be used as radiolytic markers to distinguish between irradiated (>25 kGy) and non-irradiated apricot kernels.

  13. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linke, J.; Duwe, R.; Kuehnlein, W.

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules,more » electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.« less

  14. An electron spin resonance study of gamma-irradiated grapes

    NASA Astrophysics Data System (ADS)

    Tabner, Brian J.; Tabner, Vivienne A.

    The ESR spectra of the seeds, skins and stalks of unirradiated and γ-irradiated Cape black grapes have been obtained. In the spectra of all parts of the grape a single line (g ca. 2.004) is observed both before and after irradiation. New spectral features are observed after irradiation with doses of between 2 and 10 kGy. Some of these features decline in intensity over a period of several days. However, in the case of stalks, new spectral features are readily observed over the shelf-life of the fruit and in samples irradiated to a dose of only 2kGy.

  15. THE EFFECT OF IRRADIATION ON REPRODUCTION BY THE HETEROGENETIC GENERATION OF STRONGYLOIDES PAPILLOSUS. I. IRRADIATION OF MALES AND FEMALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, F.F.

    1960-06-01

    Fourth and fifth stage male and third and fourth stage female S. papillosus were subjected to various doses of Co/sup 60/ gamma irradiation and cultured in vitro with controls of the opposite sex. Fewer offspring were produced in cultures containing irradiated males than in cultures of irradiated females. A single experiment involving several doses and one control gave a more linear picture of the effects of irradiation than individual experiments carried out at various times for different dose levels. In the former, larvae were obtained in cultures of nematodes exposed to 20 kr but not to 40, 60, 80 ormore » 100 kr; in the latter, larvae occurred in cultures of males irradiated at 42 kr and in cultures of females exposed to 50 kr but not at the higher levels employed. With increased doses of irradiation, there was a decrease in the percentage of eggs hatching. The dominant lethal effect was observed in cultures with males exposed to 20 kr and higher doses. In cultures with irradiated females, this phenomenon was observed at 40 kr and higher levels. (auth)« less

  16. Classification of daily solar irradiation by fractional analysis of 10-min-means of solar irradiance

    NASA Astrophysics Data System (ADS)

    Harrouni, S.; Guessoum, A.; Maafi, A.

    2005-02-01

    This paper deals with fractal analysis of daily solar irradiances measured with a time step of 10 minutes at Golden and Boulder located in Colorado. The aim is to estimate the fractal dimensions in order to perform classification of daily solar irradiances. The estimated fractal dimension hat{D} and the clearness index KT are used as classification criteria. The results show that these criteria lead to three classes: clear sky, partially covered sky and overcast sky. The results also show that the evaluation of the fractal dimension of the irradiance signal based on a data set with 10 minutes time step is possible.

  17. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study

    NASA Astrophysics Data System (ADS)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-10-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.

  18. Commercial implementation of food irradiation

    NASA Astrophysics Data System (ADS)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104

  19. Investigation of irradiated 1H-Benzo[b]pyrrole by ESR, thermal methods and learning algorithm

    NASA Astrophysics Data System (ADS)

    Algul, Gulay; Ceylan, Yusuf; Usta, Keziban; Yumurtaci Aydogmus, Hacer; Usta, Ayhan; Asik, Biray

    2016-05-01

    1H-Benzo[b]pyrrole samples were irradiated in the air with gamma source at 0.969 kGy per hour at room temperature for 24, 48 and 72 h. After irradiation, electron spin resonance, thermogravimetry analysis (TGA) and differential thermal analysis (DTA) measurements were immediately carried out on the irradiated and unirradiated samples. The ESR measurements were performed between 320 and 400 K. ESR spectra were recorded from the samples irradiated for 48 and 72 h. The obtained spectra were observed to be dependent on temperature. Two radical-type centres were detected on the sample. Detected radiation-induced radicals were attributed to R-+•NH and R=•CC2H2. The g-values and hyperfine constants were calculated by means of the experimental spectra. It was also determined from TGA spectrum that both the unirradiated and irradiated samples were decomposed at one step with the rising temperature. Moreover, a theoretical study was presented. Success of the machine learning methods was tested. It was found that bagging techniques, which are widely used in the machine learning literature, could optimise prediction accuracy noticeably.

  20. [In vitro and ex vivo EPR investigation of metabolic changes in blood under the action of radiotoxins obtained from irradiated potato tubers].

    PubMed

    Ibragimova, M I; Petukhov, V Iu; Zheglov, E P; Koniukhov, G V; Nizamov, R N

    2004-01-01

    The effect of radiotoxin (RT) obtained from y-irradiated potato tubes on blood of sheep and mice has been investigated by using in vitro and ex vivo EPR. In experiments in vitro, the action of different preparations (RT, extract from unirradiated potato tubers, 1%-HCl or 30%-hydrogen peroxide) on sheep blood has been compared. It has been established that RT is an effective oxidant (like 1%-HCl) of haem iron that leads to an increase of the methemoglobin concentration. The specific peculiarity of RT effect on blood in vitro is an appearance of two well-resolved lines from methemoglobin belonging, probably, to different paramagnetic centers. The signal from nonspecific complexes of Fe3+ has been also observed. Ex vivo EPR spectra markedly differ from these obtained in experiments in vitro. An additional line with g approximately 2.005 and width 6 G in 30 minutes after intraperitoneal RT injection in the lethal dose (0.2 ml of preparation containing of 2 mg RT) has been revealed. Subsequent intoxication of mice is accompanied by the appearance of the signal from nitrosyl complexes in EPR spectra. These differences in experimental results of in vitro and ex vivo EPR can be explained by launch of compensatory adaptive response of organism on the action of highly toxic preparation.

  1. Solar Irradiance from GOES Albedo performance in a Hydrologic Model Simulation of Snowmelt Runoff

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; McGurk, B. J.

    2015-12-01

    In many hydrologic modeling applications, solar radiation has been parameterized using commonly available measures, such as the daily temperature range, due to scarce in situ solar radiation measurement network. However, these parameterized estimates often produce significant biases. Here we test hourly solar irradiance derived from the Geostationary Operational Environmental Satellite (GOES) visible albedo product, using several established algorithms. Focusing on the Sierra Nevada and White Mountain in California, we compared the GOES irradiance and that from a traditional temperature-based algorithm with incoming irradiance from pyranometers at 19 stations. The GOES based estimates yielded 21-27% reduction in root-mean-squared error (average over 19 sites). The derived irradiance is then prescribed as an input to Precipitation-Runoff Modeling System (PRMS). We constrain our experiment to the Tuolumne River watershed and focus our attention on the winter and spring of 1996-2014. A root-mean-squared error reduction of 2-6% in daily inflow to Hetch Hetchy at the lower end of the Tuolumne catchment was achieved by incorporating the insolation estimates at only 8 out of 280 Hydrologic Response Units (HRUs) within the basin. Our ongoing work endeavors to apply satellite-derived irradiance at each individual HRU.

  2. Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation

    PubMed Central

    Delorenzi, Mauro

    2014-01-01

    Background With the large amount of biological data that is currently publicly available, many investigators combine multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical differences (“batch effects”) as well as differences in sample composition between the data sets may significantly affect the ability to draw generalizable conclusions from such studies. Focus The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their performance. In particular, we investigate the impact of batch effects and differences in sample composition between batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how it relates to the presence of batch effects. Data We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., ‘control’) or group 2 (e.g., ‘treated’). We introduce batch effects and select some features to be differentially expressed between the two groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and batch effects. Methods We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN) and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-validation scheme. The estimated classification performance is then compared to what is obtained when applying the classifier to independent data. PMID:24967636

  3. The Effect of Irradiation Distance on Microhardness of Resin Composites Cured with Different Light Curing Units

    PubMed Central

    Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem

    2010-01-01

    Objectives: The aim of this study was to compare the microhardness of five different resin composites at different irradiation distances (2 mm and 9 mm) by using three light curing units (quartz tungsten halogen, light emitting diodes and plasma arc). Methods: A total of 210 disc-shaped samples (2 mm height and 6 mm diameter) were prepared from different resin composites (Simile, Aelite Aesthetic Enamel, Clearfil AP-X, Grandio caps and Filtek Z250). Photoactivation was performed by using quartz tungsten halogen, light emitting diode and plasma arc curing units at two irradiation distances (2 mm and 9 mm). Then the samples (n=7/per group) were stored dry in dark at 37°C for 24 h. The Vickers hardness test was performed on the resin composite layer with a microhardness tester (Shimadzu HMV). Data were statistically analyzed using nonparametric Kruskal Wallis and Mann-Whitney U tests. Results: Statistical analysis revealed that the resin composite groups, the type of the light curing units and the irradiation distances have significant effects on the microhardness values (P<.05). Conclusions: Light curing unit and irradiation distance are important factors to be considered for obtaining adequate microhardness of different resin composite groups. PMID:20922164

  4. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjai, Serm

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derivedmore » global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)« less

  5. New Elastomeric Materials Based on Natural Rubber Obtained by Electron Beam Irradiation for Food and Pharmaceutical Use

    PubMed Central

    Craciun, Gabriela; Manaila, Elena; Stelescu, Maria Daniela

    2016-01-01

    The efficiency of polyfunctional monomers as cross-linking co-agents on the chemical properties of natural rubber vulcanized by electron beam irradiation was studied. The following polyfunctional monomers were used: trimethylolpropane-trimethacrylate, zinc-diacrylate, ethylene glycol dimethacrylate, triallylcyanurate and triallylisocyanurate. The electron beam treatment was done using irradiation doses in the range of 75 kGy–300 kGy. The gel fraction, crosslink density and effects of different aqueous solutions, by absorption tests, have been investigated as a function of polyfunctional monomers type and absorbed dose. The samples gel fraction and crosslink density were determined on the basis of equilibrium solvent-swelling measurements by applying the modified Flory–Rehner equation for tetra functional networks. The absorption tests were done in accordance with the SR ISI 1817:2015 using distilled water, acetic acid (10%), sodium hydroxide (1%), ethylic alcohol (96%), physiological serum (sodium chloride 0.9%) and glucose (glucose monohydrate 10%). The samples structure and morphology were investigated by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy techniques. PMID:28774150

  6. AGR-1 Compact 1-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul Andrew

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission product transport (INL 2015). A seriesmore » of fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously (Grover, Petti, and Maki 2010, Maki 2009).« less

  7. AGR-1 Compact 5-3-1 Post-Irradiation Examination Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demkowicz, Paul; Harp, Jason; Winston, Phil

    The Advanced Gas Reactor (AGR) Fuel Development and Qualification Program was established to perform the requisite research and development on tristructural isotropic (TRISO) coated particle fuel to support deployment of a high-temperature gas-cooled reactor (HTGR). The work continues as part of the Advanced Reactor Technologies (ART) TRISO Fuel program. The overarching program goal is to provide a baseline fuel qualification data set to support licensing and operation of an HTGR. To achieve these goals, the program includes the elements of fuel fabrication, irradiation, post-irradiation examination (PIE) and safety testing, fuel performance, and fission product transport (INL 2015). A series ofmore » fuel irradiation experiments is being planned and conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). These experiments will provide data on fuel performance under irradiation, support fuel process development, qualify the fuel for normal operating conditions, provide irradiated fuel for safety testing, and support the development of fuel performance and fission product transport models. The first of these irradiation tests, designated AGR-1, began in the ATR in December 2006 and ended in November 2009. This experiment was conducted primarily to act as a shakedown test of the multicapsule test train design and provide early data on fuel performance for use in fuel fabrication process development. It also provided samples for post-irradiation safety testing, where fission product retention of the fuel at high temperatures will be experimentally measured. The capsule design and details of the AGR-1 experiment have been presented previously.« less

  8. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, R S; Khishchenko, K V; Krasyuk, I K

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength ofmore » graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)« less

  9. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  10. Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin

    2015-01-01

    Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation

  11. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  12. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Gerczak, Tyler J.; Morris, Robert Noel

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in themore » Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.« less

  13. PRELIMINARY RESULTS OF THE AGC-4 IRRADIATION IN THE ADVANCED TEST REACTOR AND DESIGN OF AGC-5 (HTR16-18469)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation

  14. Carotid artery disease following external cervical irradiation.

    PubMed Central

    Elerding, S C; Fernandez, R N; Grotta, J C; Lindberg, R D; Causay, L C; McMurtrey, M J

    1981-01-01

    A retrospective study of 910 patients surviving at least five years after cervical irradiation for Hodgkin's disease, non-Hodgkin's lymphoma, or primary head an neck neoplasms showed the incidence of stroke following cervical irradiation was 63 of 910 patients (6.3%) during a mean period of observation of nine years. This represents a trend toward an increased risk for this population observed over the same period of time (p = 0.39). A prospective study of 118 similar patients currently living five years after cervical radiotherapy was performed to determine the incidence of carotid artery disease occurring as a consequence of neck irradiation. Abnormal carotid phonangiograms (CPA) were found in 25% of the patients and abnormal oculoplethysmographs (OPG) were found in 17%. These studies represent significant carotid lesions that are not expected in such a population. It is concluded that the carotid stenoses demonstrated are most likely a consequence of prior irradiation. Patients that are five-year survivors of cervical irradiation should have noninvasive vascular laboratory studies performed as part of their routine follow-up examinations in order to detect these carotid lesions while they are occult. PMID:7294930

  15. Detection of some irradiated spices on the basis of radiation induced damage of starch

    NASA Astrophysics Data System (ADS)

    Farkas, J.; Sharif, M. M.; Koncz, Á.

    Untreated and irradiated samples of spices were suspended in water, alkalized, and after heat-gelatinization, the apparent viscosity was determined by a rotational viscometer. Several spices, i.e. white pepper, black pepper, nutmeg and ginger showed considerable loss of viscosity as a function of γ-radiation dose in the dose range required for microbial decontamination of natural spices. Less promising results were obtained with spices such as allspice, garlic powder, and onion powder forming low-viscosity heat-treated suspensions even when unirradiated viscometric studies were also performed with a number of pepper samples of various origin to estimate the "natural" variation of rheological properties. Irradiation and storage studies were performed with ground black pepper samples of moisture contents in equilibrium with air of 25%, 50% and 75% R.H., respectively, either untreated or irradiated with 4, 8, 16 or 32 kGy, to study the effect of equilibrium relative humidity and storage time on detectability of radiation treatment. During the entire storage period of 100 days, statistically significant differences of the apparent viscosities of heat-gelatinized suspensions remained detectable between untreated samples and those irradiated with 8 kGy or higher doses. The apparent viscosity of high-moisture (75% E.R.H.) untreated samples was decreasing during long-term storage. Differences between viscosities of untreated and irradiated samples were enlarged when measured at elevated temperatures such as 50°C in the rotational viscometer, or in the boiling-water bath of a falling number apparatus. Other analytical indices such as onset and peak temperatures of gelatinization endotherms by DSC (damaged starch content), by colorimetry, reducing sugar content, alcohol-induced turbidity of hot water extracts of pepper samples, have been changed less dramatically by irradiation than the apparent viscosity of the gelatinized suspensions

  16. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zilong; Guillen, Donna Post; Harris, William

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface tomore » prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.« less

  17. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training

    NASA Astrophysics Data System (ADS)

    Raber, Jacob; Weber, Sydney J.; Kronenberg, Amy; Turker, Mitchell S.

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to 28Si ions (263 MeV/n, LET = 78keV / μ m ; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to 48Ti ions (1 GeV/n, LET = 107keV / μ m ; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used 40Ca ion beams (942 MeV/n, LET = 90keV / μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. 40Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to 40Ca ions had sex-dependent effects on response to shock. 40Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, 40Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus 40Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of 40Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions.

  18. Sex- and dose-dependent effects of calcium ion irradiation on behavioral performance of B6D2F1 mice during contextual fear conditioning training.

    PubMed

    Raber, Jacob; Weber, Sydney J; Kronenberg, Amy; Turker, Mitchell S

    2016-06-01

    The space radiation environment includes energetic charged particles that may impact behavioral and cognitive performance. The relationship between the dose and the ionization density of the various types of charged particles (expressed as linear energy transfer or LET), and cognitive performance is complex. In our earlier work, whole body exposure to (28)Si ions (263 MeV/n, LET=78keV/μm; 1.6 Gy) affected contextual fear memory in C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation but this was not the case following exposure to (48)Ti ions (1 GeV/n, LET=107keV/μm; 0.2 or 0.4 Gy). As an increased understanding of the impact of charged particle exposures is critical for assessment of risk to the CNS of astronauts during and following missions, in this study we used (40)Ca ion beams (942 MeV/n, LET=90keV/μm) to determine the behavioral and cognitive effects for the LET region between that of Si ions and Ti ions. (40)Ca ion exposure reduced baseline activity in a novel environment in a dose-dependent manner, which suggests reduced motivation to explore and/or a diminished level of curiosity in a novel environment. In addition, exposure to (40)Ca ions had sex-dependent effects on response to shock. (40)Ca ion irradiation reduced the response to shock in female, but not male, mice. In contrast, (40)Ca ion irradiation did not affect fear learning, memory, or extinction of fear memory for either gender at the doses employed in this study. Thus (40)Ca ion irradiation affected behavioral, but not cognitive, performance. The effects of (40)Ca ion irradiation on behavioral performance are relevant, as a combination of novelty and aversive environmental stimuli is pertinent to conditions experienced by astronauts during and following space missions. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Understanding the Irradiation Behavior of Zirconium Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  20. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production.

    PubMed

    Blasco, Manuel; Badenes, María Luisa; Del Mar Naval, María

    2016-09-01

    Successful haploid induction in loquat ( Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar 'Algerie' were pollinated using pollen of cultivars 'Changhong-3', 'Cox' and 'Saval Brasil' irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from 'Algerie' pollinated with 300-Gy-treated pollen of 'Saval Brasil' from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids.

  1. Validation of gamma irradiator controls for quality and regulatory compliance

    NASA Astrophysics Data System (ADS)

    Harding, Rorry B.; Pinteric, Francis J. A.

    1995-09-01

    Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic — Validation of Irradiator Controls — is a significant regulatory compliance and operations issue within the irradiator suppliers' and users' community.

  2. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  3. Effect of gamma irradiation on quality of dried potato

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chao, Y.

    2003-03-01

    The objectives of this study were to obtain the effect of gamma irradiation on the quality of dried potato. Experiments were conducted to study the influence of different doses, air temperatures, slice thickness of potatoes on the dehydration rate, appearance quality ( L-values), vitamin C content, and the rehydration ratio of dried potatoes. The greater the dose, the higher the dehydration rate, the lesser the vitamin C content, and the lower the rehydration ratio. The L-values for low-dose irradiation was greater than that for non-irradiated potatoes.

  4. INCREASED NUMBER OF COFFEE BEANS PRODUCED FROM IRRADIATED SEEDS (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monge, F.

    1962-10-01

    A genetic analysis of coffee plants from neutron and x-irradiated seed reveals that peaberry percent increased with radiation dose applied. The response for neutron irradiated plants was linear whereas for the x ray treatments it was exponential. This suggests that the high frequency of peaberries obtained from irradiated plants is due to chromosomal aberration; that cause gamete elimination and thus, a high production of one-seeded fruits. (auth)

  5. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, M; Jaffray, D; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MRmore » and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox

  6. Free radicals properties of gamma-irradiated penicillin-derived antibiotics: piperacillin, ampicillin, and crystalline penicillin.

    PubMed

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2014-03-01

    The aim of this work was to determine the concentrations and properties of free radicals in piperacillin, ampicillin, and crystalline penicillin after gamma irradiation. The radicals were studied by electron paramagnetic resonance (EPR) spectroscopy using an X-band spectrometer (9.3 GHz). Gamma irradiation was performed at a dose of 25 kGy. One- and two-exponential functions were fitted to the experimental data, in order to assess the influence of the antibiotics' storage time on the measured EPR lines. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. For all tested antibiotics, concentrations of free radicals and parameters of EPR spectra changed with storage time. The results obtained demonstrate that concentration of free radicals and other spectroscopic parameters can be used to select the optimal parameters of radiation sterilization of β-lactam antibiotics. The most important parameters are the constants τ (τ (1(A),(I)) and τ (2(A),(I))) and K (K (0(A),(I)), K (1(A),(I)), K (2(A),(I))) of the exponential functions that describe free radicals decay during samples storage.

  7. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Chris; Bazalova-Carter, Magdalena

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional datamore » sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.« less

  8. Effect of SiO2 addition and gamma irradiation on the lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Raut, A. P.; Deshpande, V. K.

    2018-01-01

    The physical properties like density, glass transition temperature (Tg), and ionic conductivity of lithium borate (LB) glasses with SiO2 addition were measured before and after gamma irradiation. Remarkable changes in properties have been obtained in the physical properties of LB glasses with SiO2 addition and after gamma irradiation. The increase in density and glass transition temperature of LB glasses with SiO2 addition has been explained with the help of increase in density of cross linking due to SiO4 tetrahedra formation. The increase in ionic conductivity with SiO2 addition was explained with the help of ‘mixed glass former effect’. The increase in density and Tg of LB glasses with SiO2 addition after gamma irradiation has been attributed to fragmentation of bigger ring structure into smaller rings, which increases the density of cross linking and hence compaction. The exposure of gamma irradiation has lead to decrease in ionic conductivity of LB glasses with SiO2 addition. The atomic displacement caused by gamma irradiation resulted in filling of interstices and decrease in trapping sites. This explains the obtained decrease in ionic conductivity after gamma irradiation of glasses. The obtained results of effect of SiO2 addition and gamma irradiation on the density, Tg and ionic conductivity has been supported by FTIR results.

  9. ALGORITHM BASED ON ARTIFICIAL BEE COLONY FOR UNFOLDING OF NEUTRON SPECTRA OBTAINED WITH BONNER SPHERES.

    PubMed

    Silva, Everton R; Freitas, Bruno M; Santos, Denison S; Maurício, Cláudia L P

    2018-04-13

    Occupational neutron fields usually have energies from the thermal range to some MeV and the characterization of the spectra is essential for estimation of the radioprotection quantities. Thus, the spectrum must be unfolded based on a limited number of measurements. This study implemented an algorithm based on the bee colonies behavior, named Artificial Bee Colony (ABC), where the intelligent behavior of the bees in search of food is reproduced to perform the unfolding of neutron spectra. The experimental measurements used Bonner spheres and 6LiI (Eu) detector, with irradiations using a thermal neutron flux and three reference fields: 241Am-Be, 252Cf and 252Cf (D2O). The ABC obtained good estimation of the expected spectrum even without previous information and its results were closer to expected spectra than those obtained by the SPUNIT algorithm.

  10. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    PubMed Central

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  11. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    PubMed

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  12. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    NASA Astrophysics Data System (ADS)

    Suryani, Puput Eka; Purnama, Herry; Susanto, Heru

    2015-12-01

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  13. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  14. Canadian experience in irradiation and testing of MOX fuel

    NASA Astrophysics Data System (ADS)

    Yatabe, S.; Floyd, M.; Dimayuga, F.

    2018-04-01

    Experimental irradiation and performance testing of Mixed OXide (MOX) fuel at the Canadian Nuclear Laboratories (CNL) has taken place for more than 40 years. These experiments investigated MOX fuel behaviour and compared it with UO2 behaviour to develop and verify fuel performance models. This article compares the performance of MOX of various concentrations and homogeneities, under different irradiation conditions. These results can be applied to future fuel designs. MOX fuel irradiated by CNL was found to be comparable in performance to similarly designed and operated UO2 fuel. MOX differs in behaviour from UO2 fuel in several ways. Fission-gas release, grain growth and the thickness of zirconium oxide on the inner sheath appear to be related to MOX fuel homogeneity. Columnar grains formed at the pellet centre begin to develop at lower powers in MOX than in UO2 fuel.

  15. Induced parthenogenesis by gamma-irradiated pollen in loquat for haploid production

    PubMed Central

    Blasco, Manuel; Badenes, María Luisa; del Mar Naval, María

    2016-01-01

    Successful haploid induction in loquat (Eriobotrya japonica (Thunb.) Lindl.) through in situ-induced parthenogenesis with gamma-ray irradiated pollen has been achieved. Female flowers of cultivar ‘Algerie’ were pollinated using pollen of cultivars ‘Changhong-3’, ‘Cox’ and ‘Saval Brasil’ irradiated with two doses of gamma rays, 150 and 300 Gy. The fruits were harvested 90, 105 and 120 days after pollination (dap). Four haploid plants were obtained from ‘Algerie’ pollinated with 300-Gy-treated pollen of ‘Saval Brasil’ from fruits harvested 105 dap. Haploidy was confirmed by flow cytometry and chromosome count. The haploids showed a very weak development compared to the diploid plants. This result suggests that irradiated pollen can be used to obtain parthenogenetic haploids. PMID:27795686

  16. Laser blood irradiation effect on electrophysiological characteristics of acute coronary syndrome patients

    NASA Astrophysics Data System (ADS)

    Khotiaintsev, Sergei N.; Doger-Guerrero, E.; Glebova, L.; Svirid, V.; Sirenko, Yuri

    1996-11-01

    This paper treats electro-physiological effects of the low- level laser irradiation of blood (LBI). The data presented here are based on the observation of almost 200 patients suffering from the acute disruption of coronary blood circulation, unstable angina pectoris and myocardial infarction. Statistically significant changes of the electro-physiological characteristics were observed in the group of 65 patients, treated by the LBI. In particular, the significant 6 percent extension of the effective refractory period was observed. The electrical situation threshold has increased by 20.6 percent. The significant changes of some other important electro-physiological characteristics were within the range of 5-15 percent. In this paper, the data obtained on the LBI effectiveness are compared also with the results obtained on 94 patients who in addition to the standard anti-angina therapy were treated by the autohaemo- transfusion performed simultaneously with the UV-light irradiation of the transfused blood. The results obtained demonstrate the significant positive effect of the low energy LBI. The electrophysiological data obtained have good correlation with observed anti-arrhythmic effect of the LBI. This is proved by the data obtained on the electro- physiological characteristics of the cardiovascular system and by other clinical data on the experimental and control group of patients. In the course of this research the exact effect of the low level LBI was established. LBI led to the pronounced positive changes in electro-physiological characteristics of the cardiovascular system of the patients, it also led to the pronounced anti-arrhythmic effect.

  17. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  18. Interaction between age of irradiation and age of testing in the disruption of operant performance using a ground-based model for exposure to cosmic rays

    USDA-ARS?s Scientific Manuscript database

    Exposure to HZE particles produces deficits in cognitive performance. While previous research has shown a progressive deterioration in cognitive performance in radiated rats as a function of age, the present experiment was designed to evaluate the effects of age of irradiation independently of the ...

  19. Viability of a human melanoma cell after single and combined treatment with fotemustine, dacarbazine, and proton irradiation.

    PubMed

    Petrović, Ivan M; Korićanac, Lela B; Todorović, Danijela V; Ristić-Fira, Aleksandra M; Valastro, Lucia M; Privitera, Giuseppe; Cuttone, Giacomo

    2007-01-01

    Viability of human HTB140 melanoma cells after being exposed to fotemustine (FM) and dacarbazine (DTIC) as well as to proton irradiation was studied. Effects of 100 and 250 microM drugs were assessed after incubation of 6, 24, 48, 72, and 96 h. Irradiations were performed with 62 MeV therapeutic protons, delivering to the cell monolayer single doses of 2, 4, 8, 12, and 16 Gy. Viability was evaluated 7 days after irradiation. Inactivation level was estimated using microtetrasolium (MTT) and sulforhodamine B (SRB) assays. Combined effects of each drug and protons, were carried out using the same drug concentrations. Proton doses applied were those used in therapy, that is, 12 and 16 Gy. With the increase of drug concentration or irradiation dose, level of cell inactivation reached approximately 60%, 48 h after drug treatment or 7 days after irradiation at 16 Gy. Considering the rate of drug concentrations used, as well as the level of doses applied, it appears that HTB140 cells are more resistant to proton irradiation than to alkylating agents tested. The combined treatment with FM or DTIC and protons did not show significant changes of cell viability as compared to the effects of single agents. Since the time point for measuring cumulative effects of drug and irradiation was 48 h post irradiation, it seems that the obtained level of viability could be attributed primarily to the effects of drugs.

  20. Effects of the shape of the foil corners on the irradiation performance of U10Mo alloy based monolithic mini-plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaltun, Hakan; Medvedev, Pavel G

    2015-06-01

    Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less

  1. RERTR-12 Insertion 2 Irradiation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez; G. S. Chang; D. M. Wachs

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  2. Effect of [gamma]-irradiation on latent tracks of polyethylene terephthalate (PET) film

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Asano, M.; Yamaki, T.; Yoshida, M.

    2005-04-01

    The pre-treatment effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) films bombarded with swift heavy ions was investigated by electric conductometry and scanning electron microscope (SEM) observation. The Xe-ion bombarded PET films were etched for 6 h in 0.2 M NaOH aqueous solution at 70 °C to prepare track-etched membranes. As γ-irradiation doses increased in the range of 0-160 kGy, the surface pore diameter obtained by SEM observation decreased while that obtained by conductometry became large. This inconsistent result between the two methods was due to an increase in the crosslinked region in the latent tracks caused by γ-irradiation.

  3. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Francine Joyce; Stempien, John Dennis

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within amore » specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.« less

  4. High-dose neutron irradiation embrittlement of RAFM steels

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2006-09-01

    Neutron irradiation-induced embrittlement of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 was studied under different heat treatment conditions. Irradiation was performed in the Petten High Flux Reactor within the HFR Phase-IIb (SPICE) irradiation project up to 16.3 dpa and at different irradiation temperatures (250-450 °C). Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) were also irradiated at selected temperatures. The impact properties were investigated by instrumented Charpy-V tests with subsize specimens. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement in terms of the parameter C = ΔDBTT/Δ σ indicates hardening-dominated embrittlement at irradiation temperatures below 350 °C with 0.17 ⩽ C ⩽ 0.53 °C/MPa. Scattering of C at irradiation temperatures above 400 °C indicates no hardening embrittlement.

  5. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  6. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer.

    PubMed

    Akın, Mustafa; Ergen, Arzu; Unal, Aysegul; Bese, Nuran

    2014-01-01

    Thyroid gland is one of the radiosensitive endocrine organs in the body. It has been shown that direct irradiation of thyroid with total doses of 26 to 30 Gy can lead to functional abnormalities. In this study, irradiation doses on thyroid gland of the patients who received postoperative chest-wall/breast and regional nodal irradiation were assessed. Retrospective analyses of treatment plans from 122 breast cancer patients who were treated with 3D conformal radiotherapy (3D CRT) planning was performed. All patients received irradiation to supraclavicular/level III lymph nodes in addition to chest-wall/breast. A total dose of 46 Gy was delivered in 25 days to supraclavicular/level III lymph node region while a total dose of 50 Gy was delivered to whole breast/chest-wall. Thyroid gland was contoured on 2-5 mm thickness of computed tomography scans. Absolute thyroid volume, mean thyroid doses were calculated. The mean thyroid volume of all patients was 16.7 cc (min: 1.9 cc, max: 41.6 cc). The mean irradiation dose on was 22.5 Gy (0.32 Gy-46.5 Gy). The level of dose was higher than 26 Gy in 44% of the patients. In majority of the node-positive breast cancer patients treated with 3D CRT, the thyroid gland was exposed to considerable doses. On the other hand, for 44% of the patients are at risk for developing thyroid function abnormalities which should be considered during the routine follow-up.

  7. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the

  8. Phototoxicity testing by online irradiation and HPLC.

    PubMed

    Schröder, Sven; Surmann, J P

    2006-11-01

    A high-performance liquid chromatography (HPLC) system was developed for the determination of drug photostability and phototoxicity based on an automated column-switching system with aqueous online UV-A irradiation and hyphenated organic separation of the drug and its photoproducts. The photoreactor is built with an poly(ethylene-co-tetrafluoroethylene) (ETFE) reaction coil knitted around a UV-A light source. The chromatographic separation was performed with two special C18 columns, which are also suitable for using with pure water as eluent. Degradation of chlorpromazine (CPZ) by ultraviolet light was investigated at pH 7 and pH 3. Furthermore chlorpromazine was irradiated in the presence of guanosine-5-monophosphate (GMP) in pH 7 buffered solution, leading to a new photoproduct. In the pH 3 irradiation studies of CPZ and GMP, no reaction was detected between the molecules.

  9. Qualification of heavy water based irradiation device in the JSI TRIGA reactor for irradiations of FT-TIMS samples for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Kolšek, Aljaž; Fauré, Anne-Laure; Pottin, Anne-Claire; Pointurier, Fabien; Snoj, Luka

    2018-03-01

    The Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS) method is considered as the reference method for particle analysis in the field of nuclear Safeguards for measurements of isotopic compositions (fissile material enrichment levels) in micrometer-sized uranium particles collected in nuclear facilities. An integral phase in the method is the irradiation of samples in a very well thermalized neutron spectrum. A bilateral collaboration project was carried out between the Jožef Stefan Institute (JSI, Slovenia) and the Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA, France) to determine whether the JSI TRIGA reactor could be used for irradiations of samples for the FT-TIMS method. This paper describes Monte Carlo simulations, experimental activation measurements and test irradiations performed in the JSI TRIGA reactor, firstly to determine the feasibility, and secondly to design and qualify a purpose-built heavy water based irradiation device for FT-TIMS samples. The final device design has been shown experimentally to meet all the required performance specifications.

  10. Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine.

    PubMed

    Radwan, Nasr Mahmoud; El Hay Ahmed, Nawal Abd; Ibrahim, Khayria Mansour; Khedr, Mona Emam; Aziz, Mona A; Khadrawy, Yasser Ashry

    2009-06-01

    The aim of the present study was to investigate the effect of daily laser irradiation on the levels of amino acid neurotransmitters in the cortex and hippocampus in an epileptic animal model induced by pilocarpine. It has been claimed that at specific wavelengths and energy densities, laser irradiation is a novel and useful tool for the treatment of peripheral and central nervous system injuries and disorders. Adult male albino rats were divided into three groups: control rats, pilocarpinized rats (epileptic animal model), and pilocarpinized rats treated daily with laser irradiation (90 mW at 830 nm) for 7 d. The following parameters were assayed in cortex and hippocampus: amino acid neurotransmitters (excitatory: glutamic acid and aspartate; and inhibitory: gamma-aminobutyric acid [GABA], glycine, and taurine) by high-performance liquid chromatography (HPLC), glucose content, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), using a spectrophotometer. Significant increases in the concentrations of glutamic acid, glutamine, glycine, and taurine were recorded in the cortices of pilocarpinized rats, and they returned to initial levels after laser treatment. In the hippocampus, a moderate increase in aspartate accompanied by a significant increase in glycine were observed in the epileptic animal model, and these dropped to near-control values after laser treatment. In addition, a significant increase in cortical AST activity and a significant decrease in ALT activity and glucose content were obtained in the pilocarpinized animals and pilocarpinized rats treated with laser irradiation. In the hippocampus, significant decreases in the activity of AST and ALT and glucose content were recorded in the epileptic animals and in the epileptic animals treated with laser irradiation. Based on the results obtained in this study, it may be suggested that nearinfrared laser irradiation may reverse the neurochemical changes in amino acid

  11. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    PubMed

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Design and Testing for a New Thermosyphon Irradiation Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felde, David K.; Carbajo, Juan J.; McDuffee, Joel Lee

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heatmore » loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium

  13. Re-irradiation Using Intensity-modulated Radiotherapy for Recurrent and Second Primary Head and Neck Cancer.

    PubMed

    Choi, Seo Hee; Chang, Jee Suk; Choi, Jinhyun; Park, So Hyun; Keum, Ki Chang; Park, Kyung Ran; Lee, Chang Geol

    2018-05-01

    Information on re-irradiation (re-RT) for recurrent and second primary head and neck cancer is limited. Herein, a description of our long-term experience of re-RT for previously irradiated head and neck cancer is provided. A retrospective review was performed for 73 consecutive patients re-irradiated for head and neck cancer between 2006 and 2015. Re-RT targets encompassed only the recurrent gross tumor and had tight margins (5-10 mm). Salvage surgery was performed on 28 (38%) patients before re-RT and 53 (73%) patients received chemotherapy concurrent with re-RT. The median interval between initial and re-RT was 31 months and the median cumulative dose of the two irradiations was 126 Gy (biologically equivalent to 2 Gy fractionation). With a median survival of 33 months, locoregional recurrence after re-RT developed in 37 patients (51%; 25 infield, 12 outfield). In multivariate analysis, higher re-RT dose (≥66 Gy), longer time interval (>2 years), and use of concurrent chemotherapy were associated with improved locoregional recurrence-free survival (all p<0.05). Additionally, performance status, additional surgical resection, and longer interval were associated with better overall survival (p=0.006, 0.021, 0.004, respectively). Clinically significant acute and late toxicities occurred in 14% and 22% of evaluable patients, but no grade 5 toxicity was observed. Moderate safety and acceptable toxicity was found after re-RT using tight margins, sufficient radiation dose, and daily image guidance. Encouraging local control and survival were obtained, similar to historical data using 1-2 cm margins. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    NASA Astrophysics Data System (ADS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  15. Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.

    PubMed

    Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A

    2015-05-11

    The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height.

  16. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  17. Identification of gamma-irradiated foodstuffs by chemiluminescence measurements in Taiwan

    NASA Astrophysics Data System (ADS)

    Ma, Ming-Shia Chang; Chen, Li-Hsiang; Tsai, Zei-Tsan; Fu, Ying-Kai

    In order to establish chemiluminescence (CL) measurements as an identification method for γ-irradiated foodstuffs in Taiwan, ten agricultural products including wheat flour, rice, ginger, potatoes, garlic, onions, red beans, mung beans, soy beans, xanthoxylon seeds and Japanese star anises have been tested to compare CL intensities between untreated samples and samples subject to a 10 kGy γ-irradiation dose. Amongst them, wheat flour is the most eligible product to be identified by CL measurements. The CL intensities of un-irradiated and irradiated flour have shown large differences associated with a significant dose-effect relationship. Effects of three different protein contents of flour, unsieved and sieved (100-200 mesh), the reproducibility and the storage experiment on CL intensities at various doses were investigated in this study. In addition, the white bulb part of onions has shown some CL in irradiated samples. The CL data obtained from the other eight agricultural products have shown large fluctuations and cannot be used to differentiate between irradiated and un-irradiated samples.

  18. Detection of irradiated chicken by ESR spectroscopy of bone

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Villavicencio, A. L. C. H.; Del Mastro, N. L.; Wiendl, F. M.

    1995-02-01

    Ionizing radiation has been used to treat poultry to remove harmful microorganisms, mainly Salmonella, which contaminates chicken, goose and other fresh and frozen poultry. This microorganism is sensitive to low dose radiation. Thus, irradiating these foods with doses between 1 to 7 kGy results in a large reduction of bacteria. Since it is necessary to determine whether irradiation has occurred and to what extend, this work studied the signal produced by ionizing radiation within the hard crystalline matrix of chicken's bone to establish a control method. Chicken's drumsticks were irradiated and bones separated from flesh were lyophilized and milled. ESR spectrum was then obtained. The ESR signal increased linearly with dose over the range 0.25 to 8.0 kGy. Free radicals evaluated during 30 days after irradiation showed stable in this period.

  19. Development of a facility for high-precision irradiation of cells with carbon ions.

    PubMed

    van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A; Coppes, Robert P; van Luijk, Peter

    2011-01-01

    Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed +/-1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell

  20. Effects of C3+ ion irradiation on structural, electrical and magnetic properties of Ni nanotubes

    NASA Astrophysics Data System (ADS)

    Shlimas, D. I.; Kozlovskiy, A. L.; Zdorovets, M. V.; Kadyrzhanov, K. K.; Uglov, V. V.; Kenzhina, I. E.; Shumskaya, E. E.; Kaniukov, E. Y.

    2018-03-01

    Ion irradiation is an attractive method for obtaining nanostructures that can be used under extreme conditions. Also, it is possible to control the technological process that allows obtaining nanomaterials with new properties at ion irradiation. In this paper, we study the effect of irradiation with 28 MeV C3+ ions and fluences up to 5 × 1011 cm-2 on the structure and properties of template-synthesized nickel nanotubes with a length of 12 μm, with diameters of 400 nm, and a wall thickness of 100 nm. It is demonstrated that the main factor influencing the degradation of nanostructures under irradiation in PET template is the processes of mixing the material of nanostructures with the surrounding polymer. The influence of irradiation with various fluences on the crystal structure, electrical and magnetic properties of nickel nanotubes is studied.

  1. Post-irradiation examinations of THERMHET composite fuels for transmutation

    NASA Astrophysics Data System (ADS)

    Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.

    2003-07-01

    The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.

  2. Post-irradiation examinations of Li 4SiO 4 pebbles irradiated in the EXOTIC-7 experiment

    NASA Astrophysics Data System (ADS)

    Piazza, G.; Scaffidi-Argentina, F.; Werle, H.

    2000-12-01

    Extraction of tritium in ceramics-7 (EXOTIC-7) was the first in-pile test with 6Li-enriched (50%) lithium orthosilicate (Li 4SiO 4) pebbles and with DEMO representative Li-burnup. Post-irradiation examinations (PIEs) of the Li 4SiO 4 have been performed at the Forschungszentrum Karlsruhe (FZK) to investigate the tritium release kinetics, the effects of Li-burnup, of the contact with beryllium during irradiation and the changes in the mechanical stability of the pebbles due to irradiation. Based on these data one can conclude that neither the contact with beryllium nor a burnup up to 13% have a detrimental effect on the tritium release of Li 4SiO 4 pebbles, but at 18% Li-burnup the residence time is increased by about a factor of 3. The mechanical strength of both irradiated and unirradiated pebbles has been examined by means of crush tests. According to the PIE no significant changes in the mechanical stability of the pebbles have been observed.

  3. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    PubMed

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  5. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  6. Rapid approach to the quantitative determination of nocturnal ground irradiance in populated territories: a clear-sky case

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav; Petržala, Jaromír

    2016-11-01

    A zero-order approach to the solving of the radiative transfer equation and a method for obtaining the horizontal diffuse irradiance at night-time are both developed and intended for wide use in numerical predictions of nocturnal ground irradiance in populated territories. Downward diffuse radiative fluxes are computed with a two-stream approximation, and the data products obtained are useful for scientists who require rapid estimations of illumination levels during the night. The rapid technique presented here is especially important when the entire set of calculations is to be repeated for different lighting technologies and/or radiant intensity distributions with the aim of identifying high-level illuminance/irradiance, the spectral composition of scattered light or other optical properties of diffuse light at the ground level. The model allows for the computation of diffuse horizontal irradiance due to light emissions from ground-based sources with arbitrary spectral compositions. The optical response of a night sky is investigated using the ratio of downward to upward irradiance, R⊥, λ(0). We show that R⊥, λ(0) generally peaks at short wavelengths, thus suggesting that, e.g., the blue light of an LED lamp would make the sky even more bluish. However, this effect can be largely suppressed or even removed with the spectral sensitivity function of the average human eye superimposed on to the lamp spectrum. Basically, blue light scattering dominates at short optical distances, while red light is transmitted for longer distances and illuminates distant places. Computations are performed for unshielded as well as fully shielded lights, while the spectral function R⊥, λ(0) is tabulated to make possible the modelling of various artificial lights, including those not presented here.

  7. Intercomparison of 51 radiometers for determining global horizontal irradiance and direct normal irradiance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin

    Accurate solar radiation measurements require properly installed and maintained radiometers with calibrations traceable to the World Radiometric Reference. This study analyzes the performance of 51 commercially available and prototype radiometers used for measuring global horizontal irradiances or direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with an internal shading mask deployed at the National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012), and their measurements were compared under clear-sky, partly cloudy, and mostly cloudy conditions to referencemore » values of low estimated measurement uncertainties. The intent of this paper is to present a general overview of each radiometer's performance based on the instrumentation and environmental conditions available at NREL.« less

  8. Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.).

    PubMed

    Ouattara, B; Sabato, S F; Lacroix, M

    2001-08-15

    The present study was conducted to evaluate the combined effect of low-dose gamma irradiation and antimicrobial coating on the shelf life of pre-cooked shrimp (Penaeus spp.). Antimicrobial coatings were obtained by incorporating various concentrations of thyme oil and trans-cinnamaldehyde in coating formulations prepared from soy or whey protein isolates. Coated shrimps were stored at 4 +/- 1 degrees C under aerobic conditions and were periodically evaluated for aerobic plate counts (APCs) and Pseudomonas putida. Sensory evaluations were performed for appearance, odor, and taste using a hedonic test. Results showed that gamma irradiation and coating treatments had synergistic effects (p < or = 0.05) in reducing the APCs and P. putida with at least a 12-day extension of shelf life. Without irradiation, the inhibitory effects of the coating solutions were closely related to the concentration of thyme oil and trans-cinnamaldehyde. No detrimental effects of gamma irradiation on organoleptic parameters (appearance, odor, and taste) were observed. However, incorporation of thyme oil and trans-cinnamaldehyde reduced the acceptability scores for taste and odor.

  9. HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.

  10. New dye-sensitized solar cells obtained from extracted bracts of Bougainvillea glabra and spectabilis betalain pigments by different purification processes.

    PubMed

    Hernandez-Martinez, Angel Ramon; Estevez, Miriam; Vargas, Susana; Quintanilla, Fracisco; Rodriguez, Rogelio

    2011-01-01

    The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis' bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO(2) thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density J(SC) of 2.29 mA/cm(2) using an irradiation of 100 mW/cm(2) at 25 °C.

  11. New Dye-Sensitized Solar Cells Obtained from Extracted Bracts of Bougainvillea Glabra and Spectabilis Betalain Pigments by Different Purification Processes

    PubMed Central

    Hernandez-Martinez, Angel Ramon; Estevez, Miriam; Vargas, Susana; Quintanilla, Fracisco; Rodriguez, Rogelio

    2011-01-01

    The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis’ bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO2 thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density JSC of 2.29 mA/cm2 using an irradiation of 100 mW/cm2 at 25 °C. PMID:22016609

  12. Effects of High Energy Electron Irradiation on a Yttrium Barium(2) Copper(3) Oxygen(7-delta) High Temperature Superconductor

    DTIC Science & Technology

    1991-09-01

    2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI

  13. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  14. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  15. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai; Howard, Richard H.

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterizationmore » of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.« less

  16. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  17. Re-irradiation for oligo-recurrence from esophageal cancer with radiotherapy history: a multi-institutional study.

    PubMed

    Jingu, Keiichi; Niibe, Yuzuru; Yamashita, Hideomi; Katsui, Kuniaki; Matsumoto, Toshihiko; Nishina, Tomohiro; Terahara, Atsuro

    2017-09-05

    Neoadjuvant chemoradiotherapy following surgery has recently become a standard therapy. The purpose of the present study was to determine the effectiveness and toxicity of re-irradiation for oligo-recurrence in lymph nodes from esophageal cancer treated by definitive radiotherapy or by surgery with additional radiotherapy. We reviewed retrospectively 248 patients treated with (chemo)radiotherapy for oligo-recurrence in lymph nodes from esophageal cancer in five Japanese high-volume centers between 2000 and 2015. Thirty-three patients in whom re-irradiation was performed were enrolled in this study, and the results for patients in whom re-irradiation was performed were compared with the results for other patients. Median maximum lymph node diameter was 22 mm. Median total radiation dose was 60 Gy. The median calculated biological effective dose using the LQ model with α/β = 10 Gy (BED10) in patients in whom re-irradiation was performed was significantly lower than the median BED10 in others. There was no different factor except for BED10, histology and irradiation field between patients with a past irradiation history and patients without a past irradiation history. The median observation period in surviving patients in whom re-irradiation was performed was 21.7 months. The 3-year overall survival rate in the 33 patients with a past irradiation history was 17.9%, with a median survival period of 16.0 months. Overall survival rate and local control rate in patients with a past irradiation history were significantly worse than those in patients without a past irradiation history (log-rank test, p = 0.016 and p = 0.0007, respectively). One patient in whom re-irradiation was performed died from treatment-related gastric hemorrhage. Results in the present study suggested that re-irradiation for oligo-recurrence in lymph nodes from esophageal cancer treated by definitive radiotherapy or by surgery with additional radiotherapy might be acceptable but

  18. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    NASA Astrophysics Data System (ADS)

    Sharma, Anu; Sridharbabu, Y.; Quamara, J. K.

    2014-10-01

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  19. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anu, E-mail: sharmaanu81@gmail.com; Sridharbabu, Y., E-mail: sharmaanu81@gmail.com; Quamara, J. K., E-mail: sharmaanu81@gmail.com

    2014-10-15

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  20. Temperature field of dielectric films under continuous ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Salikhov, T. Kh.; Abdurahmonov, A. A.

    2017-11-01

    In the present study, we theoretically examine the formation process of the steady-state temperature field in dielectrics under irradiation with a continuous ion beam in air with allowance for the temperature dependence of thermophysical quantities. Analytical expressions for the temperature field were obtained. An interconnected system of nonlinear algebraic equations for the steady-state temperatures at the front (irradiated) and rear surfaces of the sample, and the steady-state temperature at the interface between the ion-damaged and non-damaged region was obtained; by numerical solution of this system, a nonlinear dependence of the mentioned temperatures on the characteristics of incident ion flux was revealed.

  1. Photochemical dissolution of Turkish lignites in tetralin at different irradiation power and reaction times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Karacan; T. Torul

    2007-08-15

    The effect of the power of ultraviolet (UV) irradiation on the tetrahydrofuran (THF) solubles yield (the total soluble product) and the soluble product distribution of the dissolution of Turkish lignites (Beypazari and Tuncbilek lignite) in tetralin at ambient temperatures has been investigated. The lignite samples were exposed to UV irradiation for 1, 2, 3, 5, and 10 days in the power of irradiation ranging from 0 to 180 W at 60 W intervals. The yields of THF solubles and oils increased with increasing irradiation power and time. The optimum irradiation power depends on the irradiation time to obtain the highestmore » degradation products. However, the yield of degradation products depends also on the lignite type. The largest fraction obtained from lignites by photochemical energy is oil. While the yields of THF solubles and oils sharply increased with irradiation power at longer reaction times, the yields of asphaltenes (AS) slightly decreased. Increasing oil yields is relatively larger when AS yields tend to decrease. These trends of AS and oil yields are ascribable to conversion of AS to oils at higher power. Small changes were observed in the PAS yields under all conditions. 27 refs., 5 figs., 1 tab.« less

  2. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  3. Diamond structure recovery during ion irradiation at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Deslandes, Alec; Guenette, Mathew C.; Belay, Kidane; Elliman, Robert G.; Karatchevtseva, Inna; Thomsen, Lars; Riley, Daniel P.; Lumpkin, Gregory R.

    2015-12-01

    CVD diamond is irradiated by 5 MeV carbon ions, with each sample held at a different temperature (300-873 K) during irradiations. The defect structures resulting from the irradiations are evident as vacancy, interstitial and amorphous carbon signals in Raman spectra. The observed variation of the full width at half maximum (FWHM) and peak position of the diamond peak suggests that disorder in the diamond lattice is reduced for high temperature irradiations. The dumbbell interstitial signal is reduced for irradiations at 873 K, which suggests this defect is unstable at these temperatures and that interstitials have migrated to crystal surfaces. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy results indicate that damage to the diamond structure at the surface has occurred for room temperature irradiations, however, this structure is at least partially recovered for irradiations performed at 473 K and above. The results suggest that, in a high temperature irradiation environment such as a nuclear fusion device, in situ annealing of radiation-created defects can maintain the diamond structure and prolong the lifetime of diamond components.

  4. The pharmacological activity of medical herbs after microbiological decontamination by irradiation

    NASA Astrophysics Data System (ADS)

    Owczarczyk, H. B.; Migdał, W.; K ȩdzia, B.

    2000-03-01

    In the Institute of Nuclear Chemistry and Technology research on microbiological decontamination of medicinal herbs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose of 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of essential biologically active substances such as essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of medicinal herbs has been found satisfactory after microbiological decontamination by irradiation.

  5. COBALT-60 Gamma Irradiation of Shrimp.

    NASA Astrophysics Data System (ADS)

    Sullivan, Nancy L. B.

    Meta- and ortho-tyrosine were measured using high performance liquid chromatography (HPLC) in conjunction with electrochemical detection in shrimp irradiated using cobalt-60 gamma radiation in the absorbed dose range 0.8 to 6.0 kGy, in nonirradiated shrimp, and in bovine serum albumin (BSA) irradiated in dilute aqueous solution at 25.0 kGy. Ortho-tyrosine was measured in nonirradiated BSA. Para-, meta-, and ortho-tyrosine were measured using HPLC in conjunction with uv-absorption detection in dilute aqueous solutions of phenylalanine irradiated in the absorbed dose range 16.0 to 195.0 kGy. The measured yields of tyrosine isomers were approximately linear as a function of absorbed dose in shrimp, and in irradiated solutions of phenylalanine up to 37.0 kGy. The occurrence of meta- and ortho-tyrosine, which had formerly been considered unique radiolytic products, has not previously been reported in nonirradiated shrimp or BSA. The conventional hydrolyzation and analytical techniques used in the present study to measure meta- and ortho-tyrosine may provide the basis for a method to detect and determine the dose used in food irradiation.

  6. Pollen and spores as biological recorders of past ultraviolet irradiance.

    NASA Astrophysics Data System (ADS)

    Fraser, Wesley; Jardine, Phillip; Lomax, Barry; Sephton, Mark; Shanahan, Timothy; Miller, Charlotte; Gosling, William

    2017-04-01

    Ultraviolet (UV) irradiance from the Sun is a key driver of climatic and biotic change. UV irradiance modulates processes in the stratosphere, and influences the biosphere from ecosystem-level through to the largest scale patterns of diversification and extinction. Yet our understanding of UV irradiance is limited to the present; no validated empirical method exists to reconstruct UV flux over long, geologically relevant timescales. Here, we show that a recently developed proxy for UV irradiance based on spore and pollen chemistry can be used over long (100,000 years) timescales. First, we demonstrate spatial variation in spore and pollen chemistry correlate with known latitudinal solar irradiance gradients. Second, using this relationship we provide a reconstruction of past changes in solar irradiance based on the pollen record obtained from Lake Bosumtwi in Ghana. Variations in the chemistry of grass pollen from the Lake Bosumtwi record show a link to multiple orbital precessional cycles (19-21,000 years). By providing a unique, local proxy for broad spectrum solar irradiance, the chemical analysis of spores and pollen offers unprecedented opportunities to decouple solar variability, climate and vegetation change through geologic time and a new proxy with which to probe the Earth system.

  7. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  8. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    PubMed

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  9. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    PubMed Central

    2011-01-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653

  10. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  11. Ag Transport Through Non-Irradiated and Irradiated SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Blanchard, James

    Silicon carbide is the main barrier to diffusion of fission products in the current design of TRistuctural ISOtropic (TRISO) coated fuel particles, and Ag is one of the few fission products that have been shown to escape through this barrier. Because the SiC coating in TRISO is exposed to radiation throughout the lifetime of the fuel, understanding of how radiation changes the transport of the fission products is essential for the safety of the reactor. The goals of this project are: (i) to determine whether observed variation in integral release measurements of Ag through SiC can be explained by differencesmore » in grain size and grain boundary (GB) types among the samples; (2) to identify the effects of irradiation on diffusion of Ag through SiC; (3) to discover phenomena responsible for significant solubility of Ag in polycrystalline SiC. To address these goals, we combined experimental analysis of SiC diffusion couples with modeling studies of diffusion mechanisms through bulk and GBs of this material. Comparison between results obtained for pristine and irradiated samples brings in insights into the effects of radiation on Ag transport.« less

  12. Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2002-01-01

    Near-IR observations reveal that N2-rich ice containing small amounts of CH4, and CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto. N2-rich ices may also exist, in interstellar environments. To investigate the radiation chemistry of such ices we performed a systematic IR study of ion-irradiated Nz-rich mixtures containing CH4 and CO. Irradiation of N2 + CH4 mixtures at 12 K, showed that HCN, HNC, diazomethane, and NH3 were produced. We also found that UV photolysis of these ices produced detectable HCN and HNC. Intrinsic band strengths, A(HCN) and A(HNC), were measured and used to calculate yields of HCN and HNC. Similar results were obtained on irradiation of N2 + CH4 + CO ices at 12 K, with the main difference being the formation of HNCO. In all cases we observed changes on warming. For example, when the temperature of irradiated Nz + CH4 + CO was raised from 12 to 30 K, HCN, HNC, and HNCO reacted with NH3, and OCN-, CN-, N3-, and NH4+ were produced. These ions, appearing at 30 K, are expected to form and survive on the surfaces of Triton, Pluto, and interstellar grains. Our results have astrobiological implications since some of these radiation products are involved in the syntheses of biomolecules such as amino acids and peptides.

  13. Irradiation and Thermal Annealing Effects in Amorphous Magnetic Alloys.

    NASA Astrophysics Data System (ADS)

    Fisher, David G.

    Irradiation with protons, electrons, and alpha particles produces effects in amorphous magnetic alloys (Fe(,x)Ni(,80)P(,20-y)B(,y), where x was 20, 27, 34, or 40 and y was either 6 or 20) that appear analogous to effects produced by thermal annealing. The work presented in this dissertation represents an extension of work performed by Franz('(1)) and/or Donnelly.('(2)) The work of Franz, Donnelly, and this author has been a coordinated investigation into various aspects of radiation damage and thermal annealing effects in the above-mentioned amorphous alloys' magnetic properties. Upon either irradiation or thermal annealing, the Curie temperature, T(,c), is enhanced in these alloys. Also the relative permeability, (mu)(,r), is raised as much as seven-fold. Electrolytic layer removal experiments on proton-irradiated (0.25-MeV) samples conclusively demonstrate that the particle irradiation does not merely heat the sample bulk. Annealing studies performed on both irradiated and as-quenched samples suggested, via T(,c) measurement, that a structural relaxation process had taken place. The structural relaxation takes place as a result of a macroscopic heating in the case of the annealed samples and it is postulated that the structural relaxation takes place as a result of a miroscopic heating about the particle track (thermal spike mechanism) in the case of the irradiated samples. This work also presents preliminary results concerning the influence of irradiation and thermal annealing on the crystallization process in these alloys. The results of DSC and electrical resistivity (above room temperature) are presented. Using electrical resistivity as an indicator, a series of isothermal recrystallization measurements were performed using samples of 2.25-MeV proton-irradiated, 200(DEGREES)C-annealed, and as-quenched Fe(,20)Ni(,60)P(,14)B(,6). The activation energy for the onset of recrystallization is 2.0 eV for as-quenched samples and is 5.3 eV for the irradiated and

  14. Thermoluminescence dosimetry applied to in vivo dose measurements for total body irradiation techniques.

    PubMed

    Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M

    1998-06-01

    In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.

  15. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  16. Irradiation and post-irradiation examination of uranium-free nitride fuel

    NASA Astrophysics Data System (ADS)

    Hania, P. R.; Klaassen, F. C.; Wernli, B.; Streit, M.; Restani, R.; Ingold, F.; Fedorov, A. V.; Wallenius, J.

    2015-11-01

    Two identical Phénix-type 15-15Ti steel pinlets each containing a 70 mm Pu0.3Zr0.7N fuel stack in a 1-bar helium atmosphere have been irradiated in the HFR Petten at medium high linear power (46-47 kW/m at BOL) and an average cladding temperature of 505 °C. The pins were irradiated to a plutonium burn-up of 9.7% (88 MWd/kgHM) in 170 full power days. Both pins remained fully intact. Post-irradiation examination performed at NRG and PSI showed that the overall swelling rate of the fuel was 0.92 vol-%/%FIHMA. Fission gas release was 5-6%, while helium release was larger than 50%. No fuel restructuring was observed, and only mild cracking. EPMA measurements show a burn-up increase toward the pellet edge of up to 4 times. All investigated fission products except to some extent the noble metals were found to be evenly distributed over the matrix, indicating good solubility. Local formation of a secondary phase with high Pu content and hardly any Zr was observed. A general conclusion of this investigation is that ZrN is a suitable inert matrix for burning plutonium at high destruction rates.

  17. Membrane Protein Crystallization Using Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Murakami, Satoshi; Niino, Ai; Matsumura, Hiroyoshi; Takano, Kazufumi; Inoue, Tsuyoshi; Mori, Yusuke; Yamaguchi, Akihito; Sasaki, Takatomo

    2004-10-01

    We demonstrate the crystallization of a membrane protein using femtosecond laser irradiation. This method, which we call the laser irradiated growth technique (LIGHT), is useful for producing AcrB crystals in a solution of low supersaturation range. LIGHT is characterized by reduced nucleation times. This feature is important for crystallizing membrane proteins because of their labile properties when solubilized as protein-detergent micelles. Using LIGHT, high-quality crystals of a membrane transporter protein, AcrB, were obtained. The resulting crystals were found to be of sufficiently high resolution for X-ray diffraction. The results reported here indicate that LIGHT is a powerful tool for membrane protein crystallization, as well as for the growth of soluble proteins.

  18. 60Co-irradiation as an alternate method for sterilization of penicillin G, neomycin, novobiocin, and dihydrostreptomycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, K.; Rahn, P.D.; Steindler, K.A.

    The effects of the use of 60Co-irradiation to sterilize antibiotics were evaluated. The antibiotic powders were only occasionally contaminated with microorganisms. The D-values of the products and environmental isolates were 0.028, 0.027, 0.015, 0.046, 0.15, 0.018, and 0.19 Mrads for Aspergillus species (UC 7297, 7298), A. fumigatus (UC 7299), Rhodotorula species (UC 7300), Penicillium oxalicum (UC 7269), Pseudomonas maltophilia (UC 6855), and a biological indicator microorganism, Bacillus pumilus spores (ATCC 27142). An irradiation dose of 1.14 Mrads, therefore, was sufficient to achieve a six-log cycle destruction of B. pumilus spores. Based on the bioburden data, a minimum irradiation dose ofmore » 1.05 Mrads was calculated to be sufficient to obtain a 10(-6) probability of sterilizing the most radioresistant isolate, Pen. oxalicum. To determine the radiolytic degradation scheme and the stability of the antibiotics following irradiation, high-performance liquid chromatographic (HPLC) methods were developed. The resulting rates of degradation for the antibiotics were 0.6, 1.2, 2.3, and 0.95%/Mrad for penicillin G, neomycin, novobiocin, and dihydrostreptomycin, respectively. Furthermore, radiolytic degradation pathways for the antibiotics were identified and found to be similar to those commonly encountered when antibiotics are subjected to acidic, basic, hydrolytic, or oxidative treatments. No radiolytic compounds unique to 60Co-irradiation were found.« less

  19. Global horizontal irradiance clear sky models : implementation and analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 differentmore » sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.« less

  20. Structural responses of metallic glasses under neutron irradiation.

    PubMed

    Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y

    2017-12-01

    Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.

  1. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    PubMed

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  2. Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation

    NASA Astrophysics Data System (ADS)

    Günay, Seçkin D.

    2016-11-01

    In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.

  3. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  4. Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Moriwaki, Saburo; Qian, Qingrong; Sunohara, Satoshi; Machida, Motoi; Tatsumoto, Hideki

    Waste poly (vinyl chloride: PVC) resins are experimentally dehydrochlorinated by microwave irradiation. The following unique results are obtained: (1) plasticizer in PVC resin absorbs microwave power more effectively than PVC polymer. The higher the plasticizer content in PVC resin, the higher is the dehydrochlorination reaction (2) low PVC polymer content materials such as cushion floor require high microwave irradiation power to secure a high dehydrochlorination yield, (3) calcium carbonate in PVC resin reacts with released hydrochloric acid gas and results calcium chloride during microwave irradiation, (4) additives in PVC resin strongly influence dehydrochlorination yield, (5) it is evidenced that the PVC copolymer is also dehydrochlorinated by microwave irradiation.

  5. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...

  6. 10 CFR 73.37 - Requirements for physical protection of irradiated reactor fuel in transit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Requirements for physical protection of irradiated reactor... Requirements for physical protection of irradiated reactor fuel in transit. (a) Performance objectives. (1... of irradiated reactor fuel in excess of 100 grams in net weight of irradiated fuel, exclusive of...

  7. Ion-Neutron Irradiated BOR60 Sample Preparation and Characterization: Nuclear Science User Facility 2017 Milestone Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Parish, Chad M.; Smith, Quinlan B.

    2017-09-01

    This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activationmore » Materials Development and Analysis facility.« less

  8. ‘Who’, ‘when’ and ‘how’ in re-irradiation of recurrent painful bone metastases

    PubMed Central

    Mok, Florence; Li, Kenneth; Yeung, Rebecca; Wong, Kam-Hung; Yu, Brian; Wong, Erin; Bedard, Gillian; Chow, Edward

    2013-01-01

    Re-irradiation of painful bony metastases is increasingly performed since patients are receiving better systemic treatments and having longer life expectancy, and may also be due to the increase use of initial single fraction radiotherapy. However, randomized control trial on the efficacy of re-irradiation is lacking. A recent meta-analysis concluded with a 58% response rate for pain relief by re-irradiation of symptomatic bone metastases. In this review, the effectiveness of re-irradiation in terms of clinical and economical aspects, and clinical questions on who, when, and how to re-irradiate would be discussed. A brief review of other treatment options and comparison with re-irradiation of bone metastases would be performed. PMID:26909270

  9. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  10. Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation.

    PubMed

    Wongaree, Mathana; Chiarakorn, Siriluk; Chuangchote, Surawut; Sagawa, Takashi

    2016-11-01

    The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO 2 ) nanofibers as visible light active photocatalysts. The CNT/TiO 2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO 2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO 2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO 2 nanofibers have high specific surface area (116 m 2 /g), significantly higher than that of TiO 2 nanofibers (44 m 2 /g). The photocatalytic performance of the CNT/TiO 2 nanofibers was investigated by decolorization of 1 × 10 -5  M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO 2 nanofibers (calcined CNT/TiO 2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO 2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO 2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO 2 nanofibers (52 %) was higher than by other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO 2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO 2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.

  11. The impact of electron beam irradiation on Low density polyethylene and Ethylene vinyl acetate

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2017-05-01

    Improvement of measured gel content, hardness, tensile strength and elongation at break of Ethylene vinyl acetate (EVA) have confirmed positive effect of electron beam irradiation on EVA. Results obtained from both gel content tests show that degree of cross-linking in amorphous regions is dependent on dose. A significant improvement in tensile strength of neat EVA samples is obtained upon electron-beam radiation up to 210 kGy. Similarly, hardness properties of Low-density polyethylene (LDPE) improvewith increasing electron beam irradiation. This article deals with the impacts of electron beam (EB) irradiation on the properties of LDPE and Ethylene-Vinyl Acetate (EVA) as the two common based formulations for wire and cable applications.

  12. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  13. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  14. Electroacupuncture Improves Cognitive Function and Hippocampal Neurogenesis after Brain Irradiation.

    PubMed

    Fan, Xing-Wen; Liu, Huan-Huan; Wang, Hong-Bing; Chen, Fu; Yang, Yu; Chen, Yan; Guan, Shi-Kuo; Wu, Kai-Liang

    2017-06-01

    Cognitive impairments after brain irradiation seriously affect quality of life for patients, and there is currently no effective treatment. In this study using an irradiated rat model, the role of electroacupuncture was investigated for treatment of radiation-induced brain injury. Animals received 10 Gy exposure to the entire brain, and electroacupuncture was administered 3 days before irradiation as well as up to 2 weeks postirradiation. Behavioral tests were performed one month postirradiation, and rats were then sacrificed for histology or molecular studies. Electroacupuncture markedly improved animal performance in the novel place recognition test. In the emotion test, electroacupuncture reduced defecation during the open-field test, and latency to consumption of food in the novelty suppressed feeding test. Brain irradiation inhibited the generation of immature neurons, but did not cause neural stem cell loss. Electroacupuncture partially restored hippocampal neurogenesis. Electroacupuncture decreased the amount of activated microglia and increased resting microglia in the hippocampus after irradiation. In addition, electroacupuncture promoted mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In conclusion, electroacupuncture could improve cognitive function and hippocampal neurogenesis after irradiation, and the protective effect of electroacupuncture was associated with the modulation of microglia and upregulation of BDNF in the hippocampus.

  15. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    PubMed

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (<120 °C) in the presence of ultrasonic irradiation, a uniform mixing (i.e. enhanced collision between silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Potential annealing treatments for tailoring the starting microstructure of low-enriched U-Mo dispersion fuels to optimize performance during irradiation

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Woolstenhulme, Nicolas E.; Ewh, Ashley

    2011-12-01

    Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525 °C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475 °C.

  17. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model

    PubMed Central

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J.; Daoud, Yassine J.

    2015-01-01

    Purpose: Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Methods: Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P < 0.05 was statistically significant. Results: For all postoperative examinations, the corneal clarity and edema were statistically significantly better in eyes that received fresh cornea with endothelium compared to the other three groups (P < 0.05). At POW 1, gamma irradiated cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P < 0.05). Histopathology indicated an absence of keratocytes in gamma irradiated cornea. Conclusion: Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty. PMID:26180475

  18. Characterization of Irradiated and Non-Irradiated Rubber from Automotive Scrap Tires

    NASA Astrophysics Data System (ADS)

    Souza, Clécia Moura; Silva, Leonardo G.

    The aim of this work was to characterize the samples of irradiated and non-irradiated rubber from automotive scrap tires. Rubber samples from scrap tires were irradiated at irradiation doses of 200, 400 and 600kGy in an electron beam accelerator. Subsequently, both the irradiated and non-irradiated samples were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), tensile strength mechanical test, and Fourier transform infrared (FTIR) spectrophotometry.

  19. Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation.

    PubMed

    Uriarte, Juan J; Nonaka, Paula N; Campillo, Noelia; Palma, Renata K; Melo, Esther; de Oliveira, Luis V F; Navajas, Daniel; Farré, Ramon

    2014-12-01

    Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    PubMed

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  1. Characterization of irradiation induced deep and shallow impurities

    NASA Astrophysics Data System (ADS)

    Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred

    2013-12-01

    Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.

  2. Diffraction-assisted micropatterning of silicon surfaces by ns-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Poniatowski, E., E-mail: haro@xanum.uam.mx; Acosta-Zepeda, C.; Mecalco, G.

    2014-06-14

    Single-pulse (532 nm, 8 ns) micropatterning of silicon with nanometric surface modulation is demonstrated by irradiating through a diffracting pinhole. The irradiation results obtained at fluences above the melting threshold are characterized by scanning electron and scanning force microscopy and reveal a good agreement with Fresnel diffraction theory. The physical mechanism is identified and discussed on basis of both thermocapillary and chemicapillary induced material transport during the molten state of the surface.

  3. Effect of ternary addition and gamma-irradiation on the characteristics of rapidly solidified Pb-base alloys

    NASA Astrophysics Data System (ADS)

    Abd El-Khalek, A. M.

    The properties of a series of rapidly solidified Pb-Sb-3-Sn-x alloys ( x =0-2.5 wt.%) irradiated with gamma-rays were studied. Variations in the internal friction, Q(-1) , thermal diffusivity D th and dynamic Young's modulus Y were traced before and after irradiation by applying the resonance technique. Variations of specific heat C-p were obtained from DTA thermograms. Structure parameters were obtained from the X-rays diffraction patterns. A marked change in the behaviour of the measured parameters was observed at 1.5 wt.% Sn addition. Besides, irradiation induced defects increased the level of the measured hardening parameters.

  4. Effects of self-irradiation in plutonium alloys

    DOE PAGES

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  5. The effects of sunspots on solar irradiance

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.

    1982-01-01

    It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.

  6. Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain.

    PubMed

    Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per; Zhu, Changlian; Blomgren, Klas

    2017-05-23

    Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.

  7. Lithium protects hippocampal progenitors, cognitive performance and hypothalamus–pituitary function after irradiation to the juvenile rat brain

    PubMed Central

    Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M.; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per

    2017-01-01

    Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation. PMID:28415806

  8. Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite.

    PubMed

    Suganthi, R V; Prakash Parthiban, S; Elayaraja, K; Girija, E K; Kulariya, P; Katharria, Y S; Singh, F; Asokan, K; Kanjilal, D; Narayana Kalkura, S

    2009-12-01

    The effect of swift heavy oxygen ion irradiation of hydroxyapatite on its in vitro bioactivity was studied. The irradiation experiment was performed using oxygen ions at energy of 100 MeV with 1 x 10(12) and 1 x 10(13) ions/cm2 fluence range. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), photoluminescence spectroscopy (PL) and scanning electron microscopy (SEM). GXRD showed that irradiated samples exhibited better crystallinity. The irradiated samples revealed an increase in PL intensity. In addition, the irradiated hydroxyapatite was found to have enhanced bioactivity.

  9. Meso-scale modeling of irradiated concrete in test reactor

    DOE PAGES

    Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; ...

    2015-10-18

    In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less

  10. Feasibility of sterilizing traditional Chinese medicines by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Fang, Xingwang; Wu, Jilan

    1998-06-01

    The feasibility of sterilizing traditional Chinese medicine (TCMs) by γ-irradiation has been systematically evaluated by the biological, toxicological and physicochemical tests on irradiated hundreds of TCMs. Those TCMs investigated in general show no significant biological or toxicological changes after irradiation, yet physicochemical changes are detectable in some irradiated TCMs, and water in TCMs enhances the effects. Those results obtained from radiolysis of some major effective components of TCMs in aqueous or ethanolic solutions reveal that the site selection of radiolytically generated radicals follows the example of simple compounds with same function groups. Wholesomeness and chemical clearance present a bright future to sterilizing TCMs by γ irradiation, however, some important measures and steps should be adopted: (1) The producers must strictly execute manufacturing procedure to reduce microbiological contamination thus lower the applied dose for sterilization which is recommended to be controlled under 5, 7 or 10 kGy, 10 kGy for dry herb, 7 kGy for herbal medicine and 5 kGy for some special herbal medicine; (2) Herb to be sterilized by γ-irradiation should exist in possible dry state; (3) Powder TCMs is recommended to mix with honey forming bolus, which can minimize the decomposition of herb.

  11. Combined Effects of Temperature and Irradiation on Concrete Damage

    DOE PAGES

    Le Pape, Yann; Giorla, Alain; Sanahuja, Julien

    2016-01-01

    Aggregate radiation-induced volumetric expansion (RIVE) is a predominant mechanism in the formation of mechanical damage in the hardened cement paste (hcp) of irradiated concrete under fast-neutron flux (Giorla et al. 2015). Among the operating conditions difference between test reactors and light water reactors (LWRs), the difference of irradiation flux and temperature is significant. While a temperature increase is quite generally associated with a direct, or indirect (e.g., by dehydration) loss of mechanical properties (Maruyama et al. 2014), we found that it causes a partial annealing of irradiation amorphization of α-quartz, hence, reducing RIVE rate. Based on data collected by Bykovmore » et al. (1981), an incremental RIVE model coupling neutron fluence and temperature is developed. The elastic properties and coefficient of thermal expansion (CTE) of irradiated polycrystalline quartz are interpreted through analytical homogenization of experimental data on irradiated α-quartz published by Mayer and Lecomte (1960). Moreover, the proposed model, implemented in the meso-scale simulation code AMIE, is compared to experimental data obtained on ordinary concrete made of quartz/quartzite aggregate (Dubrovskii et al. 1967). Substantial discrepancy, in terms of damage and volumetric expansion developments, is found when comparing irradiation scenarios assuming constant flux and temperature, as opposed to more realistic test reactor operation conditions.« less

  12. Irradiation Products On Dwarf Planet Makemake

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Schaller, E. L.; Blake, G. A.

    2015-03-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  13. Photometric measurements of solar irradiance variations due to sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.

  14. Flat Ge-doped optical fibres for food irradiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dosemore » response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.« less

  15. Flat Ge-doped optical fibres for food irradiation dosimetry

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  16. Rapid differentiation between gamma-irradiated and non irradiated potato tubers

    NASA Astrophysics Data System (ADS)

    Jona, Roberto; Fronda, Anna

    The use of gamma irradiation as commercial method for the preservation of fruits and vegetables calls for methods of differentiation between irradiated and non-irradiated foodstuffs. In a previous research, the polysaccharidic content of cell walls of irradiated tissue has been investigated, but it required rather long time to reach the result. A method devised to ascertain the vitality of cells has been applied to distinguish irradiated from non-irradiated potato tubers. 500 mg of tissue excised from tubers have been infiltrated with tetrazolium chloride 0.6% in phosphate buffer, pH 7.4. After 15 hrs of incubation at 30°C the treated tissues have been extracted with 95% ethanol whose O.D. has been measured at 530 mμ wavelength. The colour intensity of the alcohol allowed a very clearcut recognition of the irradiated tubers.

  17. Magnetic properties of a stainless steel irradiated with 6 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Xu, Chaoliang; Liu, Xiangbing; Qian, Wangjie; Li, Yuanfei

    2017-11-01

    Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions at room temperature to 2, 7, 15 and 25 dpa. The vibrating sample magnetometer (VSM), grazing incidence X-ray diffraction (GIXRD) and positron annihilation lifetime spectroscopy (PLS) were carried out to analysis the magnetic properties and microstructural variations. The magnetic hysteresis loops indicated that higher irradiation damage causes more significant magnetization phenomenon. The equivalent saturated magnetization Mes and coercive force Hc were obtained from magnetic hysteresis loops. It is indicated that the Mes increases with irradiation damage. While Hc increases first to 2 dpa and then decreases continuously with irradiation damage. The different contributions of irradiation defects and ferrite precipitates on Mes and Hc can explain these phenomena.

  18. Irradiation Testing of Ultrasonic Transducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphologymore » changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.« less

  19. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  20. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong

    2017-09-01

    Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (Tg) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.

  1. Outcomes of microvascular free tissue transfer in twice-irradiated patients.

    PubMed

    Clancy, Kate; Melki, Sami; Awan, Musaddiq; Li, Shawn; Lavertu, Pierre; Fowler, Nicole; Yao, Min; Rezaee, Rod; Zender, Chad A

    2017-09-01

    Patients may require microvascular free tissue transfer (MFTT) following re-irradiation for recurrent cancer or radiation complications. The objective of this study was to describe the indications for and outcomes of free flaps performed in twice-radiated patients. A retrospective chart review identified the indications for and outcomes of 36 free flaps performed on 29 twice-irradiated patients. The free flap success rate was 92%. The most common indications requiring MFTT were cancer recurrence and osteoradionecrosis. Sixty-one percent experienced postoperative complications, most commonly wound infection (33%). Twenty-five percent of the procedures required return to the operating room due to postoperative complication. MFTT can be successfully performed in the twice-irradiated patient population with a success rate comparable to singly-radiated patients. Despite a high success rate, there is also a high rate of surgical site complications, especially infection. © 2017 Wiley Periodicals, Inc.

  2. AGC-2 Specimen Post Irradiation Data Package Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William Enoch; Swank, W. David; Rohrbaugh, David T.

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens weremore » subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison

  3. Hafnia-based resistive switching devices for non-volatile memory applications and effects of gamma irradiation on device performance

    NASA Astrophysics Data System (ADS)

    Arun, N.; Kumar, K. Vinod; Pathak, A. P.; Avasthi, D. K.; Nageswara Rao, S. V. S.

    2018-04-01

    Non-volatile memory (NVM) devices were fabricated as a Metal- Insulator-Metal (MIM) structures by sandwiching Hafnium dioxide (HfO2) thin film in between two metal electrodes. The top and bottom metal electrodes were deposited by using the thermal evaporation, and the oxide layer was deposited by using the RF magnetron sputtering technique. The Resistive Random Access Memory (RRAM) device structures such as Ag/HfO2/Au/Si were fabricated and I-V characteristics for the pristine and gamma-irradiated devices with a dose 24 kGy were measured. Further we have studied the thermal annealing effects, in the range of 100°-400°C in a tubular furnace for the HfO2/Au/Si samples. The X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), field emission-scanning electron microscopy (FESEM) analysis measurements were performed to determine the thickness, crystallinity and stoichiometry of these films. The electrical characteristics such as resistive switching, endurance, retention time and switching speed were measured by a semiconductor device analyser. The effects of gamma irradiation on the switching properties of these RRAM devices have been studied.

  4. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  5. TECHNICAL SCOPE OF GAS-COOLED REACTOR FUEL ELEMENT IRRADIATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A set of 55 experiments hss been outiined to provide a minimum irradiation program for selection of UO/sub 2/, pellet geometry and fabricntion techniques, and canning technology. These experiments fall into three catagories: prototype: untts in which radial dimension and heat fluxes sre close to proposed design values, but irradiation times are long; reduced-size prototype for accelerated tests in which most variables will be studied; and miniaurized pellet irradiation to obtain high burnup for fission gas release studies. Reactor space has been found generally available and several installations are now examining their capabilities to participate in the program. A tentativemore » schedule has been drawn to illustrate the feasibility of the program. (auth)« less

  6. Identification of irradiated spices by the use of thermoluminescence method (TL)

    NASA Astrophysics Data System (ADS)

    Sharifzadeh, M.; Sohrabpour, M.

    1993-07-01

    In this paper the results of the investigations of identification of irradiated spices by the use of thermoluminescence method is reported. The materials used were black and red peppers, turmeric, cinnamon, and garlic powder. Gamma Cell 220 was used for irradiating samples at dose values of 2.5, 5, 7.5 and 10 kGy respectively. The TL intensity of the unirradiated spices as well as the fading characteristics of the irradiated samples having received a dose of 10 kGy have been measured. Post-irradiation temperature treatment of the irradiated (10 kGy) and unirradiated samples at 60°C and 100°C for 24 hours have been also performed. The results show that the TL intensities of unirradiated and irradiated samples from different batches of each spice are fairly distributed. A reasonable TL intensity versus dose has been observed in nearly all cases. Based on the observations made it is possible to distinguish irradiated spices after (4-9) months post-irradiation.

  7. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  8. Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2013-08-01

    In this study, we carried out sodium hydroxide and sonication pretreatments of rapeseed straw (Brassica napus) to obtain monosugar suitable for production of biofuels. To optimize the pretreatment conditions, we applied a statistical response-surface methodology. The optimal pretreatment conditions using sodium hydroxide under sonication irradiation were determined to be 75.0 °C, 7.0 % sodium hydroxide, and 6.8 h. For these conditions, we predicted 97.3 % enzymatic digestibility. In repeated experiments to validate the predicted value, 98.9 ± 0.3 % enzymatic digestibility was obtained, which was well within the range of the predicted model. Moreover, sonication irradiation was found to have a good effect on pretreatment in the lower temperature range and at all concentrations of sodium hydroxide. According to scanning electron microscopy images, the surface area and pore size of the pretreated rapeseed straw were modified by the sodium hydroxide pretreatment under sonication irradiation.

  9. Irradiation campaign in the EOLE critical facility of fiber optic Bragg gratings dedicated to the online temperature measurement in zero power research reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellier, Frederic; Cheymol, Guy; Destouches, Christophe

    2015-07-01

    The control of temperature during operation of zero power research reactors participates to the overall control of experimentation conditions and reveals itself of a major importance more especially when measuring small multiplication factor variations. Within the framework of the refurbishment of the MASURCA facility, the development of a new temperature measurement system based on the optical fiber Bragg grating (FBG) technology is under consideration. In a first step, a series of FBGs is irradiated in the EOLE critical facility with the aim to select the most appropriate. Online temperature measurements are performed during a set of irradiations that should allowmore » reaching a fast neutron fluence of some 10{sup 14} n.cm{sup -2}. The results obtained, more especially the Bragg wavelength shifts during the irradiation campaign, are discussed in this paper and compared to data from standard PT100 temperature sensors to highlight possible radiation effects on sensor performances. Work to be conducted during the second step of the project, aiming to a feasibility demonstration using a MASURCA assembly, is also presented. (authors)« less

  10. Outcome in patients with small cell lung cancer re-irradiated for brain metastases after prior prophylactic cranial irradiation.

    PubMed

    Bernhardt, Denise; Bozorgmehr, Farastuk; Adeberg, Sebastian; Opfermann, Nils; von Eiff, Damian; Rieber, Juliane; Kappes, Jutta; Foerster, Robert; König, Laila; Thomas, Michael; Debus, Jürgen; Steins, Martin; Rieken, Stefan

    2016-11-01

    Patients with brain metastases from small-cell lung cancer (SCLC) who underwent prior prophylactic cranial irradiation (PCI) are often treated with a second course of whole brain radiation therapy (Re-WBRT) or stereotactic radiosurgery (SRS) for purposes of palliation in symptomatic patients, hope for increased life expectancy or even as an alternative to untolerated steroids. Up to date there is only limited data available regarding the effect of this treatment. This study examines outcomes in patients in a single institution who underwent cerebral re-irradiation after prior PCI. We examined the medical records of 76 patients with brain metastases who had initially received PCI between 2008 and 2015 and were subsequently irradiated with a second course of cerebral radiotherapy. Patients underwent re-irradiation using either Re-WBRT (88%) or SRS (17%). The outcomes, including symptom palliation, radiation toxicity, and overall survival (OS) following re-irradiation were analyzed. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. Treatment-related toxicity was classified according to CTCAE v4.0. Median OS of all patients was 3 months (range 0-12 months). Median OS after Re-WBRT was 3 months (range 0-12 months). Median OS after SRS was 5 months (range 0-12 months). Karnofsky performance status scale (KPS ≥50%) was significantly associated with improved OS in both univariate (HR 2772; p=0,009) and multivariate analyses (HR 2613; p=0,024) for patients receiving Re-WBRT. No unexpected toxicity was observed and the observed toxicity remained consistently low. Symptom palliation was achieved in 40% of symptomatic patients. In conclusion, cerebral re-irradiation after prior PCI is beneficial for symptom palliation and is associated with minimal side effects in patients with SCLC. Our survival data suggests that it is primarily useful in patients with adequate performance status. Copyright

  11. Fracture toughness of irradiated modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Kim, Sung Ho; Yoon, Ji-Hyun; Ryu, Woo Seog; Lee, Chan Bock; Hong, Jun Hwa

    2009-04-01

    The effects of irradiation on fracture toughness of modified 9Cr-1Mo steel in the transition region were investigated. Half size precracked Charpy specimens were irradiated up to 1.2 × 10 21n/cm 2 ( E > 0.1 MeV) at 340 °C and 400 °C in the Korean research reactor. The irradiation induced transition temperature shift for a modified 9Cr-1Mo was evaluated by using the Master Curve methodology. The T0 temperature for the unirradiated specimens were measured as -67.7 °C and -72.4 °C from the tests with standard PCVN (precracked charpy V-notch) and half sized PCVN specimens, respectively. The T0 shifts of specimens after irradiation at 340 °C and 400 °C were 70.7 °C and 66.1 °C, respectively. The Weibull slopes for the fracture toughness data obtained from the unirradiated and irradiated modified 9Cr-1Mo steels were determined to confirm the applicability of master curve methodology to modified 9Cr-1Mo steel.

  12. Evaluation of the performance of a meso-scale NWP model to forecast solar irradiance on Reunion Island for photovoltaic power applications

    NASA Astrophysics Data System (ADS)

    Kalecinski, Natacha; Haeffelin, Martial; Badosa, Jordi; Periard, Christophe

    2013-04-01

    Solar photovoltaic power is a predominant source of electrical power on Reunion Island, regularly providing near 30% of electrical power demand for a few hours per day. However solar power on Reunion Island is strongly modulated by clouds in small temporal and spatial scales. Today regional regulations require that new solar photovoltaic plants be combined with storage systems to reduce electrical power fluctuations on the grid. Hence cloud and solar irradiance forecasting becomes an important tool to help optimize the operation of new solar photovoltaic plants on Reunion Island. Reunion Island, located in the South West of the Indian Ocean, is exposed to persistent trade winds, most of all in winter. In summer, the southward motion of the ITCZ brings atmospheric instabilities on the island and weakens trade winds. This context together with the complex topography of Reunion Island, which is about 60 km wide, with two high summits (3070 and 2512 m) connected by a 1500 m plateau, makes cloudiness very heterogeneous. High cloudiness variability is found between mountain and coastal areas and between the windward, leeward and lateral regions defined with respect to the synoptic wind direction. A detailed study of local dynamics variability is necessary to better understand cloud life cycles around the island. In the presented work, our approach to explore the short-term solar irradiance forecast at local scales is to use the deterministic output from a meso-scale numerical weather prediction (NWP) model, AROME, developed by Meteo France. To start we evaluate the performance of the deterministic forecast from AROME by using meteorological measurements from 21 meteorological ground stations widely spread around the island (and with altitudes from 8 to 2245 m). Ground measurements include solar irradiation, wind speed and direction, relative humidity, air temperature, precipitation and pressure. Secondly we study in the model the local dynamics and thermodynamics that

  13. Irradiation influence on the detection of genetic-modified soybeans

    NASA Astrophysics Data System (ADS)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.

    2004-09-01

    Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.

  14. Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.

    2018-06-01

    A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.

  15. Ion-irradiation-induced damage of steels characterized by means of nanoindentation

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Recknagel, C.; Bergner, F.; Hernández-Mayoral, M.; Kolitsch, A.

    2009-05-01

    Self-ion irradiation was used to simulate the damage caused by fast neutrons in the austenitic stainless steel SS 304 SA, the ferritic/martensitic steel Eurofer'97 and a Fe-9 at.%Cr model alloy. The irradiation-induced hardness change in the damage layer was evaluated by means of nanoindentation. Three-step irradiations were performed at room temperature and 300 °C up to 1 and 10 dpa. An irradiation-induced hardness change was shown for all materials. No influence of irradiation temperature could be resolved. Irradiation-induced hardening exhibits different fluence dependencies in Eurofer'97 and Fe-9 at.%Cr. While the data indicate a saturation-like behaviour for Fe-9 at.%Cr, an increase of hardness with fluence up to 10 dpa was found for Eurofer'97.

  16. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics.

    PubMed

    Kong, W W; Zhang, C; Liu, F; Gong, A P; He, Y

    2013-08-01

    The objective of this study was to examine the possibility of applying visible and near-infrared spectroscopy to the quantitative detection of irradiation dose of irradiated milk powder. A total of 150 samples were used: 100 for the calibration set and 50 for the validation set. The samples were irradiated at 5 different dose levels in the dose range 0 to 6.0 kGy. Six different pretreatment methods were compared. The prediction results of full spectra given by linear and nonlinear calibration methods suggested that Savitzky-Golay smoothing and first derivative were suitable pretreatment methods in this study. Regression coefficient analysis was applied to select effective wavelengths (EW). Less than 10 EW were selected and they were useful for portable detection instrument or sensor development. Partial least squares, extreme learning machine, and least squares support vector machine were used. The best prediction performance was achieved by the EW-extreme learning machine model with first-derivative spectra, and correlation coefficients=0.97 and root mean square error of prediction=0.844. This study provided a new approach for the fast detection of irradiation dose of milk powder. The results could be helpful for quality detection and safety monitoring of milk powder. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  18. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    PubMed

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-04-08

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.

  19. Analysis of the Browns Ferry Unit 3 irradiation experiments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, G.L.

    1984-11-01

    The results of the analysis of two experiments performed at the Browns Ferry-3 reactor are presented. These calculations utilize state-of-the-art neutron transport techniques and a new neutron cross-section library that has been developed for LWR applications. The calculations agree well with the experimental data obtained in irradiations inside the reactor vessel. For the measurements performed in the reactor cavity, the calculations agree well at the reactor midplane. Accurate determination of the axial distribution of the neutron fluence in the reactor cavity depends on having a concise representation of the axial-void distribution in the core. Detailed data are presented describing themore » procedures used in the generation of the new cross-section library that has been named SAILOR. This library is available from the Radiation-Shielding Information Center.« less

  20. Enhanced cued fear memory following post-training whole body irradiation of 3-month-old mice.

    PubMed

    Olsen, Reid H J; Weber, Sydney J; Akinyeke, Tunde; Raber, Jacob

    2017-02-15

    Typically, in studies designed to assess effects of irradiation on cognitive performance the animals are trained and tested for cognitive function following irradiation. Little is known about post-training effects of irradiation on cognitive performance. In the current study, 3-month-old male mice were irradiated with X-rays 24h following training in a fear conditioning paradigm and cognitively tested starting two weeks later. Average motion during the extinction trials, measures of anxiety in the elevated zero maze, and body weight changes over the course of the study were assessed as well. Exposure to whole body irradiation 24h following training in a fear conditioning resulted in greater freezing levels 2 weeks after training. In addition, motion during both contextual and cued extinction trials was lower in irradiated than sham-irradiated mice. In mice trained for cued fear conditioning, activity levels in the elevated zero maze 12days after sham-irradiation or irradiation were also lower in irradiated than sham-irradiated mice. Finally, the trajectory of body weight changes was affected by irradiation, with lower body weights in irradiated than sham-irradiated mice, with the most profound effect 7days after training. These effects were associated with reduced c-Myc protein levels in the amygdala of the irradiated mice. These data indicate that whole body X ray irradiation of mice at 3 months of age causes persistent alterations in the fear response and activity levels in a novel environment, while the effects on body weight seem more transient. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Avirulent Bacillus anthracis Strain with Molecular Assay Targets as Surrogate for Irradiation-Inactivated Virulent Spores.

    PubMed

    Plaut, Roger D; Staab, Andrea B; Munson, Mark A; Gebhardt, Joan S; Klimko, Christopher P; Quirk, Avery V; Cote, Christopher K; Buhr, Tony L; Rossmaier, Rebecca D; Bernhards, Robert C; Love, Courtney E; Berk, Kimberly L; Abshire, Teresa G; Rozak, David A; Beck, Linda C; Stibitz, Scott; Goodwin, Bruce G; Smith, Michael A; Sozhamannan, Shanmuga

    2018-04-01

    The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.

  2. AGR-1 Irradiation Test Final As-Run Report, Rev. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2015-01-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel processmore » development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 10 25 n/m 2 (E >0.18 MeV). We’ll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10 -7 with

  3. BIOCHEMISTRY OF NORMAL AND IRRADIATED STRAINS OF HYMENOLEPIS DIMINUTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbairn, D.; Wertheim, G.; Harpur, R.P.

    1961-09-01

    An irradiated strain of H. diminuta was developed in which morphological anomalies persisted for at least 7 generations. This and the normal strain from which it was derived were corapared for biochemical differences, which might lead to the discovery of a biocheraical lesion. No significant differences were found in fresh weights between normal and irradiated strains of H. diminuta. Samples of H. diminuta were then prepared, and their composition determined. There was a notable loss of carbohydrates by tapeworms during 24 hr of in vivo fasting, amounting to 56% and 62% in the normal and irradiated strains, respectively. On themore » other hand, lipids increased by 10% and protein by 4% in both strains, which suggests that the substances were not concerned with energy metabolism during starvation. The giycogen of both normal and irradiated strains of H. diminuta obtained from fed or fasted rats, determined directly or after maintenance of the parasites in glucose-saline, accounted for 99% of the alkali-stable carbohydrates. which in turn, comprised about 96% of the total carbohydrates. In general, no notable differences in the growth, chemical composition, or gross metabolism between normal and irradiated strains of H. diminuta were recognized. Thus, the morphological changes due to irradiation previously described are the reflection of biochemical events. (H.H.D.)« less

  4. Inducing mutations through γ-irradiation in seeds of Mucuna pruriens for developing high L-DOPA-yielding genotypes.

    PubMed

    Singh, Susheel Kumar; Yadav, Deepti; Lal, Raj Kishori; Gupta, Madan M; Dhawan, Sunita Singh

    2017-04-01

    To develop elite genotypes in Mucuna pruriens (L.) DC with high L-DOPA (L-3, 4 dihydroxyphenylalanine) yields, with non-itching characteristics and better adaptability by applying γ-irradiation. Molecular and chemical analysis was performed for screening based on specific characteristics desired for developing suitable genotypes. Developed, mutant populations were analyzed for L-DOPA % in seeds through TLC (thin layer chromatography), and the results obtained were validated with the HPLC (High performance liquid chromatography). The DNA (Deoxyribonucleic acid) was isolated from the leaf at the initial stage and used for DNA polymorphism. RNA (Ribonucleic acid) was isolated from the leaf during maturity and used for expression analysis. The selected mutant T-I-7 showed 5.7% L-DOPA content compared to 3.18% of parent CIM-Ajar. The total polymorphism obtained was 57% with the molecular marker analysis. The gene expression analysis showed higher fold change expression of the dopadecarboxylase gene (DDC) in control compared to selected mutants (T-I-7, T-II-23, T-IV-9, T-VI-1). DNA polymorphism was used for the screening of mutants for efficient screening at an early stage. TLC was found suitable for the large-scale comparative chemical analysis of L-DOPA. The expression profile of DDC clearly demonstrated the higher yields of L-DOPA in selected mutants developed by γ-irradiation in the seeds of the control.

  5. VIRGO: Experiment for helioseismology and solar irradiance monitoring

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus; Andersen, Bo N.

    1995-01-01

    The scientific objectives of the variability of solar irradiance and gravity oscillations (VIRGO) experiment are as follows: to determine the characteristics of pressure and internal gravity oscillations by observing irradiance and radiance variations; to measure the solar total and spectral irradiance, and to quantify their variability. Helioseismological methods can be applied to these data in order to probe the solar interior. Certain convection characteristics and their interaction with magnetic fields will be studied from the results of the irradiance monitoring and from the comparison of the amplitudes and phases of the oscillations as observed from the brightness by VIRGO and from velocity by the global oscillations at low frequency (GOLF) experiment. The VIRGO experiment contains two active-cavity radiometers that monitor the solar constant, two three-channel sunphotometers that measure the spectral irradiance, and a low resolution imager with 12 pixels that measures the radiance distribution over the solar disk at 500 nm. The scientific objectives of VIRGO are presented, the instruments and the data acquisition and control system are described, and their measured performances are given.

  6. Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles

    NASA Astrophysics Data System (ADS)

    Jain, Dhanesh; Lalwani, Mahendra

    2018-05-01

    The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.

  7. Visual Deficit in Albino Rats Following Fetal X Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN DER ELST, DIRK H.; PORTER, PAUL B.; SHARP, JOSEPH C.

    1963-02-01

    To investigate the effect of radiation on visual ability, five groups of rats on the 15th day of gestation received x irradiation in doses of 0, 50, 75, 100, or 150 r at 50 r/ min. Two-thirds of the newborn rats died or were killed and eaten during the first postnatal week. The 75- and 50-r groups were lost entirely. The cannibalism occurred in all groups, so that its cause was uncertain. The remaining rats, which as fetuses had received 0, 100, and 150 r, were tested for visual discrimination in a water-flooded T. All 3 groups discriminated a lightedmore » escape ladder from the unlighted arm of the T with near- equal facility. Thereafter, as the light was dimmed progressively, performance declined in relation to dose. With the light turned off, but the bulb and ladder visible in ambient illumination, the 150-r group performed at chance, the 100-r group reliably better, and the control group better still. Thus, in the more precise task the irradiated animals failed. Since irradiation on the 15th day primarily damages the cortex, central blindness seems the most likely explanation. All animals had previously demonstrated their ability to solve the problem conceptually; hence a conclusion of visual deficiency seems justified. The similar performances of all groups during the easiest light discrimination test showed that the heavily irradiated and severely injured animals of the 150-r group were nonetheless able to learn readily. Finally, contrary to earlier studies in which irradiated rats were retarded in discriminating a light in a Skinner box, present tests reveal impairment neither in learning rate nor light discrimination.« less

  8. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE PAGES

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...

    2018-03-13

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  9. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    NASA Astrophysics Data System (ADS)

    Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.

    2018-06-01

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.

  10. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  11. The influence of urban area opacity on biologically active UV-B irradiance

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Rozental', Victor

    2013-04-01

    The study of UV irradiance changes in urban area is an essential problem due to the significant effect of UV irradiance on human health which can be positive (vitamin D synthesis) and negative (erythema, skin cancer, eye damage). According to the results of several experiments within the Moscow megacity we studied the effects of urban area opacity on the different types of biologically active UV-B irradiance on the base of a specially developed mobile photometric complex snd additional measurements of the urban opacity by Nikon Fisheye Converter FC-E8. We analyzed both the level of erythemally-active irradiance and the UV eye damaging radiation using the broadband UVB-1 YES pyranometer calibrated against ultraviolet spectroradiometer Bentham DTM-300 of the Medical University of Innsbruck (courtesy of Dr. M.Blumthaler). In order to estimate the effects of the urban opacity the measurements were normalized on similar measurements at the Meteorological Observatory of Moscow State University with zero opacity. This ratio is defined as an urban radiative transmittance (URT). Different atmospheric conditions were considered. In cloudy conditions the effect of opacity on URT is much less than that in conditions when the sun disk is open from clouds. We revealed some spectral features in transmittance of biologically active UV-B irradiance which is characterized by higher URT variations in overcast cloudy conditions due to more intensive scattering and smaller direct solar radiation component. In the absence of cloudiness the effect of opacity was studied for open and screening solar disk conditions. We obtained much higher URT in UVB spectral region compared with that for total solar irradiance for screening solar disk conditions with a significant URT dependence on the opacity only in UVB spectral region. No URT dependence was obtained for total solar irradiance in these conditions. Some model calculations were fulfilled to match the experimental results.

  12. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isa, Mohd Hafez Mohd, E-mail: m.hafez@usim.edu.my; Hasan, Abu Bakar; Fadilah, Nur Izzah Md

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although themore » decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.« less

  13. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    NASA Astrophysics Data System (ADS)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  14. AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Lambert; B. Grover; P. Guillermier

    AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the referencemore » in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design

  15. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    NASA Astrophysics Data System (ADS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  16. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    PubMed Central

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-01-01

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose. PMID:28773626

  17. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation.

    PubMed

    Manaila, Elena; Stelescu, Maria Daniela; Craciun, Gabriela; Ighigeanu, Daniel

    2016-06-23

    The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  18. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  19. Study on Effects of Gamma-Ray Irradiation on TlBr Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro

    Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy.

  20. [Application of microwave irradiation technology to the field of pharmaceutics].

    PubMed

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  1. Microwave Irradiation on Graphene Dispersed Within Polymeric Matrices

    NASA Astrophysics Data System (ADS)

    Cisneros, Jorge; Yust, Brian; Chipara, Mircea

    Graphene is a two dimensional nanomaterial with high thermal and electric conductivity and Young modulus. These features make graphene an ideal reinforcement for polymeric matrices. However, the mechanical features of polymer-carbon nanostructured composites are limited by the dispersion of the filler and by the delamination or microcracks initiated at the interface between the polymeric matrix and nanofiller. This last weakness can be addressed by improving the interface via chemical and physical methods. Microwave heating of graphite is a very efficient approach if the polymeric matrix does not also have a strong absorption. During the irradiation, the nanofiller is preferentially heated; the local melting of the polymer at the interface improves the interface by filling the microcracks and delaminations. Nanocomposites of polystyrene-poly(ethylene-ran-butylene)-polystyrene loaded by various amounts of graphene ranging from 0 % to 20 % wt. have been prepared by solution mixing using chloroform as solvent. The as obtained nanocomposites have been subjected to microwave irradiation in an Anton Paar Monowave 300 system operating at 75 W, for various irradiation times 5, 10, 15, 30, 45, and 60 minutes. The effect of microwave irradiation has been studied by Raman spectroscopy.

  2. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    PubMed

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  3. Effect of post-irradiation annealing on the irradiated microstructure of neutron-irradiated 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Hesterberg, J.; Was, G. S.

    2018-03-01

    Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.

  4. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O{sub 2}/He plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Toshiyuki, E-mail: kawasaki@nbu.ac.jp; Kusumegi, Shota; Kudo, Akihiro

    The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O{sub 3} exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereasmore » similar results could not be obtained for the O{sub 3} exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.« less

  5. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. II. Results obtained after induction of breaks in chromosome 1 by X-irradiation.

    PubMed

    Burgerhout, W G; Smit, S L; Jongsma, A P

    1977-01-01

    The position of genes coding for PGD, PPH1, UGPP, GuK1, PGM1, Pep-C, and FH on human chromosome 1 was investigated by analysis of karyotype and enzyme phenotypes in man-Chinese hamster somatic cell hybrids carrying aberrations involving chromosome 1. Suitable hybrid cell lines were obtained by X-irradiation of hybrid cells carrying an intact chromosome 1 and by fusion of human cells from a clonal population carrying a translocation involving chromosome 1 with Chinese hamster cells. The latter human cell population had been isolated following X-irradiation of primary Lesch-Nyhan fibroblasts. In addition, products of de novo chromosome breakage in the investigated hybrid lines were utilized. By integrating the results of these analyses with earlier findings in our laboratory, the following positions of genes are deduced: PGD and PPH1 in 1p36 leads to 1p34; PGM1 in 1p32; UGPP in 1q21 leads to 1q23; GuK1 in 1q31 leads to 1q42; Pep-C in 1q42; and FH in 1qter leads to 1q42.

  6. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  7. Tissue irradiator

    DOEpatents

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-12-16

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in- vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood- carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170.

  8. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhijie

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  9. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.

  10. Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.

    2002-08-01

    Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.

  11. Nanoindentation investigation of heavy ion irradiated Ti 3(Si,Al)C 2

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Le Flem, M.; Béchade, J. L.; Monnet, I.

    2010-06-01

    Because of good damage tolerance, thermal stability and interesting mechanical properties, Ti 3SiC 2, belonging to M n+1AX n phases, has been considered as a potential candidate material for applications in the future Gas Fast nuclear Reactors (GFR) such as components of fuel cladding working between 500 °C and 800 °C. However, the outstanding mechanical properties of Ti 3SiC 2 related to a layered microstructure could be impacted by irradiation. In this work, high energy Kr and Xe ion irradiated Ti 3Si 0.95Al 0.05C 2 and Ti 3Si 0.90Al 0.10C 2 samples, provided by IMR Shenyang, Chinese Academy of Science, were characterized by nanoindentation technique. After irradiation at room temperature, an increase in hardness with irradiation dose was highlighted. Nevertheless, some damage tolerance remained because of preservation of the typical MAX layered structure. Irradiations at 300 °C and 500 °C lead to less significant increase suggesting irradiation defect annealing. A complete recovery of the properties at 800 °C seems to be obtained.

  12. Repeatability and reproducibility of measurements of the suburethral tape location obtained in pelvic floor ultrasound performed with a transvaginal probe

    PubMed Central

    Dresler, Maria Magdalena; Kociszewski, Jacek; Pędraszewski, Piotr; Trzeciak, Agnieszka; Surkont, Grzegorz

    2017-01-01

    Introduction Implants used to treat patients with urogynecological conditions are well visible in US examination. The position of the suburethral tape (sling) is determined in relation to the urethra or the pubic symphysis. Aim of the study The study was aimed at assessing the accuracy of measurements determining suburethral tape location obtained in pelvic US examination performed with a transvaginal probe. Material and methods The analysis covered the results of sonographic measurements obtained according to a standardized technique in women referred for urogynecological diagnostics. Data from a total of 68 patients were used to analyse the repeatability and reproducibility of results obtained on the same day. Results The intraclass correlation coefficient for the repeatability and reproducibility of the sonographic measurements of suburethral tape location obtained with a transvaginal probe ranged from 0.6665 to 0.9911. The analysis of the measurements confirmed their consistency to be excellent or good. Conclusions Excellent and good repeatability and reproducibility of the measurements of the suburethral tape location obtained in a pelvic ultrasound performed with a transvaginal probe confirm the test’s validity and usefulness for clinical and academic purposes. PMID:28856017

  13. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis.

    PubMed

    Wang, Xiaoyue; Miao, Chuanwang; Chen, Zhen; Li, Wanhu; Yuan, Shuanghu; Yu, Jinming; Hu, Xudong

    2017-01-01

    Chemoradiotherapy is the most common treatment for inoperable esophageal cancer. However, there is no consensus on the delineation of the clinical target volume. Elective nodal irradiation (ENI) is recommended for inoperable esophageal cancer. A few studies have reported a decrease in the incidence of radiation-related toxicity of involved-field irradiation (IFI) for esophageal cancer. A systematic review and pooled analysis were performed to determine whether IFI in definitive chemoradiotherapy was more beneficial than ENI for esophageal cancer. The results showed no significant differences in the overall survival and local control rates between the IFI and ENI arms. Meanwhile, the incidences of esophageal and lung toxicities were significantly decreased in the IFI arm. These results suggest that IFI is a feasible treatment option for locally advanced esophageal cancer, especially to minimize irradiation-related toxicity.

  14. 34 CFR 386.42 - What must a scholar do to obtain a deferral or exception to performance or repayment under a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to performance or repayment under a scholarship agreement? 386.42 Section 386.42 Education... performance or repayment under a scholarship agreement? To obtain a deferral or exception to performance or repayment under a scholarship agreement, a scholar shall provide the following: (a) Written application. A...

  15. 34 CFR 386.42 - What must a scholar do to obtain a deferral or exception to performance or repayment under a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to performance or repayment under a scholarship agreement? 386.42 Section 386.42 Education... performance or repayment under a scholarship agreement? To obtain a deferral or exception to performance or repayment under a scholarship agreement, a scholar shall provide the following: (a) Written application. A...

  16. Total solar irradiance values determined using Earth Radiation Budget Experiment (ERBE) radiometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, Michael A.; Natarajan, Sudha

    1988-01-01

    During the October 1984 through January 1988 period, the ERBE solar monitors on the NASA Earth Radiation Satellite and on the National Oceanic and Atmospheric Administration NOAA 9 and NOAA 10 spacecraft were used to obtain mean total solar irradiance values of 1365, 1365, and 1363 W/sq m, respectively. Secular variations in the solar irradiance have been observed, and they appear to be correlated with solar activity.

  17. RF structure design of the China Material Irradiation Facility RFQ

    NASA Astrophysics Data System (ADS)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  18. Biological characterization of a novel in vitro cell irradiator

    PubMed Central

    Fowler, Tyler L.; Fisher, Michael M.; Bailey, Alison M.; Bednarz, Bryan P.

    2017-01-01

    To evaluate the overall robustness of a novel cellular irradiator we performed a series of well-characterized, dose-responsive assays to assess the consequences of DNA damage. We used a previously described novel irradiation system and a traditional 137Cs source to irradiate a cell line. The generation of reactive oxygen species was assessed using chloromethyl-H2DCFDA dye, the induction of DNA DSBs was observed using the comet assay, and the initiation of DNA break repair was assessed through γH2AX image cytometry. A high correlation between physical absorbed dose and biologic dose was seen for the production of intracellular reactive oxygen species, physical DNA double strand breaks, and modulation of the cellular double stand break pathway. The results compared favorably to irradiation with a traditional 137Cs source. The rapid, straightforward tests described form a reasonable approach for biologic characterization of novel irradiators. These additional testing metrics go beyond standard physics testing such as Monte Carlo simulation and thermo-luminescent dosimeter evaluation to confirm that a novel irradiator can produce the desired dose effects in vitro. Further, assessment of these biological metrics confirms that the physical handling of the cells during the irradiation process results in biologic effects that scale appropriately with dose. PMID:29232400

  19. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  20. Effect of gamma irradiation on the color, structure and morphology of nickel-doped polyvinyl alcohol films: Alternative use as dosimeter or irradiation indicator

    NASA Astrophysics Data System (ADS)

    Raouafi, A.; Daoudi, M.; Jouini, K.; Charradi, K.; Hamzaoui, A. H.; Blaise, P.; Farah, K.; Hosni, F.

    2018-06-01

    Nickel-doped poly vinyl alcohol (PVA) films were developed for potential application in industrial sectors like radiation processing. We report in this paper the results of an experimental investigation of 60Co source γ-radiation effect on colorimetric, structural and morphological properties of PVA films doped with 0.5% Ni2+ ions (PVA/Ni2+). The PVA/Ni2+ films were irradiated by different gamma-radiation doses varying from 5 to 100 kGy. Color modification of films were studied using L∗, a∗ and b∗ color space measurements as function of the γ-dose and post-irradiation time. The visual change in all samples was verified by microstructure analysis, Fourier transforms infrared (FTIR) spectroscopy, X-Rays diffraction (XRD) and scanning electron microscopy (SEM). The color space exhibited a linear dose response at a dose ranging from 5 to 50 kGy, and then it reached saturation for higher γ-doses. The calculated color changes (ΔE) show a linear dose response relationship from 9.90 to 115.02 in the dose range from 0 to 50 kGy. It showed also the activation of stable color centers. The variability of the color change did not exceed 3% during 80 h (h) post-irradiation. Furthermore, the microstructure analysis evidenced that the color modification due to the optical activation of nickel-oxide (NiO) color center were obtained by complexing Ni2+ ions in irradiated PVA films. The obtained results inspire the possibility to use PVA films for the control process in industrial radiation facilities in dose range 5-50 kGy.

  1. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  2. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    PubMed

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  3. Synthesis and $gamma$-irradiation of verbenone and verbenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesza, J.; Tsankova, E.; Gora, J.

    1972-01-01

    Verbenone and verbenol which can be obtained by catalytic oxidation of $alpha$-pinene, are very useful for the perfumery industry. They can be used directly in perfume compositions or for the production of a number of other perfumery synthetics. The authors have attempted to transform verbenol and verbenone into other compounds by gamma irradiation. It was found, that verbenone exhibits resistance to the gamma irradiation and even at the doses of 500 Mrad it was only with small yield transformed in chrysantenone. The gamma irradiation of cis and trans verbenol by the doses of 220 Mrad has showed no change inmore » the case of trans isomer, and on the other hand the cis isomer was transformed mainly into trans verbenol and verbenone. The results of the investigation of the conditions having influence on the yield and the composition of the reaction products in the process of the catalytic oxidizing of $alpha$- pinene are given. (auth)« less

  4. Design of refractive laser beam shapers to generate complex irradiance profiles

    NASA Astrophysics Data System (ADS)

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-05-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to generate any rotational-symmetric irradiance profile, yet in literature ray mapping is mainly developed to transform a Gaussian irradiance profile to a uniform profile. For more complex profiles especially with low intensity in the inner region, like a Dark Hollow Gaussian (DHG) irradiance profile, ray mapping technique is not directly applicable in practice. In order to these complex profiles, the numerical effort of calculating the aspherical surface points and fitting a surface with sufficient accuracy increases considerably. In this work we evaluate different sampling approaches and surface fitting methods. This allows us to propose and demonstrate a comprehensive numerical approach to efficiently design refractive laser beam shapers to generate rotational-symmetric collimated beams with a complex irradiance profile. Ray tracing analysis for several complex irradiance profiles demonstrates excellent performance of the designed lenses and the versatility of our design procedure.

  5. 34 CFR 386.42 - What must a scholar do to obtain a deferral or exception to performance or repayment under a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exception to performance or repayment under a scholarship agreement? 386.42 Section 386.42 Education... performance or repayment under a scholarship agreement? To obtain a deferral or exception to performance or repayment under a scholarship agreement, a scholar shall provide the following: (a) Written application. A...

  6. 34 CFR 386.42 - What must a scholar do to obtain a deferral or exception to performance or repayment under a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exception to performance or repayment under a scholarship agreement? 386.42 Section 386.42 Education... performance or repayment under a scholarship agreement? To obtain a deferral or exception to performance or repayment under a scholarship agreement, a scholar shall provide the following: (a) Written application. A...

  7. 34 CFR 386.42 - What must a scholar do to obtain a deferral or exception to performance or repayment under a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exception to performance or repayment under a scholarship agreement? 386.42 Section 386.42 Education... performance or repayment under a scholarship agreement? To obtain a deferral or exception to performance or repayment under a scholarship agreement, a scholar shall provide the following: (a) Written application. A...

  8. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE PAGES

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; ...

    2016-05-18

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  9. Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers

  10. Effect of gamma irradiation on the wear behavior of human tooth dentin.

    PubMed

    Qing, Ping; Huang, Shengbin; Gao, ShanShan; Qian, LinMao; Yu, HaiYang

    2016-12-01

    The objective of this study was to evaluate the effect of gamma irradiation on the wear behavior of human tooth dentin in terms of possible alterations in crystallinity, grain size, and composition. Human premolars (n = 19) were collected to obtain the perpendicular or parallel to the direction of the dentin tubule specimens. Each specimen was subjected to 60 Gy of gamma irradiation, in daily increments of 2 Gy. The nanoscratch tests were conducted. The scratch traces were observed via scanning electron microscope (SEM) and surface profilometer. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the alteration of crystallography and chemical composition of dentin after irradiation. The change of surface microhardness (SMH) was also evaluated. The nanoscratch results showed that the friction coefficient of dentin after irradiation became higher, and the depths and widths of scratch were greater than that of dentin before irradiation. Additionally, irradiation decreased the crystallinity of dentin and induced the formation of bigger crystals. The carbonate/mineral ratio was increased. Furthermore, a significant reduction in microhardness after irradiation was observed. The main damage mechanisms consisted of the formation of delamination and crack in both the specimens cut perpendicular and parallel to tubule dentin after irradiation. Irradiation affected directly the wear behavior of tooth dentin, accompanied by the alterations in crystallography, chemical composition, and surface microhardness of dentin. This would help extend understanding the influence of irradiation on dentin and provide suggestions for selecting more suitable materials for irradiated tooth.

  11. Irradiation treatment for the protection and conservation of cultural heritage artefacts in Croatia

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, Branka; Ražem, Dušan; Braun, Mario

    2009-07-01

    The application of irradiation treatment for the protection of cultural heritage artefacts in Croatia was made possible by the development of radiation processing procedures at the Radiation Chemistry and Dosimetry Laboratory of the Ruđer Bo\\vsković Institute. After the upgrading of the 60Co gamma irradiation source in the panoramic irradiation facility in 1983 it became possible to perform both research and pilot plant-scale irradiations for sterilization, pasteurization and decontamination of various materials, including medical supplies, pharmaceuticals, cosmetics and foods, but also for disinfestation of cultural heritage artefects. The demand for irradiation treatment of cultural heritage objects has particularly increased as the increasing number of these objects, especially polychromic wooden sculptures, were requiring salvation, restauration and conservation as a consequence of direct and indirect damages inflicted to them during the war in Croatia, 1991-1995. The irradiation facility at the Ruđer Bo\\vsković Institute is briefly described and an account of its fifteen years' activities in the irradiation treatment of cultural heritage objects is given. Some case studies performed in cooperation with the Croatian Conservation Institute and other interested parties are presented, as well as some cases of protective and curative treatments for disinfestation and decontamination. International cooperations and activities are also mentioned.

  12. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less

  13. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    NASA Astrophysics Data System (ADS)

    NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor

    2014-11-01

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  14. Spectral irradiance measurement and actinic radiometer calibration for UV water disinfection

    NASA Astrophysics Data System (ADS)

    Sperfeld, Peter; Barton, Bettina; Pape, Sven; Towara, Anna-Lena; Eggers, Jutta; Hopfenmüller, Gabriel

    2014-12-01

    In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected low-pressure mercury and medium-pressure mercury UV lamps. To verify the calibration method and to perform on-site tests, spectral measurements were carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.

  15. Effect of thermal treatment on TL response of CaSO₄:Dy obtained using a new preparation method.

    PubMed

    González, P R; Cruz-Zaragoza, E; Furetta, C; Azorín, J; Alcántara, B C

    2013-05-01

    We report the effect of thermal treatment on thermoluminescent (TL) sensitivity property of CaSO4:Dy obtained by a new preparation method at Instituto Nacional de Investigaciones Nucleares (ININ) of Mexico. Samples of phosphor powder were subjected to different thermal treatments respectively at 773, 873, 973 and 1,173K for 1h and then irradiated from 0.1 to 1,000 Gy gamma doses. Low energy dependence was analyzed too by irradiating with X-rays in the range of 16-145 keV. The results were normalized to the energy (1,252 keV) of (60)Co and they were compared with those obtained using the commercial dosimeters TLD-100. Also the kinetic parameters were determined by deconvolution of glow curve. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Metal adsorption of gamma-irradiated carboxymethyl cellulose/polyethylene oxide blend films

    NASA Astrophysics Data System (ADS)

    El-Naggar, Amal A.; Magida, M. M.; Ibrahim, Sayeda M.

    2016-03-01

    Blend films of different ratios of carboxymethyl cellulose (CMC)/polyethylene oxide (PEO) were prepared by the solution casting method. To investigate the effect of irradiation on all properties of prepared blend, it was exposed to different gamma irradiation doses (10, 20, and 30 kGy). Physical properties such as gel fraction (GF) (%) and swelling (SW) (%) were investigated. It was found that the GF (%) increases with increasing irradiation dose up to 20 kGy, while SW (%) decreases with an increase in the irradiation doses for all blend compositions. Moreover, the structural and mechanical properties of the prepared films were studied. The results of the mechanical properties obtained showed that there is an improvement in these properties with an increase in both CMC and irradiation dose up to 20 kGy. The efficiency of metal ions uptake was measured using a UV spectrophotometer. The prepared films showed good tendency to absorb and release metal ions from aqueous media. Thus, the CMC/PEO film can be used in agricultural domain.

  17. Determination of irradiated reactor uranium in soil samples in Belarus using 236U as irradiated uranium tracer.

    PubMed

    Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine

    2002-12-01

    This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).

  18. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  19. Generation of multifocal irradiance patterns by using complex Fresnel holograms.

    PubMed

    Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús

    2018-03-01

    We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.

  20. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  1. Radiation damage and defect behavior in proton irradiated lithium-counterdoped n+p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving

    1987-01-01

    Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.

  2. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac; Kim, Jun Won, E-mail: JUNWON@yuhs.ac; Yoo, Hyun, E-mail: gochunghee@yuhs.ac

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in amore » co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion

  3. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  4. Bulk charging and breakdown in electron-irradiated polymers

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1981-01-01

    High energy electron irradiations were performed in an experimental and theoretical study of ten common polymers. Breakdowns were monitored by measuring currents between the electrodes on each side of the planar samples. Sample currents as a function of time during irradiation are compared with theory. Breakdowns are correlated with space charge electric field strength and polarity. Major findings include evidence that all polymers tested broke down, breakdowns remove negligible bulk charge and no breakdowns are seen below 20 million V/m.

  5. THE EFFECT OF X IRRADIATION AND CYSTEAMINE ON THE BARBITURATE SLEEPING TIME IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varagic, V.; Stepanovic, S.; Hajdukovic, S.

    Whole-body x irradiation with 600 and 800 r prolongs barbiturate sleeping time in the rat. In the head-irradiated animals (with the same doses) no prolongation of barbiturate sleeping time was observed. Irradintion of the animal with the head shielded produced the same effect as irradiation of the whole body. Cysteamine depressed or even blocked the prolonging action of x irradiation on barbiturate sleeping time. This action of cysteamine was evident 24 hr after irradiation and was still present 30 days after irradiation. The prolonging effect of x irradiation was significant as early as 24 hr after exposure but was moremore » pronounced 14, 21, and 30 days after irradiation. This suggests that even the primary event which takes place immediately after absorption of radiation energy produces a change in reactivity to barbiturates. The results obtained with headirradiated animals indicate that the reactivity of the central nervous system to barbiturates is not significantly changed. Therefore, x irradiation may produce some change in the detoxication process of barbiturates in the liver. Or, some biologically active substance might be released which contributes to the prolongation of the effect of barbiturates. Possibly 5-hydroxytryptamine liberated by x irradiation from intestine might contribute to the prolongation of the barbiturate hypnosis. (H.H.D.)« less

  6. The effects of food irradiation on quality of pine nut kernels

    NASA Astrophysics Data System (ADS)

    Gölge, Evren; Ova, Gülden

    2008-03-01

    Pine nuts ( Pinus pinae) undergo gamma irradiation process with the doses 0.5, 1.0, 3.0, and 5.0 kGy. The changes in chemical, physical and sensory attributes were observed in the following 3 months of storage period. The data obtained from the experiments showed the peroxide values of the pine nut kernels increased proportionally to the dose. On contrary, irradiation process has no effect on the physical quality such as texture and color, fatty acid composition and sensory attributes.

  7. Optical properties of γ-irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.

    2015-11-01

    In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.

  8. Accurate Simulation of MPPT Methods Performance When Applied to Commercial Photovoltaic Panels

    PubMed Central

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions. PMID:25874262

  9. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    PubMed

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.

  10. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    NASA Astrophysics Data System (ADS)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  11. Synthesis of polyynes by intense femtosecond laser irradiation of SWCNTs suspended in methanol

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Zhang, Yifan; Fang, Yanghao; Fan, Zhengfu; Ma, Guohong; Liu, Yi; Zhao, Xinluo

    2017-08-01

    Polyyne samples C2nH2 (n = 4-6) were synthesized by irradiating single-wall carbon nanotubes in methanol with intense femtosecond laser pulses. For obtaining isolated polyynes (C8H2, C10H2, and C12H2), the original solution was separated by high performance liquid chromatography. The surface-enhanced Raman scattering spectra of isolated polyynes in Ag colloid have been investigated with naturally drying time, and clear peaks in the region of β band for the isolated C8H2 were observed at 1910 and 1958 cm-1 in the damp-dried Ag colloid samples for the first time.

  12. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis

    PubMed Central

    Wang, Xiaoyue; Miao, Chuanwang; Chen, Zhen; Li, Wanhu; Yuan, Shuanghu; Yu, Jinming; Hu, Xudong

    2017-01-01

    Chemoradiotherapy is the most common treatment for inoperable esophageal cancer. However, there is no consensus on the delineation of the clinical target volume. Elective nodal irradiation (ENI) is recommended for inoperable esophageal cancer. A few studies have reported a decrease in the incidence of radiation-related toxicity of involved-field irradiation (IFI) for esophageal cancer. A systematic review and pooled analysis were performed to determine whether IFI in definitive chemoradiotherapy was more beneficial than ENI for esophageal cancer. The results showed no significant differences in the overall survival and local control rates between the IFI and ENI arms. Meanwhile, the incidences of esophageal and lung toxicities were significantly decreased in the IFI arm. These results suggest that IFI is a feasible treatment option for locally advanced esophageal cancer, especially to minimize irradiation-related toxicity. PMID:28442917

  13. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    NASA Astrophysics Data System (ADS)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December

  14. Electron beam irradiation of gemstone for color enhancement

    NASA Astrophysics Data System (ADS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  15. In vitro laser nerve repair: protein solder strip irradiation or irradiation alone?

    PubMed

    Trickett, I; Dawes, J M; Knowles, D S; Lanzetta, M; Owen, E R

    1997-01-01

    This study investigated the potential of sutureless nerve repair using two promising laser fusion methods: direct 2 microns irradiation of the epineurium, and protein solder assisted epineurial fusion using a 800 nm laser. Laser anastomosis of the rat sciatic nerve was performed in vitro without stay sutures in two groups of six animals. In the first group, direct laser fusion used a pulsed Cr, Tm: YAG laser. In the second group an albumin-based fluid solder containing the dye indocyanine green was applied to the epineurium, then irradiated with a diode laser. These two techniques were compared with regards to coaptation success and axonal damage. Direct laser welding produced weak bonds despite microscopic investigation of the irradiated nerves showing fusion of the epineurium. The unsatisfactory bonding can be attributed to poor tissue overlap and insufficient protein in the thin epineurium denaturation of underlying axons was also observed. In contrast, the laser solder method produced successful welds with greatly reduced axonal damage, and significantly improved the tensile strength. This study confirmed the technical possibilities of sutureless nerve anastomosis. Laser activated solders enable stronger bonds, by the addition of protein to the anastomosis site, and less thermal damage to underlying tissue through selective absorption of laser energy by dye in the solder. Further in vivo studies are required before drawing final conclusions.

  16. Extraction of incident irradiance from LWIR hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lahaie, Pierre

    2014-10-01

    The atmospheric correction of thermal hyperspectral imagery can be separated in two distinct processes: Atmospheric Compensation (AC) and Temperature and Emissivity separation (TES). TES requires for input at each pixel, the ground leaving radiance and the atmospheric downwelling irradiance, which are the outputs of the AC process. The extraction from imagery of the downwelling irradiance requires assumptions about some of the pixels' nature, the sensor and the atmosphere. Another difficulty is that, often the sensor's spectral response is not well characterized. To deal with this unknown, we defined a spectral mean operator that is used to filter the ground leaving radiance and a computation of the downwelling irradiance from MODTRAN. A user will select a number of pixels in the image for which the emissivity is assumed to be known. The emissivity of these pixels is assumed to be smooth and that the only spectrally fast varying variable in the downwelling irradiance. Using these assumptions we built an algorithm to estimate the downwelling irradiance. The algorithm is used on all the selected pixels. The estimated irradiance is the average on the spectral channels of the resulting computation. The algorithm performs well in simulation and results are shown for errors in the assumed emissivity and for errors in the atmospheric profiles. The sensor noise influences mainly the required number of pixels.

  17. Development of a MeV proton beam irradiation system.

    PubMed

    Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok

    2008-02-01

    A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.

  18. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    NASA Astrophysics Data System (ADS)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  19. Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary

    This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.

  20. Design and characterization of an irradiation facility with real-time monitoring

    NASA Astrophysics Data System (ADS)

    Braisted, Jonathan David

    Radiation causes performance degradation in electronics by inducing atomic displacements and ionizations. While radiation hardened components are available, non-radiation hardened electronics can be preferable because they are generally more compact, require less power, and less expensive than radiation tolerant equivalents. It is therefore important to characterize the performance of electronics, both hardened and non-hardened, to prevent costly system or mission failures. Radiation effects tests for electronics generally involve a handful of step irradiations, leading to poorly-resolved data. Step irradiations also introduce uncertainties in electrical measurements due to temperature annealing effects. This effect may be intensified if the time between exposure and measurement is significant. Induced activity in test samples also complicates data collection of step irradiated test samples. The University of Texas at Austin operates a 1.1 MW Mark II TRIGA research reactor. An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the UT TRIGA reactor. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This dissertation describes the design and testing of the large in-core irradiation facility and the experimental campaign developed to test the real-time monitoring capability. This irradiation campaign was performed to test the real-time monitoring capability at various reactor power levels. The device chosen for characterization was the 4N25 general-purpose optocoupler. The current transfer ratio, which is an important electrical parameter for optocouplers, was calculated as a function of neutron fluence and gamma dose from the real-time voltage measurements. The

  1. Back-irradiation photonic sintering for defect-free high-conductivity metal patterns on transparent plastic

    NASA Astrophysics Data System (ADS)

    Kwak, Ji Hye; Chun, Su Jin; Shon, Chae-Hwa; Jung, Sunshin

    2018-04-01

    Photonic sintering has attracted considerable attention for printed electronics. It irradiates high-intensity light onto the front surface of metal nanoparticle patterns, which often causes defects such as delamination, cavities, and cracks in the patterns. Here, a back-irradiation photonic sintering method is developed for obtaining defect-free high-conductivity metal patterns on a transparent plastic substrate, through which high-intensity light is irradiated onto the back surface of the patterns for a few milliseconds. Ag patterns back-irradiated with ˜10.0 J cm-2 are defect-free in contrast to front-irradiated patterns and exhibited an electrical conductivity of ˜2.3 × 107 S m-1. Furthermore, real-time high-speed observation reveals that the mechanisms that generate defects in the front-irradiated patterns and prevent defects in the back-irradiated patterns are closely related to vapor trapping. In contrast to the latter, in the former, vapor is trapped and delaminates the patterns from the substrate because the front of the patterns acts as a barrier to vapor venting.

  2. Gamma-ray irradiation enhanced boron-10 compound accumulation in murine tumors.

    PubMed

    Liu, Yong; Nagata, Kenji; Masunaga, Shin-ichiro; Suzuki, Minoru; Kashino, Genro; Kinashi, Yuko; Tanaka, Hiroki; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2009-11-01

    Previous studies have demonstrated that X-ray irradiation affects angiogenesis in tumors. Here, we studied the effects of gamma-ray irradiation on boron-10 compound accumulation in a murine tumor model. The mouse squamous cell carcinoma was irradiated with gamma-ray before BSH ((10)B-enriched borocaptate sodium) administration. Then, the boron-10 concentrations in tumor and normal muscle tissues were measured by prompt gamma-ray spectrometry (PGA). A tumor blood flow assay was performed, and cell killing effects of neutron irradiation with various combinations of BSH and gamma-rays were also examined. BSH concentrations of tumor tissues were 16.1 +/- 0.6 microg/g, 16.7 +/- 0.5 microg/g and 17.8 +/- 0.5 microg/g at 72 hours after gamma-ray irradiation at doses of 5, 10, and 20 Gy, compared with 13.1 +/- 0.5 microg/g in unirradiated tumor tissues. The enhancing inhibition of colony formation by neutron irradiation with BSH was also found after gamma-ray irradiation. In addition, increasing Hoechst 33342 perfusion was also observed. In this study, we demonstrated that gamma-ray irradiation enhances BSH accumulation in tumors. The present results suggest that the enhancement of (10)B concentration that occurs after gamma-ray irradiation may be due to the changes in the extracellular microenvironment, including in tumor vessels, induced by gamma-ray irradiation.

  3. Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment.

    PubMed

    Xia, Wei; Zhao, Jun; Wang, Tao; Song, Li; Gong, Hao; Guo, Hu; Gao, Bing; Fan, Xiaoli; He, Jianping

    2017-06-28

    Polymer networks such as those of epoxy resin, as common protection materials, possess radiolytic oxidation degradation effects under gamma irradiation environment, which have a great accelerating effect on the ageing rate and severely limit their potential applications for metal protection in the nuclear industry. To overcome this, we report a simple scheme of anchoring crystalline ceria nanoparticles onto graphene sheets (CG) and incorporate it into the epoxy resin, followed by thermal polymerization to obtain CeO 2 /graphene-epoxy nanocomposite coating (CGNS). We had proven that graphene might act as "interwalls" in the epoxy matrix, which will result in space location-obstruct effect as well as absorb the radicals induced by γ-ray irradiation. Moreover, owing to the interconversion of cerium ions between their +3 and +4 states coupled with the formation of oxygen vacancy defects, electron spin resonance (ESR) detection shows that CeO 2 /graphene (CG) could act as a preferable radical scavenger and achieve better performance in trapping radicals than single graphene based composite. Electrochemical data strongly demonstrate that CeO 2 /graphene is capable of maintaining the anti-corrosion properties under gamma irradiation environment. Therefore, the designed hybrid CeO 2 /graphene-epoxy composite can be considered as potential candidates for protective coatings in nuclear industry.

  4. Luminescence imaging of water during proton-beam irradiation for range estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantomsmore » of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.« less

  5. Modelling deuterium release during thermal desorption of D +-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Poon, M.; Haasz, A. A.; Davis, J. W.

    2008-03-01

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D + irradiations on single crystal tungsten at 300 and 500 K to fluences of 10 22-10 24 D +/m 2. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 μm, and a linear drop in the D distribution was assumed in the intermediate sub-surface region (˜30 nm to 1 μm). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 ± 0.03, 1.34 ± 0.03 and 2.1 ± 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  6. Direct EPR irradiation of a sample using a quartz oscillator operating at 250 MHz for EPR measurements.

    PubMed

    Yokoyama, Hidekatsu

    2012-01-01

    Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Commercial scale irradiation for insect disinfestation preserves peach quality

    NASA Astrophysics Data System (ADS)

    McDonald, Heather; McCulloch, Mary; Caporaso, Fred; Winborne, Ian; Oubichon, Michon; Rakovski, Cyril; Prakash, Anuradha

    2012-06-01

    Irradiation is approved as a generic quarantine treatment by the US Department of Agriculture, Animal and Plant Health Inspection Service. Due to the effectiveness of irradiation in controlling insects on commodities, there is a growing need to understand the effects of low dose irradiation on fruit quality. The goal of this study was to determine the sensitivity of peaches (Prunus persica) to irradiation, and secondly, to determine the effect of commercial scale treatment on shelf-life, overall quality and consumer liking. Six varieties of peaches were irradiated in small batches at 0.29, 0.49, 0.69 and 0.90 kGy to observe the sensitivity of peaches at different dose levels. Changes in quality were evaluated by 8 trained panelists using descriptive analysis. Sensory characteristics (color, smoothness, aroma, touch firmness, mouth firmness, graininess, overall flavor and off-flavor) were evaluated at 2-4 day intervals and untreated samples served as control. To simulate commercial treatment, peaches were irradiated in pallet quantities at a target dose level of 0.4 kGy. The average absorbed dose was 0.66 kGy with an average dose uniformity ratio of 1.57. Commercially treated peaches were evaluated by 40-80 untrained consumers for acceptability routinely throughout the shelf life. Titratable acidity, Brix, texture and weight loss were also monitored for both commercial and small scale irradiated peaches. There was no dose effect on TA, Brix and weight loss due to irradiation. Peaches irradiated at 0.69 and 0.90 kGy were darker in flesh color, more juicy and less firm as determined by the trained panel and analytical pressure tests. Commercial scale irradiation did not adversely affect shelf life but was seen to enhance ripening. This, however, was perceived as a positive change by consumers. Overall, consumers rated the acceptability of irradiated peaches higher than untreated peaches. Statistical analysis was performed using linear mixed models to find determinates

  8. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    NASA Astrophysics Data System (ADS)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  9. Preparation of Pd supported on La(Sr)-Mn-O Perovskite by microwave Irradiation Method and Its Catalytic Performances for the Methane Combustion

    PubMed Central

    Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun

    2016-01-01

    In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C. PMID:26781628

  10. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater

    NASA Astrophysics Data System (ADS)

    Barrera-Díaz, C.; Ureña-Nuñez, F.; Campos, E.; Palomar-Pardavé, M.; Romero-Romo, M.

    2003-07-01

    This study reports on the attainment of optimal conditions for two electrolytic methods to treat wastewater: namely, electrocoagulation and particle destabilization of a highly polluted industrial wastewater, and electrochemically induced oxidation induced by in situ generation of Fenton's reactive. Additionally, a combined method that consisted of electrochemical treatment plus γ-irradiation was carried out. A typical composition of the industrial effluent treated was COD 3400 mg/l, color 3750 Pt/Co units, and fecal coliforms 21000 MPN/ml. The best removal efficiency was obtained with electrochemical oxidation induced in situ , that resulted in the reduction of 78% for the COD, 86% color and 99.9% fecal coliforms removal. A treatment sequence was designed and carried out, such that after both electrochemical processes, a γ-irradiation technique was used to complete the procedure. The samples were irradiated with various doses in an ALC γ-cell unit provided with a Co-60 source. The removal efficiency obtained was 95% for the COD values, 90% color and 99.9% for fecal coliforms.

  11. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    NASA Astrophysics Data System (ADS)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  12. Irradiated foods

    MedlinePlus

    ... materials that kill bacteria. The process is called irradiation. It is used to remove germs from food. ... it reduces the risk for food poisoning . Food irradiation is used in many countries. It was first ...

  13. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  14. Effect of gamma-ray irradiation on the unloaded animal model

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon

    During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.

  15. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  16. Irradiation embrittlement characterization of the EUROFER 97 material

    NASA Astrophysics Data System (ADS)

    Kytka, M.; Brumovsky, M.; Falcnik, M.

    2011-02-01

    The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV. Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation. Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm 3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the "Master curve" approach. Moreover, J- R dependencies were determined and analyzed. The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given. Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.

  17. Food irradiation development in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, I.

    The large scale trials were held to extend the storage life of potatoes, onions and dry fruits by gamma radiation. It was concluded that radiation preservation of potatoes and onions was much cheaper as compared to conventional methods. A dose of 1 kGy can control the insects in dry fruits and nuts. The consumers' acceptability and market testing performed during the last four years are also conducive to the commercialization of the technology in this country. The Government of Pakistan has accorded clearance for the irradiation of some food items like potatoes, onions, garlic and spices for human consumption. The Pakistan Radiation Services (PARAS), the commercial irradiator (200 Kci) at Lahore, has already started functioning in April, 1987. It is planned to start large scale sterilization of spices by gamma radiation in PARAS shortly.

  18. Helium bubbles aggravated defects production in self-irradiated copper

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  19. The spectral irradiance of the moon

    USGS Publications Warehouse

    Kieffer, H.H.; Stone, T.C.

    2005-01-01

    Images of the Moon at 32 wavelengths from 350 to 2450 nm have been obtained from a dedicated observatory during the bright half of each month over a period of several years. The ultimate goal is to develop a spectral radiance model of the Moon with an angular resolution and radiometric accuracy appropriate for calibration of Earth-orbiting spacecraft. An empirical model of irradiance has been developed that treats phase and libration explicitly, with absolute scale founded on the spectra of the star Vega and returned Apollo samples. A selected set of 190 standard stars are observed regularly to provide nightly extinction correction and long-term calibration of the observations. The extinction model is wavelength-coupled and based on the absorption coefficients of a number of gases and aerosols. The empirical irradiance model has the same form at each wavelength, with 18 coefficients, eight of which are constant across wavelength, for a total of 328 coefficients. Over 1000 lunar observations are fitted at each wavelength; the average residual is less than 1%. The irradiance model is actively being used in lunar calibration of several spacecraft instruments and can track sensor response changes at the 0.1% level. ?? 2005. The American Astronomical Society. All rights reserved.

  20. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines.

    PubMed

    Tahmaz, Hande; Söylemezoğlu, Gökhan

    2017-06-01

    Red wines are typically high in phenolic and antioxidant capacity and both of which can be increased by vinification techniques. This study employed 3 vinification techniques to assess the increase in phenolic compounds and antioxidant capacity. Wines were obtained from Boğazkere grape cultivar by techniques of classical maceration, cold maceration combined with ultraviolet light (UV) irradiation, and thermovinification combined with UV irradiation and changes in phenolic contents were examined. Total phenolic and anthocyanin contents and trolox equivalent antioxidant capacity of wines were measured spectrophotometrically and phenolic contents (+)-catechin, (-)-epicatechin, rutin, quercetin, trans-resveratrol, and cis-resveratrol were measured by High Pressure Liquid Chromatography with Diode Array Detection (HPLC-DAD). As a result of the study, the highest phenolic content except for quercetin was measured in the wines obtained by thermovinification combined with UV irradiation. We demonstrated that the highest phenolic compounds with health effect, total phenolic compounds, total anthocyanin, and antioxidant activity were obtained from thermovinification with UV-C treatment than classical wine making. © 2017 Institute of Food Technologists®.

  1. Minimizing material damage using low temperature irradiation

    NASA Astrophysics Data System (ADS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  2. HISTOCHEMICAL TESTS OF DISCOVERY OF FAT PEROXIDES IN THE EPIDERMIS OF RATS IN LOCAL IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godlewski, H.

    1958-01-01

    Fat peroxides were determined according to the method of Dubulo and Duma 0, 3, 6, and 24 hr after single local irradiation of the hip with a dose of 2400 r. Negative results were obtained. However, the peroxides were discovered in irradiated as well as in control animals in places of prolonged restorative degeneration of unknown etiology (panniculus carnosus?).

  3. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  4. Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moshonas, M.G.; Shaw, P.E.

    1982-05-01

    Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found inmore » peel oil from fruit treated with phosphine.« less

  5. Quality characteristics of oil extracted from gamma irradiated peanut (Arachis hypogea L.)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, Mahfouz

    2015-01-01

    The effect of gamma radiation and storage on the characteristics of oil extracted from peanut seeds has been investigated in this study. Peanut seeds were undergone gamma irradiation process with the doses of 1, 2 and 3 kGy. The changes in chemical and physical attributes were observed immediately after irradiation and after 12 months of storage. The data obtained from the experiments showed that irradiation process had no effect on the chemical and physical qualities such as, fatty acid composition, peroxide value, iodine value specification number, TBA value and color of oil extracted from peanut seeds. On the contrary, the peroxide, acidity and TBA values of the peanut oil were decreased due to storage time.

  6. Annually and monthly resolved solar irradiance and atmospheric temperature data across the Hawaiian archipelago from 1998 to 2015 with interannual summary statistics.

    PubMed

    Bryce, Richard; Losada Carreño, Ignacio; Kumler, Andrew; Hodge, Bri-Mathias; Roberts, Billy; Brancucci Martinez-Anido, Carlo

    2018-08-01

    This article contains data and summary statistics of solar irradiance and dry bulb temperature across the Hawaiian archipelago resolved on a monthly basis and spanning years 1998-2015. This data was derived in association with an article titled "Consequences of Neglecting the Interannual Variability of the Solar Resource: A Case Study of Photovoltaic Power Among the Hawaiian Islands" (Bryce et al., 2018 [7]). The solar irradiance data is presented in terms of Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI) and was obtained from the satellite-derived data contained in the National Solar Radiation Database (NSRDB). The temperature data is also obtained from this source. We have processed the NSRDB data and compiled these monthly resolved data sets, along with interannual summary statistics including the interannual coefficient of variability.

  7. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.

    PubMed

    Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai

    2017-05-01

    To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.

  8. Effects of gamma irradiation on deteriorated paper

    NASA Astrophysics Data System (ADS)

    Bicchieri, Marina; Monti, Michela; Piantanida, Giovanna; Sodo, Armida

    2016-08-01

    Even though gamma radiation application, also at the minimum dosage required for disinfection, causes depolymerization and degradation of the paper substrate, recently published papers seemed, instead, to suggest that γ-rays application could be envisaged in some conditions for Cultural Heritage original documents and books. In some of the published papers, the possible application of γ-rays was evaluated mainly by using mechanical tests that scarcely reflect the chemical modifications induced in the cellulosic support. In the present article the effect of low dosage γ-irradiation on cellulosic substrates was studied and monitored applying different techniques: colorimetry, spectroscopic measurements, carbonyl content and average viscometric degree of polymerization. Two different papers were investigated, a non-sized, non-filled cotton paper, and a commercial permanent paper. To simulate a real deteriorated document, which could need γ-rays irradiation, some samples were submitted to a hydrolysis treatment. We developed a treatment based on the exposition of paper to hydrochloric acid vapors, avoiding any contact of the samples with water. This method induces a degradation similar to that observed on original documents. The samples were then irradiated with 3 kGy γ-rays at a 5258 Gy/h rate. The aforementioned analyses were performed on the samples just irradiated and after artificial ageing. All tests showed negative effects of gamma irradiation on paper. Non-irradiated paper preserves better its appearance and chemical properties both in the short term and after ageing, while the irradiated samples show appreciable color change and higher oxidation extent. Since the Istituto centrale restauro e conservazione patrimonio archivistico e librario is responsible for the choice of all restoration treatments that could be applied on library and archival materials under the protection of the Italian State (http://www.icpal.beniculturali.it/allegati/DM-7

  9. Identification of low level gamma-irradiation of meats by high sensitivity comet assay

    NASA Astrophysics Data System (ADS)

    Miyahara, Makoto; Saito, Akiko; Ito, Hitoshi; Toyoda, Masatake

    2002-03-01

    The detection of low levels of irradiation in meats (pork, beef, and chicken) using the new comet assay was investigated in order to assess the capability of the procedure. The new assay includes a process that improves its sensitivity to irradiation and a novel evaluation system for each slide (influence score and comet-type distribution). Samples used were purchased at retailers and were irradiated at 0.5 and 2kGy at 0°C. The samples were processed to obtain comets. Slides were evaluated by typing comets, calculating the influence score and analyzing the comet-type distribution chart of shown on the slide. Influence scores of beef, pork, and chicken at 0kGy were 287(SD=8.0), 305 (SD=12.9), and 320 (SD=21.0), respectively. Those at 500Gy, were 305 (SD=5.3), 347 (SD=10.6), and 364 (12.6), respectively. Irradiation levels in food were successfully determined. Sensitivity to irradiation differed among samples (chicken>pork>beef).

  10. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  11. Co-doped sodium chloride crystals exposed to different irradiation temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of themore » dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.« less

  12. In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood

    NASA Astrophysics Data System (ADS)

    Fuad, Siti Sakinah Mohd; Suardi, N.; Mustafa, I. S.

    2018-04-01

    This experimental study was performed to investigate the effect of low level yellow laser of 589nm wavelength with various laser irradiation time. Human blood samples with random diseases are irradiated with yellow laser of power density of 450mW/cm2 from 10 minutes to 60 minutes at 10 minutes intervals. The morphology of the red blood cell were also observed for different irradiation time. The result shows that there is a significant different in the absorption of light with varying laser irradiation time (p<0.01). The maximum absorption recorded at 40 minutes of irradiation at 340nm peak. Blood smear of the samples reveals that there are observable changes in the morphology of the red blood cell at 40 minutes and 60 minutes of irradiation.

  13. Fuel Cycle Research and Development Accident Tolerant Fuels Series 1 (ATF-1) Irradiation Testing FY 2016 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Core, Gregory Matthew

    This report contains a summary of irradiation testing of Fuel Cycle Research and Development (FCRD) Accident Tolerant Fuels Series 1 (ATF 1) experiments performed at Idaho National Laboratory (INL) in FY 2016. ATF 1 irradiation testing work performed in FY 2016 included design, analysis, and fabrication of ATF-1B drop in capsule ATF 1 series experiments and irradiation testing of ATF-1 capsules in the ATR.

  14. Effect of gamma irradiation on rice and its food products

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Chieh

    2005-07-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products.

  15. Ablation of dentin by irradiation of violet diode laser

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  16. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE PAGES

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu; ...

    2017-06-20

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  17. Helium Irradiation and Implantation Effects on the Structure of Amorphous Silicon Oxycarbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Qing; Inoue, Shinsuke; Ishimaru, Manabu

    Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bondsmore » and an increased number of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not experience helium swelling for advanced nuclear reactor applications.« less

  18. Excimer UV lamp irradiation induced grafting on synthetic polymers

    NASA Astrophysics Data System (ADS)

    Praschak, D.; Bahners, T.; Schollmeyer, E.

    Surface modifications on polyethyleneterephthalate (PET) films following excimer UV lamp irradiation induced grafting were studied. Characteristics of the modifications depending on the conditions during the irradiation were analysed using contact-angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Depending on the conditions during the irradiation different surface modifications were obtained, which can generally be classified regarding the hydrophilic or hydrophobic characteristics of the resulting surface. It is shown that not every substance that meets the general demands will be grafted on synthetic polymers using excimer UV radiation. Examples of agents that can simply be grafted onto polymer surfaces and those that undergo further crosslinking, building up thin films are listed. Agents used for grafting on polymers are 1,5-hexadiene, perfluoro-4-methyl-pent-2-ene, polyethyleneglycol 200, monosilane and polyethylene. The transferability of the effects achieved to substrates such as polyparaphenylene terephthalamide or polymetaphenylene isophthalamide is shown.

  19. 16Oxygen irradiation enhances cued fear memory in B6D2F1 mice

    NASA Astrophysics Data System (ADS)

    Raber, Jacob; Marzulla, Tessa; Kronenberg, Amy; Turker, Mitchell S.

    2015-11-01

    The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of 16O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. 16O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with 16O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following 16O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of 16O ion exposure.

  20. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less

  1. Radiation pasteurization of mink feed: Effect of irradiated feed on reproductive performance, growth and fur quality of mink

    NASA Astrophysics Data System (ADS)

    Passey, C. A.; Roy, D.; Savoie, L.; Malo, R.; Wilson, J.

    No significant differences were observed in the net birth rate of kits/female between the 7 breeding groups. However, there was reduced incidence (P = 0.05) of kit deaths among the females receiving irradiated feed, and larger kit size (P < 0.0001) at birth particularly for the litter size of 5-8 kits. The second generation minks born to parents receiving feed irradiated to a planned dose of 1 kGy weighed on average about 2.5 % more, and their fur was on average about 1 ± 0.26 cm longer (12 % more males making the top length grade). Moreover, there was no effect of irradiated feed on fur quality. Irradiation of mink feed with subsequent frozen storage of the meat component improved the microbiological quality by decreasing the incidence of Pseudomonas sp. and Salmonella sp. Radiation pasteurization of mink feed (frozen meat to 1 kGy, and dry feed to 2 kGy or more) should therefore help improve feed utilization, keep the animals healthier, and reproducing better without affecting fur quality.

  2. Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; D. Keiser; D. Wachs

    2009-11-01

    Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up tomore » ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.« less

  3. Pelvic re-irradiation using stereotactic ablative radiotherapy (SABR): A systematic review.

    PubMed

    Murray, Louise Janet; Lilley, John; Hawkins, Maria A; Henry, Ann M; Dickinson, Peter; Sebag-Montefiore, David

    2017-11-01

    To perform a systematic review regarding the use of stereotactic ablative radiotherapy (SABR) for the re-irradiation of recurrent malignant disease within the pelvis, to guide the clinical implementation of this technique. A systematic search strategy was adopted using the MEDLINE, EMBASE and Cochrane Library databases. 195 articles were identified, of which 17 were appropriate for inclusion. Studies were small and data largely retrospective. In total, 205 patients are reported to have received pelvic SABR re-irradiation. Dose and fractionation schedules and re-irradiated volumes are highly variable. Little information is provided regarding organ at risk constraints adopted in the re-irradiation setting. Treatment appears well-tolerated overall, with nine grade 3 and six grade 4 toxicities amongst thirteen re-irradiated patients. Local control at one year ranged from 51% to 100%. Symptomatic improvements were also noted. For previously irradiated patients with recurrent pelvic disease, SABR re-irradiation could be a feasible intervention for those who otherwise have limited options. Evidence to support this technique is limited but shows initial promise. Based on the available literature, suggestions for a more formal SABR re-irradiation pathway are proposed. Prospective studies and a multidisciplinary approach are required to optimise future treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes

    PubMed Central

    Ascenso, Andreia; Pedrosa, Tiago; Pinho, Sónia; Pinho, Francisco; de Oliveira, José Miguel P. Ferreira; Cabral Marques, Helena; Oliveira, Helena; Simões, Sandra; Santos, Conceição

    2016-01-01

    Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer. PMID:26664697

  5. Use of Irradiated Foods

    NASA Technical Reports Server (NTRS)

    Brynjolfsson, A.

    1985-01-01

    The safety of irradiated foods is reviewed. Guidelines and regulations for processing irradiated foods are considered. The radiolytic products formed in food when it is irradiated and its wholesomeness is discussed. It is concluded that food irradiation processing is not a panacea for all problems in food processing but when properly used will serve the space station well.

  6. In vitro cell irradiation systems based on 210Po alpha source: construction and characterisation

    NASA Technical Reports Server (NTRS)

    Szabo, J.; Feher, I.; Palfalvi, J.; Balashazy, I.; Dam, A. M.; Polonyi, I.; Bogdandi, E. N.

    2002-01-01

    One way of studying the risk to human health of low-level radiation exposure is to make biological experiments on living cell cultures. Two 210Po alpha-particle emitting devices, with 0.5 and 100 MBq activity, were designed and constructed to perform such experiments irradiating monolayers of cells. Estimates of dose rate at the cell surface were obtained from measurements by a PIPS alpha-particle spectrometer and from calculations by the SRIM 2000, Monte Carlo charged particle transport code. Particle fluence area distributions were measured by solid state nuclear track detectors. The design and dosimetric characterisation of the devices are discussed. c2002 Elsevier Science Ltd. All rights reserved.

  7. Verification of the new detection method for irradiated spices based on microbial survival by collaborative blind trial

    NASA Astrophysics Data System (ADS)

    Miyahara, M.; Furuta, M.; Takekawa, T.; Oda, S.; Koshikawa, T.; Akiba, T.; Mori, T.; Mimura, T.; Sawada, C.; Yamaguchi, T.; Nishioka, S.; Tada, M.

    2009-07-01

    An irradiation detection method using the difference of the radiation sensitivity of the heat-treated microorganisms was developed as one of the microbiological detection methods of the irradiated foods. This detection method is based on the difference of the viable cell count before and after heat treatment (70 °C and 10 min). The verification by collaborative blind trial of this method was done by nine inspecting agencies in Japan. The samples used for this trial were five kinds of spices consisting of non-irradiated, 5 kGy irradiated, and 7 kGy irradiated black pepper, allspice, oregano, sage, and paprika, respectively. As a result of this collaboration, a high percentage (80%) of the correct answers was obtained for irradiated black pepper and allspice. However, the method was less successful for irradiated oregano, sage, and paprika. It might be possible to use this detection method for preliminary screening of the irradiated foods but further work is necessary to confirm these findings.

  8. Performance evaluation and post-irradiation examination of a novel LWR fuel composed of U0.17ZrH1.6 fuel pellets bonded to Zircaloy-2 cladding by lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Balooch, Mehdi; Olander, Donald R.; Terrani, Kurt A.; Hosemann, Peter; Casella, Andrew M.; Senor, David J.; Buck, Edgar C.

    2017-04-01

    A novel light water reactor fuel has been designed and fabricated at the University of California, Berkeley; irradiated at the Massachusetts Institute of Technology Reactor; and examined within the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. This fuel consists of U0.17ZrH1.6 fuel pellets core-drilled from TRIGA reactor fuel elements that are clad in Zircaloy-2 and bonded with lead-bismuth eutectic. The performance evaluation and post irradiation examination of this fuel are presented here.

  9. Insufficient cure under the condition of high irradiance and short irradiation time.

    PubMed

    Feng, Li; Carvalho, Ricardo; Suh, Byoung I

    2009-03-01

    To investigate if and why a plasma arc curing (PAC) light tends to undercure methacrylate-based resins or resin composites. Model dimethacrylate resins, commercial dental adhesives, and commercial resin composites were cured using a PAC light and a halogen light with the similar radiant exposures but different combinations of irradiance and irradiation time. The degree of double bond conversion (DC) was measured with FTIR spectroscopy and analyzed as a function of radiant exposure. The PAC light produced a lower DC than the halogen light for the model resin with the lowest viscosity and for three of the four adhesives. With a high irradiance, the PAC light could cure three of the four composites as thoroughly as its halogen counterpart. When the irradiance was reduced, however, three composites yielded a lower DC. Insufficient cure by PAC lights or any curing lights with very high irradiance is likely to happen when too short an irradiation time is used. It is because under higher irradiance, the lifetime of free radicals is shorter.

  10. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE PAGES

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  11. Evolution of irradiation-induced strain in an equiatomic NiFe alloy

    DOE PAGES

    Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...

    2017-07-10

    Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less

  12. Estimation of channel parameters and background irradiance for free-space optical link.

    PubMed

    Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk

    2013-05-10

    Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.

  13. Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro

    2000-06-01

    The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less

  14. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  15. Electron beam irradiation of gemstone for color enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors.more » The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.« less

  16. The compositional dependence of irradiation creep of austenitic alloys irradiated in PFR at 420{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, M.B.; Garner, F.A.; Munro, B.

    1997-04-01

    Irradiation creep data are expensive and often difficult to obtain, especially when compared to swelling data. This requires that maximum use be made of available data sources in order to elucidate the parametric dependencies of irradiation creep for application to new alloys and to new environments such as those of proposed fusion environments. One previously untapped source of creep data is that of a joint U.S./U.K. experiment conducted in the Prototype Fast Reactor (PFR) in Dounreay, Scotland. In this experiment, five austenitic steels were irradiated in a variety of starting conditions. In particular, these steels spanned a large range (15-40%)more » of nickel contents, and contained strong variations in Mo, Ti, Al, and Nb. Some alloys were solution-strengthened and some were precipitation-strengthened. Several were cold-worked. These previously unanalyzed data show that at 420{degrees}C all austenitic steels have a creep compliance that is roughly independent of the composition of the steel at 2{+-}1 x 10{sup {minus}6}MPa{sup {minus}1} dpa{sup {minus}1}. The variation within this range may arise from the inability to completely separate the non-creep strains arising from precipitation reactions and the stress-enhancement of swelling. Each of these can be very sensitive to the composition and starting treatment of a steel.« less

  17. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  18. DNA Double-strand Breaks Induced byFractionated Neutron Beam Irradiation for Boron Neutron Capture Therapy.

    PubMed

    Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro

    2017-04-01

    To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE PAGES

    Shimada, Masashi; Cao, G.; Otsuka, T.; ...

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  20. Sulfur transfer in the distillate fractions of Arabian crude oils under gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Basfar, Ahmed A.; Soliman, Yasser S.; Alkhuraiji, Turki S.

    2017-05-01

    Desulfurization of light distillation fractions including gasoline, kerosene and diesel obtained from the four Arabian crude oils (heavy, medium, light and extra light) upon γ-rays irradiation to different doses was investigated. In addition, yields vol%, FTIR analysis, kinematic viscosity and density of all distillation fractions of irradiated crude oils were evaluated. Limited radiation-induced desulfurization of those fractions was observed up to an irradiation dose of 200 kGy. FTIR analysis of those fractions indicates the absence of oxidized sulfur compounds, represented by S=O of sulfone group, indicating that γ-irradiation of the Arabian crude oils at normal conditions does not induce an oxidative desulfurization in those distillation fractions. Radiation-induced sulfur transfer decreases by 28.56% and increases in total sulfur by 16.8% in Arabian extra light oil and Arabian medium crude oil respectively.

  1. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin

    NASA Astrophysics Data System (ADS)

    Darroudi, Majid; Ahmad, Mansor B.; Hakimi, Mohammad; Zamiri, Reza; Zak, Ali Khorsand; Hosseini, Hasan Ali; Zargar, Mohsen

    2013-04-01

    Colloidal silver nanoparticles (Ag-NPs) were obtained through γ-irradiation of aqueous solutions containing AgNO3 and gelatin as a silver source and stabilizer, respectively. The absorbed dose of γ-irradiation influences the particle diameter of the Ag-NPs, as evidenced from surface plasmon resonance (SPR) and transmission electron microscopy (TEM) images. When the γ-irradiation dose was increased (from 2 to 50 kGy), the mean particle size was decreased continuously as a result of γ-induced Ag-NPs fragmentation. The antibacterial properties of the Ag-NPs were tested against Methicillinresistant Staphylococcus aureus (MRSA) (Gram-positive) and Pseudomonas aeruginosa (P.a) (Gram-negative) bacteria. This approach reveals that the γ-irradiation-mediated method is a promising simple route for synthesizing highly stable Ag-NPs in aqueous solutions with good antibacterial properties for different applications.

  2. Detection of chemical changes in bone after irradiation with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Santos, Moises O.; Rabelo, Jose S.; Ana, Patrícia A.; Correa, Paulo R.; Zezell, Denise M.

    2011-03-01

    The use of laser for bone cutting can be more advantageous than the use of drill. However, for a safe clinical application, it is necessary to know the effects of laser irradiation on bone tissues. In this study, the Fourier Transform Infrared spectroscopy (FTIR) was used to verify the molecular and compositional changes promoted by laser irradiation on bone tissue. Bone slabs were obtained from rabbit's tibia and analyzed using ATR-FTIR. After the initial analysis, the samples were irradiated using a pulsed Er,Cr:YSGG laser (2780nm), and analyzed one more time. In order to verify changes due to laser irradiation, the area under phosphate (1300-900cm-1), amides (1680-1200cm-1), water (3600-2400cm-1), and carbonate (around 870cm-1 and between 1600-1300cm-1) bands were calculated, and normalized by phosphate band area (1300-900cm-1). It was observed that Er,Cr:YSGG irradiation promoted a significant decrease in the content of water and amides I and III at irradiated bone, evidencing that laser procedure caused an evaporation of the organic content and changed the collagen structure, suggesting that these changes may interfere with the healing process. In this way, these changes should be considered in a clinical application of laser irradiation in surgeries.

  3. Disinfestation of different cereal products by irradiation

    NASA Astrophysics Data System (ADS)

    Kovács, E.; Kiss, I.; Boros, A.; Horváth, Ny.; Tóth, J.; Gyulai, P.; Szalma, Á.

    The sensitivity of overlineTribolium confusum - small flour beetle - to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against overlineTribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and parallelly the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.

  4. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  5. Computational model of gamma irradiation room at ININ

    NASA Astrophysics Data System (ADS)

    Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier

    2018-03-01

    In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.

  6. Spatial interpolation of solar irradiation data over complex orography: Solar map of Canaries Islands

    NASA Astrophysics Data System (ADS)

    Ortegón Gallego, A.

    2010-09-01

    In this paper, we describe the calculation methodology we used to determine the spatial structure of solar irradiation over a very complex orography, such as the Canary archipelago, that is broken in seven islands, with only 7500 km2, and with heights in some of the islands upper than 1800 m, that reach to 3718 m in the case of Tenerife island. Starting with the method of Cumulative Semivariograms1, already used to face the irradiation spatial interpolation problem, although not for a complex orography. In this sense, some major modifications are introduced to deal with our needs, which can be summarized as: a) interpolation of clearness index data (Kcd, defined as the division of the global horizontal data, between the corresponding clear sky global horizontal values, obtained from a suitable model) instead of solar irradiation data; b) topographic considerations are included in the clear sky model, such as topographics shadows. This impacts directly over direct component of solar irradiation, and has a minor effect over the diffuse component, arising from a non plane visible horizon; c) the meteorological stations are selected by a criteria of weather proximity, instead of geographic proximity as it was proposed in the original methodology of Cumulative Semivariograms; d) the final result is obtained as the composition of various maps obtained from error minimization within a neighborhood of each available station, instead of using irradiation isolines. A preliminary result with data registered only by Canary Islands Institute of Technology's stations, spread over the whole archipelago, is showed. From our results we can see both, the power of the developed methodology and some limitations due to the extremely complex orography as it is the case of Canary Islands, which consists of a wide variety of microclimate regions. Whenever additional information is available, either in the form of empiric knowledge of the local weather, or in the form of other available

  7. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  8. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    PubMed

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.

    PubMed

    Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie

    2018-05-01

    Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.

  10. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bingyang; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Wang, Wenshuo

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities whichmore » were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.« less

  11. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharifi, Mahdi; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray,more » Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.« less

  12. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  13. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  14. Effect of pulsed 5. 62 ghz microwaves on squirrel monkeys (saimiri sciureus) performing a repeated acquisition task. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepton, J.; de Lorge, J.

    1983-01-28

    Navy personnel assigned to perform duties in the vicinity of microwave irradiating devices are subject to possible hazards if the irradiation is of adequate intensity and frequency. Data are of critical need to establish safety standards for human exposure to microwaves. In an effort to provide such information squirrel monkeys were trained on a task that required learning and were subsequently irradiated with microwaves while they performed the task. Four male squirrel monkeys trained to perform a repeated learning task demonstrated performance decay while being exposed to pulsed 5.62 GHz microwave radiation in the far-field situation at power densities ofmore » 38 and 46 mW/sq cm, but there was only slight learning impairment. There was little, if any, effect on learning or performance at 17 and 32 mW/sq cm. The performance effect became evident when the monkey's colonic temperature increased 1 C or more above the small increases that occurred during sham exposure. There was no evidence of either thermal or behavioral adaption, nor were there indications of lasting microwave effects. Specific absorption rate (SAR) values, obtained from saline and tissue-simulating models, coupled with the performance decay finding at 38 and 46 mW/sq cm indicate that special attention should be given to exposures of the head and extremities when establishing safety standards for human exposure.« less

  15. Re-Irradiation of Hepatocellular Carcinoma: Clinical Applicability of Deformable Image Registration.

    PubMed

    Lee, Dong Soo; Woo, Joong Yeol; Kim, Jun Won; Seong, Jinsil

    2016-01-01

    This study aimed to evaluate whether the deformable image registration (DIR) method is clinically applicable to the safe delivery of re-irradiation in hepatocellular carcinoma (HCC). Between August 2010 and March 2012, 12 eligible HCC patients received re-irradiation using helical tomotherapy. The median total prescribed radiation doses at first irradiation and re-irradiation were 50 Gy (range, 36-60 Gy) and 50 Gy (range, 36-58.42 Gy), respectively. Most re-irradiation therapies (11 of 12) were administered to previously irradiated or marginal areas. Dose summation results were reproduced using DIR by rigid and deformable registration methods, and doses of organs-at-risk (OARs) were evaluated. Treatment outcomes were also assessed. Thirty-six dose summation indices were obtained for three OARs (bowel, duodenum, and stomach doses in each patient). There was no statistical difference between the two different types of DIR methods (rigid and deformable) in terms of calculated summation ΣD (0.1 cc, 1 cc, 2 cc, and max) in each OAR. The median total mean remaining liver doses (M(RLD)) in rigid- and deformable-type registration were not statistically different for all cohorts (p=0.248), although a large difference in M(RLD) was observed when there was a significant difference in spatial liver volume change between radiation intervals. One duodenal ulcer perforation developed 20 months after re-irradiation. Although current dose summation algorithms and uncertainties do not warrant accurate dosimetric results, OARs-based DIR dose summation can be usefully utilized in the re-irradiation of HCC. Appropriate cohort selection, watchful interpretation, and selective use of DIR methods are crucial to enhance the radio-therapeutic ratio.

  16. Timing Performance of TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Tada, Tsutomu; Onodera, Toshiyuki; Shoji, Tadayoshi; Kim, Seong-Yun; Xu, Yuanlai; Ishii, Keizo

    2013-08-01

    The timing performance of TlBr detectors was evaluated at room temperature (22 °C). 0.5-mm-thick planar TlBr detectors with Tl circular electrodes with a diameter of 3 mm were fabricated from TlBr crystals grown by the traveling molten zone method using a zone-purified material. The pulse rise time of the TlBr detector was measured using a digital oscilloscope as the cathode surface of the device was irradiated with a 22Na gamma-ray source. Coincidence timing spectra were obtained between the TlBr detector and a BaF2 scintillation detector when both detectors were irradiated with 511 keV positron annihilation gamma-rays. The timing resolution of the TlBr detector was found to be inversely proportional to the applied bias voltage. The TlBr detector, in coincidence with the BaF2 detector, exhibited timing resolutions characterized by a 6.5 ns full width at half maximum (FWHM) and an 8.5 ns FWHM with and without an energy window of 350 keV-560 keV, respectively.

  17. LWRS ATR Irradiation Testing Readiness Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less

  18. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  19. Re-irradiation for head and neck squamous cell carcinoma.

    PubMed

    Benson, Rony; Giridhar, Prashant; Venkatesulu, Bhanu Prasad; Mallick, Supriya; Raza, Mohd Waseem; Rath, Goura Kishor

    2017-03-01

    Local recurrences after curative treatment have a potential for cure with salvage surgery or with re-irradiation. We reviewed the PubMed for articles published in English with key words squamous cell carcinoma, recurrent, re-irradiation, prognostic factors to find relevant articles describing prognostic factors, re-irradiation, and outcome for recurrent head and neck squamous cell carcinoma. Various factors including age, performance status, time for recurrence, previous radiation dose volume and site of recurrence, previous use of chemotherapy are all prognostic factors in recurrent head and neck squamous cell carcinoma. Surgery is feasible in very select subgroup of patients and must be done when feasible. Re-irradiation with the aid of modern sophisticated technology is safe and confers durable and clinically meaningful survival benefit. Re-irradiation in head and neck recurrent squamous cell carcinoma may provide an expected median survival of 10-12months. Chemotherapy may be added along with radiation in the recurrent setting. Treatment approaches may have to be personalized. Re surgery must be done in all patients in whom it is feasible. In patients in whom surgery is not feasible, re-irradiation must be evaluated as a therapeutic option especially in patients with limited volume recurrence. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  20. Gene Expression in the Scleractinian Acropora microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching

    PubMed Central

    Starcevic, Antonio; Dunlap, Walter C.; Cullum, John; Shick, J. Malcolm; Hranueli, Daslav; Long, Paul F.

    2010-01-01

    Background The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. Methodology/Principal Findings A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Conclusions/Significance Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching. PMID