Sample records for obtain mangrove landscape

  1. [Landscape pattern change of Dongzhai Harbour mangrove, South China analyzed with a patch-based method and its driving forces].

    PubMed

    Huang, Xing; Xin, Kun; Li, Xiu-zhen; Wang, Xue-ping; Ren, Lin-jing; Li, Xi-zhi; Yan, Zhong-zheng

    2015-05-01

    According to the interpreted results of three satellite images of Dongzhai Harbour obtained in 1988, 1998 and 2009, the changes of landscape pattern and the differences of its driving forces of mangrove forest in Dongzhai Harbour were analyzed with a patch-based method on spatial distribution dynamics. The results showed that the areas of mangrove forest in 1988, 1998 and 2009 were 1809.4, 1738.7 and 1608.2 hm2 respectively, which presented a trend of decrease with enhanced degree of landscape fragmentation. The transformations among different landscape types indicated that the mangrove, agricultural land and forest land were mainly changed into built-up land and aquaculture pond. The statistical results obtained from three different methods, i.e., accumulative counting, percentage counting and main transformation route counting, showed that natural factors were the main reason for the changes of patch number, responsible for 58.6%, 72.2% and 72.1% of patch number change, respectively, while the percentages of patch area change induced by human activities were 70.4%, 70.3% and 76.4%, respectively, indicating that human activities were the primary factors of the change of patch areas.

  2. Restoration of mangrove forest landscape in Babulu Laut village, sub district of Babulu, Penajam Paser Utara district

    NASA Astrophysics Data System (ADS)

    Febrina, W. K.; Marjenah; Sumaryono

    2018-04-01

    The reforestation activities of mangrove forest carried out in various regions have not been well known as the success and influence of landscape in rehabilitation area. Utilization of existing land along the coastal Babulu Laut Village has reduced the area of mangrove forest from day to day. Due to the use of land by the community without considering the conservation aspect causes the loss of mangrove forest. This study aims to determine the final condition of the success rate of forest and land rehabilitation, land cover and the benefits of mangrove forest restoration for the surrounding people. The research method used is the preparation and orientation of research location, data input, codefication, data processing, the field verification and analysis of data. The results of the execution of the inventory mangrove in 22 research location in the Babulu Laut Village, Babulu Subdistrict, Penajam Paser Utara District of 125 ha of plant a whole is kind of Rhizophora sp, where the intensity of sampling 2% with the growing plants of 65.92 %or 2,175 stem/ha then success rate of Mangrove Forest Rehabilitation at Babulu Laut Village Babulu Subdistrict is medium level (55-75%).

  3. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    PubMed

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  4. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the everglades

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Wells, C.J.

    2009-01-01

    The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.

  5. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    PubMed

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  6. Saltmarsh Boundary Modulates Dispersal of Mangrove Propagules: Implications for Mangrove Migration with Sea-Level Rise

    PubMed Central

    Peterson, Jennifer M.; Bell, Susan S.

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise. PMID:25760867

  7. Landsat-Derived Estimates of Mangrove Extents in the Sierra Leone Coastal Landscape Complex during 1990-2016.

    PubMed

    Mondal, Pinki; Trzaska, Sylwia; de Sherbinin, Alex

    2017-12-21

    This study provides the first assessment of decadal changes in mangrove extents in Sierra Leone. While significant advances have been made in mangrove mapping using remote sensing, no study has documented long-term changes in mangrove extents in Sierra Leone-one of the most vulnerable countries in West Africa. Such understanding is critical for devising regional management strategies that can support local livelihoods. We utilize multi-date Landsat data and cloud computational techniques to quantify spatiotemporal changes in land cover, with focus on mangrove ecosystems, for 1990-2016 along the coast of Sierra Leone. We specifically focus on four estuaries-Scarcies, Sierra Leone, Yawri Bay, and Sherbro. We relied on the k-means approach for an unsupervised classification, and validated the classified map from 2016 using ground truth data collected from Sentinel-2 and high-resolution images and during field research (accuracy: 95%). Our findings indicate that the Scarcies river estuary witnessed the greatest mangrove loss since 1990 (45%), while the Sierra Leone river estuary experienced mangrove gain over the last 26 years (22%). Overall, the Sierra Leone coast lost 25% of its mangroves between 1990 and 2016, with the lowest coverage in 2000, during the period of civil war (1991-2002). However, natural mangrove dynamics, as supported by field observations, indicate the potential for regeneration and sustainability under carefully constructed management strategies.

  8. Landsat-Derived Estimates of Mangrove Extents in the Sierra Leone Coastal Landscape Complex during 1990–2016

    PubMed Central

    Trzaska, Sylwia

    2017-01-01

    This study provides the first assessment of decadal changes in mangrove extents in Sierra Leone. While significant advances have been made in mangrove mapping using remote sensing, no study has documented long-term changes in mangrove extents in Sierra Leone—one of the most vulnerable countries in West Africa. Such understanding is critical for devising regional management strategies that can support local livelihoods. We utilize multi-date Landsat data and cloud computational techniques to quantify spatiotemporal changes in land cover, with focus on mangrove ecosystems, for 1990–2016 along the coast of Sierra Leone. We specifically focus on four estuaries—Scarcies, Sierra Leone, Yawri Bay, and Sherbro. We relied on the k-means approach for an unsupervised classification, and validated the classified map from 2016 using ground truth data collected from Sentinel-2 and high-resolution images and during field research (accuracy: 95%). Our findings indicate that the Scarcies river estuary witnessed the greatest mangrove loss since 1990 (45%), while the Sierra Leone river estuary experienced mangrove gain over the last 26 years (22%). Overall, the Sierra Leone coast lost 25% of its mangroves between 1990 and 2016, with the lowest coverage in 2000, during the period of civil war (1991–2002). However, natural mangrove dynamics, as supported by field observations, indicate the potential for regeneration and sustainability under carefully constructed management strategies. PMID:29267247

  9. Synergy of Optical and SAR Data for Mapping and Monitoring Mangroves

    NASA Astrophysics Data System (ADS)

    Monzon, A. K.; Reyes, S. R.; Veridiano, R. K.; Tumaneng, R.; De Alban, J. D.

    2016-06-01

    Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.

  10. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  11. Mangrove postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-07-14

    Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.

  12. Mangrove forests

    Treesearch

    Ariel E. Lugo; Ernesto Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  13. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    USGS Publications Warehouse

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  14. Determination of mangrove change in Matang Mangrove Forest using multi temporal satellite imageries

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Mustapha, M. A.; Lihan, T.; Ghaffar, M. A.

    2013-11-01

    Mangrove protects shorelines from damaging storm and hurricane winds, waves, and floods. Mangroves also help prevent erosion by stabilizing sediments with their tangled root systems. They maintain water quality and clarity, filtering pollutants and trapping sediments originating from land. However, mangrove has been reported to be threatened by land conversion for other activities. In this study, land use and land cover changes in Matang Mangrove Forest during the past 18 years (1993 to 2011) were determined using multi-temporal satellite imageries by Landsat TM and RapidEye. In this study, classification of land use and land cover approach was performed using the maximum likelihood classifier (MCL) method along with vegetation index differencing (NDVI) technique. Data obtained was evaluated through Kappa coefficient calculation for accuracy and results revealed that the classification accuracy was 81.25% with Kappa Statistics of 0.78. The results indicated changes in mangrove forest area to water body with 2,490.6 ha, aquaculture with 890.7 ha, horticulture with 1,646.1 ha, palm oil areas with 1,959.2 ha, dry land forest with 2,906.7 ha and urban settlement area with 224.1 ha. Combinations of these approaches were useful for change detection and for indication of the nature of these changes.

  15. Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion

    USGS Publications Warehouse

    Raabe, Ellen A.; Roy, Laura C.; McIvor, Carole C.

    2012-01-01

    Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125 years. Conversion of marsh to mangrove wetlands averaged 72 % at the four sites, ranging from 52 % at Old Tampa Bay to 95 % at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.

  16. Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; Barr, Jordan G.; Engel, Victor C.; Fuentes, Jose D.; Wang, Hongqing

    2014-01-01

    Leaves from mangrove forests are often considered efficient in the use of water during photosynthesis, but less is known about whole-tree and stand-level water use strategies. Are mangrove forests as conservative in water use as experimental studies on seedlings imply? Here, we apply a simple model to estimate stand water use (S), determine the contribution of S to evapotranspiration (ET), and approximate the distribution of S versus ET over annual cycles for three mangrove forests in southwest Florida, USA. The value of S ranged from 350 to 511 mm year−1 for two mangrove forests in Rookery Bay to 872 mm year−1 for a mangrove forest along the Shark River in Everglades National Park. This represents 34–49% of ET for Rookery Bay mangroves, a rather conservative rate ofS, and 63–66% of ET for the Shark River mangroves, a less conservative rate of S. However, variability in estimates of S in mangroves is high enough to require additional study on the spatial changes related to forest structural shifts, different tidal regimes, and variable site-specific salinity concentrations in multiple mangrove forests before a true account of water use conservation strategies can be understood at the landscape scale. Evidence does suggest that large, well-developed mangrove forests have the potential to contribute considerably to the ET balance; however, regionally most mangrove forests are much smaller in stature in Florida and likely contribute less to regional water losses through stand-level transpiration.

  17. Nutrition of mangroves.

    PubMed

    Reef, Ruth; Feller, Ilka C; Lovelock, Catherine E

    2010-09-01

    Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.

  18. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; From, Andrew S.; Doyle, Thomas W.; Doyle, Terry J.; Barry, Michael J.

    2011-01-01

    The Ten Thousand Islands region of southwestern Florida, USA is a major feeding and resting destination for breeding, migrating, and wintering birds. Many species of waterbirds rely specifically on marshes as foraging habitat, making mangrove encroachment a concern for wildlife managers. With the alteration of freshwater flow and sea-level rise trends for the region, mangroves have migrated upstream into traditionally salt and brackish marshes, mirroring similar descriptions around the world. Aside from localized freezes in some years, very little seems to be preventing mangrove encroachment. We mapped changes in mangrove stand boundaries from the Gulf of Mexico inland to the northern boundary of Ten Thousand Islands National Wildlife Refuge (TTINWR) from 1927 to 2005, and determined the area of mangroves to be approximately 7,281 hectares in 2005, representing an 1,878 hectare increase since 1927. Overall change represents an approximately 35% increase in mangrove coverage on TTINWR over 78 years. Sea-level rise is likely the primary driver of this change; however, the construction of new waterways facilitates the dispersal of mangrove propagules into new areas by extending tidal influence, exacerbating encroachment. Reduced volume of freshwater delivery to TTINWR via overland flow and localized rainfall may influence the balance between marsh and mangrove as well, potentially offering some options to managers interested in conserving marsh over mangrove.

  19. Mangrove plantation over a limestone reef - Good for the ecology?

    NASA Astrophysics Data System (ADS)

    Asaeda, Takashi; Barnuevo, Abner; Sanjaya, Kelum; Fortes, Miguel D.; Kanesaka, Yoshikazu; Wolanski, Eric

    2016-05-01

    There have been efforts to restore degraded tropical and subtropical mangrove forests. While there have been many failures, there have been some successes but these were seldom evaluated to test to what level the created mangrove wetlands reproduce the characteristics of the natural ecosystem and thus what ecosystem services they can deliver. We provide such a detailed assessment for the case of Olango and Banacon Islands in the Philippines where the forest was created over a limestone reef where mangroves did not exist in one island but they covered most of the other island before deforestation in the 1940s and 1950s. The created forest appears to have reached a steady state after 60 years. As is typical of mangrove rehabilitation efforts worldwide, planting was limited to a single Rhizophora species. While a forest has been created, it does not mimic a natural forest. There is a large difference between the natural and planted forests in terms of forest structure and species diversity, and tree density. The high density of planted trees excludes importing other species from nearby natural forests; therefore the planted forest remains mono-specific even after several decades and shows no sign of mimicking the characteristics of a natural forest. The planted forests provided mangrove propagules that invaded nearby natural forests. The planted forest has also changed the substratum from sandy to muddy. The outline of the crown of the planted forest has become smooth and horizontal, contrary to that of a natural forest, and this changes the local landscape. Thus we recommend that future mangrove restoration schemes should modify their methodology in order to plant several species, maintain sufficient space between trees for growth, include the naturally dominant species, and create tidal creeks, in order to reproduce in the rehabilitated areas some of the key ecosystem characteristics of natural mangrove forests.

  20. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast

    PubMed Central

    Brody, Samuel D.; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss. PMID:25946132

  1. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    PubMed

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  2. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting

    PubMed Central

    van Maanen, B.; Coco, G.; Bryan, K. R.

    2015-01-01

    An ecomorphodynamic model was developed to study how Avicennia marina mangroves influence channel network evolution in sandy tidal embayments. The model accounts for the effects of mangrove trees on tidal flow patterns and sediment dynamics. Mangrove growth is in turn controlled by hydrodynamic conditions. The presence of mangroves was found to enhance the initiation and branching of tidal channels, partly because the extra flow resistance in mangrove forests favours flow concentration, and thus sediment erosion in between vegetated areas. The enhanced branching of channels is also the result of a vegetation-induced increase in erosion threshold. On the other hand, this reduction in bed erodibility, together with the soil expansion driven by organic matter production, reduces the landward expansion of channels. The ongoing accretion in mangrove forests ultimately drives a reduction in tidal prism and an overall retreat of the channel network. During sea-level rise, mangroves can potentially enhance the ability of the soil surface to maintain an elevation within the upper portion of the intertidal zone, while hindering both the branching and headward erosion of the landward expanding channels. The modelling results presented here indicate the critical control exerted by ecogeomorphological interactions in driving landscape evolution. PMID:26339195

  3. Impacts of climate change on mangrove ecosystems: A region by region overview

    USGS Publications Warehouse

    Ward, Raymond D.; Friess, Daniel A.; Day, Richard H.; MacKenzie, Richard A.

    2016-01-01

    Inter-related and spatially variable climate change factors including sea level rise, increased storminess, altered precipitation regime and increasing temperature are impacting mangroves at regional scales. This review highlights extreme regional variation in climate change threats and impacts, and how these factors impact the structure of mangrove communities, their biodiversity and geomorphological setting. All these factors interplay to determine spatially variable resiliency to climate change impacts, and because mangroves are varied in type and geographical location, these systems are good models for understanding such interactions at different scales. Sea level rise is likely to influence mangroves in all regions although local impacts are likely to be more varied. Changes in the frequency and intensity of storminess are likely to have a greater impact on N and Central America, Asia, Australia, and East Africa than West Africa and S. America. This review also highlights the numerous geographical knowledge gaps of climate change impacts, with some regions particularly understudied (e.g., Africa and the Middle East). While there has been a recent drive to address these knowledge gaps especially in South America and Asia, further research is required to allow researchers to tease apart the processes that influence both vulnerability and resilience to climate change. A more globally representative view of mangroves would allow us to better understand the importance of mangrove type and landscape setting in determining system resiliency to future climate change.

  4. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  5. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    NASA Astrophysics Data System (ADS)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  6. Hydrological Classification, a Practical Tool for Mangrove Restoration

    PubMed Central

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  7. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    PubMed

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  8. Can mangrove plantation enhance the functional diversity of macrobenthic community in polluted mangroves?

    PubMed

    Leung, Jonathan Y S; Cheung, Napo K M

    2017-03-15

    Mangrove plantation is widely applied to re-establish the plant community in degraded mangroves, but its effectiveness to restore the ecological functions of macrobenthic community remains poorly known, especially when pollution may overwhelm its potential positive effect. Here, we tested the effect of mangrove plantation on the ecological functions of macrobenthic community in a polluted mangrove by analyzing biological traits of macrobenthos and calculating functional diversity. Mangrove plantation was shown to enhance the functional diversity and restore the ecological functions of macrobenthic community, depending on seasonality. Given the polluted sediment, however, typical traits of opportunistic species (e.g. small and short-lived) prevailed in all habitats and sampling times. We conclude that mangrove plantation can help diversify the ecological functions of macrobenthic community, but its effectiveness is likely reduced by pollution. From the management perspective, therefore, pollution sources must be stringently regulated and mangrove plantation should be conducted to fully recover degraded mangroves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Advancing mangrove macroecology

    USGS Publications Warehouse

    Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.

    2017-01-01

    Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and

  10. Mangrove area development strategy wonorejo as ecotourism in surabaya

    NASA Astrophysics Data System (ADS)

    Murtini, S.; Kuspriyanto; Kurniawati, A.

    2018-01-01

    Wonorejo mangrove ecotourism is a natural attraction that is increasingly in demand by the community. From year to year, this mangrove ecotourism shows an increase in the number of visitors so it is necessary to know the carrying capacity and development strategy to keep visitors comfortable in the location of tourism. The purpose of this research is to determine development strategies undertaken by the government. The research approach is descriptive quantitative by using survey method. The subject of research is the management of ecotourism area while the object of research includes mangrove, biota object and wide of an area. Sources of data obtained from interviews with parties related to the management of mangrove eco-tourism Wonorejo. Development strategy by using SWOT analysis. The results showed that the collation of the I-EFAS value indicates the position of P (2,35: 2,61) in quadrant I or growth, it’s the right strategy for the development of Wonorejo mangrove eco-tourism area is an aggressive strategy.

  11. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  12. The importance of mangrove forest in tsunami disaster mitigation.

    PubMed

    Osti, Rabindra; Tanaka, Shigenobu; Tokioka, Toshikazu

    2009-04-01

    Tsunamis and storm surges have killed more than one million people and some three billion people currently live with a high risk of these disasters, which are becoming more frequent and devastating worldwide. Effective mitigation of such disasters is possible via healthy coastal forests, which can reduce the energy of tsunamis. In recent years, these natural barriers have declined due to adverse human and natural activities. In the past 20 years, the world has lost almost 50 per cent of its mangrove forests, making them one of the most endangered landscapes. It is essential to recover them and to use them as a shield against a tsunami and as a resource to secure optimal socio-economic, ecological and environmental benefits. This paper examines the emerging scenario facing mangrove forests, discusses protection from tsunamis, and proposes a way to improve the current situation. We hope that practical tips will help communities and agencies to work collectively to achieve a common goal.

  13. Ecological resilience indicators for mangrove ecosystems

    USGS Publications Warehouse

    Day, Richard H.; Allen, Scott T.; Brenner, Jorge; Goodin, Kathleen; Faber-Langendoen, Don; Ames, Katherine Wirt

    2018-01-01

    Mangrove ecosystems are coastal wetland ecosystems dominated by mangrove species that are typically found in the intertidal zone, characterized by frequently flooded saline soil conditions. The majority of the approximately 500,000 acres of mangrove ecosystem in the United States occurs in the NGoM, and almost all of that is in Florida, with over 90 percent in the four southern counties of Lee, Collier, Miami-Dade, and Monroe. Scattered stands and individuals occur north and westward into Louisiana and Texas (Osland et al., 2016). The three common mangrove species are: black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). The mangrove system described in this project includes Tidal Mangrove Shrubland and Tidal Mangrove Forest as classified in CMECS (FGDC, 2012). It is classified as Caribbean Fringe Mangrove (G004) in the USNVC (2016), with a variety of distinct associations, based on species dominance and ecological setting.

  14. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    PubMed

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  15. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Treesearch

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  16. Mangrove vulnerability index using GIS

    NASA Astrophysics Data System (ADS)

    Yunus, Mohd Zulkifli Mohd; Ahmad, Fatimah Shafinaz; Ibrahim, Nuremira

    2018-02-01

    Climate change, particularly its associated sea level rise, is major threat to mangrove coastal areas, and it is essential to develop ways to reduce vulnerability through strategic management planning. Environmental vulnerability can be understood as a function of exposure to impacts and the sensitivity and adaptive capacity of ecological systems towards environmental tensors. Mangrove vulnerability ranking using up to 14 parameters found in study area, which is in Pulau Kukup and Sg Pulai, where 1 is low vulnerability and 5 is very high vulnerability. Mangrove Vulnerability Index (MVI) is divided into 3 main categories Physical Mangrove Index (PMI), Biological Mangrove Index (BMI) and Hazard Mangrove Index (HMI).

  17. Appreciating tropical coastal wetlands from a landscape perspective

    Treesearch

    Katherine C. Ewel

    2010-01-01

    Freshwater forested wetlands are often found just upslope from mangrove forests in both high- and low-rainfall areas in the tropics. A case study on the island of Kosrae, Federated States of Micronesia, demonstrates how important both wetland types are to each other hydrologically and to local economies as well. Together, these wetlands form a landscape that provides...

  18. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    USGS Publications Warehouse

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  19. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  20. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution.

    PubMed

    Godoy, Mario D P; de Lacerda, Luiz D

    2015-01-01

    Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  1. DOES THE AUTECOLOGY OF THE MANGROVE RIVULUS FISH (RIVULUS MARMORATUS) REFLECT A PARADIGM FOR MANGROVE ECOSYSTEM SENSITIVITY?

    EPA Science Inventory

    The killifish Rivulus marmoratus, mangrove rivulus, represents the one of the two potentially truly "mangrove dependent" fish species in western Atlantic mangrove ecosystems. he distribution of this species closely parallels the range of red mangroves. hese plants and fish exhibi...

  2. Modeling hurricane effects on mangrove ecosystems

    USGS Publications Warehouse

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  3. The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2016-04-01

    Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.

  4. Estimation and Mapping of Coastal Mangrove Biomass Using Both Passive and Active Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Yiqiong, L.; Lu, W.; Zhou, J.; Gan, W.; Cui, X.; Lin, G., Sr.

    2015-12-01

    Mangrove forests play an important role in global carbon cycle, but carbon stocks in different mangrove forests are not easily measured at large scale. In this research, both active and passive remote sensing methods were used to estimate the aboveground biomass of dominant mangrove communities in Zhanjiang National Mangrove Nature Reserve in Guangdong, China. We set up a decision tree including spectral, texture, position and geometry indexes to achieve mangrove inter-species classification among 5 main species named Aegiceras corniculatum, Aricennia marina, Bruguiera gymnorrhiza, Kandelia candel, Sonneratia apetala by using 5.8m multispectral ZY-3 images. In addition, Lidar data were collected and used to obtain the canopy height of different mangrove species. Then, regression equations between the field measured aboveground biomass and the canopy height deduced from Lidar data were established for these mangrove species. By combining these results, we were able to establish a relatively accurate method for differentiating mangrove species and mapping their aboveground biomass distribution at the estuary scale, which could be applied to mangrove forests in other regions.

  5. Aboveground Allometric Models for Freeze-Affected Black Mangroves (Avicennia germinans): Equations for a Climate Sensitive Mangrove-Marsh Ecotone

    PubMed Central

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone. PMID:24971938

  6. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    PubMed

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  7. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  8. Global Status of Mangrove Ecosystems.

    ERIC Educational Resources Information Center

    Saenger, P., Ed.; And Others

    1983-01-01

    Mangroves are the characteristic littoral plant formations of tropical/subtropical sheltered coastlines. Presented is a detailed report which discusses uses made of mangrove ecosystems and attempts to resolve conflicts arising from these uses. Areas considered include cause/consequence of mangrove destruction, legislative/administrative aspects,…

  9. Suspended sediment in tidal currents: an often-neglected pollutant that aggravates mangrove degradation.

    PubMed

    Fu, Weiguo; Liu, Daomin; Yin, Qilin; Wu, Yanyou; Li, Pingping

    2014-07-15

    In this study, the influence of sediments deposited on the leaves of different mangrove species due to tidal movements on photosynthetic characteristics and chlorophyll fluorescence of the species was explored. The degree of accelerated degradation among different mangrove species was also obtained. Results show that the leaves of mangrove species have varying degrees of sediment deposition. Sediment deposition leads to photosynthetic reduction and physiological stress among Kandelia candel, Aegiceras corniculatum, and Avicennia marina in the Quanzhou Bay. Thus, the deposition of suspended sediments from tidal currents is an important environmental factor that accelerates the degradation of some mangrove species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Understanding the Ecoydrology of Mangroves: A Simple SPAC Model for Avicennia Marina

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2015-04-01

    Mangroves represent one of the most carbon-rich ecosystems in the Tropics, noticeably impacting ecosystem services and the economy of these regions. Whether the ability of mangroves to exclude and tolerate salt has been extensively investigated in the literature - both from the structural and functional point of view - their eco-hydrological characteristics remains largely understudied, despite the crucial link with productivity, efficient carbon storage and fluxes. In this contribution we develop a "first-order" Soil Plant Atmosphere Continuum model for Avicennia Marina, a mangrove able to adapt to hyper-arid intertidal zones and characterized by complex morphological and eco-physiological traits. Among mangroves, Avicennia marina is one of the most tolerant to salinity and arid climatic conditions. Our model, based on a simple macroscopic approach, takes into account the specific characteristics of the mangrove ecosystem and in particular, the salinity of the water in the soil and the levels of salt stress to which the plant may be subjected. Mangrove transpiration is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. The SPAC model of Avicennia is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist model in reproducing observed transpiration fluxes. Finally, sensitivity analysis is used to assess whether uncertainty on the adopted parameters could lead to significant errors in the transpiration assessment.

  11. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  12. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves

    NASA Astrophysics Data System (ADS)

    Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.

    2014-03-01

    Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.

  13. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    USGS Publications Warehouse

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  14. Belowground dynamics in mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  15. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets.

    PubMed

    Vaslet, A; Phillips, D L; France, C A M; Feller, I C; Baldwin, C C

    2015-08-01

    Stable isotope (δ(13)C and δ(15)N) and gut content analyses were used to investigate size-related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non-estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ(13)C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove-associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove-derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet. © 2015 The Fisheries Society of the British Isles.

  16. Whole-island carbon stocks in the tropical Pacific: implications for mangrove conservation and upland restoration.

    PubMed

    Donato, D C; Kauffman, J B; Mackenzie, R A; Ainsworth, A; Pfleeger, A Z

    2012-04-30

    Management of forest carbon (C) stocks is an increasingly prominent land-use issue. Knowledge of carbon storage in tropical forests is improving, but regional variations are still poorly understood, and this constrains forest management and conservation efforts associated with carbon valuation mechanisms (e.g., carbon markets). This deficiency is especially pronounced in tropical islands and low-lying coastal areas where climate change impacts are expected to be among the most severe. This study presents the first field estimate of island-wide carbon storage in ecosystems of Oceania, with special attention to the regional role of coastal mangroves, which occur on islands and coastal zones throughout the tropics. On two island groups of Micronesia (Yap and Palau), we sampled all above- and belowground C pools, including soil and vegetation, in 24 sites distributed evenly among the three major vegetation structural types: mangroves, upland forests, and open savannas (generally on degraded lands formerly forested). Total C stocks were estimated to be 3.9 and 15.2 Tg C on Yap and Palau, respectively. Mangroves contained by far the largest per-hectare C pools (830-1218 Mg C ha(-1)), with deep organic-rich soils alone storing more C (631-754 Mg C ha(-1)) than all pools combined in upland systems. Despite covering just 12-13% of land area, mangroves accounted for 24-34% of total island C stocks. Savannas (156-203 Mg C ha(-1)) contained significantly lower C stocks than upland forests (375-437 Mg C ha(-1)), suggesting that reforesting savannas where appropriate has high potential for carbon-based funding to aid restoration objectives. For mangroves, these results demonstrate the key role of these systems within the broader context of C storage in island and coastal landscapes. Sustainable management of mangrove forests and their large C stocks is of high importance at the regional scale, and climate change mitigation programs such as REDD+ could play a large role in

  17. Recent advances in understanding Colombian mangroves

    NASA Astrophysics Data System (ADS)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  18. Frequent water drinking by Zanzibar red colobus (Procolobus kirkii) in a mangrove forest refuge.

    PubMed

    Nowak, Katarzyna

    2008-11-01

    Isolated populations of Procolobus kirkii on Uzi Island, Zanzibar, use Rhizophora mucronata-dominated mangrove forest for refuge. Three groups, observed over 14 months, spent up to 85% of total observation time in mangroves with brief excursions to adjacent upland coral rag forest, habitat degraded by human cutting. A large proportion of monkeys' diets consisted of plant parts of five mangrove species. Water drinking was common and 326 water-drinking events were recorded at a rate of up to 0.87 drinks hr(-1). Groups used different strategies to obtain water including licking dew, drinking from treeholes, licking rain off leaves and tree trunks, and drinking from coral rock crevices with Cercopithecus mitis albogularis. Drinking frequency increased with time spent in and consumption of mangroves. Strategies for obtaining water were group-specific and likely the result of learning. Drinking appeared to be an acquired behavior in movement-restricted groups living in a habitat with low plant species diversity and limited salty foods. Copyright 2008 Wiley-Liss, Inc.

  19. Mangrove expansion and salt marsh decline at mangrove poleward limits.

    PubMed

    Saintilan, Neil; Wilson, Nicholas C; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. © 2013 John Wiley & Sons Ltd.

  20. Phylogeny of culturable cyanobacteria from Brazilian mangroves.

    PubMed

    Silva, Caroline Souza Pamplona; Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2014-03-01

    The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  2. Environmental Policy of Mangroves Management in Rembang Regency

    NASA Astrophysics Data System (ADS)

    Roziqin, Ali

    2018-02-01

    Mangrove area is an area overgrown mangrove in a natural or artificial, to maintain the environmental sustainability of coastal areas. In addition to maintaining the ecosystem of biodiversity, the mangrove area also has a role to social-economic, and socio-cultural. Rembang regency is one of the districts on the north coast of Java which has a large mangrove area. However, due to the high economic activity in the region of Rembang Regency, the mangrove area becomes less and damaged. This research to describe how environmental policy to manage mangrove area in Rembang regency with qualitative descriptive approach. The result is the role of government and society gradually able to restore mangrove ecosystem. Moreover the district government through Environmental Agency has made a masterplan for the development of mangrove ecotourism in Pasarbanggi Village. The existence of sustainable mangrove conservation has a positive impact on the environment and society.

  3. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan.

    PubMed

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-06-09

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health.

  4. Ecosystem Functions Connecting Contributions from Ecosystem Services to Human Wellbeing in a Mangrove System in Northern Taiwan

    PubMed Central

    Hsieh, Hwey-Lian; Lin, Hsing-Juh; Shih, Shang-Shu; Chen, Chang-Po

    2015-01-01

    The present study examined a mangrove ecosystem in northern Taiwan to determine how the various components of ecosystem function, ecosystem services and human wellbeing are connected. The overall contributions of mangrove services to specific components of human wellbeing were also assessed. A network was developed and evaluated by an expert panel consisting of hydrologists, ecologists, and experts in the field of culture, landscape or architecture. The results showed that supporting habitats was the most important function to human wellbeing, while water quality, habitable climate, air quality, recreational opportunities, and knowledge systems were services that were strongly linked to human welfare. Security of continuous supply of services appeared to be the key to a comfortable life. From a bottom-up and top-down perspective, knowledge systems (a service) were most supported by ecosystem functions, while the security of continuous supply of services (wellbeing) had affected the most services. In addition, the overall benefits of mangrove services to human prosperity concentrated on mental health, security of continuous supply of services, and physical health. PMID:26067989

  5. Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam

    NASA Astrophysics Data System (ADS)

    Thu, Phan Minh; Populus, Jacques

    2007-01-01

    Because shrimp culture in the Mekong Delta develops rapidly, it has negatively impacted the environment, socio-economics and natural resources. In particular, mangrove forests have been altered by the shrimp culture. The area of mangrove forests in the region has been reduced and this is seen especially in Tra Vinh province. The results obtained from GIS (Geography Information System) and RS (Remote Sensing) show the status of mangrove forests in Tra Vinh province in 1965, 1995 (Northeastern part of Tra Vinh Province) and 2001. In 1965, the area of mangrove forests was 21,221 ha making up 56% of total land-use, while in 2001 it was 12,797 ha making up 37% of total land-use. Also based on GIS analysis, over the 36 years (1965-2001), the total coverage of mangrove forests have decreased by 50% since 1965. However, the speed of mangrove forest destruction in the period from 1965 to 1995 was much less than that in the period from 1995 to 2001. The average annual reduction in mangrove forest coverage in the first period (1965-1995) was 0.2% whereas it was 13.1% in the later period (1995-2001). For the long time, mangrove deforestation has been caused by war, collection of firewood and clearing for agriculture, and recently, shrimp farming has significantly contributed rate of mangrove destruction.

  6. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    USGS Publications Warehouse

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  7. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    PubMed

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  8. Trophic characteristics of a mangrove fish community in Southwest Thailand: Important mangrove contribution and intraspecies feeding variability

    NASA Astrophysics Data System (ADS)

    Zagars, Matiss; Ikejima, Kou; Kasai, Akihide; Arai, Nobuaki; Tongnunui, Prasert

    2013-03-01

    Mangrove production has been found to make a major contribution to the nutrition of a fish community in the Sikao Creek mangrove estuary, Southwest Thailand. Gut content analysis and carbon and nitrogen stable isotope analysis were used to assess fish feeding behavior and trophic reliance on different primary producers (mangrove leaves, phytoplankton, microphytobenthos) focusing on 19 dominant fish species, and 4 potential fish food items. Cluster analysis identified 5 trophic groups and the IsoSource model indicated the importance of primary food sources in trophically supporting different fish species. Most analyzed fish species had carbon isotopic signatures that were more depleted than those reported in previous studies, and the IsoSource model indicated that mangrove leaves were an important primary food source. This may be a specific characteristic of our study site, which is not well connected to other productive coastal habitats that provide alternative primary food sources. Thus we suggest that food chains in trophically isolated mangrove estuaries of southwest Thailand are more dependent on mangrove tree production. We also assessed the relationship of individuality in fish feeding habits and variability of δ13C values and showed that several mangrove fish species have significant intraspecies variability in feeding habits, possibly due to high intraspecific competition.

  9. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  10. Epibenthos of mangrove waterways and open embayments: Community structure and the relationship between exported mangrove detritus and epifaunal standing stocks

    NASA Astrophysics Data System (ADS)

    Daniel, P. A.; Robertson, A. I.

    1990-11-01

    The epibenthos inhabiting creek-bottoms in a tidally influenced mangrove forest, a mangrove-lined estuary and several sites in two open embayments, was sampled on four occasions between August 1986 and June 1987. The inshore (mangrove habitats)-offshore (embayment) patterns in total faunal taxonomic richness (means ranging from 0 to 32·5 taxa per trawl) and density (range of means, < 1·55 individuals m -2) were generally complex, with patterns across the gradient changing seasonally. Patterns in total biomass (range of means 0-740 mg.m -2) were clearer, with highest biomasses recorded in May (post-wet season) and lowest in February (mid-wet season), with no significant cross-habitat gradient in biomass. Densities and biomasses were lower than those recorded in other studies, probably owing to the physically harsh conditions available to epibenthos and to the low quality of mangrove detritus as a food source. The significant difference in the structure of epibenthic communities in mangrove and embayment habitats in the dry season months (August and October) was likely due to the longer residence time of water in mangrove water-ways at that time of the year. Greater tidal amplitudes and increased tidal current velocities in February transported mangrove detritus and many faunal taxa into embayments. Variation in the quantities of exported mangrove detritus in nettings explained significant proportions of the variance in total (and component taxa) epibenthic standing stocks in mangrove and embayment habitats. Several factors may be important in causing the positive response of different groups within the epibenthos to mangrove detritus. For penaeid shrimps it seems likely that clumps of exported mangrove detritus provide refuges from predatory fish in both mangrove and embayment habitats.

  11. Management Mangrove Experiences Form Coastal People

    NASA Astrophysics Data System (ADS)

    Indah, P. N.; Radianto, I.; Abidin, Z.; Amir, I. T.; Pribadi, D. U.

    2018-01-01

    The mangrove area has an important meaning in beach ecosystem, both from ecological and economical aspects. For this, the rehabilitation of mangrove forest is done as one effort that aims to maintain and return the mangrove forest function as one of life system supporters, especially in beach area. The most respondent ages of coast people of Gending, Pajarakan, dan Kraksaan districts, Probolinggo Regency are between 30 to 59 years old, i.e. as 86 people or 95.55% indicates that coast people are productive ages so they can be hoped very potential for having role in supporting mangrove ecosystem management of Probolinggo Regency coast. The average respondent educational rates are mostly Elementary School to Senior High School, i.e. as 76 people. Generally, human resources of coast people have relatively good education level. Thereby, it can be hoped to have positive potencies for the role of coast people themselves toward the mangrove ecosystem management support of Probolinggo Regency coast. The average most respondents have family burdens two and three people as six people or 6.67 percent. But, there are still three respondents who have not have family burdens. Generally, more and more members help in respondent’s jobs. The mangrove ecosystem management strategy of Probolinggo Regency coast is by involving people role (people and people figures) and governmental supports through the models of mangrove forest management strategy, the model of embankment cultivation management by entering mangrove as input resources of production facilities, and ecotourism management by the purpose of improving people income.

  12. Effects of hydrology on red mangrove recruits

    USGS Publications Warehouse

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  13. The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific

    NASA Astrophysics Data System (ADS)

    Bukoski, J. J.; Broadhead, J. S.; Donato, D.; Murdiyarso, D.; Gregoire, T. G.

    2016-12-01

    Mangroves provide extensive ecosystem services that support both local livelihoods and international environmental goals, including coastal protection, water filtration, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects that seek to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through measurement, reporting and verification (MRV) activities. To streamline MRV activities in mangrove C forestry projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We use linear mixed effect models to account for spatial correlation in modeling the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, and are found to explain a substantial proportion of variance within the estimation datasets. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm 3 (14.1% of mean soil C). A substantial proportion of the variation in soil C, however, is explained by the random effects and thus the use of the SOC model may be most valuable for sites in which field measurements of soil C exist.

  14. Mangrove dieback during fluctuating sea levels.

    PubMed

    Lovelock, Catherine E; Feller, Ilka C; Reef, Ruth; Hickey, Sharyn; Ball, Marilyn C

    2017-05-10

    Recent evidence indicates that climate change and intensification of the El Niño Southern Oscillation (ENSO) has increased variation in sea level. Although widespread impacts on intertidal ecosystems are anticipated to arise from the sea level seesaw associated with climate change, none have yet been demonstrated. Intertidal ecosystems, including mangrove forests are among those ecosystems that are highly vulnerable to sea level rise, but they may also be vulnerable to sea level variability and extreme low sea level events. During 16 years of monitoring of a mangrove forest in Mangrove Bay in north Western Australia, we documented two forest dieback events, the most recent one being coincident with the large-scale dieback of mangroves in the Gulf of Carpentaria in northern Australia. Diebacks in Mangrove Bay were coincident with periods of very low sea level, which were associated with increased soil salinization of 20-30% above pre-event levels, leading to canopy loss, reduced Normalized Difference Vegetation Index (NDVI) and reduced recruitment. Our study indicates that an intensification of ENSO will have negative effects on some mangrove forests in parts of the Indo-Pacific that will exacerbate other pressures.

  15. PIV measurements and flow characteristics downstream of mangrove root models

    NASA Astrophysics Data System (ADS)

    Kazemi, Amirkhosro; Curet, Oscar

    2016-11-01

    Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.

  16. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Superficial distribution of aromatic compounds and geomicrobiology of sediments from Suruí Mangrove, Guanabara Bay, RJ, Brazil.

    PubMed

    Fontana, Luiz F; da Silva, Frederico S; de Figueiredo, Natália G; Brum, Daniel M; Netto, Annibal D Pereira; de Gigueiredo Junior, Alberto G; Crapez, Mirian A C

    2010-12-01

    The distribution of selected aromatic compounds and microbiology were assessed in superficial sediments from Suruí Mangrove, Guanabara Bay. Samples were collected at 23 stations, and particle size, organic matter, aromatic compounds, microbiology activity, biopolymers, and topography were determined. The concentration of aromatic compounds was distributed in patches over the entire mangrove, and their highest total concentration was determinated in the mangrove's central area. Particle size differed from most mangroves in that Suruí Mangrove has chernies on the edges and in front of the mangrove, and sand across the whole surface, which hampers the relationship between particle size and hydrocarbons. An average @ 10% p/p of organic matter was obtained, and biopolymers presented high concentrations, especially in the central and back areas of the mangrove. The biopolymers were distributed in high concentrations. The presence of fine sediments is an important factor in hydrocarbon accumulation. With high concentration of organic matter and biopolymers, and the topography with chernies and roots protecting the mangrove, calmer areas are created with the deposition of material transported by wave action. Compared to global distributions, concentrations of aromatic compounds in Suruí Mangrove may be classified from moderate to high, showing that the studied area is highly impacted.

  18. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    PubMed

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  19. Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands

    NASA Astrophysics Data System (ADS)

    Albert, Simon; Saunders, Megan I.; Roelfsema, Chris M.; Leon, Javier X.; Johnstone, Elizabeth; Mackenzie, Jock R.; Hoegh-Guldberg, Ove; Grinham, Alistair R.; Phinn, Stuart R.; Duke, Norman C.; Mumby, Peter J.; Kovacs, Eva; Woodroffe, Colin D.

    2017-09-01

    A 2007 earthquake in the western Solomon Islands resulted in a localised subsidence event in which sea level (relative to the previous coastal settings) rose approximately 30-70 cm, providing insight into impacts of future rapid changes to sea level on coastal ecosystems. Here, we show that increasing sea level by 30-70 cm can have contrasting impacts on mangrove, seagrass and coral reef ecosystems. Coral reef habitats were the clear winners with a steady lateral growth from 2006-2014, yielding a 157% increase in areal coverage over seven years. Mangrove ecosystems, on the other hand, suffered the largest impact through a rapid dieback of 35% (130 ha) of mangrove forest in the study area after subsidence. These forests, however, had partially recovered seven years after the earthquake albeit with a different community structure. The shallow seagrass ecosystems demonstrated the most dynamic response to relative shifts in sea level with both losses and gains in areal extent at small scales of 10-100 m. The results of this study emphasize the importance of considering the impacts of sea-level rise within a complex landscape in which winners and losers may vary over time and space.

  20. Effect of mangrove rehabilitation on socio-cultural of pulau sembilan society, North Sumatera, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Harahap, F. K.; Wati, R.; Putri, L. A. P.

    2018-03-01

    Mangrove forests in North Sumatera, Indonesia existed in the east coast of Sumatera Island and commonly found in Serdang Bedagai, Deli Serdang, Batubara, Tanjung Balai, Asahan, Labuhanbatu until Langkat. The effect of rehabilitated mangrove on socio-cultural of Pulau Sembilan society, Langkat, North Sumatra, Indonesia was studied. The rehabilitation was carried on May 2015 using indirect planting of 2,100 Rhizophora apiculata seedlings. Two times of observations, May and August 2015 were made to monitor and evaluate 400 rehabilitated seedlings. Sixty of 600 households were surveyed using Slovin formula to obtain community perspective on the socio-cultural impact of mangrove rehabilitation. Results showed that the growth of R. apiculata seedlings were 73.3% during four months observations. The restoration affected 65, 58.3 and 35 % of economic, social, and cultural of Pulau Sembilan society, respectively. The perspective of community on the land-use change led to 66.7% was disagreed that mangroves to be converted, 60% respondents stated that mangrove condition was degraded even worse than previously existed. Therefore, to resolve the degraded mangrove, community perspective on rehabilitation was needed (85.5%) and actively involved (88.3%). The present results suggested that the high recommendation for a rehabilitation program for the degraded area was by integrating the stake holders (government, university, and non-governmental organization) and local communities count on the mangrove ecosystems.

  1. A global predictive model of carbon in mangrove soils

    NASA Astrophysics Data System (ADS)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  2. The measurement of mangrove characteristics in southwest Florida using SPOT multispectral data

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Lin, Hongyue; Yang, Xinghe; Ramsey, Elijah, III; Davis, Bruce A.; Thoemke, Chris W.

    1991-01-01

    An intensive in situ sampling program near Marco Island, Florida during 19-23 October 1988 collected information on mangrove type, maximum canopy height, and percent canopy closure. These data were correlated with selected vegetation index information derived from analysis of SPOT multispectral (XS) data obtained on 21 October 1988. The Normalized Difference (ND) vegetation index information was the most highly correlated index with percent canopy closure (r = 0.91). Percent canopy closure information can be used as a surrogate for mangrove density which is of great value when predicting which parts of the mangrove ecosystem are at greatest risk after an oil spill occurs. Such information is very valuable when constructing oil spill Environmental Sensitivity Index (ESI) Maps for tropical regions of the world.

  3. Mapping the Philippines' mangrove forests using Landsat imagery

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra

    2011-01-01

    Current, accurate, and reliable information on the areal extent and spatial distribution of mangrove forests in the Philippines is limited. Previous estimates of mangrove extent do not illustrate the spatial distribution for the entire country. This study, part of a global assessment of mangrove dynamics, mapped the spatial distribution and areal extent of the Philippines’ mangroves circa 2000. We used publicly available Landsat data acquired primarily from the Global Land Survey to map the total extent and spatial distribution. ISODATA clustering, an unsupervised classification technique, was applied to 61 Landsat images. Statistical analysis indicates the total area of mangrove forest cover was approximately 256,185 hectares circa 2000 with overall classification accuracy of 96.6% and a kappa coefficient of 0.926. These results differ substantially from most recent estimates of mangrove area in the Philippines. The results of this study may assist the decision making processes for rehabilitation and conservation efforts that are currently needed to protect and restore the Philippines’ degraded mangrove forests.

  4. The physiology of mangrove trees with changing climate

    USGS Publications Warehouse

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  5. A mangrove creek restoration plan utilizing hydraulic modeling.

    PubMed

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  6. Mangrove microclimates alter seedling dynamics at the range edge.

    PubMed

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  7. Ecosystem carbon stocks of micronesian mangrove forests

    Treesearch

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  8. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  9. CDOM Distribution and Dynamics in a Mangrove Ecosystem along the Shark River, Florida Everglades

    NASA Astrophysics Data System (ADS)

    Andrew, A. A.; del Castillo, C. E.

    2016-02-01

    Mangrove forests, a fraction of tropical forest, are in general a disproportionately important component in the global carbon cycle. Mangroves are highly productive, sequestering CO2 at rates higher than many other ecosystems, however more than half of this fixed carbon cannot be accounted for. Additionally, as they sit at the intersection of land and ocean, it's hypothesized that a large fraction of DOC transformations occur in these ecosystems and represent a major sink of terrigenous DOM. These factors highlight the importance of understanding mangrove environments in terms of DOM optical signals as well as reactivity upon light absorption. Here, we present the CDOM dynamics and distribution for a mangrove ecosystem in the Shark River, along the Southwest coast of Florida, part of the largest contiguous mangrove forest in North America. Station sampling of the study area occurred over 4 cruises, approximately one week in length: October 2014, March 2015, July 2015 and September 2015. Most of the stations were along the Shark River, with a smaller number in the vicinity of Tarpon bay and Harney River. Optical measurements of CDOM absorption and fluorescence, fluorescence quantum yields, DOC and spectral slope were obtained for over 70 stations in the study area. The spatial distribution of these optical properties are presented including their relation to salinity and tidal patterns in the study area. Additionally, we present the wavelength dependent quantum photoproduction efficiencies of DIC obtained via irradiation experiments of selective samples in the study area.

  10. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    PubMed

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  11. Denaturing Gradient Gel Electrophoresis and Barcoded Pyrosequencing Reveal Unprecedented Archaeal Diversity in Mangrove Sediment and Rhizosphere Samples

    PubMed Central

    Pires, Ana C. C.; Cleary, Daniel F. R.; Almeida, Adelaide; Cunha, Ângela; Dealtry, Simone; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2012-01-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713

  12. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets

    EPA Science Inventory

    Mangroves are essential fish habitats acting as shelters and nurseries, but the relative contribution of mangrove resources to fish diets relies on site-specific context and fish life history stage. Stable isotope (δ13C, δ15N) and gut-content analyses were used to investigate siz...

  13. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks - A revision of global mangrove CO2 emissions

    NASA Astrophysics Data System (ADS)

    Rosentreter, Judith A.; Maher, D. T.; Erler, D. V.; Murray, R.; Eyre, B. D.

    2018-02-01

    Continuous high-resolution surface water pCO2 and δ13C-CO2 and 222Rn (dry season only) were measured over two tidal cycles in the wet and dry season in three tropical tidal mangrove creeks on the north-eastern coast of Queensland, Australia. Mangrove surface water pCO2 followed a clear tidal pattern (ranging from 387 to 13,031 μatm) with higher pCO2-values in the wet season than in the dry season. The δ13C-CO2 in the mangrove waters ranged from -21.7 to -8.8‰ and was rather indicative of a mixed source than a distinct mangrove signature. Surface water CO2 was likely driven by a combination of mangrove and external carbon sources, e.g. exchange with groundwater/pore water enriched in 13C, or terrestrial carbon inputs with a significant contribution of C4-vegetation (sugar cane) source. The kinetic and equilibrium fractionation during the gas exchange at the water-atmosphere interface may have further caused a 13C-enrichment of the CO2 pool in the mangrove surface waters. Average CO2 evasion rates (58.7-277.6 mmol m-2 d-1) were calculated using different empirical gas transfer velocity models. Using our high-resolution time series data and previously published data, the average CO2 flux rate in mangrove ecosystems was estimated to be 56.5 ± 8.9 mmol m-2 d-1, which corresponds to a revised global mangrove CO2 emission of 34.1 ± 5.4 Tg C per year.

  14. A mangrove creek restoration plan utilizing hydraulic modeling

    EPA Science Inventory

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...

  15. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management

    USGS Publications Warehouse

    Lewis, Roy R; Milbrandt, Eric C; Brown, Benjamin; Krauss, Ken W.; Rovai, Andre S.; Beever, James W.; Flynn, Laura L

    2016-01-01

    Mangrove forest rehabilitation should begin much sooner than at the point of catastrophic loss. We describe the need for “mangrove forest heart attack prevention”, and how that might be accomplished in a general sense by embedding plot and remote sensing monitoring within coastal management plans. The major cause of mangrove stress at many sites globally is often linked to reduced tidal flows and exchanges. Blocked water flows can reduce flushing not only from the seaward side, but also result in higher salinity and reduced sediments when flows are blocked landward. Long-term degradation of function leads to acute mortality prompted by acute events, but created by a systematic propensity for long-term neglect of mangroves. Often, mangroves are lost within a few years; however, vulnerability is re-set decades earlier when seemingly innocuous hydrological modifications are made (e.g., road construction, blocked tidal channels), but which remain undetected without reasonable large-scale monitoring.

  16. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida

    USGS Publications Warehouse

    Fourqurean, James W.; Smith, Thomas J.; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra

    2010-01-01

    Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

  17. Mangrove expansion into salt marshes alters associated faunal communities

    NASA Astrophysics Data System (ADS)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  18. Mangrove Swamps

    EPA Pesticide Factsheets

    Mangrove swamps are coastal wetlands found in tropical and subtropical regions. They are characterized by halophytic (salt loving) trees, shrubs and other plants growing in brackish to saline tidal waters.

  19. Bioinformatics study of the mangrove actin genes

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  20. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    EPA Science Inventory

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  1. Mangroves in the Gulf of California increase fishery yields

    PubMed Central

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-01-01

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly “externalities.” Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove–water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands. PMID:18645185

  2. Ecology of mangroves in the Jewfish Chain, Exuma, Bahamas

    USGS Publications Warehouse

    Wilcox, L. V.; Yocom, Thomas G.; Forbes, A. M.

    1976-01-01

    The structure and function of mangrove communities in the Jewfish Chain, Exumas, Bahamas, were investigated for 3-1/2 years. Mangrove vegetation in the Jewfish Chain is similar to that in all the Caribbean-Florida area; Rhizophora mangle L. dominates and is interspersed with Avicennia germinans (L.) Lamk. and Laguncularia racemosa (L.) Gaertn. There is no apparent zonation of these three species. The mangrove communities in the Jewfish Chain occur only where they are protected from prevailing winds, storms, and tides, although all are periodically devastated by hurricanes. We found little or no evidence of coast building within these protected locations. The importance of the mangroves appears to be in providing protection and food for other flora and fauna within this unique ecosystem. Twenty-four species of algae were found in the mangroves, 9 of which had not previously been reported from the Bahamas. Distribution of these algae appears to be correlated to incident solar radiation, desiccation, and tide level. A total of 56 species of fish were found in the mangroves, 2 of which were not previously known from the Bahamas. Many fish taken were juveniles, suggesting that mangroves are a nursery ground for numerous species. Nine species of molluscs were found. Each species had a distinct distribution pattern relative to distance from the seaward edge of the mangroves, as well as a distinct vertical distribution pattern. Seventeen species of decapod crustaceans were recorded. Though several species of birds were noted in the mangroves, three species were most abundant: the white-crowned pigeon (Columba leucocephala) uses the mangrove for nesting but feeds in nearby shrub-thorn communities; the gray kingbird (Tyrannus dominicensis) and green heron (Butorides virescens) nest and feed in the mangroves. Our data do not completely describe a stereotyped mangrove community in the Bahamas, but they do give an indication of community structure and suggest several

  3. Low Carbon sink capacity of Red Sea mangroves.

    PubMed

    Almahasheer, Hanan; Serrano, Oscar; Duarte, Carlos M; Arias-Ortiz, Ariane; Masque, Pere; Irigoien, Xabier

    2017-08-29

    Mangroves forests of Avicennia marina occupy about 135 km 2 in the Red Sea and represent one of the most important vegetated communities in this otherwise arid and oligotrophic region. We assessed the soil organic carbon (C org ) stocks, soil accretion rates (SAR; mm y -1 ) and soil C org sequestration rates (g C org m -2 yr -1 ) in 10 mangrove sites within four locations along the Saudi coast of the Central Red Sea. Soil C org density and stock in Red Sea mangroves were among the lowest reported globally, with an average of 4 ± 0.3 mg C org cm -3 and 43 ± 5 Mg C org ha -1 (in 1 m-thick soils), respectively. Sequestration rates of C org , estimated at 3 ± 1 and 15 ± 1 g C org m -2 yr -1 for the long (millennia) and short (last century) temporal scales, respectively, were also relatively low compared to mangrove habitats from more humid bioregions. In contrast, the accretion rates of Central Red Sea mangroves soils were within the range reported for global mangrove forests. The relatively low C org sink capacity of Red Sea mangroves could be due to the extreme environmental conditions such as low rainfall, nutrient limitation and high temperature, reducing the growth rates of the mangroves and increasing soil respiration rates.

  4. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    NASA Astrophysics Data System (ADS)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  5. How mangrove forests adjust to rising sea level

    USGS Publications Warehouse

    Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen

    2014-01-01

    Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.

  6. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    PubMed

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  7. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    PubMed Central

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  8. Watershed Scale Analyses of Mangrove Ecosystems in the Americas and the Contributing Upland Area Land Cover Change Over Time

    NASA Astrophysics Data System (ADS)

    Corcoran, J.; Simard, M.

    2013-12-01

    Ecosystems throughout the world have been under pressure by drivers of change both natural and anthropogenic. Coastal and marine ecosystems such as mangrove forests contribute to the biodiversity of land and ocean habitats at various scales, acting as direct link to biogeochemical cycles of both upland and coastal regions. All of the positive and negative drivers of change of both natural and anthropogenic, within watershed and political boundaries, play a role in the health and function of these ecosystems. As a result, they are among the most rapidly changing landscapes in the Americas. This research presents a watershed scale monitoring approach of mangrove ecosystems using datasets that contain several sources of remotely sensed data and intensive ecological field data. Spatially exclusive decision tree models were used to assess and monitor land use and land cover change in mangrove ecosystems for different regions of the Americas, representing varying geomorphologic settings across a latitudinal gradient. The integration of ecological, hydrological, and geomorphologic characteristics of the contributing areas to these critical downstream ecosystems is crucial for both mapping and monitoring these vulnerable ecosystems. This research develops the scientific and technical framework needed for advancement in regional scale natural resource management and valuation, informed policy making, and protection of coastal ecosystems. This research also provides a foundation for the development of forecast models to simulate and assess mangrove area, health, and viability changes under different land management and climate scenarios.

  9. Global patterns in the poleward expansion of mangrove forests

    NASA Astrophysics Data System (ADS)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  10. Endo- and exoglucanase activities in bacteria from mangrove sediment.

    PubMed

    Soares Júnior, Fábio Lino; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  11. Endo- and exoglucanase activities in bacteria from mangrove sediment

    PubMed Central

    Júnior, Fábio Lino Soares; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose. PMID:24516466

  12. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems

    USGS Publications Warehouse

    Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.

    2011-01-01

    Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.

  13. Mapping and Change Analysis in Mangrove Forest by Using Landsat Imagery

    NASA Astrophysics Data System (ADS)

    Dan, T. T.; Chen, C. F.; Chiang, S. H.; Ogawa, S.

    2016-06-01

    Mangrove is located in the tropical and subtropical regions and brings good services for native people. Mangrove in the world has been lost with a rapid rate. Therefore, monitoring a spatiotemporal distribution of mangrove is thus critical for natural resource management. This research objectives were: (i) to map the current extent of mangrove in the West and Central Africa and in the Sundarbans delta, and (ii) to identify change of mangrove using Landsat data. The data were processed through four main steps: (1) data pre-processing including atmospheric correction and image normalization, (2) image classification using supervised classification approach, (3) accuracy assessment for the classification results, and (4) change detection analysis. Validation was made by comparing the classification results with the ground reference data, which yielded satisfactory agreement with overall accuracy 84.1% and Kappa coefficient of 0.74 in the West and Central Africa and 83.0% and 0.73 in the Sundarbans, respectively. The result shows that mangrove areas have changed significantly. In the West and Central Africa, mangrove loss from 1988 to 2014 was approximately 16.9%, and only 2.5% was recovered or newly planted at the same time, while the overall change of mangrove in the Sundarbans increased approximately by 900 km2 of total mangrove area. Mangrove declined due to deforestation, natural catastrophes deforestation and mangrove rehabilitation programs. The overall efforts in this study demonstrated the effectiveness of the proposed method used for investigating spatiotemporal changes of mangrove and the results could provide planners with invaluable quantitative information for sustainable management of mangrove ecosystems in these regions.

  14. Predicting future mangrove forest migration in the Everglades under rising sea level

    USGS Publications Warehouse

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  15. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    PubMed

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  16. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale

    PubMed Central

    Serafy, Joseph E.; Shideler, Geoffrey S.; Araújo, Rafael J.; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as “mangrove-dependent”. Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  17. Evolutionary diversity among Atlantic coast mangroves

    NASA Astrophysics Data System (ADS)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  18. Distribution and drivers of global mangrove forest change, 1996-2010.

    PubMed

    Thomas, Nathan; Lucas, Richard; Bunting, Peter; Hardy, Andrew; Rosenqvist, Ake; Simard, Marc

    2017-01-01

    For the period 1996-2010, we provide the first indication of the drivers behind mangrove land cover and land use change across the (pan-)tropics using time-series Japanese Earth Resources Satellite (JERS-1) Synthetic Aperture Radar (SAR) and Advanced Land Observing Satellite (ALOS) Phased Array-type L-band SAR (PALSAR) data. Multi-temporal radar mosaics were manually interpreted for evidence of loss and gain in forest extent and its associated driver. Mangrove loss as a consequence of human activities was observed across their entire range. Between 1996-2010 12% of the 1168 1°x1° radar mosaic tiles examined contained evidence of mangrove loss, as a consequence of anthropogenic degradation, with this increasing to 38% when combined with evidence of anthropogenic activity prior to 1996. The greatest proportion of loss was observed in Southeast Asia, whereby approximately 50% of the tiles in the region contained evidence of mangrove loss, corresponding to 18.4% of the global mangrove forest tiles. Southeast Asia contained the greatest proportion (33.8%) of global mangrove forest. The primary driver of anthropogenic mangrove loss was found to be the conversion of mangrove to aquaculture/agriculture, although substantial advance of mangroves was also evident in many regions.

  19. Microbial diversity in Brazilian mangrove sediments – a mini review

    PubMed Central

    Ghizelini, Angela Michelato; Mendonça-Hagler, Leda Cristina Santana; Macrae, Andrew

    2012-01-01

    The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems. PMID:24031949

  20. Mangroves of Kiribati - A Priceless Resource Needs Protection

    Treesearch

    James Denny Ward

    1998-01-01

    Mangrove forests grow naturally along the ocean and lagoons on the islands of Kiribati. For centuries mangroves have provided wood for fuel, posts, poles, boats, houses, fences, walls, and furniture, and have been used to stake fish traps, to cultivate seaweed, and to dye and preserve canoe sails and clothing. Mangrove leaves and flowers are used in garlands and leis...

  1. Factors regulating carbon sinks in mangrove ecosystems.

    PubMed

    Li, Shi-Bo; Chen, Po-Hung; Huang, Jih-Sheng; Hsueh, Mei-Li; Hsieh, Li-Yung; Lee, Chen-Lu; Lin, Hsing-Juh

    2018-05-23

    Mangroves are recognized as one of the richest carbon storage systems. However, the factors regulating carbon sinks in mangrove ecosystems are still unclear, particularly in the subtropical mangroves. The biomass, production, litterfall, detrital export and decomposition of the dominant mangrove vegetation in subtropical (Kandelia obovata) and tropical (Avicennia marina) Taiwan were quantified from October 2011 to July 2014 to construct the carbon budgets. Despite the different tree species, a principal component analysis revealed the site or environmental conditions had a greater influence than the tree species on the carbon processes. For both species, the net production (NP) rates ranged from 10.86 to 27.64 Mg C ha -1  year -1 and were higher than the global average rate due to the high tree density. While most of the litterfall remained on the ground, a high percentage (72%-91%) of the ground litter decomposed within 1 year and fluxed out of the mangroves. However, human activities might cause a carbon flux into the mangroves and a lower NP rate. The rates of the organic carbon export and soil heterotrophic respiration were greater than the global mean values and those at other locations. Only a small percentage (3%-12%) of the NP was stored in the sediment. The carbon burial rates were much lower than the global average rate due to their faster decomposition, indicating that decomposition played a critical role in determining the burial rate in the sediment. The summation of the organic and inorganic carbon fluxes and soil heterotrophic respiration well exceeded the amount of litter decomposition, indicating an additional source of organic carbon that was unaccounted for by decomposition in the sediment. Sediment-stable isotope analyses further suggest that the trapping of organic matter from upstream rivers or adjacent waters contributed more to the mangrove carbon sinks than the actual production of the mangrove trees. © 2018 John Wiley & Sons Ltd.

  2. On the halophytic nature of mangroves

    USGS Publications Warehouse

    Krauss, Ken W.; Ball, Marilyn C.

    2013-01-01

    Scientists have discussed the halophytic nature of intertidal plants for decades, and have generally suggested that inherent differentiation of an obligate halophyte from a facultative halophyte relates strongly to whether the plant can survive in fresh water, and not much else. In this mini-review, we provide additional insight to support the pervasive notion that mangroves as a group are truly facultative halophytes, and thus add discourse to the alternate view that mangroves have an obligate salinity requirement. Indeed, growth and physiological optima are realized at moderate salinity concentrations in mangroves, but we maintain the notion that current evidence suggests that survival is not dependent upon a physiological requirement for salt.

  3. Are mangroves in arid environments isolated systems? Life-history and evidence of dietary contribution from inwelling in a mangrove-resident shrimp species

    NASA Astrophysics Data System (ADS)

    Al-Maslamani, I.; Walton, M. E. M.; Kennedy, H. A.; Al-Mohannadi, M.; Le Vay, L.

    2013-06-01

    The Arabian Gulf represents one of the more northerly extremes of mangrove distribution in the Indo-Pacific, and is populated only by Avicennia marina, due to its tolerance of high salinity and wide temperature extremes. Recent studies suggest that in the arid coastal environment of the western Arabian Gulf, export of carbon and nitrogen from mangroves to adjacent habitats may be limited, though it is not clear if this is due to low productivity or physical factors such as the lack of freshwater flow and the tidal regime. Although seagrass and macroalgal habitats are relatively much more dominant by area, with only small pockets of mangrove around the edges of embayments, it is not evident if inwelling from these habitats support mangrove fauna. Year-round sampling in mangroves at Al-Khor, Qatar, indicates that Palaemon khori, an endemic shrimp species, is strongly associated with mangroves throughout its post-settlement life cycle, from recruitment as small 9-10 mm juveniles through to mating and egg production. Rapid post-recruitment growth (k = 1.8, L∞ = 42 mm for females, k = 1.5, L∞ = 35 mm for male) means that most individuals reached adult size in the first few months after settlement, with reproduction occurring in the following spring. As might be expected from year-round residence in the mangrove, dual 13C and 15N isotope analysis indicated a strong contribution of mangroves to shrimp tissue growth (Mean and 95% confidence range, 37% and 27-48%), but with a weaker significant contribution from particulate organic matter (20% and 1-37%), mangrove epiphytes (16% and 2-33%) and seagrasses (9% and 0.2-18%). Other primary producers contribute the remaining 18% to shrimp nutrition but the 95% confidence ranges include zero, suggesting possibly non-significant roles in supporting the shrimp population. This dietary information supports the view that fauna resident within arid mangrove systems are mainly dependent on localised retention and cycling of

  4. Mangrove sedimentation and response to relative sea-level rise

    USGS Publications Warehouse

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  5. Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa

    PubMed Central

    Ellison, Joanna C.; Zouh, Isabella

    2012-01-01

    Intertidal mangrove ecosystems are sensitive to climate change impacts, particularly to associated relative sea level rise. Human stressors and low tidal range add to vulnerability, both characteristics of the Doula Estuary, Cameroon. To investigate vulnerability, spatial techniques were combined with ground surveys to map distributions of mangrove zones, and compare with historical spatial records to quantify change over the last few decades. Low technology techniques were used to establish the tidal range and relative elevation of the mapped mangrove area. Stratigraphic coring and palaeobiological reconstruction were used to show the longer term biological history of mangroves and net sedimentation rate, and oral history surveys of local communities were used to provide evidence of recent change and identify possible causes. Results showed that the seaward edge of mangroves had over two thirds of the shoreline experienced dieback at up to 3 m per year over the last three decades, and an offshore mangrove island had suffered 89% loss. Results also showed low net sedimentation rates under seaward edge mangroves, and restricted intertidal elevation habitats of all mangroves, and Avicennia and Laguncularia in particular. To reduce vulnerability, adaptation planning can be improved by reducing the non-climate stressors on the mangrove area, particularly those resulting from human impacts. Other priorities for adaptation planning in mangrove areas that are located in such low tidal range regions are to plan inland migration areas and strategic protected areas for mangroves, and to undertake management activities that enhance accretion within the mangroves. PMID:24832511

  6. Regulation of water balance in mangroves

    PubMed Central

    Reef, Ruth; Lovelock, Catherine E.

    2015-01-01

    Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. PMID:25157072

  7. National Level Assessment of Mangrove Forest Cover in Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.

    2011-09-01

    Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas

  8. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    NASA Astrophysics Data System (ADS)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (p<0.01), a significant increment in temperature for both humid mangrove's categories (p<0.001), and a significant decrease in precipitation for ARsw (p<0.001). All mangrove categories showed higher greenness values during winter; which is likely driven by temperature with a lag of -3 to -5 months (r2 > 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 < 0.21). Our results have implications for better understanding mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  9. Project Of Investigation About Growth Of Afforestation Mangrove In Thailand

    NASA Astrophysics Data System (ADS)

    Ibuki, R.

    2007-12-01

    At the mangrove which was played back artificially by intended afforestation it designates that related characteristic of growth circumstance and growth environment of the mangrove plant which is grown is evaluated as purpose of this study. Revival of the mangrove in Thailand with afforestation makes the ecosystem revive which consists simultaneously with the mangrove, makes the fishing industry profit at neighborhood possible, makes the life of the people of the locale rich. In addition, the mangrove carries out the role of the anti wave forest, the case of the Sumatra open sea earthquake makes the damage decrease by the tidal wave. The people of the locale re-have recognized concerning the inevitability of the mangrove. Difference has occurred in the amount of mangrove growth depending upon the growth place, the fact that these causes are investigated is something which urges the growth of the efficient mangrove at the time of future afforestation being active. In addition, also comparison of growth circumstance of the mangrove due to natural growth and the mangrove due to afforestation becomes the important research resource. Concretely, it measures growth circumstance (height of tree and diameter etc.) and also, growth environment (the amount of solar radiation, salinity density in substrate and tidal change etc.) and evaluate both correlations. As for evaluation of growth environment of the afforestation mangrove we should evaluate with central value. Because of that, there is a necessity which executes amount of growth measurement with statistical technique. Therefore, with the amount of growth measurement with lumbering, it is unsuitable to the measurement on this study. Regarding this subject of study, growth investigation of the group of trees is executed making use of non destructive physical amount (height of tree and diameter etc.) measurement. It measures at several dozen threes in plural afforestation area, evaluates the growth environment of each

  10. Rates and drivers of mangrove deforestation in Southeast Asia, 2000-2012.

    PubMed

    Richards, Daniel R; Friess, Daniel A

    2016-01-12

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation.

  11. Trace metal geochemistry in mangrove sediments and their transfer to mangrove plants (New Caledonia).

    PubMed

    Marchand, C; Fernandez, J-M; Moreton, B

    2016-08-15

    Because of their physico-chemical inherent properties, mangrove sediments may act as a sink for pollutants coming from catchments. The main objective of this study was to assess the distribution of some trace metals in the tissues of various mangrove plants developing downstream highly weathered ferralsols, taking into account metals partitioning in the sediment. In New Caledonia, mangroves act as a buffer between open-cast mines and the world's largest lagoon. As a result of the erosion of lateritic soils, Ni and Fe concentrations in the sediment were substantially higher than the world average. Whatever the mangrove stand and despite low bioaccumulation and translocations factors, Fe and Ni were also the most abundant metals in the different plant tissues. This low bioaccumulation may be explained by: i) the low availability of metals, which were mainly present in the form of oxides or sulfur minerals, and ii) the root systems acting as barriers towards the transfer of metals to the plant. Conversely, Cu and Zn metals had a greater mobility in the plant, and were characterized by high bioconcentration and translocation factors compared to the other metals. Cu and Zn were also more mobile in the sediment as a result of their association with organic matter. Whatever the metal, a strong decrease of trace metal stock was observed from the landside to the seaside of the mangrove, probably as a result of the increased reactivity of the sediment due to OM enrichment. This reactivity lead to higher dissolution of bearing phases, and thus to the export of dissolved trace metals trough the tidal action. Cu and Zn were the less concerned by the phenomenon probably as a result of higher plant uptake and their restitution to the sediment with litter fall in stands where tidal flushing is limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Corrosion of Steel in a Black Mangrove Environment

    DTIC Science & Technology

    1982-10-01

    neceaaary and Identify by block number) Black Mangrove Environment Chloride Salts Corrosion Iron- Tannin Complex Steel Tannic Acid Tropic Test Center...identified to be as follows: rain water falling through the mangrove canopy picks up salts and tannins from the black mangroves. The salts...attack steel, forming water-soluble ferric ions. The tannins react DD , JAN 73 •*/J EDITION OF » MOV 65 IS OBSOLETE UNCLASSIFIED SECURITY

  13. Distribution and dynamics of mangrove forests of South Asia.

    PubMed

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David

    2015-01-15

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and

  14. Evaluation of mangrove management through community-based silvofishery in North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Yani, P.; Hartini, K. S.

    2018-02-01

    Aquaculture expansion has been reported as the primary driver of mangrove loss and a significant cause of mangrove deforestation in North Sumatra, Indonesia. Development of silvofishery based on creating balance condition between conserving mangrove forest and offering better livelihood for local communities surrounding mangrove. The present study evaluates of mangrove management through community-based silvofishery in three villages, namely Paluh Manan, Paluh Kurau, and Lama, Hamparan Perak of Deli Serdang Regency, North Sumatra, Indonesia. Three communities used the same ecological type-silvofishery, characterized by planted mangrove surrounded aquaculture. Results showed that in the Paluh Manan village, planted mangrove and aquaculture in the ratio of 75:25 with planting distance of mangrove 50x50 cm, containing 2,500 trees/ha, resulted in US 36.2/month/ha of fish and shrimp farming. In the Paluh Kurau village, a mixture mangrove and aquaculture in an 84:16 ratio, planting distance of 1x1 m, consists of 1,600 trees/ha, US 23.8 of generating revenue from crab farming. Furthermore, in the third village, Lama village, consists of mangrove and aquaculture in the proportions 90:10, with planting spacing 2x2 m, composing 1,000 trees/ha, led to US 45.8/month/ha from fish, shrimp and crab farming. The present study suggested the mangrove management through community-based mangrove-friendly aquaculture.

  15. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    PubMed

    Adame, Maria Fernanda; Kauffman, J Boone; Medina, Israel; Gamboa, Julieta N; Torres, Olmo; Caamal, Juan P; Reza, Miriam; Herrera-Silveira, Jorge A

    2013-01-01

    Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  16. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.

    PubMed

    Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C

    2017-03-01

    Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired. © 2016 by the Ecological Society of America.

  17. Diagnosing the level of stress on a mangrove species (Laguncularia racemosa) contaminated with oil: A necessary step for monitoring mangrove ecosystems.

    PubMed

    Reinert, Fernanda; de Pinho, Camila Ferreira; Ferreira, Marcio Alves

    2016-12-15

    Monitoring the effects of pollution on mangrove vegetation is a challenge. A specific study using an oil spill simulation on mangrove species was conducted to address this challenge. We tested the effectiveness of the chlorophyll a fluorescence kinetics as a fast and robust method to diagnose the vitality of Laguncularia racemosa. We used L. racemosa plants contaminated with marine fuel oil in mangrove microcosm models. Several parameters of the JIP-test were capable of detecting the impairment of the photosynthetic function prior to the visual manifestation of symptoms in response to oil contamination. The results support the use of the chlorophyll fluorescence transient as a reliable, fast and easy to apply diagnostic method for evaluating oil-impacted mangroves. To the best of our knowledge, it is the first time that consistent data showing photosynthetic impairment in response to oil contamination is shown for a mangrove tree species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Chemical ecology of red mangroves, Rhizophora mangle, in the Hawaiian Islands

    USGS Publications Warehouse

    Fry, Brian; Cormier, Nicole

    2011-01-01

    The coastal red mangrove, Rhizophora mangle L., was introduced to the Hawaiian Islands from Florida 100 yr ago and has spread to cover many shallow intertidal shorelines that once were unvegetated mudflats. We used a field survey approach to test whether mangroves at the land-ocean interface could indicate watershed inputs, especially whether measurements of leaf chemistry could identify coasts with high nutrient inputs and high mangrove productivities. During 2001-2002, we sampled mangroves on dry leeward coasts of southern Moloka'i and O'ahu for 14 leaf variables including stable carbon and nitrogen isotopes (delta13C, delta15N), macronutrients (C, N, P), trace elements (B, Mn, Fe, Cu, Zn), and cations (Na, Mg, K, Ca). A new modeling approach using leaf Na, N, P, and delta13C indicated two times higher productivity for mangroves in urban versus rural settings, with rural mangroves more limited by low N and P nutrients and high-nutrient urban mangroves more limited by freshwater inputs and salt stress. Leaf chemistry also helped identify other aspects of mangrove dynamics: especially leaf delta15N values helped identify groundwater N inputs, and a combination of strongly correlated variables (C, N, P, B, Cu, Mg, K, Ca) tracked the mangrove growth response to nutrient loading. Overall, the chemical marker approach is an efficient way to survey watershed forcing of mangrove forest dynamics.

  19. A Comparison of the Macrofauna of Natural and Replanted Mangroves in Qatar

    NASA Astrophysics Data System (ADS)

    Al-Khayat, J. A.; Jones, D. A.

    1999-08-01

    The present investigation quantifies the biodiversity of the Brachyura and fish living within the natural mangrove Avicennia marina, salt marsh and replanted mangal, and compares relevant features of the abiotic and biotic environments of these habitats. Measurements of sediment organic matter, grain size, soil water pH and the moisture content indicate that the natural mangrove areas have lowest mean grain size, pH, and highest organic and moisture contents. Planted mangrove areas have a higher mean grain size and slightly higher pH, but lower organic and moisture contents. Differences occur between brachyurans in planted and natural mangrove areas, but the biodiversity was similar between salt marsh and natural mangrove areas. Nasima dotilliformis was the only crab which did not occur at all planted mangrove sites, while Serenella leachii was missing from natural mangrove. Juvenile fish species enter mangroves, using these as nursery grounds, and quantitative sampling indicates that mangrove areas, especially pneumatophores, form a special habitat for these small fish.

  20. Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves

    PubMed Central

    Pinto, Fernando N.; Egas, Conceição; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2010-01-01

    Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments. PMID:21124923

  1. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    PubMed

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA.

    PubMed

    Feller, Ilka C; Dangremond, Emily M; Devlin, Donna J; Lovelock, Catherine E; Proffitt, C Edward; Rodriguez, Wilfrid

    2015-11-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical, subtropical, and warm temperate coasts. Despite repeated demonstrations of their ecologic and economic value, multiple stressors including nutrient over-enrichment threaten these and other coastal wetlands globally. These ecosystems will be further stressed if tropical storm intensity and frequency increase in response to global climate changes. These stressors will likely interact, but the outcome of that interaction is uncertain. Here, we examined potential interaction between nutrient over-enrichment and the September 2004 hurricanes. Hurricanes Frances and Jeanne made landfall along Florida's Indian River Lagoon and caused extensive damage to a long-term fertilization experiment in a mangrove forest, which previously revealed that productivity was nitrogen (N) limited across the forest and, in particular, that N enrichment dramatically increased growth rates and aboveground biomass of stunted Avicennia germinans trees in the interior scrub zone. During the hurricanes, these trees experienced significant defoliation with three to four times greater reduction in leaf area index (LAI) than control trees. Over the long-term, the +N scrub trees took four years to recover compared to two years for controls. In the adjacent fringe and transition zones, LAI was reduced by > 70%, but with no differences based on zone or fertilization treatment. Despite continued delayed mortality for at least five years after the storms, LAI in the fringe and transition returned to pre-hurricane conditions in two years. Thus, nutrient over-enrichment of the coastal zone will increase the productivity of scrub mangroves, which dominate much of the mangrove landscape in Florida and the Caribbean; however, that benefit is offset by a decrease in their resistance and resilience to hurricane damage that has the potential to destabilize the system.

  3. Does 'you are what you eat' apply to mangrove grapsid crabs?

    PubMed

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using (13)C and (15)N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ(13)C and Δδ(15)N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ(13)C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2 ± 1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon

  4. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2013-10-01

    Marine ecosystems are experiencing unprecedentedly high degradation rates than any other ecosystem on the planet, which in some instances are up to four times that of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising of Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) imageries of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1 : 50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's Kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor had lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4% representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance

  5. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2014-05-01

    Marine ecosystems are experiencing unprecedented degradation rates higher than any other ecosystem on the planet, which in some instances are up to 4 times those of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) images of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1:50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4%, representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance to halt

  6. Regulation of water balance in mangroves.

    PubMed

    Reef, Ruth; Lovelock, Catherine E

    2015-02-01

    Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance. This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available. Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Mangroves enhance the biomass of coral reef fish communities in the Caribbean.

    PubMed

    Mumby, Peter J; Edwards, Alasdair J; Arias-González, J Ernesto; Lindeman, Kenyon C; Blackwell, Paul G; Gall, Angela; Gorczynska, Malgosia I; Harborne, Alastair R; Pescod, Claire L; Renken, Henk; Wabnitz, Colette C C; Llewellyn, Ghislane

    2004-02-05

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  8. Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.; Edwards, Alasdair J.; Ernesto Arias-González, J.; Lindeman, Kenyon C.; Blackwell, Paul G.; Gall, Angela; Gorczynska, Malgosia I.; Harborne, Alastair R.; Pescod, Claire L.; Renken, Henk; C. C. Wabnitz, Colette; Llewellyn, Ghislane

    2004-02-01

    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.

  9. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation

  10. Distribution and drivers of global mangrove forest change, 1996–2010

    PubMed Central

    Thomas, Nathan; Lucas, Richard; Bunting, Peter; Hardy, Andrew; Rosenqvist, Ake; Simard, Marc

    2017-01-01

    For the period 1996-2010, we provide the first indication of the drivers behind mangrove land cover and land use change across the (pan-)tropics using time-series Japanese Earth Resources Satellite (JERS-1) Synthetic Aperture Radar (SAR) and Advanced Land Observing Satellite (ALOS) Phased Array-type L-band SAR (PALSAR) data. Multi-temporal radar mosaics were manually interpreted for evidence of loss and gain in forest extent and its associated driver. Mangrove loss as a consequence of human activities was observed across their entire range. Between 1996-2010 12% of the 1168 1°x1° radar mosaic tiles examined contained evidence of mangrove loss, as a consequence of anthropogenic degradation, with this increasing to 38% when combined with evidence of anthropogenic activity prior to 1996. The greatest proportion of loss was observed in Southeast Asia, whereby approximately 50% of the tiles in the region contained evidence of mangrove loss, corresponding to 18.4% of the global mangrove forest tiles. Southeast Asia contained the greatest proportion (33.8%) of global mangrove forest. The primary driver of anthropogenic mangrove loss was found to be the conversion of mangrove to aquaculture/agriculture, although substantial advance of mangroves was also evident in many regions. PMID:28594908

  11. Mangrove species' responses to winter air temperature extremes in China

    USGS Publications Warehouse

    Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao

    2017-01-01

    The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological

  12. Mangroves protected villages and reduced death toll during Indian super cyclone

    PubMed Central

    Das, Saudamini; Vincent, Jeffrey R.

    2009-01-01

    Protection against coastal disasters has been identified as an important service of mangrove ecosystems. Empirical studies on this service have been criticized, however, for using small samples and inadequately controlling for confounding factors. We used data on several hundred villages to test the impact of mangroves on human deaths during a 1999 super cyclone that struck Orissa, India. We found that villages with wider mangroves between them and the coast experienced significantly fewer deaths than ones with narrower or no mangroves. This finding was robust to the inclusion of a wide range of other variables to our statistical model, including controls for the historical extent of mangroves. Although mangroves evidently saved fewer lives than an early warning issued by the government, the retention of remaining mangroves in Orissa is economically justified even without considering the many benefits they provide to human society besides storm-protection services. PMID:19380735

  13. Evaluation of the biodegradability of petroleum in microcosm systems by using mangrove sediments from Camamu Bay, Bahia, Brazil.

    PubMed

    Santos, A C F; Rezende, R P; Brendel, M; Souza, S S; Gonçalves, A C S; Dias, J C T

    2014-03-24

    We investigated the biodegradability of oil in mangrove sediment from Camamu Bay and measured its effect on the bacterial community. Microcosms of mangrove sediment were contaminated with 0.1, 0.5, 1, 2, and 5% (w/v) oil, and the microbial activity was compared to that in uncontaminated sediment. The evolution of CO2 and gas chromatography showed the mineralization of oil compounds, which could reach 100%. Bacterial diversity was determined by polymerase chain reaction using a set of primers for the V3 and V6-V8 regions of 16S rDNA. The band profile obtained by denaturing gradient gel electrophoresis of the amplicons that were obtained for the V3 region showed a negative correlation between band number and oil concentration, whereas that of the V6-V8 region showed a positive correlation between band numbers and oil concentration. The latter also gave similar results for microcosms that were contaminated with 2 and 5% oil. These results demonstrate the mangrove sediment's capacity to recover from oil contamination (in vitro) and suggest that native mangrove microorganisms contain enzymes necessary for the catabolism of oil.

  14. Conservation and restoration of mangroves: Global status, perspectives, and prognosis

    USGS Publications Warehouse

    Romañach, Stephanie; DeAngelis, Donald L.; Koh, Hock Lye; Li, Yuhong; Teh, Su Yean; Barizan, Raja Sulaiman Raja; Zhai, Lu

    2018-01-01

    Mangrove forests provide critical services around the globe to both human populations and the ecosystems they occupy. However, losses of mangrove habitat of more than 50% have been recorded in some parts of the world, and these losses are largely attributable to human activities. The importance of mangroves and the threats to their persistence have long been recognized, leading to actions taken locally, by national governments, and through international agreements for their protection. In this review, we explore the status of mangrove forests as well as efforts to protect them. We examine threats to the persistence of mangroves, consequences, and potential solutions for effective conservation. We present case studies from disparate regions of the world, showing that the integration of human livelihood needs in a manner that balances conservation goals can present solutions that could lead to long-term sustainability of mangrove forests throughout the world.

  15. Nitrate and Phosphate Contents on Sediments Related to The Density Levels of Mangrove Rhizophora Sp. in Mangrove Park Waters of Pekalongan, Central Java

    NASA Astrophysics Data System (ADS)

    Supriyantini, E.; Santoso, A.; Soenardjo, N.

    2018-02-01

    Mangrove Park waters area of Pekalongan City, Central Java, used to be an aquaculture field, now turning the function into a restoration-based mangrove area, and now it has undergone rehabilitation. The conditions may affect the distribution of nitrate and phosphate content. The objective of this study was to determine the content of nitrates and phosphates in sediments related to the density levels of mangrove Rhizophora sp. The method used in this research was a descriptive method, and sampling was done by purposive sampling method. Water and sediment sampling were conducted at three stations respectively, representing: no mangrove area but used as a residential and tourist area (station 1); less dense mangrove (station 2); and, the previously aquaculture field - or medium dense mangrove (station 3). The results showed that the content of nitrate and phosphate in the whole sediment showed a low fertility rate. Average nitrate content for station 1, station 2 and station 3 were 0.86 mg/100 g, 0.94 mg/100 g and 0.81 mg/100 g, respectively. The average phosphate content at each station were 1.14 mg/100 g, 0.04 mg/100 g and 0.05 mg/100 g, respectively. Except to the station 1 that was no vegetation anymore, the mangrove density levels at two other stations at study sites were relatively low to medium; at station 2 was 0.8 ind/10 m2 and at station 3 was 1.2 ind/10 m2. The role of nitrate and phosphate were for mangrove growth at the site.

  16. The degradation level of mangrove at Lhokseumawe, Aceh

    NASA Astrophysics Data System (ADS)

    Susiloningtyas, D.; Handayani, T.; Amalia, N.; Rachmawati, G. M.

    2017-07-01

    Aceh is one of the 34 provinces in Indonesia that has the highest population with a high level of hazard. This research was conducted in the Lhokseumawe district, East Coast of Aceh. This paper was based on secondary data of the analyzed SPOT-5 satellite imagery. This study examines the relationship between the level of damage to mangrove with the distribution of mangrove forests that have formed various spatial patterns and spread in the administrative area of Lhokseumawe, distribution of school and location of school. The method performed by descriptive and quantitative analysis method by Pearson product moment statistic method. The degradation level of mangrove is divided into 3 classes such as the good condition, moderate condition, and bad condition. The result is 14 % of the good condition of mangrove extent about more than 60,000 m2, 32 % are mangrove in moderate condition with an area of 30,000-60,000 m2 and 54 % of them are in bad condition about can be found within an area of than 30,000 m2.

  17. Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves

    PubMed Central

    Balke, Thorsten; Webb, Edward L; van den Elzen, Eva; Galli, Demis; Herman, Peter M J; Bouma, Tjeerd J

    2013-01-01

    1. Vegetated biogeomorphic systems (e.g. mangroves, salt marshes, dunes, riparian vegetation) have been intensively studied for the impact of the biota on sediment transport processes and the resulting self-organization of such landscapes. However, there is a lack of understanding of physical disturbance mechanisms that limit primary colonization in active sedimentary environments. 2. This study elucidates the effect of sediment disturbance during the seedling stage of pioneer vegetation, using mangroves as a model system. We performed mesocosm experiments that mimicked sediment disturbance as (i) accretion/burial of plants and (ii) erosion/excavation of plants of different magnitudes and temporal distribution in combination with water movement and inundation stress. 3. Cumulative sediment disturbance reduced seedling survival, with the faster-growing Avicennia alba showing less mortality than the slower-growing Sonneratia alba. The presence of the additional stressors (inundation and water movement) predominantly reduced the survival of S. alba. 4. Non-lethal accretion treatments increased shoot biomass of the seedlings, whereas non-lethal erosion treatments increased root biomass allocation. This morphological plasticity in combination with the abiotic disturbance history determined how much maximum erosion the seedlings were able to withstand. 5. Synthesis and applications. Seedling survival in dynamic sedimentary environments is determined by the frequency and magnitude of sediment accretion or erosion events, with non-lethal events causing feedbacks to seedling stability. Managers attempting restoration of mangroves, salt marshes, dunes and riparian vegetation should recognize sediment dynamics as a main bottleneck to primary colonization. The temporal distribution of erosion and accretion events has to be evaluated against the ability of the seedlings to outgrow or adjust to disturbances. Our results suggest that selecting fast-growing pioneer species and

  18. Analysis of extent and spatial pattern change of mangrove ecosystem in Mangunharjo Sub-district from 2007 to 2017

    NASA Astrophysics Data System (ADS)

    Nugraha, S. B.; Sidiq, W. A. B. N.; Setyowati, D. L.; Martuti, N. K. T.

    2018-03-01

    This study aims to determine changes in the extent and spatial patterns of mangrove ecosystems in Mangunharjo Sub-district from 2007, 2012 and 2017. The main data source of this research is Digital Globe Imagery of Mangunharjo Sub-district and surrounding area. The extent and spatial pattern of the mangrove ecosystem were obtained from visual interpretation result of the time series image and accuracy tested with field survey data, and then the analysis was conducted quantitatively and qualitatively. The result of time series data analysis shows that there is an enhancement of mangrove forest area in Mangunharjo Sub-district from 2007-2017. In the first five years (2007-2012), the area of mangrove ecosystem increased from 9.01 Ha to 19.78 Ha, and then in the next five years (2012-2017), it was increased significantly from 19.78 Ha to 68.47 Ha. If analyzed from the spatial pattern, in 2007-2012 the mangrove ecosystems were distributed extends along the river border ponds, while in 2012-2017 it already clustered to form a certain area located at the estuary. The increasing of mangrove area in Mangunharjo Sub-district is a result of hard work with various parties, from the government institution, individual and company which launched mangrove ecosystem recovery program especially in the coastal area of Semarang City. With the better mangrove ecosystem is expected to help restore and prevent the occurrence of environmental damage in the coastal area of Semarang City due to abrasion, seawater intrusion, and tidal flood.

  19. Carbon stocks and potential carbon storage in the mangrove forests of China.

    PubMed

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mangrove succession enriches the sediment microbial community in South China

    PubMed Central

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  1. Mangrove succession enriches the sediment microbial community in South China.

    PubMed

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  2. Movements and use of space by Mangrove Cuckoos (Coccyzus minor) in Florida, USA.

    PubMed

    Lloyd, John David

    2017-01-01

    I used radio-telemetry to track the movements of Mangrove Cuckoos ( Coccyzus minor ) captured in southwest Florida. Relatively little is known about the natural history of Mangrove Cuckoos, and my goal was to provide an initial description of how individuals use space, with a focus on the size and placement of home ranges. I captured and affixed VHF radio-transmitters to 32 individuals between 2012 and 2015, and obtained a sufficient number of relocations from 16 of them to estimate home-range boundaries and describe patterns of movement. Home-range area varied widely among individuals, but in general was roughly four times larger than expected based on the body size of Mangrove Cuckoos. The median core area (50% isopleth) of a home range was 42 ha (range: 9-91 ha), and the median overall home range (90% isopleth) was 128 ha (range: 28-319 ha). The median distance between estimated locations recorded on subsequent days was 298 m (95% CI [187 m-409 m]), but variation within and among individuals was substantial, and it was not uncommon to relocate individuals >1 km from their location on the previous day. Site fidelity by individual birds was low; although Mangrove Cuckoos were present year-round within the study area, I did not observe any individuals that remained on a single home range throughout the year. Although individual birds showed no evidence of avoiding anthropogenic edges, they did not incorporate developed areas into their daily movements and home ranges consisted almost entirely of mangrove forest. The persistence of the species in the study area depended on a network of conserved lands-mostly public, but some privately conserved land as well-because large patches of mangrove forest did not occur on tracts left unprotected from development.

  3. Developing community-based mangrove management through eco-tourism in North Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Bimantara, Y.; Siagian, M.; Wati, R.; Slamet, B.; Sulistiyono, N.; Nuryawan, A.; Leidonad, R.

    2018-03-01

    Mangrove forests in North Sumatera, Indonesia existed in the east coast of Sumatera Island and commonly thrived in Langkat, Deli Serdang, Batubara, Tanjung Balai, Asahan, Labuhanbatu until Serdang Bedagai. The present study describes the developing community-based mangrove management (CBMM) through eco-tourism in two locations, Lubuk Kertang (LK) of Langkat and Sei Nagalawan (SN) of Serdang Bedagai, North Sumatra, Indonesia. Mangrove ecosystem, coastal villagers and visitors, and related stakeholder were analyzed to present the potential of mangrove ecosystem, the ecological suitability, and the carrying capacity then continued with SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis. Results showed that mangrove diversity in LK consist of fifteen species which Rhizophora apiculata and Avicennia lanata dominated the area, where mangroves in SN found seven species dominated by R. apiculata and A. officinalis. Based on the suitability level of mangrove ecosystem for ecotourism development, LK and SN were categorized as suitable and conditionally suitable, respectively. The carrying capacity of mangrove ecotourism for LK and SN were 36 and 36 people/day respectively. SWOT analysis revealed that both locations of eco-tourism have a potential eco-tourism attraction, high mangrove biodiversity, possible human resources, and real people’s perception on the importance of mangrove conservation, and relatively easy access. The study present suggested that mangrove ecotourism is a sustainable form of land use, to contributing the environmental protection and providing socio-economic benefits to the local people through indirect values of the natural resources.

  4. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012

    PubMed Central

    Richards, Daniel R.; Friess, Daniel A.

    2016-01-01

    The mangrove forests of Southeast Asia are highly biodiverse and provide multiple ecosystem services upon which millions of people depend. Mangroves enhance fisheries and coastal protection, and store among the highest densities of carbon of any ecosystem globally. Mangrove forests have experienced extensive deforestation owing to global demand for commodities, and previous studies have identified the expansion of aquaculture as largely responsible. The proportional conversion of mangroves to different land use types has not been systematically quantified across Southeast Asia, however, particularly in recent years. In this study we apply a combined geographic information system and remote sensing method to quantify the key proximate drivers (i.e., replacement land uses) of mangrove deforestation in Southeast Asia between 2000 and 2012. Mangrove forests were lost at an average rate of 0.18% per year, which is lower than previously published estimates. In total, more than 100,000 ha of mangroves were removed during the study period, with aquaculture accounting for 30% of this total forest change. The rapid expansion of rice agriculture in Myanmar, and the sustained conversion of mangroves to oil palm plantations in Malaysia and Indonesia, are identified as additional increasing and under-recognized threats to mangrove ecosystems. Our study highlights frontiers of mangrove deforestation in the border states of Myanmar, on Borneo, and in Indonesian Papua. To implement policies that conserve mangrove forests across Southeast Asia, it is essential to consider the national and subnational variation in the land uses that follow deforestation. PMID:26712025

  5. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    NASA Astrophysics Data System (ADS)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  6. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    USGS Publications Warehouse

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  7. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  8. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data

    NASA Astrophysics Data System (ADS)

    Jia, Mingming; Zhang, Yuanzhi; Wang, Zongming; Song, Kaishan; Ren, Chunying

    2014-12-01

    Mangrove species compositions and distributions are essential for conservation and restoration efforts. In this study, hyperspectral data of EO-1 HYPERION sensor and high spatial resolution data of SPOT-5 sensor were used in Mai Po mangrove species mapping. Objected-oriented method was used in mangrove species classification processing. Firstly, mangrove objects were obtained via segmenting high spatial resolution data of SPOT-5. Then the objects were classified into different mangrove species based on the spectral differences of HYPERION image. The classification result showed that in the top canopy, Kandelia obovata and Avicennia marina dominated Mai Po Marshes Natural Reserve, with area of 196.8 ha and 110.8 ha, respectively, Acanthus ilicifolius and Aegiceras corniculatum were mixed together and living at the edge of channels with an area of 11.7 ha. Additionally, mangrove species shows clearly zonations and associations in the Mai Po Core Zone. The overall accuracy of our mangrove map was 88% and the Kappa confidence was 0.83, which indicated great potential of using hyperspectral and high-resolution data for distinguishing and mapping mangrove species.

  9. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    PubMed

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  10. Monitoring mangrove forests: Are we taking full advantage of technology?

    NASA Astrophysics Data System (ADS)

    Younes Cárdenas, Nicolás; Joyce, Karen E.; Maier, Stefan W.

    2017-12-01

    Mangrove forests grow in the estuaries of 124 tropical countries around the world. Because in-situ monitoring of mangroves is difficult and time-consuming, remote sensing technologies are commonly used to monitor these ecosystems. Landsat satellites have provided regular and systematic images of mangrove ecosystems for over 30 years, yet researchers often cite budget and infrastructure constraints to justify the underuse this resource. Since 2001, over 50 studies have used Landsat or ASTER imagery for mangrove monitoring, and most focus on the spatial extent of mangroves, rarely using more than five images. Even after the Landsat archive was made free for public use, few studies used more than five images, despite the clear advantages of using more images (e.g. lower signal-to-noise ratios). The main argument of this paper is that, with freely available imagery and high performance computing facilities around the world, it is up to researchers to acquire the necessary programming skills to use these resources. Programming skills allow researchers to automate repetitive and time-consuming tasks, such as image acquisition and processing, consequently reducing up to 60% of the time dedicated to these activities. These skills also help scientists to review and re-use algorithms, hence making mangrove research more agile. This paper contributes to the debate on why scientists need to learn to program, not only to challenge prevailing approaches to mangrove research, but also to expand the temporal and spatial extents that are commonly used for mangrove research.

  11. The Story of Mangrove Depletion: Using Socioscientific Cases to Promote Ocean Literacy

    ERIC Educational Resources Information Center

    Luther, Rachel A.; Tippins, Deborah J.; Bilbao, Purita P.; Tan, Andrew; Gelvezon, Ruth L.

    2013-01-01

    The value of mangroves and mangrove ecosystems has not always been recognized. In fact, mangroves were historically regarded largely as wastelands with little or no value. Over time, humans began to recognize the multiple ways in which they could be used, particularly through development, making the mangrove ecosystem vulnerable to destruction and…

  12. Long-Term Development of Planted Mangrove Wetlands in Florida

    DTIC Science & Technology

    2007-08-01

    ERDC TN-EMRRP-ER-06 August 2007 Long-Term Development of Planted Mangrove Wetlands in Florida by Deborah Shafer and Thomas Roberts PURPOSE: This...characteristics of planted and natural mangrove sites. BACKGROUND: Many areas in Florida have experienced losses of mangrove swamps over the last...of planted stock, measurements of percent cover, etc. over some period of time, usually 4-5 years or less (Mitsch and Wilson 1996). Performance

  13. A birds-eye view of biological connectivity in mangrove systems

    NASA Astrophysics Data System (ADS)

    Buelow, Christina; Sheaves, Marcus

    2015-01-01

    Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have

  14. Evaluating, predicting and mapping belowground carbon stores in Kenyan mangroves.

    PubMed

    Gress, Selena K; Huxham, Mark; Kairo, James G; Mugi, Lilian M; Briers, Robert A

    2017-01-01

    Despite covering only approximately 138 000 km 2 , mangroves are globally important carbon sinks with carbon density values three to four times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1 m of belowground carbon (BGC). Carbon stored at depths beyond 1 m, and the effects of mangrove species, location and environmental context on these stores, are poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (reduced emissions from deforestation and degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5 t C ha -1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5 m 2 resolution produced an estimate of 69.41 Mt C [±9.15 95% confidence interval (C.I.)] for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (±12.21 95% C.I.), an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country-level mangrove map provides a valuable tool for assessing carbon stocks and visualizing the distribution of BGC. Estimates at the 2.5 m 2 resolution provide sufficient details for highlighting and prioritizing areas for mangrove conservation and restoration. © 2016

  15. Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry

    NASA Astrophysics Data System (ADS)

    Ellison, Aaron M.

    2008-02-01

    This review addresses mangrove management activities in the broader context of the diversity of the mangrove benthos. Goals for mangrove ecosystem management include silviculture, aquaculture, or 'ecosystem services' such as coastal protection. Silvicultural management of mangroves generally neglects the benthos, although benthic invertebrates may affect tree establishment and growth, and community composition of benthic invertebrates may be a reliable indicator of the state of managed mangrove forests. Similarly, mangrove aquaculture focuses on particular species with little attention paid either to impacts on other trophic levels or to feedbacks with the trees. Exploitation of mangrove-associated prawns, crabs, and molluscs has a total economic value > US $4 billion per year. These aquaculture operations still rely on wild-collected stock; world-wide patterns of exploitation fit the well-known process of 'roving banditry', where mobile agents move from location to location, rapidly exploiting and depleting local resources before moving on to other, as-yet unprotected grounds. Collection of brood stock and fishing for other external inputs required by aquaculture (e.g., 'trash fish') removes intermediate trophic levels from marine food webs, may destabilize them, and lead to secondary extinctions of higher-order predators. Increased attention being paid to the role of mangroves in coastal protection following the 2004 Indian Ocean tsunami provides an opportunity to reassess the relative merits of management focused on short-term economic gains. Managing for ecosystem services may ultimately preserve benthic biodiversity in mangrove ecosystems.

  16. Content of polyphenol compound in mangrove and macroalga extracts

    NASA Astrophysics Data System (ADS)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  17. CO2 efflux from cleared mangrove peat.

    PubMed

    Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C

    2011-01-01

    CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2) efflux. CO(2) efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2) year(-1) in the first year to 3000 tonnes km(2) year(-1) after 20 years since clearing. Disturbing peat leads to short term increases in CO(2) efflux (27 umol m(-2) s(-1)), but this had returned to baseline levels within 2 days. Deforesting mangroves that grow on peat soils results in CO(2) emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  18. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    PubMed

    Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  19. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities

    PubMed Central

    Atkinson, Scott C.; Jupiter, Stacy D.; Adams, Vanessa M.; Ingram, J. Carter; Narayan, Siddharth; Klein, Carissa J.; Possingham, Hugh P.

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme. PMID:27008421

  20. Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2006-12-01

    Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.

  1. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern

    PubMed Central

    Polidoro, Beth A.; Carpenter, Kent E.; Collins, Lorna; Duke, Norman C.; Ellison, Aaron M.; Ellison, Joanna C.; Farnsworth, Elizabeth J.; Fernando, Edwino S.; Kathiresan, Kandasamy; Koedam, Nico E.; Livingstone, Suzanne R.; Miyagi, Toyohiko; Moore, Gregg E.; Ngoc Nam, Vien; Ong, Jin Eong; Primavera, Jurgenne H.; Salmo, Severino G.; Sanciangco, Jonnell C.; Sukardjo, Sukristijono; Wang, Yamin; Yong, Jean Wan Hong

    2010-01-01

    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced. PMID:20386710

  2. Mangroves of the Pacific Islands: research opportunities

    Treesearch

    Ariel E. Lugo

    1990-01-01

    The perception of mangroves by people in the Pacific islands and throughout all the world has changed in the past decades. Today, the economic, social, ecologic, and esthetic values of mangroves are well recognized. Past research on these ecosystems is responsible for the change in perception. However, a review of eleven subjects relevant to the management of Pacific...

  3. Global controls on carbon storage in mangrove soils

    NASA Astrophysics Data System (ADS)

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  4. The potential of Indonesian mangrove forests for global climate change mitigation

    NASA Astrophysics Data System (ADS)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  5. Mangrove removal in the belize cays: effects on mangrove-associated fish assemblages in the intertidal and subtidal

    USGS Publications Warehouse

    Taylor, D.S.; Reyier, E.A.; Davis, W.P.; McIvor, C.C.

    2007-01-01

    We investigated the effects of mangrove cutting on fish assemblages in Twin Cays, Belize, in two habitat types. We conducted visual censuses at two sites in adjoining undisturbed/disturbed (30%–70% of shoreline fringe removed) sub-tidal fringing Rhizophora mangle Linnaeus, 1753. Observers recorded significantly more species and individuals in undisturbed sites, especially among smaller, schooling species (e.g., atherinids, clupeids), where densities were up to 200 times greater in undisturbed habitat. Multivariate analyses showed distinct species assemblages between habitats at both sites. In addition, extensive trapping with wire minnow traps within the intertidal zone in both undisturbed and disturbed fringing and transition (landward) mangrove forests was conducted. Catch rates were low: 638 individuals from 24 species over 563 trap-nights. Trap data, however, indicated that mangrove disturbance had minimal effect on species composition in either forest type (fringe/transition). Different results from the two methods (and habitat types) may be explained by two factors: (1) a larger and more detectable species pool in the subtidal habitat, with visual "access" to all species, and (2) the selective nature of trapping. Our data indicate that even partial clearing of shoreline and more landward mangroves can have a significant impact on local fish assemblages.

  6. Holocene palaeoenvironmental history of the Amazonian mangrove belt

    NASA Astrophysics Data System (ADS)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão

    2012-11-01

    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  7. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan.

    PubMed

    Long, Jordan; Giri, Chandra; Primavera, Jurgenne; Trivedi, Mandar

    2016-08-30

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30m Landsat imagery and a supervised decision-tree classification. A time sequence of 250m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra; Primavera, Jurgene H.; Trivedi, Mandar

    2016-01-01

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30 m Landsat imagery and a supervised decision-tree classification. A time sequence of 250 m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18 months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons.

  9. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Angelim, Alysson L; Grangeiro, Thalles B; Melo, Vânia M M

    2013-11-15

    This study evaluated the potential of bacterial isolates from mangrove sediments to degrade hexadecane, an paraffin hydrocarbon that is a large constituent of diesel and automobile lubricants. From a total of 18 oil-degrading isolates obtained by an enrichment technique, four isolates showed a great potential to degrade hexadecane. The strain MSIC01, which was identified by 16S rRNA gene sequencing as Acinetobacter sp., showed the best performance in degrading this hydrocarbon, being capable of completely degrading 1% (v/v) hexadecane within 48 h without releasing biosurfactants. Its hydrophobic surface probably justifies its potential to degrade high concentrations of hexadecane. Thus, the sediments from the studied mangrove harbour bacterial communities that are able to use oil as a carbon source, which is a particularly interesting feature due to the risk of oil spills in coastal areas. Moreover, Acinetobacter sp. MSIC01 emerged as a promising candidate for applications in bioremediation of contaminated mangrove sediments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Production of litter and detritus related to the density of mangrove

    NASA Astrophysics Data System (ADS)

    Budi Mulya, Miswar; Arlen, HJ

    2018-03-01

    Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.

  11. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove.

    PubMed

    Sousa, Mariana M DE; Colpo, Karine D

    2017-01-01

    It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank) of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.

  12. Utilization of ALOS PALSAR-2 Data for Mangrove Detection Using OBIA Method Approach

    NASA Astrophysics Data System (ADS)

    Anggraini, N.; Julzarika, A.

    2017-12-01

    Mangroves have an important role for climate change mitigation. This is because mangroves have high carbon stock potential. The ability of mangroves to absorb carbon is very high and it is estimated that the mangrove carbon stock reaches 1023 Mg C. The current problem is the area of mangrove forest is decreasing due to land conversion. One technology that can be used to detect changes in the area of mangrove forest is by utilizing ALOS PALSAR-2 satellite imagery. The purpose of this research is to detect mangrove forest area from ALOS PALSAR-2 data by using object-based image analysis (OBIA) method. The location of the study is Taman Nasional Sembilang in Banyuasin Regency of South Sumatra. The data used are ALOS PALSAR-2 dualpolarization (HH and HV), recording year 2015. The calculation of mangrove forest area in Sembilang National Park has ∼ 82% accuracy. The results of this study can be used for various applications and mapping activities.

  13. Mangrove ecosystems under climate change

    USGS Publications Warehouse

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  14. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China

    Treesearch

    Hai Ren; Shuguang Jian; Hongfang Lu; Qianmei Zhang; Weijun Shen; Weidong Han; Zuoyun Yin; Qinfeng Guo

    2008-01-01

    To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical–chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species—Sonneratia apetala Buch.Ham—between plantations and natural...

  15. Does ‘You Are What You Eat’ Apply to Mangrove Grapsid Crabs?

    PubMed Central

    Bui, Thi Hong Hanh; Lee, Shing Yip

    2014-01-01

    In tropical mangroves, brachyuran crabs have been observed to consume high percentages of leaf litter production. However, questions concerning their ability to assimilate this low-quality food remain, as stable isotope analysis of C and N does not seem to support assimilation. Individuals of the common eastern Australian mangrove grapsid Parasesarma erythodactyla feeding on a mangrove leaf litter or mangrove+microphytobenthos diet developed a significantly higher hepatosomatic index than those with access to only sediment. Lipid biomarker analysis and feeding experiments using 13C and 15N-enriched mangrove leaf litter confirmed rapid assimilation of mangrove C and N by P. erythodactyla. Eight-week feeding experiments utilizing three food types (mangrove leaf litter, microphytobenthos and prawn muscle) established different food-specific trophic discrimination values (Δδ13C and Δδ15N) that are significantly different from those commonly applied to mixing model calculations. The mean Δδ13C(crab-mangrove) of +5.45‰ was close to the mean and median literature values for grapsid-mangrove pairs in 29 past studies (+5.2±1.8‰ and +5.6‰, respectively), suggesting that this large discrimination may generally be characteristic of detritivorous grapsid crabs. Solutions from the IsoConc mixing model using our determined trophic discrimination values suggest significantly higher and dominant contributions of mangrove C to the diet than those based on the global mean trophic discrimination values. Our results reaffirm the physiological capacity for and important mediating role of grapsid crabs in processing low-quality mangrove C in tropical estuaries, and caution against the use of global trophic discrimination values in stable isotope analysis of food-web data, especially those involving detritivores. While recent studies have questioned the trophic significance of mangrove detritus in coastal food chains, the contribution of this productive carbon source needs to

  16. Food web structure in exotic and native mangroves: A Hawaii-Puerto Rico comparison

    USGS Publications Warehouse

    Demopoulos, A.W.J.; Fry, B.; Smith, C.R.

    2007-01-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1??? for ?? 13C and 2-3??? for ?? 15N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet. Certain fauna, in particular tubificid oligochaetes, had ?? 13C values consistent with the consumption of mangrove leaves, but they were depleted in 15N, suggesting their primary nitrogen source was low in 15N, and was possibly N 2-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on non-mangrove sources, especially phytoplankton inputs. Mixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundant infaunal consumers, nematodes, in the most mature systems. ?? 2007 Springer-Verlag.

  17. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  18. Nutrient enrichment increases mortality of mangroves.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Martin, Katherine C; C Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  19. Ecological role and services of tropical mangrove ecosystems: a reassessment

    USGS Publications Warehouse

    Lee, Shing Yip; Primavera, Jurgene H.; Dahdouh-Guebas, Farid; McKee, Karen; Bosire, Jared O.; Cannicci, Stefano; Diele, Karen; Fromard, Francois; Koedam, Nico; Marchand, Cyril; Mendelssohn, Irving; Mukherjee, Nibedita; Record, Sydne

    2014-01-01

    Knowledge of thresholds, spatio-temporal scaling and variability due to geographic, biogeographic and socio-economic settings will improve the management of mangrove ecosystem services. Many drivers respond to global trends in climate change and local changes such as urbanization. While mangroves have traditionally been managed for subsistence, future governance models must involve partnerships between local custodians of mangroves and offsite beneficiaries of the services.

  20. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  1. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  2. Characterization of mangrove species using ALOS-2 PALSAR in Hai Phong city, Vietnam

    NASA Astrophysics Data System (ADS)

    Dat Pham, Tien; Yoshino, Kunihiko

    2016-06-01

    Hai Phong city is located in the Northern coast of Vietnam where the mangroves are distributed between zone I and zone II among the four mangrove zones in Vietnam. This city is vulnerable to rising sea levels associated with climate change and tropical cyclones, which are forecasted to become more severe due to the impact of climate change. In the past, mangrove forests in this city have decreased markedly because of over expansion of shrimp farming. Thus, identification of mangrove forests is important to monitor and support mangrove conservation and management in the coastal zone. The objectives of this research were to identify the locations of mangrove and characterize mangrove species in Hai Phong using HH and HV backscatters of the Advanced Land Observing Satellite 2 (ALOS-2) with enhanced Phased Array L-band Synthetic Aperture Radar (PALSAR). Image segmentation was used to identify the locations of mangrove forests. Moreover, Geographic Information System (GIS) was applied to update current status of mangrove species in 2015. The results showed that the means of HH and HV backscatter coefficients of K. obovata are lower than S. caseolaris. K. obovata has HH value around -13.9 dB until -10.3 dB and HV value around -20.6 dB until -16.2 dB. Higher HH values between about -14.9 dB and -6.8 dB and HV values between roughly -20.6 dB and -14.3 dB have observed by S. caseolaris. The total area of mangrove forest in Hai Phong in the year 2015 was around 4084 hectares, of which S. caseolaris occupied over 68% and mixed mangrove species was approximately 25.6%. This research indicates the potential for the use of L-band ALOS-2 PALSAR in characterizing mangrove forest species in the coastal zone.

  3. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize

    USGS Publications Warehouse

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.

  4. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China.

    PubMed

    Liu, Xiao; Liu, Yu; Xu, Jian-Rong; Ren, Ke-Jun; Meng, Xiang-Zhou

    2016-12-01

    Aquaculture in mangrove wetlands has been developed rapidly, causing various environmental problems (e.g., antibiotic residue). In the present study, the levels and distributions of a well-known class of antibiotics (fluoroquinolones; FQs), including norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR), were examined in sediment and mangrove plant (Aegiceras corniculatum) from a mangrove wetland in the Zhanjiang Mangrove National Nature Reserve, South China. NOR and CIP were detected in all sediment samples, with concentrations ranging from 4.3 to 64.2 ng/g and from 7.62 to 68.5 ng/g on a basis of dry weight (dw), respectively, whereas ENR was found with relatively lower frequency (<78%) and lower concentrations (<19.3 ng/g). Sediments in mangrove rhizosphere area contained considerably higher concentrations of all FQs (except for ENR). FQs were largely varied in mangrove plant tissues; NOR and ENR were not detected in leaf and root samples, respectively. CIP featured an increasing tendency from the root to the upper parts of plants, whereas a decreasing trend was found for NOR. Three bioconcentration factors (BCF s ) of FQs, including BCFs for roots (BCF r ), branches (BCF b ), and leaves (BCF l ) were calculated, and most of them exceeded 1. Especially for NOR, its BCF r can reach up to 9.9, indicating that Aegiceras corniculatum has a strong ability to accumulate FQs from sediment and/or surrounding environment. For NOR and CIP, strong positive relationships were observed between BCF r and concentrations in root, but no significant correlations were observed between BCF r and root lipid of mangrove plant. More studies are needed to investigate the uptake mechanism of antibiotics in mangrove plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spatial Analysis of Land Adjustment as a Rehabilitation Base of Mangrove in Indramayu Regency

    NASA Astrophysics Data System (ADS)

    Sodikin; Sitorus, S. R. P.; Prasetyo, L. B.; Kusmana, C.

    2018-02-01

    Indramayu Regency is the area that has the largest mangrove in West Java. According to the environment and forestry ministry of Indramayu district will be targeted to be the central area of mangrove Indonesia. Mangroves in the regency from the 1990s have experienced a significant decline caused by the conversion of mangrove land into ponds and settlements. To stop the mangrove decline that continues to occur, it is necessary to rehabilitate mangroves in the area. The rehabilitation of mangrove should be in the area suitable for mangrove growth and what kind of vegetation analysis is appropriate to plant the area, so the purpose of this research is to analyze the suitability of land for mangrove in Indramayu Regency. This research uses geographic information system with overlay technique, while the data used in this research is tidal map of sea water, salintas map, land ph map, soil texture map, sea level rise map, land use map, community participation level map, and Map of organic soil. Then overlay and adjusted to matrix environmental parameters for mangrove growth. Based on the results of the analysis is known that in Indramayu District there are 5 types of mangroves that fit among others Bruguera, Soneratia, Nypah, Rhizophora, and Avicennia. The area of each area is Bruguera with an area of 6260 ha, 2958 ha, nypah 1756 ha, Rhizophora 936, and Avicennia 433 ha.

  6. Mangrove Forests: a Tough System to Invade but an Easy one to Rehabilitate

    Treesearch

    ARIEL E. LUGO

    1998-01-01

    Mangrove forests are tough ecosystems to invade because few species can tolerate the hydrological and edaphic conditions that prevail in mangrove habitats. The small pantropical mangrove species pool is also the basis for asserting that mangrove forests are easy to rehabilitate, at least in terms of tree species composition. The high complexity of the animal and...

  7. High fragility of the soil organic C pools in mangrove forests.

    PubMed

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Santiso-Taboada, M J; Meléndez, W; Macías, F

    2017-06-15

    Mangrove forests play an important role in biogeochemical cycle of C, storing large amounts of organic carbon. However, these functions can be controlled by the high spatial heterogeneity of these intertidal environments. In this study were performed an intensive sampling characterizing mangrove soils under different type of vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. The soils were anoxic, with a pH~7; however other soil parameters varied widely (e.g., clay, organic carbon). Dead mangrove area showed a significant lower amounts of total organic carbon (TOC) (6.8±2.2%), in comparison to the well-preserved mangrove of Avicennia or Rhizophora (TOC=17-20%). Our results indicate that 56% of the TOC was lost within a period of 10years and we estimate that 11,219kgm -2 of CO 2 was emitted as a result of the mangrove death. These results represent an average emission rate of 11.2±19.17tCO 2 ha -1 y -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nutrient controls on biocomplexity of mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  9. Deforestation and reforestation analysis from land-use changes in North Sumatran Mangroves, 1990-2015

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sulistiyono, N.

    2018-02-01

    Mangrove forest plays a critical role in the context of climate change in tropical and subtropical regions. The present study analyzed the deforestation and reforestation from land-use and land-cover changes from 1990, 2000, 2009 and 2015 in North Sumatran mangrove forest, Indonesia. The land-use/land-cover consists of thirteen classes namely, primary mangrove forest, secondary mangrove forest, shrub, swamp shrub, swamp, settlement, paddy field, oil palm plantation, aquaculture, dry land farming, mixed dry land farming, mining, and barren land. Results showed that primary mangrove forests significantly decreased 61.21% from 1990 to 2015, mostly deforestation was derived from 1990 to 2000 to be secondary mangrove forest and swamp shrub. During 25 years observed, no reforestation was noted in the primary mangrove forest. Similarly, secondary mangrove forest had been degraded from 56,128.75 ha in 1990 to only 35,768.48 ha in 2015. Drivers of deforestation found in secondary mangrove forests were aquaculture (43.32%), barren land (32.56%), swamp shrub (10.88%), and oil palm plantation (5.17%). On the other hand, reforested activity was occurred only 701.83 ha from 1990 to 2015, while the nonforest use has been increased. These data are likely to contribute towards coastal management planning, conservation, and rehabilitation of degraded mangrove forests.

  10. Comparing Aedes vigilax Eggshell Densities in Saltmarsh and Mangrove Systems with Implications for Management.

    PubMed

    Dale, Pat; Knight, Jon; Griffin, Lachlan

    2014-12-12

    Aedes vigilax (Skuse), a nuisance and disease vector, is prolific in intertidal wetlands in Australia. Aedine mosquitoes oviposit directly onto substrate. The eggshells are relatively stable spatially and temporally, providing an estimate of mosquito larval production. The aims of the research were to compare, at a general level, oviposition in mangroves and saltmarshes, and to compare oviposition between different habitats within mangroves and saltmarshes. The results indicated that there were no significant differences between production in mangrove and saltmarsh overall. However, within each system there were significant differences between habitat classes, with mangrove hummocks being the most productive. All classes, except for fringing mangrove forests, produced sufficient densities of eggshells (>0.05/cc) to warrant concern. While mosquito production in mangroves is known, the significantly higher production rates in the mangrove hummock habitats had not been demonstrated. This warrants improved management strategies that both specifically target these parts of mangrove systems and, secondly, addresses the longer-term potential for mangrove hummock habitats developing in the future; such as, in response to sea level rise and mangrove encroachment into saltmarsh. A strategy to increase tidal flushing within the systems would improve water quality and mitigate adverse impacts while providing a source reduction outcome.

  11. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela.

    PubMed

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F

    2017-09-18

    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh < 200 mV), with a neutral pH and low concentration in toxic metals; nevertheless, they varied widely in the soil and its quality-defining parameters (e.g., clay contents, total organic carbon, Fe, Al, toxic trace metals). It is noteworthy that the mangroves presented a low Fe Pyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  12. Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves

    Treesearch

    Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam

    2016-01-01

    Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...

  13. Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones.

    PubMed

    Yang, Yuchen; Yang, Shuhuan; Li, Jianfang; Deng, Yunfei; Zhang, Zhang; Xu, Shaohua; Guo, Wuxia; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-08-14

    Acanthus is a unique genus consisting of both true mangrove and terrestrial species; thus, it represents an ideal system for studying the origin and adaptive evolution of mangrove plants to intertidal environments. However, little is known regarding the two respects of mangrove species in Acanthus. In this study, we sequenced the transcriptomes of the pooled roots and leaves tissues for a mangrove species, Acanthus ilicifolius, and its terrestrial congener, A. leucostachyus, to illustrate the origin of the mangrove species in this genus and their adaptive evolution to harsh habitats. We obtained 73,039 and 69,580 contigs with N50 values of 741 and 1557 bp for A. ilicifolius and A. leucostachyus, respectively. Phylogenetic analyses based on four nuclear segments and three chloroplast fragments revealed that mangroves and terrestrial species in Acanthus fell into different clades, indicating a single origin of the mangrove species in Acanthus. Based on 6634 orthologs, A. ilicifolius and A. leucostachyus were found to be highly divergent, with a peak of synonymous substitution rate (Ks) distribution of 0.145 and an estimated divergence time of approximately 16.8 million years ago (MYA). The transgression in the Early to Middle Miocene may be the major reason for the entry of the mangrove lineage of Acanthus into intertidal environments. Gene ontology (GO) classifications of the full transcriptomes did not show any apparent differences between A. ilicifolius and A. leucostachyus, suggesting the absence of gene components specific to the mangrove transcriptomes. A total of 99 genes in A. ilicifolius were identified with signals of positive selection. Twenty-three of the 99 positively selected genes (PSGs) were found to be involved in salt, heat and ultraviolet stress tolerance, seed germination and embryo development under periodic inundation. These stress-tolerance related PSGs may be crucial for the adaptation of the mangrove species in this genus to stressful marine

  14. Ecosystem development after mangrove wetland creation: plant-soil change across a 20-year chronosequence

    USGS Publications Warehouse

    Osland, Michael J.; Spivak, Amanda C.; Nestlerode, Janet A.; Lessmann, Jeannine M.; Almario, Alejandro E.; Heitmuller, Paul T.; Russell, Marc J.; Krauss, Ken W.; Alvarez, Federico; Dantin, Darrin D.; Harvey, James E.; From, Andrew S.; Cormier, Nicole; Stagg, Camille L.

    2012-01-01

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10-30 cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0-10 cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.

  15. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam)

    NASA Astrophysics Data System (ADS)

    Koné, Y. J.-M.; Borges, A. V.

    2008-04-01

    Dissolved inorganic carbon (DIC) and ancillary data were obtained during the dry and rainy seasons in the waters surrounding two 10-year-old forested mangrove sites (Tam Giang and Kiên Vàng) located in the Ca Mau Province (South-West Vietnam). During both seasons, the spatial variations of partial pressure of CO 2 (pCO 2) were marked, with values ranging from 704 ppm to 11481 ppm during the dry season, and from 1209 ppm to 8136 ppm during the rainy season. During both seasons, DIC, pCO 2, total alkalinity (TAlk) and oxygen saturation levels (%O 2) were correlated with salinity in the mangrove creeks suggesting that a combination of lower water volume and longer residence time (leading to an increase in salinity due to evaporation) enhanced the enrichment in DIC, pCO 2 and TAlk, and an impoverishment in O 2. The low O 2 and high DIC and pCO 2 values suggest that heterotrophic processes in the water column and sediments controlled these variables. The latter processes were meaningful since the high DIC and TAlk values in the creek waters were related to some extent to the influx of pore waters, consistent with previous observations. This was confirmed by the stochiometric relationship between TAlk and DIC that shows that anaerobic processes control these variables, although this approach did not allow identifying unambiguously the dominant diagenetic carbon degradation pathway. During the rainy season, dilution led to significant decreases of salinity, TAlk and DIC in both mangrove creeks and adjacent main channels. In the Kiên Vàng mangrove creeks a distinct increase of pCO 2 and decrease of %O 2 were observed. The increase of TSM suggested enhanced inputs of organic matter probably from land surrounding the mangrove creeks, that could have led to higher benthic and water column heterotrophy. However, the flushing of water enriched in dissolved CO 2 originating from soil respiration and impoverished in O 2 could also have explained to some extent the patterns

  16. A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010

    USGS Publications Warehouse

    Long, Jordan; Napton, Darrell; Giri, Chandra; Graesser, Jordan

    2014-01-01

    Information on the present condition and spatiotemporal dynamics of mangrove forests is needed for land-change studies and integrated natural resources planning and management. Although several national mangrove estimates for the Philippines exist, information is unavailable at sufficient spatial and thematic detail for change analysis. Historical and contemporary mangrove distribution maps of the Philippines for 1990 and 2010 were prepared at nominal 30-m spatial resolution using Landsat satellite data. Image classification was performed using a supervised decision tree classification approach. Additionally, decadal land-cover change maps from 1990 to 2010 were prepared to depict changes in mangrove area. Total mangrove area decreased 10.5% from 1990 to 2010. Comparison of estimates produced from this study with selected historical mangrove area estimates revealed that total mangrove area decreased by approximately half (51.8%) from 1918 to 2010. This study provides the most current and reliable data regarding the Philippines mangrove area and spatial distribution and delineates where and when mangrove change has occurred in recent decades. The results from this study are useful for developing conservation strategies, biodiversity loss mitigation efforts, and future monitoring and analysis.

  17. Biodegradation of Enteromorpha prolifera by mangrove degrading micro-community with physical-chemical pretreatment.

    PubMed

    Zhao, Chao; Ruan, Lingwei

    2011-11-01

    The bacteria involved in the biodegradation of Enteromorpha prolifera (EP) are largely unknown, especially in offshore mangrove environments. In order to obtain the bacterial EP-degrading communities, sediments from a typical mangrove forest were sampled on the roots of mangrove in Dongzhai Port (Haikou, China). The sediments were enriched with crude EP powders as the sole carbon source. The bacterial composition of the resulting mangrove-degrading micro-community (MDMC), named D2-1, was analysed. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis and 16S rRNA library analysis, 18 bacteria belonging to nine genera were detected from this community. Among these detected bacteria, five major bands closely related to Bacillus, Marinobacter, Paenibacillus, Photobacterium, and Zhouia were determined. A novel two-step pretreatment for EP was proposed to lower the severity requirement of biodegraded pretreatment time. It consisted of a mild physical or chemical step (ultrasonic or H(2)O(2)) and a subsequent biological treatment with community D2-1. The combined treatment led to significant increases in the EP degradation. After combined treatment, the net yields of total soluble sugars and reducing sugars increased. The combined pretreatment of H(2)O(2) (2%, 48 h) and MDMC (7 days) was more effective than the treatment of MDMC only for 15 days. It could remarkably shorten the residence time and reduce the losses of carbohydrates. © Springer-Verlag 2011

  18. Nature of POC transport in a mangrove ecosystem: A carbon stable isotopic study

    NASA Astrophysics Data System (ADS)

    Rezende, C. E.; Lacerda, L. D.; Ovall, A. R. C.; Silva, C. A. R.; Martinelli, L. A.

    1990-06-01

    The isotopic composition of particulate organic carbon (POC) was studied during five tidal cycles in a mangrove creek of Sepetiba Bay, Rio de Janeiro, Brazil. The results show that a mixture of organic carbon from mangrove and marine origins is always present in the creek. Mean mangrove contribution to the POC varied from 16% to 100% and was dependent on tidal amplitude. The results suggest that oceanic carbon can be an important component of carbon balance in mangrove ecosystems. Therefore, earlier carbon balance studies from mangroves which did not include measurements of carbon isotopic composition should be interpreted with care.

  19. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest.

    PubMed

    Ottoni, Júlia Ronzella; Cabral, Lucélia; de Sousa, Sanderson Tarciso Pereira; Júnior, Gileno Vieira Lacerda; Domingos, Daniela Ferreira; Soares Junior, Fábio Lino; da Silva, Mylenne Calciolari Pinheiro; Marcon, Joelma; Dias, Armando Cavalcante Franco; de Melo, Itamar Soares; de Souza, Anete Pereira; Andreote, Fernando Dini; de Oliveira, Valéria Maia

    2017-07-01

    Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.

  20. A Novel Multifunctional β-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove

    PubMed Central

    Soares, Fábio Lino; Marcon, Joelma; Khakhum, Nittaya; Cerdeira, Louise Teixeira; Domingos, Daniela Ferreira; Taketani, Rodrigo Gouvea; de Oliveira, Valéria Maia; Lima, André Oliveira de Souza

    2017-01-01

    The use of culture-independent approaches, such as metagenomics, provides complementary access to environmental microbial diversity. Mangrove environments represent a highly complex system with plenty of opportunities for finding singular functions. In this study we performed a functional screening of fosmid libraries obtained from an oil contaminated mangrove site, with the purpose of identifying clones expressing hydrolytic activities. A novel gene coding for a β-N-acetylhexosaminidase with 355 amino acids and 43KDa was retrieved and characterized. The translated sequence showed only 38% similarity to a β-N-acetylhexosaminidase gene in the genome of Veillonella sp. CAG:933, suggesting that it might constitute a novel enzyme. The enzyme was expressed, purified, and characterized for its enzymatic activity on carboxymethyl cellulose, p-Nitrophenyl-2acetamide-2deoxy-β-d-glucopyranoside, p-Nitrophenyl-2acetamide-2deoxy-β-d-galactopyranoside, and 4-Nitrophenyl β-d-glucopyranoside, presenting β-N-acetylglucosaminidase, β-glucosidase, and β-1,4-endoglucanase activities. The enzyme showed optimum activity at 30 °C and pH 5.5. The characterization of the putative novel β-N-acetylglucosaminidase enzyme reflects similarities to characteristics of the environment explored, which differs from milder conditions environments. This work exemplifies the application of cultivation-independent molecular techniques to the mangrove microbiome for obtaining a novel biotechnological product. PMID:28952541

  1. Estimating mangrove in Florida: trials monitoring rare ecosystems

    Treesearch

    Mark J. Brown

    2015-01-01

    Mangrove species are keystone components in coastal ecosystems and are the interface between forest land and sea. Yet, estimates of their area have varied widely. Forest Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically from those compiled...

  2. The Economic Value of Mangroves: A Meta-Analysis

    Treesearch

    Marwa Salem; D. Evan Mercer

    2012-01-01

    This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total...

  3. Restoration of mangrove plantations and colonisation by native species in Leizhou bay, South China

    USGS Publications Warehouse

    Ren, H.; Jian, S.; Lu, H.; Zhang, Q.; Shen, W.; Han, W.; Yin, Z.; Guo, Q.

    2008-01-01

    To examine the natural colonisation of native mangrove species into remediated exotic mangrove stands in Leizhou Bay, South China, we compared soil physical-chemical properties, community structure and recruitments of barren mangrove areas, native mangrove species plantations, and exotic mangrove species-Sonneratia apetala Buch.Ham-between plantations and natural forest. We found that severely degraded mangrove stands could not regenerate naturally without human intervention due to severely altered local environments, whereas some native species had been recruited into the 4-10 year S. apetala plantations. In the first 10 years, the exotic species S. apetala grew better than native species such as Rhizophora stylosa Griff and Kandelia candel (Linn.) Druce. The mangrove plantation gradually affected soil physical and chemical properties during its recovery. The exotic S. apetala was more competitive than native species and its plantation was able to restore soil organic matter in about 14 years. Thus, S. apetala can be considered as a pioneer species to improve degraded habitats to facilitate recolonisation by native mangrove species. However, removal to control proliferation may be needed at late stages to facilitate growth of native species. To ensure sustainability of mangroves in South China, the existing mangrove wetlands must be managed as an ecosystem, with long-term scientific monitoring program in place. ?? 2007 The Ecological Society of Japan.

  4. Mapping Mangrove Density from Rapideye Data in Central America

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2017-06-01

    Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.

  5. Evaluating shellfish gathering ( Lucina pectinata) in a tropical mangrove system

    NASA Astrophysics Data System (ADS)

    Rondinelli, S. F.; Barros, F.

    2010-10-01

    Fish resources are important sources of income and protein to traditional inhabitants of coastal zones. In Garapuá village, the shellfish Lucina pectinata is the main resource exploited in mangroves. This study tests whether if in less explored areas (far from the village) L. pectinata individuals have higher densities and greater lengths, and if there was a decrease in cpue's over the last years. Samples were taken monthly in two habitats (mangrove channels and mangrove roots) in six mangrove areas by random squares. The results indicated that closer areas showed significantly lower densities than areas far from the village. Densities were significantly higher in mangrove roots (quizangas) than at channels. There was a significant increase in monthly L. pectinata cpue, from 18.2 dz./shellfish gatherers/day in 2001 to 19.3 in 2007, showing that this stock does not seem to be overexploited. However, (i) a long-term monitoring of Garapuá shellfish gatherers to evaluate if the stock will support an increasing pressure and (ii) several manipulative experiments to better understand ecological processes are suggested.

  6. Monotoring of mangrove ecosystem in relation with exploration and production activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamsyah, C.; Dwistiadi, D.

    1996-11-01

    From Indonesia`s initial 13 million hectares of mangrove forests, presently only 2.6 million hectares remains which must be certainly protected. Mangrove swamps are of considerable ecological importance not only because of their use as spawning and feeding grounds for a many variety of fish and shrimps but also of economical importance and last but not least as coastal protection. In such a sensitive ecosystem, i.e. in the mangrove swamp area of Mahakam Delta in East Kalimantan, Indonesia, TOTAL Indonesie, an affiliate of the French oil company {open_quotes}TOTAL{close_quotes} and one of the production sharing contractors of PERTAMINA, the Indonesian owned statemore » oil company, has undertaken its E&P operations since 1974. Realizing the sensitivity of the mangrove area, TOTAL Indonesie has undertaken continuous monitoring of the environment as part of its Environmental Management System. This monitoring is very important not only to measure the impact to the mangrove ecosystem in particular due to TOTAL Indonesie activities but also as a feed back for the environmental management. Physicochemical and biological aspects of the environment are monitored and various measurements are taken covering: (1) Hydrology and hydrodynamics of the water streams i.e. the water quality, productivity and flow characteristic of the region (2) Sedimentation and biodegradation (3) The influence of accidental and chronic pollution mangrove ecosystem (3) Sensitivity of the mangroves. The above monitoring has led to the conclusion that after more than 20 years of operation, there has significant adverse impact to the mangrove ecosystem by the exploration and production activities of Indonesie.« less

  7. The protective service of mangrove ecosystems: A review of valuation methods.

    PubMed

    Barbier, Edward B

    2016-08-30

    Concern over the loss of mangrove ecosystems often focuses on their role in protecting coastal communities from storms that damage property and cause deaths and injury. With climate change, mangrove loss may also result in less protection against coastal storms as well as sea-level rise, saline intrusion and erosion. Past valuations of the storm protection benefit of mangroves have relied on the second-best replacement cost method, such as estimating this protective value with the cost of building human-made storm barriers. More reliable methods instead model the production of the protection service of mangroves and estimate its value in terms of reducing the expected damages or deaths avoided by coastal communities. This paper reviews recent methods of valuing the storm protection service of mangroves and their role in protecting coastal areas and communities of tropical developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mangrove canopy density analysis using Sentinel-2A imagery satellite data

    NASA Astrophysics Data System (ADS)

    Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.

    2017-06-01

    Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.

  9. Mapping discourses using Q methodology in Matang Mangrove Forest, Malaysia.

    PubMed

    Hugé, Jean; Vande Velde, Katherine; Benitez-Capistros, Francisco; Japay, Jan Harold; Satyanarayana, Behara; Nazrin Ishak, Mohammad; Quispe-Zuniga, Melissa; Mohd Lokman, Bin Husain; Sulong, Ibrahim; Koedam, Nico; Dahdouh-Guebas, Farid

    2016-12-01

    The sustainable management of natural resources requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts do manage natural resources in a particular way is needed. Focusing on mangroves, highly productive tropical intertidal forests, this study's first aim is to map the diversity of subjective viewpoints among a range of stakeholders on the management of Matang Mangrove Forest in peninsular Malaysia. Secondly, this study aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of mangroves in Malaysia and beyond. The use of the semi-quantitative Q methodology allowed us to identify three main discourses on mangrove management: i. the optimization discourse, stressing the need to improve the current overall satisfactory management regime; ii. the 'change for the better' discourse, which focuses on increasingly participatory management and on ecotourism; and iii. the conservative 'business as usual' discourse. The existence of common points of connection between the discourses and their respective supporters provides opportunities for modifications of mangrove management regimes. Acknowledging this diversity of viewpoints, reflecting how different stakeholders see and talk about mangrove management, highlights the need to develop pro-active and resilient natural resource management approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Changes in mangrove coverage in Culebra Bay, North Pacific of Costa Rica (1945-2010)].

    PubMed

    Benavides-Varela, Catalina; Samper-Villareal, Jimena; Cortés, Jorge

    2016-09-01

    Despite the economic and environmental services that mangroves provide, they continue to be threatened by overexploitation, pollution, and land use change. Costa Rica has mangrove areas on the Pacific and Caribbean coasts, and cover has been declining since the 1980s. However, data on mangrove coverage are not continually updated and are often based on inaccurate estimates. It is therefore necessary to assess the current extension and variation of the mangrove cover in recent years, to determine changes. The mangrove cover was analyzed in two mangrove forests located in Bahía Culebra, North Pacific: Iguanita and Playa Panamá. For this, aerial photographs and satellite imagery were used to study changes for a 65 year period (1945-2010). Spatio-temporal changes were found in mangroves coverage, and adjacent forests and areas without vegetation. Lower mangrove cover occurred during the 1970s (28.4 ha in Iguanita and 4.8 ha in Playa Panamá); but increased in recent years (38.9 ha in Iguanita and 12.0 ha in Panamá). Changes in forest cover by the Iguanita and Playa Panama mangroves were related to the history of land use around Bahía Culebra. Before 1980, there was extensive and intensive cattle ranching, increasing the deforestation rate; after that year, these practices were abandoned and secondary forest coverage increased until 2000. To ensure the adequate protection of mangroves, it is not only important to protect mangrove forests, but it is also necessary to establish buffer zones on their surroundings, to mitigate and/or reduce possible impacts.

  11. A Technique for Mapping Mangroves with Landsat TM Satellite Data and Geographic Information System

    NASA Astrophysics Data System (ADS)

    Long, Brian G.; Skewes, Timothy D.

    1996-09-01

    The mangroves in a 2845 km 2area in the Southern Gulf of Carpentaria, Australia, were mapped from Landsat TM satellite data. The mangroves were mapped by selecting 10 training set areas in dense mangrove (100% cover), and using the maximum and minimum training set values for green, red, near-infra-red (NIR) and NIR/red to map the remaining mangroves. The accuracy of the map was improved by using ecological information about mangroves—they are found in tidally inundated areas—to derive simple rules in a Geographic Information System, to subdivide the areas labelled ' mangrove ' from image processing of satellite data on the basis of nearness to water (next to water and not adjoining water), ground elevation [higher and lower than 10 m above mean sea level (MSL)] and distance from water (>2 and <2 km). Each zone was cross-checked with 1:50 000 panchromatic aerial photographs. Zones that were still mixed vegetation after applying these simple rules were further subdivided by eye. This process resulted in a map with zones identified as either 100% mangrove or 0% mangrove. The areas that were identified as mangrove were also subdivided on the basis of the three main river systems in the study area. The Norman, Bynoe and Flinders Rivers had 40·86, 10·09 and 5·42 km 2of mangroves, respectively. These areas combined with the 9·89 km 2of coastal mangrove to give a total of 66·25 km 2of mangrove in the study area.

  12. Distribution and dynamics of mangrove forests of South Asia

    USGS Publications Warehouse

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R. Mani; Qamer, Faisal M.; Pengra, Bruce; Thau, David

    2014-01-01

    Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem.

  13. Molecular Insights into Plant-Microbial Processes and Carbon Storage in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Romero, I. C.; Ziegler, S. E.; Fogel, M.; Jacobson, M.; Fuhrman, J. A.; Capone, D. G.

    2009-12-01

    Mangrove forests, in tropical and subtropical coastal zones, are among the most productive ecosystems, representing a significant global carbon sink. We report new molecular insights into the functional relationship among microorganisms, mangrove trees and sediment geochemistry. The interactions among these elements were studied in peat-based mangrove sediments (Twin Cays, Belize) subjected to a long-term fertilization experiment with N and P, providing an analog for eutrophication. The composition and δ13C of bacterial PLFA showed that bacteria and mangrove trees had similar nutrient limitation patterns (N in the fringe mangrove zone, P in the interior zone), and that fertilization with N or P can affect bacterial metabolic processes and bacterial carbon uptake (from diverse mangrove sources including leaf litter, live and dead roots). PCR amplified nifH genes showed a high diversity (26% nifH novel clones) and a remarkable spatial and temporal variability in N-fixing microbial populations in the rhizosphere, varying primarily with the abundance of dead roots, PO4-3 and H2S concentrations in natural and fertilized environments. Our results indicate that eutrophication of mangrove ecosystems has the potential to alter microbial organic matter remineralization and carbon release with important implications for the coastal carbon budget. In addition, we will present preliminary data from a new study exploring the modern calibration of carbon and hydrogen isotopes of plant leaf waxes as a proxy recorder of past environmental change in mangrove ecosystems.

  14. Designing a mangrove research and demonstration forest in the Rufiji Delta, Tanzania

    Treesearch

    Mwita M. Mangora; Mwanahija S. Shalli; Immaculate S. Semesi; Marco A. Njana; Emmanuel J. Mwainunu; Jared E. Otieno; Elias Ntibasubile; Henry C. Mallya; Kusaga Mukama; Matiko Wambura; Nurdin A. Chamuya; Carl C. Trettin; Christina E. Stringer

    2016-01-01

    Despite the growing body of literature on science and management of mangroves, there is a considerable knowledge gap and uncertainty at local levels regarding the carbon pool size, variability of carbon sequestration and carbon stocks within mangrove forests, mechanisms that control carbon emissions from degradation of mangrove forests, impacts of conversion to other...

  15. Modeling carbon dynamics in mangrove ecosystems in North America and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Trettin, C.; Dai, Z.; Birdsey, R.; Frolking, S. E.

    2016-12-01

    Assessing carbon (C) dynamics in mangroves is fundamental to understand their role in mitigating climate change as well as the myriad of ecosystems derived the wetland forest. A spatially-explicit process model, MCAT (Mangrove-Carbon-Assessment-Tool), was developed to estimate (1) C dynamics in mangrove ecosystems, including biomass, burial C, dissolved inorganic and organic C (DIC and DOC), particulate organic C (POC), and CH4 and soil CO2 fluxes, and (2) impacts of disturbances, including storms, fire, insects and harvesting, on C sequestration in mangrove ecosystems. MCAT was tested using observations from eight plots in Everglades National Park (ENP) in Florida of USA and the World Heritage site in Mexican Caribbean in Quintana Roo (QR). The model was applied for assessing C dynamics in mangrove forests with different eco-environmental conditions in Northern America and Eastern Africa. The metrics from the four model evaluation statistics, determination coefficient (R2=0.99), model performance efficiency (E=0.98), percent bias (PBIAS=1.06%), and the ratio of the root mean squared error to standard deviation (RRS=0.11) showed that the model performed well for assessing mangrove C at these plots with a high model performance efficiency. The simulated biomass for ENP and QR was in good agreement with observations although there are large differences in canopy stature among those plots, ranging from tall to dwarf mangroves. The simulated aboveground net primary productivity, burial C, DIC, DOC, POC and CH4 for the plot at ENP approximated the reported values. There are substantial differences in C sequestration and fluxes in mangroves to atmosphere and water place-to-place due to differences in ecological drivers. Climate and soils are key factors that impact C dynamics in mangrove ecosystems, including temperature and salinity, such that there are differences in C sequestration rates among these mangrove sites in southeastern USA, Mexican Caribbean and Zambezi

  16. Mangroves as alien species: the case of Hawaii

    Treesearch

    James A. Allen

    1998-01-01

    Prior to the early 1900s, there were no mangroves in the Hawaiian Archipelago. In 1902, Rhizophora mangle was introduced on the island of Molokai, primarily for the purpose of stabilizing coastal mud flats. This species is now well established in Hawaii, and is found on nearly all of the major islands. At least five other species of mangroves or...

  17. The mangrove's contribution to people: Interdisciplinary pilot study of the Can Gio Mangrove Biosphere Reserve in Viet Nam

    NASA Astrophysics Data System (ADS)

    Cormier-Salem, Marie-Christine; Van Trai, Nguyen; Burgos, Ariadna; Durand, Jean-Dominique; Bettarel, Yvan; Klein, Judith; Duc Huy, Hoang; Panfili, Jacques

    2017-10-01

    The main objective of this pilot study, conducted in June 2015 in the Can Gio Mangrove Biosphere Reserve (Can Gio MBR, Viet Nam), was to develop an interdisciplinary approach to assess some key services provided by reforested mangroves subject to external pressures and varying management policies. We focused on the abundance of viruses, bacteria, endo- and epi- and macrofauna and the diversity of crabs in the mangrove and the exploitation of its resources. The main social finding was that the local inhabitants are aware of the levels of protection of the different zones within the Can Gio MBR and respect them. The core and the buffer zones seem to present a similar ecological status. Genotyping showed a low level of crab diversity although there were many different morphotypes. In the future, we need to understand the stakeholders' general perception of the biodiversity and environment changes by developing an integrated, multi-scale approach.

  18. Mangroves as a protection from storm surges in a changing climate.

    PubMed

    Blankespoor, Brian; Dasgupta, Susmita; Lange, Glenn-Marie

    2017-05-01

    Adaptation to climate change includes addressing sea-level rise (SLR) and increased storm surges in many coastal areas. Mangroves can substantially reduce vulnerability of the adjacent coastal land from inundation but SLR poses a threat to the future of mangroves. This paper quantifies coastal protection services of mangroves for 42 developing countries in the current climate, and a future climate change scenario with a 1-m SLR and 10  % intensification of storms. Findings demonstrate that while SLR and increased storm intensity would increase storm surge areas, the greatest impact is from the expected loss of mangroves. Under current climate and mangrove coverage, 3.5 million people and GDP worth roughly US $400 million are at risk. In the future climate change scenario, vulnerable population and GDP at risk would increase by 103 and 233  %. The greatest risk is in East Asia, especially in Indonesia and the Philippines as well as Myanmar.

  19. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam).

    PubMed

    Grellier, Séraphine; Janeau, Jean-Louis; Dang Hoai, Nhon; Nguyen Thi Kim, Cuc; Le Thi Phuong, Quynh; Pham Thi Thu, Thao; Tran-Thi, Nhu-Trang; Marchand, Cyril

    2017-09-01

    Of the blue carbon sinks, mangroves have one of the highest organic matter (OM) storage capacities in their soil due to low mineralization processes resulting from waterlogging. However, mangroves are disappearing worldwide because of demographic increases. In addition to the loss of CO 2 fixation, mangrove clearing can strongly affect soil characteristics and C storage. The objectives of the present study were to quantify the evolution of soil quality, carbon stocks and carbon fluxes after mangrove clearing. Sediment cores to assess physico-chemical properties were collected and in situ CO 2 fluxes were measured at the soil-air interface in a mangrove of Northern Vietnam. We compared a Kandelia candel mangrove forest with a nearby zone that had been cleared two years before the study. Significant decrease of clay content and an increase in bulk density for the upper 35cm in the cleared zone were observed. Soil organic carbon (OC) content in the upper 35cm decreased by >65% two years after clearing. The quantity and the quality of the carbon changed, with lower carbon to nitrogen ratios, indicating a more decomposed OM, a higher content of dissolved organic carbon, and a higher content of inorganic carbon (three times higher). This highlights the efficiency of mineralization processes following clearing. Due to the rapid decrease in the soil carbon content, CO 2 fluxes at sediment interface were >50% lower in the cleared zone. Taking into account carbonate precipitation after OC mineralization, the mangrove soil lost ~10MgOCha -1 yr -1 mostly as CO 2 to the atmosphere and possibly as dissolved forms towards adjacent ecosystems. The impacts on the carbon cycle of mangrove clearing as shown by the switch from a C sink to a C source highlight the importance of maintaining these ecosystems, particularly in a context of climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Organic carbon burial in a mangrove forest, margin and intertidal mud flat

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Smoak, Joseph M.; Naidu, A. Sathy; Sanders, Luciana M.; Patchineelam, Sambasiva R.

    2010-12-01

    The flux of total organic carbon (TOC) to depositional facies (intertidal mud flat, margin and forest) was quantified for a tropical mangrove forest in Brazil. Results indicate that these mangrove margins and intertidal mudflats are sites of large TOC accumulation, almost four times greater than the global averages for mangrove forests. The TOC burial rates were determined from organic carbon content in sediment cores which were dated using 210Pb. Burial rates were calculated to be 1129, 949, and 353 (g m -2 yr -1), for the mud flat, margin and forest, respectively. Sediment accumulation rates (SAR) were estimated to be 7.3, 5.0 and 2.8 mm yr -1. Sediment characterization (δ 13C, δ 15N, TOC/TN and mud fraction) indicated a representative mangrove system with a record of consistent organic matter flux of up to 100 years. Because of substantial burial of organic carbon in mangrove ecosystems, their role in the global carbon budget must be considered. More importantly, as climate change influences temperature and sea level, mangrove ecosystems will respond to specific climatic conditions.

  1. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    USGS Publications Warehouse

    Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J.; Offenberg, Joachim; Dahdouh-Guebas, Farid

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that

  2. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    USGS Publications Warehouse

    Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  3. Evaluation of mangrove reforestation and the impact to socioeconomic-cultural of community in Lubuk Kertang village, North Sumatra

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Harahap, MA; Wati, R.; Slmaet, B.; Thoha, AS; Nuryawan, A.; Putri, LAP; Yusriani, E.

    2018-03-01

    Mangrove forests in North Sumatera existed in the east coast of Sumatera Island and are rapidly threatened due to anthropogenic activities such as conversion for aquaculture, oil palm plantation, filling and use of mangrove for urban development. The present study describes the current and first-year evaluation on mangrove restoration and its impact to socio economic-cultural of community in Lubuk Kertang village, Langkat, North Sumatra, Indonesia. The rehabilitation was carried on December 2015 using direct planting of 6,000 Rhizophora apiculata propagules and May 2016 using 5,000 R. apiculata seedlings. The evaluation parameters of mangrove reforestation consist of seedling diameter and height, leaf thickness and number, and seedling growth rate. Ninety-two of 1,124 households were surveyed using Slovin formula to obtain community perspective on the socio-economic-cultural impact of reforestation. Results show that the growth rate for current and first-year evaluation was 93 and 86 %, respectively. By contrast, the height, diameter, and some leaves seedlings planting were shown better than the performance of propagules planting. No change in the green foliage plant thickness between both farming methods. The reforestation affected 71.74, 55.43 and 39.13% of economic, social, and cultural of Lubuk Kertang community, respectively. The data is likely to provide valuable information for mangrove reforestation in North Sumatra.

  4. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean

    USGS Publications Warehouse

    McKee, K.L.; Rooth, J.E.; Feller, Ilka C.

    2007-01-01

    Plant communities along tropical coastlines are often affected by natural and human disturbances, but little is known about factors influencing recovery. We focused on mangrove forests, which are among the most threatened ecosystems globally, to examine how facilitation by herbaceous vegetation might improve forest restoration after disturbance. We specifically investigated whether recovery of mangrove forests in harsh environments is accelerated by nurse plants and whether the beneficial effects are species-specific. Quantification of standardized effects allowed comparisons across performance parameters and over time for: (1) net effect of each herbaceous species on mangrove survival and growth, (2) effects of pre- and post-establishment factors associated with each herbaceous species, and (3) need for artificial planting to enhance growth or survival of mangrove seedlings. Mangrove recruitment in a clear-cut forest in Belize was accelerated by the presence of Sesuvium portulacastrum (succulent forb) and Distichlis spicata (grass), two coastal species common throughout the Caribbean region. The net effect of herbaceous vegetation was positive, but the magnitude of effects on mangrove survival and growth differed by species. Because of differences in their vegetative structure and other features, species effects on mangroves also varied by mechanism: (1) trapping of dispersing propagules (both species), (2) structural support of the seedling (Distichlis), and/or (3) promotion of survival (Sesuvium) or growth (Distichlis) through amelioration of soil conditions (temperature, aeration). Artificial planting had a stronger positive effect on mangrove survival than did edaphic conditions, but planting enhanced mangrove growth more in Sesuvium than in Distichlis patches. Our study indicates that beneficial species might be selected based on features that provide multiple positive effects and that species comparisons may be improved using standardized effects. Our

  5. Water sources in mangroves in four hydrogeomorphic settings in Florida and Mexico

    Treesearch

    Christina Stringer; Mark Rains

    2016-01-01

    Mangroves are transitional environments, where fresh water from the terrestrial environments mix with seawater from the marine environment. The relative contributions of these sources vary and play a role in controlling the physical and chemical hydrological characteristics of mangroves and facilitate the exchange of mass, energy, and organisms between mangroves and...

  6. The vulnerability of Indo-Pacific mangrove forests to sea-level rise

    USGS Publications Warehouse

    Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-01-01

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  7. Global economic potential for reducing carbon dioxide emissions from mangrove loss.

    PubMed

    Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L

    2012-09-04

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs.

  8. The vulnerability of Indo-Pacific mangrove forests to sea-level rise.

    PubMed

    Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran

    2015-10-22

    Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.

  9. The microbiome of Brazilian mangrove sediments as revealed by metagenomics.

    PubMed

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

  10. The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics

    PubMed Central

    Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments. PMID:22737213

  11. Comparison of meiofaunal abundance in two mangrove wetlands in Tong'an Bay, Xiamen, China

    NASA Astrophysics Data System (ADS)

    Zhou, Xiping; Cai, Lizhe; Fu, Sujing

    2015-10-01

    To compare meiofaunal community in the two mangrove wetlands in Tong'an Bay, Xiamen, China, and probe the response of meiofauna to high organic matter, sampling was carried out in Fenglin and Xiang'an mangrove wetlands in the bay. The results showed that the Ne/Co ratio (nematode to benthic copepod) and organic matter in Fenglin mangrove wetland were higher than those in Xiang'an mangrove wetland. The meiofaunal abundance in Fenglin mangrove was all lower than that in Xiang'an mangrove wetland in summer, autumn and spring, while the meiofaunal abundance in Fenglin mangrove was higher than that in Xiang'an mangrove wetland in winter. Two-way ANOVA results showed that the meiofaunal abundance and nematode abundance were significantly different between regions, seasons and region×season. With all the results in the present study, we confirmed that the positive response of meiofaunal and nematode abundance were only detected for medium organic matter contents according to the Xiang'an wetland's level, and that the distribution of meiofaunal abundance would be influenced by sand content. Higher copepod abundance and lower N/C value usually suggest better environmental quality.

  12. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments.

    PubMed

    Guo, Wuxia; Wu, Haidan; Zhang, Zhang; Yang, Chao; Hu, Ling; Shi, Xianggang; Jian, Shuguang; Shi, Suhua; Huang, Yelin

    2017-01-01

    Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936-48,845 unigenes with N50 values of 982-1,185 bp and 61.42-69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya), suggesting that the transgression during the Paleocene-Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous-Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of Rhizophoraceae mangroves, which were

  13. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments

    PubMed Central

    Guo, Wuxia; Wu, Haidan; Zhang, Zhang; Yang, Chao; Hu, Ling; Shi, Xianggang; Jian, Shuguang; Shi, Suhua; Huang, Yelin

    2017-01-01

    Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya), suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of Rhizophoraceae mangroves, which

  14. Mangroves act as a small methane source: an investigation on 5 pathways of methane emissions from mangroves

    NASA Astrophysics Data System (ADS)

    Chen, H.; Peng, C.; Guan, W.; Liao, B.; Hu, J.

    2017-12-01

    The methane (CH4) source strength of mangroves is not well understood, especially for integrating all CH4 pathways. This study measured CH4 fluxes by five pathways (sediments, pneumatophores, water surface, leaves, and stems) from four typical mangrove forests in Changning River of Hainan Island, China, including Kandelia candel , Sonneratia apetala, Laguncularia racemosa and Bruguiera gymnoihiza-Bruguiera sexangula. The CH4 fluxes (mean ± SE) from sediments were 4.82 ± 1.46 mg CH4 m-2 h-1 for those without pneumatophores and 1.36 ± 0.17 mg CH4 m-2 h-1 for those with pneumatophores. Among the three communities with pneumatophores, S. apetala community had significantly greater emission rate than the other two. Pneumatophores in S. apetala were found to significantly decrease CH4 emission from sediments (P < 0.01), while those in B. gymnoihiza-B. sexangula significantly enhanced it (P < 0.05). The CH4 fluxes (mean ± SE) from waters were 3.48 ± 1.11 mg CH4 m-2 h-1, with the highest emission rate in the K. candel community with duck farming. Leaves of mangroves except for K. candel were a weak CH4 sink while stems a weak source. As a whole the 72 ha of mangroves in the Changning river basin emitted about 8.10 Gg CH4 yr-1 with a weighted emission rate of about 1.29 mg CH4 m-2 h-1, therefore only a small methane source to the atmosphere compared to other reported ones. Keywords: Greenhouse Gases; Biogeochemistry; Tropical ecosystems; Methane budget

  15. Temporal changes in physical, chemical and biological sediment parameters in a tropical estuary after mangrove deforestation

    NASA Astrophysics Data System (ADS)

    Ellegaard, Marianne; Nguyen, Ngoc Tuong Giang; Andersen, Thorbjørn Joest; Michelsen, Anders; Nguyen, Ngoc Lam; Doan, Nhu Hai; Kristensen, Erik; Weckström, Kaarina; Son, Tong Phuoc Hoang; Lund-Hansen, Lars Chresten

    2014-04-01

    Dated sediment cores taken near the head and mouth of a tropical estuary, Nha-Phu/Binh Cang, in south central Viet Nam were analyzed for changes over time in physical, chemical and biological proxies potentially influenced by removal of the mangrove forest lining the estuary. A time-series of satellite images was obtained, which showed that the depletion of the mangrove forest at the head of the estuary was relatively recent. Most of the area was converted into aquaculture ponds, mainly in the late 1990's. The sediment record showed a clear increase in sedimentation rate at the head of the estuary at the time of mangrove deforestation and a change in diatom assemblages in the core from the mouth of the estuary indicating an increase in the water column turbidity of the entire estuary at the time of the mangrove deforestation. The proportion of fine-grained sediment and the δ13C signal both increased with distance from the head of the estuary while the carbon content decreased. The nitrogen content and the δ15N signal were more or less constant throughout the estuary. The proportion of fine-grained material and the chemical proxies were more or less stable over time in the core from the mouth while they varied synchronously over time in the core from the head of the estuary. The sediment proxies combined show that mangrove deforestation had large effects on the estuary with regard to both the physical and chemical environment with implications for the biological functioning.

  16. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia.

    PubMed

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta ( Caloglossa ogasawaraensis , Caloglossa adhaerens , Caloglossa stipitata , Bostrychia anomala, and Hypnea sp.), Chlorophyta ( Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta ( Dictyota sp.). The biomass of macroalgae was not influenced ( p >0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm 2 ) and Station 2 (141.72 mg/cm 2 ), while the highest biomass was contributed by B. anomala (185.89 mg/cm 2 ) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.

  17. Temporal assessment of microbial communities in soils of two contrasting mangroves.

    PubMed

    Rigonato, Janaina; Kent, Angela D; Gumiere, Thiago; Branco, Luiz Henrique Zanini; Andreote, Fernando Dini; Fiore, Marli Fátima

    Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management.

    PubMed

    Bhomia, R K; MacKenzie, R A; Murdiyarso, D; Sasmito, S D; Purbopuspito, J

    2016-07-01

    Globally, mangrove forests represents only 0.7% of world's tropical forested area but are highly threatened due to susceptibility to climate change, sea level rise, and increasing pressures from human population growth in coastal regions. Our study was carried out in the Bhitarkanika Conservation Area (BCA), the second-largest mangrove area in eastern India. We assessed total ecosystem carbon (C) stocks at four land use types representing varying degree of disturbances. Ranked in order of increasing impacts, these sites included dense mangrove forests, scrub mangroves, restored/planted mangroves, and abandoned aquaculture ponds. These impacts include both natural and/or anthropogenic disturbances causing stress, degradation, and destruction of mangroves. Mean vegetation C stocks (including both above- and belowground pools; mean ± standard error) in aquaculture, planted, scrub, and dense mangroves were 0, 7 ± 4, 65 ± 11 and 100 ± 11 Mg C/ha, respectively. Average soil C pools for aquaculture, planted, scrub, and dense mangroves were 61 ± 8, 92 ± 20, 177 ± 14, and 134 ± 17 Mg C/ha, respectively. Mangrove soils constituted largest fraction of total ecosystem C stocks at all sampled sites (aquaculture [100%], planted [90%], scrub [72%], and dense mangrove [57%]). Within BCA, the four studied land use types covered an area of ~167 km 2 and the total ecosystem C stocks were 0.07 Tg C for aquaculture (~12 km 2 ), 0.25 Tg C for planted/ restored mangrove (~24 km 2 ), 2.29 teragrams (Tg) Tg C for scrub (~93 km 2 ), and 0.89 Tg C for dense mangroves (~38 km 2 ). Although BCA is protected under Indian wildlife protection and conservation laws, ~150 000 people inhabit this area and are directly or indirectly dependent on mangrove resources for sustenance. Estimates of C stocks of Bhitarkanika mangroves and recognition of their role as a C repository could provide an additional reason to support conservation and restoration of Bhitarkanika

  19. Status and distribution of mangrove forests of the world using earth observation satellite data

    USGS Publications Warehouse

    Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N.

    2011-01-01

    Aim Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive.Methods We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth-sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map 'true mangroves'.Results The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5?? N and 5?? S latitude.Main conclusions We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies. ?? 2010 Blackwell

  20. Determination of chloromethane and dichloromethane in a tropical terrestrial mangrove forest in Brazil by measurements and modelling

    NASA Astrophysics Data System (ADS)

    Kolusu, S. R.; Schlünzen, K. H.; Grawe, D.; Seifert, R.

    2018-01-01

    Chloromethane (CH3Cl) and dichloromethane (CH2Cl2) are known to have both natural and anthropogenic sources to the atmosphere. From recent studies it is known that tropical and sub tropical plants are primary sources of CH3Cl in the atmosphere. In order to quantify the biogenic emissions of CH3Cl and CH2Cl2 from mangroves, field measurement were conducted in a tropical mangrove forest on the coast of Brazil. To the best of our knowledge these field measurements were the first of its kind conducted in the tropical mangrove ecosystem of Braganca. A mesoscale atmospheric model, MEsoscale TRAnsport and fluid (Stream) model (METRAS), was used to simulate passive tracers concentrations and to study the dependency of concentrations on type of emission function and meteorology. Model simulated concentrations were normalized using the observed field data. With the help of the mesoscale model results and the observed data the mangrove emissions were estimated at the local scale. By using this bottom-up approach the global emissions of CH3Cl and CH2Cl2 from mangroves were quantified. The emission range obtained with different emission functions and different meteorology are 4-7 Gg yr-1 for CH3Cl and 1-2 Gg yr2 for CH2Cl2. Based on the present study the mangroves contribute 0.3 percent of CH2Cl2 and 0.2 percent of CH3Cl in the global emission budget. This study corroborates the study by Manley et al. (2007) which estimated that mangroves produce 0.3 percent of CH3Cl in the global emission budget. Although they contribute a small percentage in the global budget, their long lifetime enables them to contribute to the destruction of ozone in the stratosphere. From the detailed analyses of the model results it can be concluded that meteorology has a larger influence on the variability of concentrations than the temporal variability of the emission function.

  1. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    USGS Publications Warehouse

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical

  2. Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests

    NASA Astrophysics Data System (ADS)

    Mattone, Carlo; Sheaves, Marcus

    2017-10-01

    Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed

  3. Making predictions of mangrove deforestation: a comparison of two methods in Kenya.

    PubMed

    Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A

    2013-11-01

    Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.

  4. High salinity leads to accumulation of soil organic carbon in mangrove soil.

    PubMed

    Kida, Morimaru; Tomotsune, Mitsutoshi; Iimura, Yasuo; Kinjo, Kazutoshi; Ohtsuka, Toshiyuki; Fujitake, Nobuhide

    2017-06-01

    Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils. Copyright © 2017. Published by Elsevier Ltd.

  5. Behavior and space utilization of two common fishes within Caribbean mangroves: implications for the protective function of mangrove habitats

    NASA Astrophysics Data System (ADS)

    MacDonald, J. A.; Shahrestani, S.; Weis, J. S.

    2009-09-01

    Behaviors, activity budgets, and spatial locations of reef-associated schoolmaster snapper ( Lutjanus apodus) and non-reef-associated checkered puffer ( Sphoeroides testudineus) were cataloged in mangrove forests in Caribbean Honduras to see how and where they spent their time and whether this changed as they grew. For schoolmasters, swimming was the most common behavior, while checkered puffers spent the majority of their time resting. Both remained completely within (as opposed to outside) the mangrove roots and in the lower half of the water column most of the time. However, as the size of the fish increased there was a clear decrease in the time spent both within the root system and closer to the substrate; the larger fish spent more time higher up in the water column and outside the root system. This was observed in both the schoolmaster and the puffer; the schoolmaster subsequently moves to reefs while the puffer does not. Coupled with limited feeding, the results suggest a primarily protective function for mangroves.

  6. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment.

    PubMed

    Andrade, Luiza L; Leite, Deborah C A; Ferreira, Edir M; Ferreira, Lívia Q; Paula, Geraldo R; Maguire, Michael J; Hubert, Casey R J; Peixoto, Raquel S; Domingues, Regina M C P; Rosado, Alexandre S

    2012-08-30

    Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Mangrove sediment was sampled from 0-5, 15-20 and 35-40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0-5 cm) being greater than in both deeper sediment layers (15-20 and 35-40 cm), which were similar to each other.

  7. Ecosystem Development after Mangrove Wetland Creation: Plant-Soil Change across a 20-year Chronosequence

    EPA Science Inventory

    Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland loss. However, ecosystem development and functional equivalence in restored and created mangrove wetlands is poorly understood. We compared a 20-yr chrono...

  8. The state of the world’s mangroves in the 21st century under climate change

    USGS Publications Warehouse

    Feller, Ilka C.; Friess, Daniel A.; Krauss, Ken W.; Lewis, Roy R.

    2017-01-01

    Concerted mangrove research and rehabilitation efforts over the last several decades have prompted a better understanding of the important ecosystem attributes worthy of protection and a better conservation ethic toward mangrove wetlands globally. While mangroves continue to be degraded and lost in specific regions, conservation initiatives, rehabilitation efforts, natural regeneration, and climate range expansion have promoted gains in other areas, ultimately serving to curb the high mangrove habitat loss statistics from the doom and gloom of the 1980s. We highlight those trends in this article and introduce this special issue of Hydrobiologia dedicated to the important and recurring Mangrove and Macrobenthos Meeting. This collection of papers represents studies presented at the fourth such meeting (MMM4) held in St. Augustine, Florida, USA, on July 18–22, 2016. Our intent is to provide a balanced message about the global state of mangrove wetlands by describing recent reductions in net mangrove area losses and highlighting primary research studies presented at MMM4 through a collection of papers. These papers serve not only to highlight on-going global research advancements, but also provide an overview of the vast amount of data on mangrove ecosystem ecology, biology and rehabilitation that emphasizes the uniqueness of the mangrove community.

  9. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China.

    PubMed

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments.

  10. Bacterial Communities in the Rhizospheres of Three Mangrove Tree Species from Beilun Estuary, China

    PubMed Central

    Wu, Peng; Xiong, Xiaofei; Xu, Zhanzhou; Lu, Chuqian; Cheng, Hao; Lyu, Xiangli; Zhang, Jinghuai; He, Wei; Deng, Wei; Lyu, Yihua; Lou, Quansheng; Hong, Yiguo; Fang, Hongda

    2016-01-01

    The bacterial communities played important roles in the high productivity mangrove ecosystem. In this study, we investigated the vertical distributions of rhizosphere bacteria from three mangrove species (Bruguiera gymnorrhiza, Kandelia candel and Aegiceras corniculatum) in Beilun Estuary, China using high throughput DNA pyrosequencing of the 16S rRNA gene. Phylogenetic analysis showed that bacterial communities from mangrove rhizosphere sediments were dominated by Proteobacteria (mostly Deltaproteobacteria and Gammaproteobacteria), followed by Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. However, the ANOVA analysis on Shannon and Chao1 indices indicated that bacterial communities among sediments of the three mangrove species varied more strongly than the sampling depths. In addition, the PCA result demonstrated that the bacterial communities could be separated into three groups according to the mangrove species. Moreover, the dominated orders Rhodospirillales, GCA004 and envOPS12 were significantly different among sediments of the three mangrove species. The results of this study provided valuable information about the distribution feature of rhizosphere bacteria from Chinese mangrove plants and shed insights into biogeochemical transformations driven by bacteria in rhizosphere sediments. PMID:27695084

  11. Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats

    NASA Astrophysics Data System (ADS)

    Ridd, Peter V.; Sam, Renagi

    1996-11-01

    The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.

  12. Matching pollution with adaptive changes in mangrove plants by multivariate statistics. A case study, Rhizophora mangle from four neotropical mangroves in Brazil.

    PubMed

    Souza, Iara da Costa; Morozesk, Mariana; Duarte, Ian Drumond; Bonomo, Marina Marques; Rocha, Lívia Dorsch; Furlan, Larissa Maria; Arrivabene, Hiulana Pereira; Monferrán, Magdalena Victoria; Matsumoto, Silvia Tamie; Milanez, Camilla Rozindo Dias; Wunderlin, Daniel Alberto; Fernandes, Marisa Narciso

    2014-08-01

    Roots of mangrove trees have an important role in depurating water and sediments by retaining metals that may accumulate in different plant tissues, affecting physiological processes and anatomy. The present study aimed to evaluate adaptive changes in root of Rhizophora mangle in response to different levels of chemical elements (metals/metalloids) in interstitial water and sediments from four neotropical mangroves in Brazil. What sets this study apart from other studies is that we not only investigate adaptive modifications in R. mangle but also changes in environments where this plant grows, evaluating correspondence between physical, chemical and biological issues by a combined set of multivariate statistical methods (pattern recognition). Thus, we looked to match changes in the environment with adaptations in plants. Multivariate statistics highlighted that the lignified periderm and the air gaps are directly related to the environmental contamination. Current results provide new evidences of root anatomical strategies to deal with contaminated environments. Multivariate statistics greatly contributes to extrapolate results from complex data matrixes obtained when analyzing environmental issues, pointing out parameters involved in environmental changes and also evidencing the adaptive response of the exposed biota. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Research on the ecology and management of Micronesian mangroves

    Treesearch

    J.A. Allen

    1999-01-01

    Mangroves are a vitally important natural resource on the high islands of Micronesia. This importance is especially valid in the Federated States of Micronisa (FSM) and the Republic of Palau, where mangroves cover 10-15% of the total land area and are used heavily by islanders as sources of wood, crabs, fish, thatching material, and other products.

  14. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and

  15. Distribution and accumulation of mercury and copper in mangrove sediments in Shenzhen, the world's most rapid urbanized city.

    PubMed

    Li, Ruili; Xu, Hualin; Chai, Minwei; Qiu, Guo Yu

    2016-02-01

    To investigate the influence of mangrove forest on heavy metal accumulation and storage in intertidal sediments, core sediments from natural mangrove, restored mangrove, and adjacent mud flat spanning the intertidal zone along the south coastline of the most heavily urbanized Deep bay, Guangdong province, China were analyzed. The average concentrations of mercury (Hg) in surface sediments of natural mangrove and restored mangrove were 172 and 151 ng g(-1), whereas those of copper (Cu) were 75 and 50 μg g(-1), respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Shenzhen were at median to high levels, which is consistent with the fact that Shenzhen is in high exploitation and its mangrove suffer intensive impact from human activities. Hg and Cu concentration profiles indicated a higher metal accumulation in surface layers of sediments, in agreement with enrichment of organic matter contents. Maximum concentration, enrichment factors, and excess (background-deducted) concentration inventories of metals (Hg and Cu) were substantially different between environments, decreasing from natural mangrove sediments to restored mangrove sediments to mud flat. Furthermore, metal inputs to Futian mangrove decreased in the order natural mangrove > restored mangrove > mud flat, indicating that mangrove facilitated the accumulation and storage of Hg and Cu in sediment layers.

  16. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest

    NASA Astrophysics Data System (ADS)

    Tian, Jinyan; Wang, Le; Li, Xiaojuan; Gong, Huili; Shi, Chen; Zhong, Ruofei; Liu, Xiaomeng

    2017-09-01

    Unmanned Aerial Vehicle (UAV) remote sensing has opened the door to new sources of data to effectively characterize vegetation metrics at very high spatial resolution and at flexible revisit frequencies. Successful estimation of the leaf area index (LAI) in precision agriculture with a UAV image has been reported in several studies. However, in most forests, the challenges associated with the interference from a complex background and a variety of vegetation species have hindered research using UAV images. To the best of our knowledge, very few studies have mapped the forest LAI with a UAV image. In addition, the drawbacks and advantages of estimating the forest LAI with UAV and satellite images at high spatial resolution remain a knowledge gap in existing literature. Therefore, this paper aims to map LAI in a mangrove forest with a complex background and a variety of vegetation species using a UAV image and compare it with a WorldView-2 image (WV2). In this study, three representative NDVIs, average NDVI (AvNDVI), vegetated specific NDVI (VsNDVI), and scaled NDVI (ScNDVI), were acquired with UAV and WV2 to predict the plot level (10 × 10 m) LAI. The results showed that AvNDVI achieved the highest accuracy for WV2 (R2 = 0.778, RMSE = 0.424), whereas ScNDVI obtained the optimal accuracy for UAV (R2 = 0.817, RMSE = 0.423). In addition, an overall comparison results of the WV2 and UAV derived LAIs indicated that UAV obtained a better accuracy than WV2 in the plots that were covered with homogeneous mangrove species or in the low LAI plots, which was because UAV can effectively eliminate the influence from the background and the vegetation species owing to its high spatial resolution. However, WV2 obtained a slightly higher accuracy than UAV in the plots covered with a variety of mangrove species, which was because the UAV sensor provides a negative spectral response function(SRF) than WV2 in terms of the mangrove LAI estimation.

  17. Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate time frame for recovery.

    PubMed

    Mukherjee, Nibedita; Sutherland, William J; Khan, Md Nabiul I; Berger, Uta; Schmitz, Nele; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-06-01

    Mangroves are threatened worldwide, and their loss or degradation could impact functioning of the ecosystem. Our aim was to investigate three aspects of mangroves at a global scale: (1) their constituents (2) their indispensable ecological functions, and (3) the maintenance of their constituents and functions in degraded mangroves. We focused on answering two questions: "What is a mangrove ecosystem" and "How vulnerable are mangrove ecosystems to different impacts"? We invited 106 mangrove experts globally to participate in a survey based on the Delphi technique and provide inputs on the three aspects. The outputs from the Delphi technique for the third aspect, i.e. maintenance of constituents and functions were incorporated in a modeling approach to simulate the time frame for recovery. Presented here for the first time are the consensus definition of the mangrove ecosystem and the list of mangrove plant species. In this study, experts considered even monospecific (tree) stands to be a mangrove ecosystem as long as there was adequate tidal exchange, propagule dispersal, and faunal interactions. We provide a ranking of the important ecological functions, faunal groups, and impacts on mangroves. Degradation due to development was identified as having the largest impact on mangroves globally in terms of spatial scale, intensity, and time needed for restoration. The results indicate that mangroves are ecologically unique even though they may be species poor (from the vegetation perspective). The consensus list of mangrove species and the ranking of the mangrove ecological functions could be a useful tool for restoration and management of mangroves. While there is ample literature on the destruction of mangroves due to aquaculture in the past decade, this study clearly shows that more attention must go to avoiding and mitigating mangrove loss due to coastal development (such as building of roads, ports, or harbors).

  18. Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate time frame for recovery

    PubMed Central

    Mukherjee, Nibedita; Sutherland, William J; Khan, Md Nabiul I; Berger, Uta; Schmitz, Nele; Dahdouh-Guebas, Farid; Koedam, Nico

    2014-01-01

    Mangroves are threatened worldwide, and their loss or degradation could impact functioning of the ecosystem. Our aim was to investigate three aspects of mangroves at a global scale: (1) their constituents (2) their indispensable ecological functions, and (3) the maintenance of their constituents and functions in degraded mangroves. We focused on answering two questions: “What is a mangrove ecosystem” and “How vulnerable are mangrove ecosystems to different impacts”? We invited 106 mangrove experts globally to participate in a survey based on the Delphi technique and provide inputs on the three aspects. The outputs from the Delphi technique for the third aspect, i.e. maintenance of constituents and functions were incorporated in a modeling approach to simulate the time frame for recovery. Presented here for the first time are the consensus definition of the mangrove ecosystem and the list of mangrove plant species. In this study, experts considered even monospecific (tree) stands to be a mangrove ecosystem as long as there was adequate tidal exchange, propagule dispersal, and faunal interactions. We provide a ranking of the important ecological functions, faunal groups, and impacts on mangroves. Degradation due to development was identified as having the largest impact on mangroves globally in terms of spatial scale, intensity, and time needed for restoration. The results indicate that mangroves are ecologically unique even though they may be species poor (from the vegetation perspective). The consensus list of mangrove species and the ranking of the mangrove ecological functions could be a useful tool for restoration and management of mangroves. While there is ample literature on the destruction of mangroves due to aquaculture in the past decade, this study clearly shows that more attention must go to avoiding and mitigating mangrove loss due to coastal development (such as building of roads, ports, or harbors). PMID:25360265

  19. Organophosphorus flame retardants in mangrove sediments from the Pearl River Estuary, South China.

    PubMed

    Hu, Yong-Xia; Sun, Yu-Xin; Li, Xiao; Xu, Wei-Hai; Zhang, Ying; Luo, Xiao-Jun; Dai, Shou-Hui; Xu, Xiang-Rong; Mai, Bi-Xian

    2017-08-01

    Forty-eight surface sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate the distribution of organophosphorus flame retardants (OPFRs) and the relationship between OPFRs and microbial community structure determined by phospholipid fatty acid. Concentrations of ΣOPFRs in mangrove sediments of the PRE ranged from 13.2 to 377.1 ng g -1 dry weight. Levels of ΣOPFRs in mangrove sediments from Shenzhen and Guangzhou were significantly higher than those from Zhuhai, indicating that OPFRs were linked to industrialization and urbanization. Tris(chloropropyl)phosphate was the predominant profile of OPFRs in mangrove sediments from Shenzhen (38.9%) and Guangzhou (35.0%), while the composition profile of OPFRs in mangrove sediments from Zhuhai was dominated by tris(2-chloroethyl) phosphate (25.5%). The mass inventories of OPFRs in the mangrove sediments of Guangzhou, Zhuhai and Shenzhen were 439.5, 133.5 and 662.3 ng cm -2 , respectively. Redundancy analysis revealed that OPFRs induced a shift in the structure of mangrove sediment microbial community and the variations were significantly correlated with tris(1,3-dichloro-2-propyl)phosphate and tris(2-butoxyethyl) phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia

    PubMed Central

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta (Caloglossa ogasawaraensis, Caloglossa adhaerens, Caloglossa stipitata, Bostrychia anomala, and Hypnea sp.), Chlorophyta (Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta (Dictyota sp.). The biomass of macroalgae was not influenced (p>0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm2) and Station 2 (141.72 mg/cm2), while the highest biomass was contributed by B. anomala (185.89 mg/cm2) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak. PMID:28228913

  1. Metals in mangrove ecosystems and associated biota: A global perspective.

    PubMed

    Kulkarni, Rasika; Deobagkar, Deepti; Zinjarde, Smita

    2018-05-30

    Mangrove forests prevalent along the intertidal regions of tropical and sub-tropical coastlines are inimitable and dynamic ecosystems. They protect and stabilize coastal areas from deleterious consequences of natural disasters such as hurricanes and tsunamis. Although there are reviews on ecological aspects, industrial uses of mangrove-associated microorganisms and occurrence of pollutants in a region-specific manner, there is no exclusive review detailing the incidence of metals in mangrove sediments and associated biota in these ecosystems on a global level. In this review, mangrove forests have been classified in a continent-wise manner. Most of the investigations detail the distribution of metals such as zinc, chromium, arsenic, copper, cobalt, manganese, nickel, lead and mercury although in some cases levels of vanadium, strontium, zirconium and uranium have also been studied. Seasonal, tidal, marine, riverine, and terrestrial components are seen to influence occurrence, speciation, bioavailability and fate of metals in these ecosystems. In most of the cases, associated plants and animals also accumulate metals to different extents and are of ecotoxicological relevance. Levels of metals vary in a region specific manner and there is disparity in the pollution status of different mangrove areas. Protecting these vulnerable ecosystems from metal pollutants is important from environmental safety point of view. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Mangrove habitats provide refuge from climate change for reef-building corals

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-03-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business as usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef, coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove shaded and exposed (unshaded) areas. At least 33 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies was living shaded by mangroves, and no shaded colonies bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies bleached. A combination of substrate and habitat heterogeniety, proximity of different habitat types, hydrographic

  3. Recruitment, growth and residence time of fishes in a tropical Australian mangrove system

    NASA Astrophysics Data System (ADS)

    Robertson, Alistar I.; Duke, Norman C.

    1990-11-01

    Twenty fish species accounted for > 96% of the catch by numbers in mangrove habitats in Alligator Creek, in tropical Queensland, Australia. The timing of recruitment, residency status, the period of residence and growth of fish during the time they spent in the mangrove habitat was assessed by examining gonad maturity and following changes in size-frequency plots for each species over 13 months. Five species were permanent residents, completing their life-cycles in mangrove swamps; eight were 'long-term' temporary residents, being present for ˜ 1 year as juveniles before moving to other near-shore habitats; and seven were 'short-term' residents or sporadic users of the mangrove habitat. Amongst the latter group, four species lived in the mangrove habitat for between 1 and 4 consecutive months, while three engraulid species appeared to move rapidly, and often, between mangrove and other near-shore habitats. One of the resident species spawned and recruited throughout the year, but recruitment for most species was highly seasonal, being concentrated in the late dry season (October) to mid wet season (February) period. Temporary resident species dominated the fish community in the wet season (December-April), but resident species comprised more than 90% of total fish numbers in the mid dry season (August) after temporary residents left the mangroves in the early dry season. Several species had more than one peak of recruitment during the wet season. The cohort of 0 + aged Leiognathus equulus which recruited in December grew more rapidly and remained in the mangroves for a shorter period than the cohort which recruited later in the wet season (February). Only nine of the 20 species examined are strictly dependent on mangrove-lined estuaries, the remaining 11 are captured in significant numbers in other near-shore habitats. Only four of the 20 species are of direct commercial importance in Australia, but most are major prey for several valuable, commercial species

  4. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage

    PubMed Central

    Garcillán, Pedro P.

    2016-01-01

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  5. Assessing changes of mangrove forest in a coastal region of southeast China using multi-temporal satellite images

    NASA Astrophysics Data System (ADS)

    Wang, Min; Cao, Wenzhi; Guan, Qingsong; Wu, Gaojie; Wang, Feifei

    2018-07-01

    Mangroves provide many ecological, economic, and social benefits to humans. In the Jiulong River Estuary of Fujian Province, China, many mangroves have been lost largely due to human activities and so artificial planting has been implemented. However, the spatial and temporal dynamics of mangrove forests are still largely unknown at this location. This study aimed to identify changes to mangrove distribution and aboveground biomass (AGB) in three periods (1995-2004, 2004-2014 and 1995-2014) in order to influence mangrove management. Landsat satellite imagery and the threshold value method were used to classify mangroves. Landsat satellite imagery, field-based biomass investigations, elevation data and an allometric biomass equation were employed to develop an AGB model using a multiple linear regression method. Both mangrove area and AGB increased from 1995 to 2014 with an increase rate of 5.5% and 7.2% for mangrove area and AGB, respectively. Mangrove expansion was the main cause for AGB and area increase. In addition, AGB increase due to the growth of mangroves without extending the area also has great potential in AGB increase. Similar to AGB, above-ground carbon increased from 57 t C/ha in 1995 to 79 t C/ha in 2014, which demonstrated that mangroves in this region can help to mitigate climate warming. However, a large-scale continuous decrease of mangrove forest in the JRE was observed, likely caused by growing human activities. Moreover, tidal range change during 2004-2014 resulted in a more adverse impact on mangroves.

  6. A Lesson from Mangroves.

    ERIC Educational Resources Information Center

    Davis, Stephen

    1987-01-01

    Discusses the importance of interpretive programs in the Northern Territory of Australia. Describes the typical interpretive approach of local school science curricula, which serve 20,000 Aboriginal children. Addresses the curriculum framework, learning strategies, and process skill development, illustrating them through a lesson on mangroves. (TW)

  7. Status and distribution of mangrove forests of the world using earth observation satellite data

    USGS Publications Warehouse

    Giri, Chandra; Ochieng, E.; Tieszen, Larry L.; Zhu, Zhi-Liang; Singh, Ashbindu; Loveland, Thomas R.; Masek, Jeffery G.; Duke, Norm

    2011-01-01

    Aim  Our scientific understanding of the extent and distribution of mangrove forests of the world is inadequate. The available global mangrove databases, compiled using disparate geospatial data sources and national statistics, need to be improved. Here, we mapped the status and distributions of global mangroves using recently available Global Land Survey (GLS) data and the Landsat archive. Methods  We interpreted approximately 1000 Landsat scenes using hybrid supervised and unsupervised digital image classification techniques. Each image was normalized for variation in solar angle and earth–sun distance by converting the digital number values to the top-of-the-atmosphere reflectance. Ground truth data and existing maps and databases were used to select training samples and also for iterative labelling. Results were validated using existing GIS data and the published literature to map ‘true mangroves’. Results  The total area of mangroves in the year 2000 was 137,760 km2 in 118 countries and territories in the tropical and subtropical regions of the world. Approximately 75% of world's mangroves are found in just 15 countries, and only 6.9% are protected under the existing protected areas network (IUCN I-IV). Our study confirms earlier findings that the biogeographic distribution of mangroves is generally confined to the tropical and subtropical regions and the largest percentage of mangroves is found between 5° N and 5° S latitude. Main conclusions  We report that the remaining area of mangrove forest in the world is less than previously thought. Our estimate is 12.3% smaller than the most recent estimate by the Food and Agriculture Organization (FAO) of the United Nations. We present the most comprehensive, globally consistent and highest resolution (30 m) global mangrove database ever created. We developed and used better mapping techniques and data sources and mapped mangroves with better spatial and thematic details than previous studies.

  8. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.

    PubMed

    Kauffman, J Boone; Heider, Chris; Norfolk, Jennifer; Payton, Frederick

    2014-04-01

    Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions

  9. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoling; Du, Jinzhou; Peng, Bo; Zhang, Fenfen; Zhao, Xin; Zhang, Jing

    2013-03-01

    Mangrove-derived dissolved organic matter (DOM) has an important effect on estuarine and coastal area on a large scale. In order to improve the understanding of origin, composition, and fate of DOM in mangrove-fringed estuarine and coastal areas, dissolved humic substances (DHS) were isolated from one mangrove pore-water sample and one near-shore seawater sample downstream the mangrove pore-water site in the eastern coast of Hainan Island, South China. Fulvic acids, humic acids and XAD-4 fractions were obtained from the two water samples by using a two-column array of XAD-8 and XAD-4 resins. Chemical and spectroscopic methods were used to analyze the features of these DHS. Compared to the mangrove pore-water DHS, the near-shore seawater DHS were found rich in 13C with lower C/N ratios and more aliphatic compounds and carbohydrates, but less aromatic structures and carboxyl groups. As for the three fractions of the two DHS, XAD-4 fractions contain more aliphatics, carbohydrates, carboxyl groups, and enrich in 13C with respect to both fulvic and humic acids. Photo-oxidation transformation and contribution from marine-derived DOM were considered as the main reasons resulted in the difference in compositional features for these DHS in this study.

  10. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Fagherazzi, S.; Nardin, W.; Woodcock, C. E.; Locatelli, S.; Rulli, M. C.; Pasquarella, V. J.

    2016-02-01

    Mangrove forests dominate many tropical coastlines and are one of the most bio-diverse and productive environments on Earth. However, little is known of the large scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong delta, Vietnam, a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe two different dynamics of the mangrove fringe: near the mouth of the rivers where the fringe boundary is linear the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. Far from the river mouths the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We conclude that high NDVI values and a regular vegetation-water interface are indicative of stable mangrove canopies undergoing expansion, and therefore of resilient coastlines. In the Mekong delta these area are more likely located near a river mouth.

  11. The causes of mangrove death on Yap, Palau, Pohnpei and Kosrae [Chapter II

    Treesearch

    Phil G. Cannon; Margie Falanruw; Francis Ruegorong; Rich MacKenzie; Katie Friday; Amy L. Ross-Davis; Sara M. Ashiglar; Ned B. Klopfenstein; Zhangfeng Liu; Mohammad Golabi; Chancy Thomas Iyekar

    2014-01-01

    The area of a massive mangrove dieback in Yinuf Mn Island, Yap, was selected as the first location to study mangrove dieback problems. Seawater and soil samples were collected from plots where the mangrove trees were dead/dying and these samples were analyzed for eight different seawater and soil floor properties. Seawater and soil properties from dead/dying/...

  12. Radiocarbon Dating and Wood Density Chronologies of Mangrove Trees in Arid Western Australia

    PubMed Central

    Santini, Nadia S.; Hua, Quan; Schmitz, Nele; Lovelock, Catherine E.

    2013-01-01

    Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (∼10 cm diameter) were 48±1 to 89±23 years old (mean ± 1σ) and that their growth rates ranged from 4.08±2.36 to 5.30±3.33 mm/yr (mean ±1σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region. PMID:24265797

  13. Radiocarbon dating and wood density chronologies of mangrove trees in arid Western Australia.

    PubMed

    Santini, Nadia S; Hua, Quan; Schmitz, Nele; Lovelock, Catherine E

    2013-01-01

    Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (~10 cm diameter) were 48 ± 1 to 89 ± 23 years old (mean ± 1 σ) and that their growth rates ranged from 4.08 ± 2.36 to 5.30 ± 3.33 mm/yr (mean ± 1 σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.

  14. Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment

    PubMed Central

    2012-01-01

    Background Mangrove forests are coastal wetlands that provide vital ecosystem services and serve as barriers against natural disasters like tsunamis, hurricanes and tropical storms. Mangroves harbour a large diversity of organisms, including microorganisms with important roles in nutrient cycling and availability. Due to tidal influence, mangroves are sites where crude oil from spills farther away can accumulate. The relationship between mangrove bacterial diversity and oil degradation in mangrove sediments remains poorly understood. Results Mangrove sediment was sampled from 0–5, 15–20 and 35–40 cm depth intervals from the Suruí River mangrove (Rio de Janeiro, Brazil), which has a history of oil contamination. DGGE fingerprinting for bamA, dsr and 16S rRNA encoding fragment genes, and qPCR analysis using dsr and 16S rRNA gene fragment revealed differences with sediment depth. Conclusions Analysis of bacterial 16S rRNA gene diversity revealed changes with depth. DGGE for bamA and dsr genes shows that the anaerobic hydrocarbon-degrading community profile also changed between 5 and 15 cm depth, and is similar in the two deeper sediments, indicating that below 15 cm the anaerobic hydrocarbon-degrading community appears to be well established and homogeneous in this mangrove sediment. qPCR analysis revealed differences with sediment depth, with general bacterial abundance in the top layer (0–5 cm) being greater than in both deeper sediment layers (15–20 and 35–40 cm), which were similar to each other. PMID:22935169

  15. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  16. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers

    USGS Publications Warehouse

    Howard, Rebecca J.; Krauss, Ken W.; Cormier, Nicole; Day, Richard H.; Biagas, Janelda M.; Allain, Larry K.

    2015-01-01

    Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods We conducted a greenhouse study to better understand how abiotic factors affect plant species interactions in the mangrove-to-marsh transition zone, or ecotone. We manipulated salinity (fresh, brackish or salt water) and hydrologic conditions (continuously saturated or 20-cm tidal range) to simulate ecotonal environments. Propagules of the mangroves Avicennia germinans and Laguncularia racemosa were introduced to mesocosms containing an established marsh community. Both mangrove species were also introduced to containers lacking other vegetation. We monitored mangrove establishment success and survival over 22 mo. Mangrove growth was measured as stem height and above-ground biomass. Stem height, stem density and above-ground biomass of the dominant marsh species were documented. Results Establishment success of A. germinans was reduced under saturated saltwater conditions, but establishment of L. racemosa was not affected by experimental treatments. There was complete mortality of A. germinans in mesocosms under freshwater conditions, and very low survival of L. racemosa. In contrast, survival of both species in monoculture under freshwater conditions exceeded 62%. The marsh species Distichlis spicata and Eleocharis cellulosa suppressed growth of both mangroves throughout the experiment, whereas the mangroves did not affect herbaceous species growth. The magnitude of growth suppression by marsh species varied with environmental conditions; suppression was often higher in saturated compared to tidal conditions, and higher in fresh and salt water compared to

  17. Field, laboratory and numerical approaches to studying flow through mangrove pneumatophores

    NASA Astrophysics Data System (ADS)

    Chua, V. P.

    2014-12-01

    The circulation of water in riverine mangrove swamps is expected to be influenced by mangrove roots, which in turn affect the nutrients, pollutants and sediments transport in these systems. Field studies were carried out in mangrove areas along the coastline of Singapore where Avicennia marina and Sonneratia alba pneumatophore species are found. Geometrical properties, such as height, diameter and spatial density of the mangrove roots were assessed through the use of photogrammetric methods. Samples of these roots were harvested from mangrove swamps and their material properties, such as bending strength and Young's modulus were determined in the laboratory. It was found that the pneumatophores under hydrodynamic loadings in a mangrove environment could be regarded as fairly rigid. Artificial root models of pneumatophores were fabricated from downscaling based on field observations of mangroves. Flume experiments were performed and measurements of mean flow velocities, Reynolds stress and turbulent kinetic energy were made. The boundary layer formed over the vegetation patch is fully developed after x = 6 m with a linear mean velocity profile. High shear stresses and turbulent kinetic energy were observed at the interface between the top portion of the roots and the upper flow. The experimental data was employed to calibrate and validate three-dimensional simulations of flow in pneumatophores. The simulations were performed with the Delft3D-FLOW model, where the vegetation effect is introduced by adding a depth-distributed resistance force and modifying the k-ɛ turbulence model. The model-predicted profiles for mean velocity, turbulent kinetic energy and concentration were compared with experimental data. The model calibration is performed by adjusting the horizontal and vertical eddy viscosities and diffusivities. A skill assessment of the model is performed using statistical measures that include the Pearson correlation coefficient (r), the mean absolute error

  18. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    USGS Publications Warehouse

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  19. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  20. Assessment of mangrove forests in the Pacific region using Landsat imagery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Bibek; Giri, Chandra

    2011-01-01

    The information on the mangrove forests for the Pacific region is scarce or outdated. A regional assessment based on a consistent methodology and data sources was needed to understand their true extent. Our investigation offers a regionally consistent, high resolution (30 m), and the most comprehensive mapping of mangrove forests on the islands of American Samoa, Fiji, French Polynesia, Guam, Hawaii, Kiribati, Marshall Islands, Micronesia, Nauru, New Caledonia, Northern Mariana Islands, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu, and Wallis and Futuna Islands for the year 2000. We employed a hybrid supervised and unsupervised image classification technique on a total of 128 Landsat scenes gathered between 1999 and 2004, and validated the results using existing geographic information science (GIS) datasets, high resolution imagery, and published literature. We also draw a comparative analysis with the mangrove forests inventory published by the Food and Agriculture Association (FAO) of the United Nations. Our estimate shows a total of 623755 hectares of mangrove forests in the Pacific region; an increase of 18% from FAO's estimates. Although mangrove forests are disproportionately distributed toward a few larger islands on the western Pacific, they are also significant in many smaller islands.

  1. Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean.

    PubMed

    Jean, Maïtena R N; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves.

  2. Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.

    PubMed

    Shiau, Yo-Jin; Cai, Yuanfeng; Lin, Yu-Te; Jia, Zhongjun; Chiu, Chih-Yu

    2018-04-01

    Methanotrophs are important microbial communities in coastal ecosystems. They reduce CH 4 emission in situ, which is influenced by soil conditions. This study aimed to understand the differences in active aerobic methanotrophic communities in mangrove forest soils experiencing different inundation frequency, i.e., in soils from tidal mangroves, distributed at lower elevations, and from dwarf mangroves, distributed at higher elevations. Labeling of pmoA gene of active methanotrophs using DNA-based stable isotope probing (DNA-SIP) revealed that methanotrophic activity was higher in the dwarf mangrove soils than in the tidal mangrove soils, possibly because of the more aerobic soil conditions. Methanotrophs affiliated with the cluster deep-sea-5 belonging to type Ib methanotrophs were the most dominant methanotrophs in the fresh mangrove soils, whereas type II methanotrophs also appeared in the fresh dwarf mangrove soils. Furthermore, Methylobacter and Methylosarcina were the most important active methanotrophs in the dwarf mangrove soils, whereas Methylomonas and Methylosarcina were more active in the tidal mangrove soils. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene also confirmed similar differences in methanotrophic communities at the different locations. However, several unclassified methanotrophic bacteria were found by 16S rRNA MiSeq sequencing in both fresh and incubated mangrove soils, implying that methanotrophic communities in mangrove forests may significantly differ from the methanotrophic communities documented in previous studies. Overall, this study showed the feasibility of 13 CH 4 DNA-SIP to study the active methanotrophic communities in mangrove forest soils and revealed differences in the methanotrophic community structure between coastal mangrove forests experiencing different tide frequencies.

  3. Mangrove clearing impacts on macrofaunal assemblages and benthic food webs in a tropical estuary.

    PubMed

    Bernardino, Angelo Fraga; Gomes, Luiz Eduardo de Oliveira; Hadlich, Heliatrice Louise; Andrades, Ryan; Correa, Lucas Barreto

    2018-01-01

    Despite over 21,000ha of mangrove forests being removed per year in Brazil, ecological changes following mangrove deforestation have been overlooked. Here we evaluated changes in benthic macrofaunal assemblages and food-webs at a mangrove removal and natural sites in a tropical estuary in Eastern Brazil. The impacted site had coarser sediment particle sizes suggesting significant changes in sedimentation processes after forest clearing. Spatial differences in macrofaunal abundance, biomass and diversity were not directly associated with the removal of mangrove forests, supporting recolonization of impacted areas by estuarine fauna. However, benthic assemblage composition, infaunal δ 13 C signatures and food-web diversity markedly differed at the impacted site being strongly related to sedimentary changes. The loss of infaunal trophic diversity that followed mangrove removal suggests that large-scale forest clearing may impact estuarine food webs, with potential consequences to nearby coastal ecosystems given the high clearing rate of mangrove forests in Brazil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon Cycling and Storage in Mangrove Forests

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  5. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  6. Using Landsat 5 TM Data to Identify and Map Areas of Mangrove in Tulum, Quintana Roo, Mexico

    NASA Astrophysics Data System (ADS)

    Meachum, Samuel Standish

    Mangroves are recognized worldwide as a major ecosystem that provides significant ecosystem services. They are threatened due to rising pressures from human overpopulation and economic development. The Caribbean Coast of Mexico's Yucatan Peninsula contains mangrove habitat that have been negatively impacted by the development of the region's tourist industry. However, little research has been done to map and quantify the extent of mangrove in the region. This study used remote sensing techniques to identify mangrove in the Municipality of Tulum located in Quintana Roo, and to produce an accurate vector based thematic map that inventories these areas. Anatomical differences were analyzed and related to high-resolution field spectral data for each mangrove species. A vector map of mangrove habitat, including areas of inland mangrove, was produced with an overall accuracy of 88%. The 19,262 ha. of mangrove identified by this study represents a 140% increase in area over previous studies.

  7. Polarimetric SAR Interferometry Evaluation in Mangroves

    NASA Technical Reports Server (NTRS)

    Lee, Seung-Kuk; Fatoyinbo,Temilola; Osmanoglu, Batuhan; Sun, Guoqing

    2014-01-01

    TanDEM-X (TDX) enables to generate an interferometric coherence without temporal decorrelation effect that is the most critical factor for a successful Pol-InSAR inversion, as have recently been used for forest parameter retrieval. This paper presents mangrove forest height estimation only using single-pass/single-baseline/dual-polarization TDX data by means of new dual-Pol-InSAR inversion technique. To overcome a lack of one polarization in a conventional Pol- InSAR inversion (i.e. an underdetermined problem), the ground phase in the Pol-InSAR model is directly estimated from TDX interferograms assuming flat underlying topography in mangrove forest. The inversion result is validated against lidar measurement data (NASA's G-LiHT data).

  8. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation

    NASA Astrophysics Data System (ADS)

    Sahu, Sunil Kumar; Singh, Reena; Kathiresan, Kandasamy

    2016-12-01

    Mangroves are taxonomically diverse group of salt-tolerant, mainly arboreal, flowering plants that grow in tropical and sub-tropical regions and have adapted themselves to thrive in such obdurate surroundings. While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose and the co-opted features are called exaptations. Thus, one of the fundamental issues is what features of mangroves have evolved through exaptation. We attempt to address these questions through molecular phylogenetic approach using chloroplast and nuclear markers. First, we determined if these mangroves specific traits have evolved multiple times in the phylogeny. Once the multiple origins were established, we then looked at related non-mangrove species for characters that could have been co-opted by mangrove species. We also assessed the efficacy of these molecular sequences in distinguishing mangroves at the species level. This study revealed the multiple origin of mangroves and shed light on the ancestral characters that might have led certain lineages of plants to adapt to estuarine conditions and also traces the evolutionary history of mangroves and hitherto unexplained theory that mangroves traits (aerial roots and viviparous propagules) evolved as a result of exaptation rather than adaptation to saline habitats.

  9. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    NASA Astrophysics Data System (ADS)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  10. Monitoring Environmental Impacts on Mangrove Ecosystem in the Indus Delta of Pakistan

    NASA Astrophysics Data System (ADS)

    Siddiqui, Mehrun-Nisa

    Monitoring Environmental Impacts on Mangrove Ecosystem in the Indus Delta of Pakistan The mangrove forests growing in intertidal region along the tropical coastlines form a unique ecosystem with rich floral species and marine resources. In Pakistan, large mangrove forests are found all along the muddy coast of Sindh province at Indus Deltaic region. These mangroves are threatened by a variety of environmental pollution, like: dumping of untreated industrial and urban waste, sewage water; hazardous chemical released during ship breaking, oil spills, mangroves cutting, over fishing, scarcity of fresh water, seawater intrusion and unplanned urban development, etc. Dams and barrages, constructed on the mighty Indus River have reduced the supply of freshwater into the delta and consequently, seawater intruding into the riverine tract. The Tidal Link, constructed in 1995 to drain the agriculture effluents of cultivated areas of Sindh to sea, has also greatly damaged the ecology of the area. This study is based on integrated use of RS & GIS techniques for monitoring environmental impacts on the mangroves ecosystem of Indus Delta, for management and planning of this coastal ecosystem. Temporal satellite remote sensing (SRS) data acquired between 1976 to 2005 have been analysed using image processing and GIS techniques and coastal landuse maps representing coverage of the deltaic region have been prepared, which enabled to monitor dynamic and geomorphological changes occurred in the area. The tidal boundaries derived from temporal SRS data have been integrated to understand the coastal processes and their impact on mangroves ecosystem, and on tidal / intertidal zones. From the analysis, it was observed that the surface salt accumulation and dryness in the deltaic region and waterlogging & salinity in inland areas have been increased over the last 30 years, indicate the intrusion of seawater in groundwater aquifers and reduction in over all biomass in the area. This study

  11. Carbon stocks of mangroves within the Zambezi River Delta, Mozambique

    Treesearch

    Christina E. Stringer; Carl C. Trettin; Stanley J. Zarnoch; Wenwu Tang

    2015-01-01

    Mangroves are well-known for their numerous ecosystem services, including storing a globally significant C pool. There is increasing interest in the inclusion of mangroves in national climate change mitigation and adaptation plans in developing nations as they become involved with incentive programs for climate change mitigation. The quality and precision of data...

  12. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J.; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  13. Modeling the recovery and degradation of mangroves at the global scale

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T.; Lee, S. K.; Feliciano, E. A.; Trettin, C.

    2017-12-01

    Forest growth and reforestation rates are crucial information for sustainable forest management practices and decision-making for restoration projects. There has been a recent increase in mangrove blue carbon restoration projects because of their extremely high carbon density, globally can reach over 1000 Mg ha-1 of carbon. If ecosystem projects do plan to facilitate mangrove restoration or deter land cover changes as a climate change mitigation strategy or in other carbon inventory strategies, unbiased field inventories need to become the norm. It is known that mangrove carbon can be extremely high in certain geographic settings, but that is not the case for many other regions. Remotely sensed canopy height has recently been incorporated into mangrove field inventories which provides an unbiased, readily accessible, and spatially-explicit model that was used to stratify the inventory design into discrete height classes. Combining the forest canopy height distribution captured from space and the field inventory data, biomass and carbon density were determined for each height class. Here, we present mangrove vertical growth rates and global carbon stock changes modeled through the combination of remotely sensed land cover change and canopy height class models using Landsat-derived vegetation index anomalies and synthetic aperture radar interferometry, respectively. Average growth rates ( 1-1.5m yr-1) were determined for four mangrove forests in the Zambezi, Rufiji, Ganges, and Mekong Deltas. An average global net productivity (9-10 Mg C ha-1 yr-1) was then derived using the four sites which represent young, fast-growing mangrove forests. Global mangrove carbon change was calculated using the average productivity estimates and land cover change from 2000 to 2015. Losses were categorized based on canopy height derived biomass classes in 2000 using Shuttle Radar Topography Mission data, while gained carbon stocks were assessed by using the study-derived mean

  14. Fate and Effects of Anthropogenic Chemicals in Mangrove Ecosystems: A Review

    EPA Science Inventory

    The role of anthropogenic chemicals in the decline of plant-dominated, fringe ecosystems such as mangroves is important to understand. Mangrove global coverage has been reduced approximately 50% in recent years and the presence of toxic chemicals may be a contributing factor. T...

  15. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    PubMed

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various

  16. Mangroves, a major source of dissolved organic carbon to the oceans

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  17. Mosquitoes of the mangrove forests of India: part 2--Sundarbans, West Bengal.

    PubMed

    Rajavel, A R; Natarajan, R; Vaidyanathan, K

    2005-06-01

    Mosquitoes of 19 species belonging to 9 subgenera and 6 genera, Aedes, Aedeomyia, Anopheles, Armigeres, Culex, and Mansonia, were recorded in Sundarbans mangrove forest in West Bengal, India. With 6 and 5 species, respectively, the 2 genera Culex and Anopheles were found to be more diverse while less than 3 species were recorded in the other 4 genera. Adults were mainly collected resting on walls in the guesthouse, tree holes in the forest, landing on humans in the guesthouse, and in the forest, and in light traps. Larvae were obtained from tree holes in the forest. The list of species recorded is not conclusive due to the restriction in access to most parts of the mangroves due to the presence of tigers. The occurrence of the urban species Cx. quinquefasciatus within the Sajnakhali sanctuary is indicative of the need to monitor environmental changes that result with the introduction of man-made facilities.

  18. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed Central

    Balk, Melike; Laverman, Anniet M.; Keuskamp, Joost A.; Laanbroek, Hendrikus J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  19. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    PubMed

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  20. Distribution and accumulation of polybrominated diphenyl ethers (PBDEs) in Hong Kong mangrove sediments.

    PubMed

    Zhu, Haowen; Wang, Ying; Wang, Xiaowei; Luan, Tiangang; Tam, Nora F Y

    2014-01-15

    Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants in various polymers, and have become serious environmental contaminants, particularly in coastal sediments. Mangrove wetlands are important coastal ecosystems in tropical and subtropical regions, and mangrove sediments are often the pollutant sinks due to their close proximity with human activities. In Hong Kong, sediment samples collected from five mangrove swamps were found to be contaminated with PBDEs and the eight measured BDE congeners, including BDE-28, -47, -99, -100, -153, -154, -183 and -209 were detected in all mangrove sediments, indicating that these pollutants were widespread in Hong Kong mangrove wetlands. Among the five swamps, relatively high concentrations of PBDEs were recorded in Mai Po mangrove swamp in the northwestern Hong Kong, which is part of the RAMSAR site but is severely influenced by the pollution from the Pearl River Delta. The depth profile of PBDEs in sediment cores collected from Mai Po also showed the inputs of PBDEs in this mangrove swamp increased year by year. In all sediments, the concentrations of BDE-209 were 1-2 orders of magnitude higher than the other congeners in the same sediment. The concentrations of BDE-209 and ∑PBDEs (defined as the sum of seven targeted BDE congeners except BDE-209) ranged from 1.53 to 75.9 ng g(-1) and from 0.57 to 14.4 ng g(-1), respectively. Among the targeted BDE congeners except BDE-209, slightly different composition was recorded among samples collected from different locations, with BDE-153 and -183 being the pre-dominated congeners. In all mangrove swamps, except Tai O in the southwest of Hong Kong, ∑PBDEs concentrations showed a common trend of landward>seaward>mudflat. The concentrations of ∑PBDEs were significantly correlated with total organic matter (TOM) content in sediments but not with the sediment particle sizes in each mangrove swamp. © 2013.

  1. Mangroves among the most carbon-rich forests in the tropics

    Treesearch

    Daniel. C. Donato; J. Boone Kauffman; Daniel Murdiyarso; Sofyan Kurnianto; Melanie Stidham; Markku Kanninen

    2011-01-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30–50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from...

  2. Assessing forest products usage and local residents' perception of environmental changes in peri-urban and rural mangroves of Cameroon, Central Africa

    PubMed Central

    2011-01-01

    Background Deforestation is one of the most ubiquitous forms of land degradation worldwide. Although remote sensing and aerial photographs can supply valuable information on land/use cover changes, they may not regularly be available for some tropical coasts (e.g., Cameroon estuary) where cloud cover is frequent. With respect to mangroves, researchers are now employing local knowledge as an alternative means of understanding forest disturbances. This paper was primarily aimed at assessing the mangrove forest products usage, along with the local people's perceptions on environmental changes, between Littoral (Cameroon estuary) and Southern (mouth of the Nyong River and Mpalla village) regions of Cameroon. Methods The data from both locations were obtained through conducting household interviews and field observations. Results In the Cameroon estuary (Littoral region), 69.23% of respondents (mostly elders) could distinguish two to four mangrove plants, whereas the informants (65.45%) in the mouth of the Nyong River and Mpalla village (mostly young people interviewed from the Southern region) are familiar with only one or two commonly found mangroves. Also, more respondents from the Cameroon estuary are depending on mangroves for fuelwood (Rhizophora spp.) and housing (Rhizophora spp., Avicennia germinans (L.) Stearn and Nypa fruticans (Thumb.) Wurmb.) purposes, in contrast to Nyong River mouth and Mpalla village. Although local people perceived wood extraction as a greater disruptive factor, there are several causes for mangrove depletion in the Cameroon estuary. Among others, over-harvesting, clear-felled corridors, sand extraction and housing were found important. Furthermore, a decline in mangrove fauna composition (in terms of fishery products) was recorded in the Littoral as well as Southern regions. However, the causes of such perceived negative changes were not similar in both cases. Conclusions Findings of this study highlight the need to improve sustainable

  3. Study of landscape patterns of variation and optimization based on non-point source pollution control in an estuary.

    PubMed

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui; Wu, Haiyan

    2014-10-15

    Appropriate increases in the "sink" of a landscape can reduce the risk of non-point source pollution (NPSP) to the sea at relatively lower costs and at a higher efficiency. Based on high-resolution remote sensing image data taken between 2003 and 2008, we analyzed the "source" and "sink" landscape pattern variations of nitrogen and phosphorus pollutants in the Jiulongjiang estuary region. The contribution to the sea and distribution of each pollutant in the region was calculated using the LCI and mGLCI models. The results indicated that an increased amount of pollutants was contributed to the sea, and the "source" area of the nitrogen NPSP in the study area increased by 32.75 km(2). We also propose a landscape pattern optimization to reduce pollution in the Jiulongjiang estuary in 2008 through the conversion of cultivated land with slopes greater than 15° and paddy fields near rivers, and an increase in mangrove areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Assessment of mangroves from Goa, west coast India using DNA barcode.

    PubMed

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids.

  5. Organic Carbon Burial in Brazilian Mangrove Sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Sanders, C.; Smoak, J. M.; Sanders, L.; Patchineelam, S.

    2010-12-01

    This study reviews the organic carbon (OC) burial rates in mangrove forests, margins and mud flats in geographically distinct areas of the Brazilian coastline. We exam the burial rates, taking into account the geomorphology of each region. Our initial results indicate that the Northeastern region of Brazil is sequestering significantly more OC than in the Southeastern areas, being that the mass sediment accumulation rates remained consistent within the forests as opposed to large variations found in the mudflats. The other pertinent factor was OC content, which differed substantially in respect to region. Given that the mangrove forests of the Southeastern regions of Brazil may be more susceptible to a rising sea level, as these areas are constricted by vast mountain ranges, this work attempts to put in perspective the possible impacts of climate change on mangrove ecosystems and OC burial along the Brazilian coastal ocean. We also compare our result to global averages.

  6. An Interactive Risk Detection Tool to Aid Decision-Making in Global Mangrove Restoration

    NASA Astrophysics Data System (ADS)

    Goldberg, L.; Lagomasino, D.

    2017-12-01

    Mangrove ecosystems hold high ecological and economic value in coastal communities worldwide; detecting potential regions of mangrove stress is therefore critical to strategic planning of forest and coastal resources. In order to address the need for a unified risk management system for mangrove loss, a Risk Evaluation for MAngroves Portal (REMaP) was developed to identify the locations and causes of mangrove degradation worldwide, as well as project future areas of stress or loss. Long-term Earth observations from LANDSAT, MODIS, and TRMM were used in identifying regions with low, medium, and high vulnerability. Regions were categorized by vulnerability level based upon disturbance metrics in NDVI, land surface temperature, and precipitation using designated thresholds. Natural risks such as erosion and degradation were also evaluated through an analysis of NDVI time series trends from calendar year 1984 to 2017. Future trends in ecosystem vulnerability and resiliency were modeled using IPCC climate scenarios. Risk maps for anthropogenic-based disturbances such as urbanization and the expansion of agriculture and aquaculture through rice, rubber, shrimp, and oil palm farming were also included. The natural and anthropogenic risk factors evaluated were then aggregated to generate a cumulative estimate for total mangrove vulnerability in each region. This interactive modeling tool can aid decision-making on the regional, national, and international levels on an ongoing basis to continuously identify areas best suited for mangrove restoration measures, assisting governments and local communities in addressing a wide range of Sustainable Development Goals for coastal areas.

  7. Oil spill impacts on mangroves: Recommendations for operational planning and action based on a global review.

    PubMed

    Duke, Norman C

    2016-08-30

    Mangrove tidal wetland habitats are recognised as highly vulnerable to large and chronic oil spills. This review of current literature and public databases covers the last 6 decades, summarising global data on oil spill incidents affecting, or likely to have affected, mangrove habitat. Over this period, there have been at least 238 notable oil spills along mangrove shorelines worldwide. In total, at least 5.5milliontonnes of oil has been released into mangrove-lined, coastal waters, oiling possibly up to around 1.94millionha of mangrove habitat, and killing at least 126,000ha of mangrove vegetation since 1958. However, there were assessment limitations with incomplete and unavailable data, as well as unequal coverage across world regions. To redress the gaps described here in reporting on oil spill impacts on mangroves and their recovery worldwide, a number of recommendations and suggestions are made for refreshing and updating standard operational procedures for responders, managers and researchers alike. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.

    PubMed

    Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R

    2014-05-15

    Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida

    PubMed Central

    Liu, Kam-biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries. PMID:28282415

  10. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    PubMed

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  11. Food sources of dominant macrozoobenthos between native and non-native mangrove forests: A comparative study

    NASA Astrophysics Data System (ADS)

    Chen, Luzhen; Yan, Ting; Xiong, Yiyi; Zhang, Yihui; Lin, Guanghui

    2017-03-01

    The macrozoobenthos is an important link of the food web in coastal wetlands. Diet-habitat relationships may significantly depend on qualitative differences and seasonal availability of food sources. Increasing interest has been shown in food web structure altered by non-native plants. In particular, however, a non-native mangrove species from Bangladesh, Sonneratia apetala, has been widely planted in China, but little is known about its possible impact on food sources of macrozoobenthos living in these non-native mangrove forests. Therefore, in this study, we used fatty acid analysis to compare the food sources of one littorinid snail and two grapsid crab species between two native mangrove forests and one non-native S. apetala plantation in the Zhanjiang Mangrove National Nature Reserve of China. We found that the sediment of all three forests had high diatom and bacteria signals, but low mangrove leaf signals, while the opposite patterns were detected in the three macrozoobenthos. Specifically, the gastropod Littoraria melanostoma relied mainly on mangrove leaves and brown algae as food sources, with significant differences among the three mangrove forests, and showed significant seasonal variation in its diet. The grapsidae species (Perisesarma bidens and Parasesarma plicatum) mainly grazed on mangrove litter, brown and green algae, and occasionally consumed diatoms and bacteria, also showing significant seasonal variation in their diet. Overall, Principle Components Analysis (PCA) of the fatty acid profiles showed a significant overlapping in food sources among the macrozoobenthos living in the non-native and native mangrove forests, but significant seasonal variations in their food sources. This suggests that the planting of non-native S. apetala near original mangrove forests has had little effect on the feeding behavior of macrozoobenthos some 10 years after planting.

  12. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  13. Mangrove production and carbon sinks: A revision of global budget estimates

    USGS Publications Warehouse

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  14. Water level observations in mangrove swamps during two hurricanes in Florida

    USGS Publications Warehouse

    Krauss, K.W.; Doyle, T.W.; Doyle, T.J.; Swarzenski, C.M.; From, A.S.; Day, Richard H.; Conner, W.H.

    2009-01-01

    Little is known about the effectiveness of mangroves in suppressing water level heights during landfall of tropical storms and hurricanes. Recent hurricane strikes along the Gulf Coast of the United States have impacted wetland integrity in some areas and hastened the need to understand how and to what degree coastal forested wetlands confer protection by reducing the height of peak water level. In recent years, U.S. Geological Survey Gulf Coast research projects in Florida have instrumented mangrove sites with continuous water level recorders. Our ad hoc network of water level recorders documented the rise, peak, and fall of water levels (?? 0.5 hr) from two hurricane events in 2004 and 2005. Reduction of peak water level heights from relatively in-line gages associated with one storm surge event indicated that mangrove wetlands can reduce water level height by as much as 9.4 cm/km inland over intact, relatively unchannelized expanses. During the other event, reductions were slightly less for mangroves along a river corridor. Estimates of water level attenuation were within the range reported in the literature but erred on the conservative side. These synoptic data from single storm events indicate that intact mangroves may support a protective role in reducing maximum water level height associated with surge.

  15. Two New Beggiatoa Species Inhabiting Marine Mangrove Sediments in the Caribbean

    PubMed Central

    Jean, Maïtena R. N.; Gonzalez-Rizzo, Silvina; Gauffre-Autelin, Pauline; Lengger, Sabine K.; Schouten, Stefan; Gros, Olivier

    2015-01-01

    Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves. PMID:25689402

  16. Contribution of L-band SAR to systematic global mangrove monitoring

    Treesearch

    Richard Lucas; Lias-Maria Rebelo; Lola Fatoyinbo; Ake Rosenqvist; Takuya Itoh; Masanobu Shimada; Marc Simard; Pedro Walfir Souza-Filho; Nathan Thomas; Carl Trettin; Arnon Accad; Joao Carreiras; Lammert Hilarides

    2014-01-01

    Information on the status of and changes in mangroves is required for national and international policy development, implementation and evaluation. To support these requirements, a component of the Japan Aerospace Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) initiative has been to design and develop capability for a Global Mangrove Watch (GMW) that routinely...

  17. Meiofauna distribution in a mangrove forest exposed to shrimp farm effluents (New Caledonia).

    PubMed

    Della Patrona, L; Marchand, C; Hubas, C; Molnar, N; Deborde, J; Meziane, T

    2016-08-01

    Meiofauna abundance, biomass and individual size were studied in mangrove sediments subjected to shrimp farm effluents in New Caledonia. Two strategies were developed: i) meiofauna examination during the active (AP) and the non-active (NAP) periods of the farm in five mangrove stands characteristics of the mangrove zonation along this coastline, ii) meiofauna examination every two months during one year in the stand the closest to the pond (i.e. Avicennia marina). Thirteen taxonomic groups of meiofauna were identified, with nematodes and copepods being the most abundant ones. Meiofauna abundance and biomass increased from the land side to the sea side of the mangrove probably as a result of the increased length of tidal immersion. Abundance of total meiofauna was not significantly different before and after the rearing period. However, the effluent-receiving mangrove presented twice the meiofauna abundance and biomass than the control one. Among rare taxa, mites appeared extremely sensitive to this perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Geochemical partitioning of Cu and Ni in mangrove sediments: relationships with their bioavailability.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-04-15

    Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Do Penaeid Shrimps have a Preference for Mangrove Habitats? Distribution Pattern Analysis on Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Rönnbäck, P.; Macia, A.; Almqvist, G.; Schultz, L.; Troell, M.

    2002-09-01

    Scientific information on how penaeid shrimps are distributed within mangrove ecosystems is scarce, which presents an obstacle for fisheries as well as mangrove management. This study investigated the prime nursery microhabitats for the two major commercial species in Mozambique-Penaeus indicus and Metapenaeus monoceros. Stake net enclosures were used to sample shrimps living among unvegetated shallows and mangroves at Inhaca Island, Mozambique, during three consecutive spring tide periods. Four microhabitats were sampled: (1) sand flat; (2) fringe Avicennia marina on sandy substrate; (3) fringe A. marina on muddy substrate; and (4) interior A. marina adjacent to the supratidal terrestrial margin. P. indicus had a significant preference for fringe mangroves over the adjacent sand flat (P<0·001 and P=0·05). Postlarval shrimps only occupied the sand flat, whereas the mangrove was utilized by postlarval, juvenile and sub-adult life stages. Within the fringe mangrove, there was no correlation between shrimp abundance and organic content of sediment (5·7-11·6 shrimps m-2). Shrimps utilized the most interior margin of the mangroves (0·35 shrimps m-2), although catch rates were significantly lower than in the mangrove fringe (P<0·001). M. monoceros was significantly (P<0·01), more abundant in the sand flat (0·44-2·1 shrimps m-2) than in the mangrove fringe (0·04-0·61 shrimps m-2), although this habitat preference was not evident for juvenile and sub-adult life stages. The results demonstrate the extensive use of mangrove habitats by penaeid shrimps. The confinement to mangroves for P. indicus, but not for M. monoceros, is discussed in the context of habitat characteristics and predation avoidance behaviour. Methodological considerations of the stake net technique are also outlined.

  20. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    PubMed

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  1. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  2. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  3. Species diversity of culturable endophytic fungi from Brazilian mangrove forests.

    PubMed

    de Souza Sebastianes, Fernanda Luiza; Romão-Dumaresq, Aline Silva; Lacava, Paulo Teixeira; Harakava, Ricardo; Azevedo, João Lúcio; de Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida

    2013-08-01

    This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.

  4. Finescale turbulence and seabed scouring around pneumatophores in a wave-exposed mangrove forest

    NASA Astrophysics Data System (ADS)

    Mullarney, J. C.; Norris, B. K.; Henderson, S. M.; Bryan, K. R.

    2015-12-01

    Coastal mangroves provide a barrier between the coast and lower energy intertidal environments. The presence of mangrove roots (pneumatophores) alters local hydrodynamics by slowing currents, dissipating waves, enhancing within-canopy turbulence, and introducing significant spatial variability to the flow, particularly on the stem scale. To date, limited measurements exist within pneumatophore regions owing to the difficulties of measuring on sufficiently small scales. Hence, little is known about the turbulence controlling sediment transport within these regions. We report unique field observations near the seaward edge of a mangrove forest in the Mekong Delta, Vietnam. This forest is exposed to moderate wave energy (maximum heights of around 1 m), with waves observed to propagate and break up to 100 m inside the forest. Our measurements focus on a rapidly prograding area with a relatively sandy substrate and a gentle topographic slope. We resolved millimeter-scale turbulent flows within and above the pneumatophore canopy. Precise measurements of vegetation densities as a function of height were obtained using photogrammetry techniques. The dissipation rate of turbulent kinetic energy was enhanced at the canopy edge (ɛ ~ 10-4 W/kg), and decreased with distance into the forest (ɛ ~ 10-5 W/kg), although rates remained elevated above values measured on the tidal flat immediately offshore of the mangroves (ɛ ~ 10-6 W/kg). The dependence of turbulence on vegetation characteristics and on the stage of the tidal cycle is explored. The hydrodynamic measurements are then linked with changes in bathymetric features noted after a large wave event. Finer mud sediments were deposited outside the forest on the intertidal mudflat, whereas sandy sediments in the fringe region were significant scoured around regions of dense pneumatophores, and sediment mounds developed in the gaps between pneumatophores.

  5. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Modeling mangrove biomass using remote sensing based age and growth estimates

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  7. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia.

    PubMed

    Friess, Daniel A; Thompson, Benjamin S; Brown, Ben; Amir, A Aldrie; Cameron, Clint; Koldewey, Heather J; Sasmito, Sigit D; Sidik, Frida

    2016-10-01

    Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them. © 2016 Society for Conservation Biology.

  8. Impact of Sea Level Rise on Mangrove Ecosystem and its Dependent Fishing Communities in the Coastal Regions of Cauvery Delta: A Message for Policy Planners to Frame Suitable Antcipatory Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Ramachandran, A.; Kandasamy, P.; Selvam, V.; Shanmugam, P.

    2014-12-01

    Coastal adaptation to sea-level rise (SLR) in the deltaic region is a multidimensional and complex process requiring informed decisions based on predicted impact and vulnerability assessment of SLR. Elevation plays a key role in determining the impact and vulnerability of coastal land areas to inundation from SLR. Highly accurate mapping of the elevation of the landscape is essential to identify low-lying coastal deltaic regions with valuable ecosystem like mangroves and its dependent human communities that are potentially at risk of inundation. It is difficult for policy planners and decision makers to identify suitable adaptation strategies without having information on the predicted impact and degree of vulnerability of coastal systems to SLR. Importantly, modeling and mapping will provide valuable input to climate change adaptation planning (NOAA 2010). Unfortunately, the comprehensive range of information that is typically required is seldom available and rarely in the possession of decision makers responsible for management of the deltaic and coastal zone (O'Regan, 1996). The present study seeks to provide insights on predicted impact of climate change induced SLR on mangrove ecosystem and its dependent human communities of Pichavaram mangroves, located at the Vellar-Coleroon estuarine region on the banks of Cauvery delta, Tamil Nadu, India. Based on real-time on-ground elevation measurement by DGPS (Differential Global Positioning System) survey and by using GIS portals, the study has identified about 597 ha of mangroves (one third of total mangrove regions) and about 9 fishing hamlets with 12,000 and more of human population that directly depends on this mangrove ecosystem for their livelihood are under threat of inundation to the predicted impact of 0.5m SLR. The present study is intended to showcase a method by providing reliable scientific information on predicted impact of SLR on mangroves and its dependent human communities to policy planner for

  9. Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    PubMed Central

    Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak

    2017-01-01

    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789

  10. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    PubMed

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  11. Bacillus subtilis UBTn7, a potential producer of L - Methioninase isolated from mangrove, Rhizophora mucronata

    NASA Astrophysics Data System (ADS)

    Prihanto, A. A.

    2018-04-01

    L-methioninase is an enzyme that degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols. L-methioninase could be found in plants, bacteria, and fungi. The aims of this study was to obtain L-methioninase-producing endophytic bacteria isolated from mangrove Rhizophora mucronata. The mangrove was collected from Jenu Beach, Tuban, East Java, Indonesia. The samples were roots, stems, and leaves of Rhizophora mucronata. Endophytic bacteria were pure isolated using LB agar medium. Each bacteria were screened its capability to produce L-methioninase using selective media namely modified Czapek Dox agar. The best producer of enzyme was further identified with morphological and biochemical analysis. The result showed that three bacteria produced L-methioninase. Based on the result of morphological and biochemical analysis, the best producer was Bacillus subtilis UBTn7.

  12. Coatal salt marshes and mangrove swamps in China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  13. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests

    PubMed Central

    Dias, Armando Cavalcante Franco; Taketani, Rodrigo Gouveia; Andreote, Fernando Dini; Luvizotto, Danice Mazzer; da Silva, João Luis; Nascimento, Rosely dos Santos; de Melo, Itamar Soares

    2012-01-01

    Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 104 in A. schaeriana and 6.26 x 103 in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere. PMID:24031877

  14. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests.

    PubMed

    Dias, Armando Cavalcante Franco; Taketani, Rodrigo Gouveia; Andreote, Fernando Dini; Luvizotto, Danice Mazzer; da Silva, João Luis; Nascimento, Rosely Dos Santos; de Melo, Itamar Soares

    2012-04-01

    Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10(3) in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

  15. Interrogating pollution sources in a mangrove food web using multiple stable isotopes.

    PubMed

    Souza, Iara da C; Arrivabene, Hiulana P; Craig, Carol-Ann; Midwood, Andrew J; Thornton, Barry; Matsumoto, Silvia T; Elliott, Michael; Wunderlin, Daniel A; Monferrán, Magdalena V; Fernandes, Marisa N

    2018-06-01

    Anthropogenic activities including metal contamination create well-known problems in coastal mangrove ecosystems but understanding and linking specific pollution sources to distinct trophic levels within these environments is challenging. This study evaluated anthropogenic impacts on two contrasting mangrove food webs, by using stable isotopes (δ 13 C, δ 15 N, 87 Sr/ 86 Sr, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) measured in sediments, mangrove trees (Rhizophora mangle, Laguncularia racemosa, Avicennia schaueriana), plankton, shrimps (Macrobranchium sp.), crabs (Aratus sp.), oysters (Crassostrea rhizophorae) and fish (Centropomus parallelus) from both areas. Strontium and Pb isotopes were also analysed in water and atmospheric particulate matter (PM). δ 15 N indicated that crab, shrimp and oyster are at intermediate levels within the local food web and fish, in this case C. parallelus, was confirmed at the highest trophic level. δ 15 N also indicates different anthropogenic pressures between both estuaries; Vitória Bay, close to intensive human activities, showed higher δ 15 N across the food web, apparently influenced by sewage. The ratio 87 Sr/ 86 Sr showed the primary influence of marine water throughout the entire food web. Pb isotope ratios suggest that PM is primarily influenced by metallurgical activities, with some secondary influence on mangrove plants and crabs sampled in the area adjacent to the smelting works. To our knowledge, this is the first demonstration of the effect of anthropogenic pollution (probable sewage pollution) on the isotopic fingerprint of estuarine-mangrove systems located close to a city compared to less impacted estuarine mangroves. The influence of industrial metallurgical activity detected using Pb isotopic analysis of PM and mangrove plants close to such an impacted area is also notable and illustrates the value of isotopic analysis in tracing the impact and species affected by atmospheric pollution. Copyright © 2018 Elsevier B

  16. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia

    USGS Publications Warehouse

    Rogers, K.; Saintilan, N.; Cahoon, D.

    2005-01-01

    Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.

  17. Determination of the ecological connectivity between landscape patches obtained using the knowledge engineer (expert) classification technique

    NASA Astrophysics Data System (ADS)

    Selim, Serdar; Sonmez, Namik Kemal; Onur, Isin; Coslu, Mesut

    2017-10-01

    Connection of similar landscape patches with ecological corridors supports habitat quality of these patches, increases urban ecological quality, and constitutes an important living and expansion area for wild life. Furthermore, habitat connectivity provided by urban green areas is supporting biodiversity in urban areas. In this study, possible ecological connections between landscape patches, which were achieved by using Expert classification technique and modeled with probabilistic connection index. Firstly, the reflection responses of plants to various bands are used as data in hypotheses. One of the important features of this method is being able to use more than one image at the same time in the formation of the hypothesis. For this reason, before starting the application of the Expert classification, the base images are prepared. In addition to the main image, the hypothesis conditions were also created for each class with the NDVI image which is commonly used in the vegetation researches. Besides, the results of the previously conducted supervised classification were taken into account. We applied this classification method by using the raster imagery with user-defined variables. Hereupon, to provide ecological connections of the tree cover which was achieved from the classification, we used Probabilistic Connection (PC) index. The probabilistic connection model which is used for landscape planning and conservation studies via detecting and prioritization critical areas for ecological connection characterizes the possibility of direct connection between habitats. As a result we obtained over % 90 total accuracy in accuracy assessment analysis. We provided ecological connections with PC index and we created inter-connected green spaces system. Thus, we offered and implicated green infrastructure system model takes place in the agenda of recent years.

  18. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    PubMed

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  19. Sediment carbon and nutrient fluxes from cleared and intact temperate mangrove ecosystems and adjacent sandflats.

    PubMed

    Bulmer, Richard H; Schwendenmann, Luitgard; Lohrer, Andrew M; Lundquist, Carolyn J

    2017-12-01

    The loss of mangrove ecosystems is associated with numerous impacts on coastal and estuarine function, including sediment carbon and nutrient cycling. In this study we compared in situ fluxes of carbon dioxide (CO 2 ) from the sediment to the atmosphere, and fluxes of dissolved inorganic nutrients and oxygen across the sediment-water interface, in intact and cleared mangrove and sandflat ecosystems in a temperate estuary. Measurements were made 20 and 25months after mangrove clearance, in summer and winter, respectively. Sediment CO 2 efflux was over two-fold higher from cleared than intact mangrove ecosystems at 20 and 25months after mangrove clearance. The higher CO 2 efflux from the cleared site was explained by an increase in respiration of dead root material along with sediment disturbance following mangrove clearance. In contrast, sediment CO 2 efflux from the sandflat site was negligible (≤9.13±1.18mmolm -2 d -1 ), associated with lower sediment organic matter content. The fluxes of inorganic nutrients (NH 4 + , NO x and PO 4 3- ) from intact and cleared mangrove sediments were low (≤20.37±18.66μmolm -2 h - 1 ). The highest NH 4 + fluxes were measured at the sandflat site (69.21±13.49μmolm -2 h - 1 ). Lower inorganic nutrient fluxes within the cleared and intact mangrove sites compared to the sandflat site were associated with lower abundance of larger burrowing macrofauna. Further, a higher fraction of organic matter, silt and clay content in mangrove sediments may have limited nutrient exchange. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    PubMed

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  1. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  2. Comparing the Survival Rate of Mangrove Clam, Polymesoda (Geloina) spp. (Solander 1876) Through Field Experiments in Mangrove Forests of Iriomote Island.

    PubMed

    Washitani, Yasuko; Hayakawa, Reiko; Li, Meihua; Shibata, Shozo

    2017-06-01

    Polymesoda spp., which represent bivalves in the mangrove ecosystem, inhabit the mangrove forests of the Indo-Pacific region. They tend not to be broadly distributed across zones within the mangrove forest, but are instead typically encountered in the mesozone. We conducted field rearing experiments on four plots which were set across a mangrove forest along the Urauchi River of Iriomote Island, from the seaward to landward sides, over a period of 10 months. We compared the survival rates of clams at these plots with different environment for four months. Salinity was also measured during the study period, and we established a correlation between survival rate and change in salinity of each plot. The survival rate of the plot in the mesozone was 90%, that of two plots which were positioned in the seaward zone of the mesozone was 40%, and that of the plot on the landward side was 0%. In plot 4, the ambient water of the bivalves was fresh water. The salinity of the seaward zone changed rapidly in one day, or the salinity of the ambient water surrounding the bivalves was high for a long period of time. In Plot 3, salinity change was gradual, and the average salinity was lower than in Plots 1 and 2. This study indicates that salinity level affects bivalve survival rate and that area similar the mesozone, where gradual salinity change and average salinity were neither too high nor too low, are suitable for these species.

  3. The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework

    Treesearch

    Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Carl C. Trettin

    2015-01-01

    Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon...

  4. Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China.

    PubMed

    Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie

    2018-06-09

    To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.

  5. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    PubMed Central

    Giri, Chandra; Long, Jordan

    2016-01-01

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS) are believed to be expanding poleward (north) due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i) poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii) landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO2. PMID:27916810

  6. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    PubMed

    Giri, Chandra; Long, Jordan

    2016-11-28

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS) are believed to be expanding poleward (north) due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i) poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii) landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO₂.

  7. Monitoring the Restored Mangrove Condition at Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015

    NASA Astrophysics Data System (ADS)

    Ruslisan, R.; Kamal, M.; Sidik, F.

    2018-02-01

    Mangrove is unique vegetation that lives in tidal areas around the tropical and subtropical coasts. It has important physical, biological, and chemical roles for balancing the ecosystem, as well as serving as carbon pool. Therefore, monitoring the mangrove condition is very important step prior to any management and conservation actions in this area. This study aims to map and monitor the condition of restored mangroves in Perancak Estuary, Jembrana, Bali, Indonesia from 2001 to 2015. We used IKONOS-2, WorldView-2 and WorldView-3 image data to map the extent and canopy cover density of mangroves using visual delineation and semi-empirical modelling through Enhanced Vegetation Index (EVI) as a proxy. The results show that there was a significant increase in mangrove extent from 78.08 hectares in 2001 to 122.54 hectares in 2015. In term of mangrove canopy density, the percentage of high and very-high canopy density classes has increased from 32% in 2001 to 57% in 2015. On the other hand, there were slight changes in low and medium canopy density classes during the observation period. Overall, the result figures from both area extent and canopy density indicates the successful implementation of mangrove restoration effort in Perancak Estuary during the last 14 years.

  8. Stand structure influences nekton community composition and provides protection from natural disturbance in Micronesian mangroves

    Treesearch

    Richard A. MacKenzie; Nicole Cormier

    2012-01-01

    Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in...

  9. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  10. A global map of mangrove forest soil carbon at 30 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  11. Economic Valuation as an Instrument to Determine The Management Strategy of Baros Mangrove Forest, Bantul, Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Waluyo Jati, Irawan; Pribadi, Rudhi

    2018-02-01

    The Baros mangrove forest in Bantul Regency is now beginning to develop. Many government and private sectors programs are rolled out to support its development. The development of the Baros mangrove forest must be in accordance with the rules of conservation so that it will not damage the mangrove ecosystem. Mangrove forest has high economical and ecological value but is very vulnerable if lack of wisdom in maintaining, preserving and managing them. The involvement of government and other stakeholders are essential in determining management policies. Unawareness of society and the government to the importance of mangrove ecosystem can cause development of it becomes uncontrolled, consequently can destroy it. Mangrove forests are an important natural resource in coastal environments, and have three main functions: physical, biological, and economic functions. To quantify the functions of mangrove forests as the basis to determine the policy is required a research instrument called economic valuation. The approach of this study is the literature review from various studies before to perceive the influence of economic valuation in determining the management strategy of Baros mangrove forest in Bantul Regency, Yogyakarta, Indonesia.

  12. Spatial and Vertical Distribution of Dechlorane Plus in Mangrove Sediments of the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hao, Qin-Wei; Hu, Yong-Xia; Zheng, Xiao-Bo; Luo, Xiao-Jun; Diao, Zeng-Hui; Mai, Bi-Xian

    2016-10-01

    Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands.

  13. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea--A Metagenomic Approach.

    PubMed

    Simões, Marta Filipa; Antunes, André; Ottoni, Cristiane A; Amini, Mohammad Shoaib; Alam, Intikhab; Alzubaidy, Hanin; Mokhtar, Noor-Azlin; Archer, John A C; Bajic, Vladimir B

    2015-10-01

    Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%-85%), while Basidiomycota was less abundant (14%-24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  14. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Anderson, William T.; Swart, Peter K.; Price, René M.; Barbero, Leticia

    2017-05-01

    The Shark and Harney rivers, located on the southwest coast of Florida, USA, originate in the freshwater, karstic marshes of the Everglades and flow through the largest contiguous mangrove forest in North America. In November 2010 and 2011, dissolved carbon source-sink dynamics was examined in these rivers during SF6 tracer release experiments. Approximately 80 % of the total dissolved carbon flux out of the Shark and Harney rivers during these experiments was in the form of inorganic carbon, either via air-water CO2 exchange or longitudinal flux of dissolved inorganic carbon (DIC) to the coastal ocean. Between 42 and 48 % of the total mangrove-derived DIC flux into the rivers was emitted to the atmosphere, with the remaining being discharged to the coastal ocean. Dissolved organic carbon (DOC) represented ca. 10 % of the total mangrove-derived dissolved carbon flux from the forests to the rivers. The sum of mangrove-derived DIC and DOC export from the forest to these rivers was estimated to be at least 18.9 to 24.5 mmol m-2 d-1, a rate lower than other independent estimates from Shark River and from other mangrove forests. Results from these experiments also suggest that in Shark and Harney rivers, mangrove contribution to the estuarine flux of dissolved carbon to the ocean is less than 10 %.

  15. Long-Term Assessment of an Innovative Mangrove Rehabilitation Project: Case Study on Carey Island, Malaysia

    PubMed Central

    Motamedi, Shervin; Hashim, Roslan; Zakaria, Rozainah; Song, Ki-Il; Sofawi, Bakrin

    2014-01-01

    Wave energy and storm surges threaten coastal ecology and nearshore infrastructures. Although coastal structures are conventionally constructed to dampen the wave energy, they introduce tremendous damage to the ecology of the coast. To minimize environmental impact, ecofriendly coastal protection schemes should be introduced. In this paper, we discuss an example of an innovative mangrove rehabilitation attempt to restore the endangered mangroves on Carey Island, Malaysia. A submerged detached breakwater system was constructed to dampen the energy of wave and trap the sediments behind the structure. Further, a large number of mangrove seedlings were planted using different techniques. Further, we assess the possibility of success for a future mangrove rehabilitation project at the site in the context of sedimentology, bathymetry, and hydrogeochemistry. The assessment showed an increase in the amount of silt and clay, and the seabed was noticeably elevated. The nutrient concentration, the pH value, and the salinity index demonstrate that the site is conducive in establishing mangrove seedlings. As a result, we conclude that the site is now ready for attempts to rehabilitate the lost mangrove forest. PMID:25097894

  16. Trophic discrimination factor and the significance of mangrove litter to benthic detritivorous gastropod, Ellobium aurisjudae (Linnaeus)

    NASA Astrophysics Data System (ADS)

    Teoh, Hong Wooi; Sasekumar, A.; Ismail, Mohamad Hanif; Chong, Ving Ching

    2018-01-01

    In stable isotope analysis, the estimation of proportional contribution of carbon and nitrogen from mangrove to benthic invertebrates requires knowledge of the food-consumer trophic discrimination factor (Δ δ13C and Δ δ15N). This study tested the hypothesis that the mangrove gastropod Ellobium aurisjudae can assimilate low quality refractory mangrove litter and aimed to determine the trophic discrimination values (TDV) of C and N isotopes between gastropod and the mangrove producer. The mean Δ δ13C for gastropods fed senescent leaves of the mangrove Bruguiera parviflora (Roxb) Wight & Arn and decomposing mangrove (unknown species from the same site) wood were estimated at 5.3 ± 0.3‰ and 3.2 ± 0.5‰ respectively, whereas for Δ δ15N, these values were 4.2 ± 0.2‰ and 6.0 ± 0.2‰ respectively. The gastropod assimilated refractory carbon from mangrove leaf and wood litter with 49% and 18% efficiency respectively. Rearing experiment of gastropods (n = 25) fed only mangrove wood litter over 5months in the laboratory, showed mean weight increments of 14.8-74.4% depending on the initial animal weight. Significant deviation of the TDVs for E. aurisjudae from the generalized discrimination values for herbivory underscores the need to use specific TDV for the detritivory link.

  17. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic

  18. Fish assemblages in Tanzanian mangrove creek systems influenced by solar salt farm constructions

    NASA Astrophysics Data System (ADS)

    Mwandya, Augustine W.; Gullström, Martin; Öhman, Marcus C.; Andersson, Mathias H.; Mgaya, Yunus D.

    2009-04-01

    Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m 2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass

  19. Conversion and recovery of Puerto Rican mangroves: 200 years of change

    Treesearch

    S. Martinuzzi; W.A. Gould; A.E. Lugo; E. Medina

    2009-01-01

    Human activities have dramatically reduced the world’s area of mangroves just as the ecological services they provide are becoming widely recognized. Improving the conservation tools available to restore lost mangroves would benefit from a better understanding of how human activities influence the conservation of these ecosystems. We took advantage of historical...

  20. Micronesian mangrove forest structure and tree responses to a severe typhoon

    Treesearch

    J. Boone Kauffman; Thomas G. Cole

    2010-01-01

    Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3-4 cyclone, passed over the state of Yap, Federated States of...

  1. Growth and root development of four mangrove seedlings under varying salinity

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  2. Intuitionistic fuzzy analytical hierarchical processes for selecting the paradigms of mangroves in municipal wastewater treatment.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2018-04-01

    Municipal wastewater discharge is widespread and one of the sources of coastal eutrophication, and is especially uncontrolled in developing and undeveloped coastal regions. Mangrove forests are natural filters of pollutants in wastewater. There are three paradigms of mangroves for municipal wastewater treatment and the selection of the optimal one is a multi-criteria decision-making problem. Combining intuitionistic fuzzy theory, the Fuzzy Delphi Method and the fuzzy analytical hierarchical process (AHP), this study develops an intuitionistic fuzzy AHP (IFAHP) method. For the Fuzzy Delphi Method, the judgments of experts and representatives on criterion weights are made by linguistic variables and quantified by intuitionistic fuzzy theory, which is also used to weight the importance of experts and representatives. This process generates the entropy weights of criteria, which are combined with indices values and weights to rank the alternatives by the fuzzy AHP method. The IFAHP method was used to select the optimal paradigm of mangroves for treating municipal wastewater. The entropy weights were entrained by the valid evaluation of 64 experts and representatives via online survey. Natural mangroves were found to be the optimal paradigm for municipal wastewater treatment. By assigning different weights to the criteria, sensitivity analysis shows that natural mangroves remain to be the optimal paradigm under most scenarios. This study stresses the importance of mangroves for wastewater treatment. Decision-makers need to contemplate mangrove reforestation projects, especially where mangroves are highly deforested but wastewater discharge is uncontrolled. The IFAHP method is expected to be applied in other multi-criteria decision-making cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mangrove forest recovery in the Everglades following Hurricane Wilma

    USGS Publications Warehouse

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  4. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems

    PubMed Central

    McNally, Catherine G.; Uchida, Emi; Gold, Arthur J.

    2011-01-01

    Protected areas are used to sustain biodiversity and ecosystem services. However, protected areas can create tradeoffs spatially and temporally among ecosystem services, which can affect the welfare of dependent local communities. This study examines the effect of a protected area on the tradeoff between two extractive ecosystem services from mangrove forests: cutting mangroves (fuelwood) and harvesting the shrimp and fish that thrive if mangroves are not cut. We demonstrate the effect in the context of Saadani National Park (SANAPA) in Tanzania, where enforcement of prohibition of mangrove harvesting was strengthened to preserve biodiversity. Remote sensing data of mangrove cover over time are integrated with georeferenced household survey data in an econometric framework to identify the causal effect of mangrove protection on income components directly linked to mangrove ecosystem services. Our findings suggest that many households experienced an immediate loss in the consumption of mangrove firewood, with the loss most prevalent in richer households. However, all wealth classes appear to benefit from long-term sustainability gains in shrimping and fishing that result from mangrove protection. On average, we find that a 10% increase in the mangrove cover within SANAPA boundaries in a 5-km2 radius of the subvillage increases shrimping income by approximately twofold. The creation of SANAPA shifted the future trajectory of the area from one in which mangroves were experiencing uncontrolled cutting to one in which mangrove conservation is providing gains in income for the local villages as a result of the preservation of nursery habitat and biodiversity. PMID:21873182

  5. First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves.

    PubMed

    Santos, Daniel M C; Estrada, Gustavo C D; Fernandez, Viviane; Estevam, Marciel R M; Souza, Brunna T DE; Soares, Mário L G

    2017-01-01

    Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil) were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha-1. From that, an average of 84.13 ± 21.34 tC.ha-1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%). The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.

  6. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    NASA Astrophysics Data System (ADS)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  7. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient.

    PubMed

    Cheng, Hao; Wang, You-Shao; Fei, Jiao; Jiang, Zhao-Yu; Ye, Zhi-Hong

    2015-10-01

    Mangrove is a special coastal forest along tropical and subtropical intertidal shores. However, how mangroves adapt to tidal flooding and the mechanisms involved in mangrove zonation are still poorly understood. In this study, a pot trial with different tide treatments was conducted to investigate the differences in root anatomy, porosity, radial oxygen loss, iron plaque formation and waterlogging tolerance among six mangroves along a continuous tidal gradient. The index of waterlogging tolerance illustrated that Sonneratia apetala possessed the highest index, followed by Aeguceras corniculatum/Kandelia, Rhizophora stylosa, Heritiera littorlis and Thespesia populnea. Waterlogging tolerances of the mangroves were found to be positively correlated with their root porosity, radial oxygen loss and iron plaque formation. Waterlogging-sensitive species such as landward semi-mangroves exhibited small root porosity and ROL, while waterlogging-tolerant species such as seaward pioneer and rhizophoraceous mangroves exhibited extensive porosity, ROL and iron plaque formation. Nevertheless, grater root porosity and iron plaque formation were detected in permanent waterlogged plants when compared to drained plants. In conclusion, The present study proposes a structural adaptive strategy to tidal flooding in mangroves, such that the mangroves with higher root porosity, ROL and iron plaque appeared to exhibit higher waterlogging tolerance and adaptability in anaerobic foreshores.

  8. Spatial analysis on school environment characteristics in mangrove management based on local wisdom (Case study at Lhokseumawe, Aceh)

    NASA Astrophysics Data System (ADS)

    Susiloningtyas, Dewi; Handayani, Tuty; Amalia, Naila; Nadhira, Arum Ira

    2017-01-01

    After 2004 tsunami, lots of efforts have been made, such as building school and distributing mangrove forests. This study examines the perception of teachers and students about mangrove management which spread in the administrative area of Lhokseumawe to become a reference then applied as local education regarding mangrove after tsunami disaster. This paper was based on primary data taken using questionnaire with a predetermined analysis unit to interview teachers and students in the study area. The result presented with quantitative and descriptive analysis. The result is of the total number of junior high schools in the city of Lhokseumawe as many as 41 Public Schools, Private and Religious School, there are 31 schools with priority for local wisdom education implemented mangrove. The result is classified with 3 class. The school’s first priority is schools with a melee, with mangroves mangrove poor condition. Educational priority 2 is schools with close proximity to the mangrove and mangrove condition with moderate levels of damage. Schools with third priority are school with a close range, and mangrove good condition. Priority I as many as 18 schools, 10 schools priority II and 3 school for priority with learning competency standards that differ from each other.

  9. Micronesian mangrove forest structure and tree responses to a severe typhoon

    Treesearch

    J. Boone Kauffman; Thomas G. Cole

    2010-01-01

    Tropical cyclones are common disturbances that have strong effects on mangrove composition and structure. Because there are numerous ecosystem services provided by mangroves, it is important to understand their adaptations and responses to these climatic events. In April 2004, Typhoon Sudal, a category 3–4 cyclone, passed over the state of Yap, Federated States of...

  10. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    Covering more than 70% of tropical and subtropical coastlines, mangrove intertidal forests are well known to accumulate potentially toxic trace metals in their sediments, and thus are generally considered to play a protective role in marine and lagoon ecosystems. However, the chemical forms of these trace metals in mangrove sediments are still not well known, even though their molecular-level speciation controls their long-term behavior. Here we report the vertical and lateral changes in the chemical forms of nickel, which accumulates massively in mangrove sediments downstream from lateritized ultramafic deposits from New Caledonia, where one of nature's largest accumulations of nickel occurs. To accomplish this we used Ni K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy data in combination with microscale chemical analyses using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDXS). After Principal Component and Target Transform analyses (PCA-TT), the EXAFS data of the mangrove sediments were reliably least-squares fitted by linear combination of 3-components chosen from a large model compound spectral database including synthetic and natural Ni-bearing sulfides, clay minerals, oxyhydroxides, and organic complexes. Our results show that in the inland salt flat Ni is hosted in minerals inherited from the eroded lateritic materials, i.e. Ni-poor serpentine (44-58%), Ni-rich talc (20-31%), and Ni-goethite (18-24%). In contrast, in the hydromorphic sediments beneath the vegetated Avicennia and Rhizophora stands, a large fraction of Ni is partly redistributed into a neoformed smectite pool (20-69% of Ni-montmorillonite), and Ni speciation significantly changes with depth in the sediment. Indeed, Ni-rich talc (25-56%) and Ni-goethite (15-23%) disappear below ∼15 cm depth in the sediment and are replaced by Ni-sorbed pyrite (23-52%) in redox-active intermediate depth layers and by pyrite (34-55%) in the deepest

  11. Polyketides with Immunosuppressive Activities from Mangrove Endophytic Fungus Penicillium sp. ZJ-SY₂.

    PubMed

    Liu, Hongju; Chen, Senhua; Liu, Weiyang; Liu, Yayue; Huang, Xishan; She, Zhigang

    2016-11-25

    Nine polyketides, including two new benzophenone derivatives, peniphenone ( 1 ) and methyl peniphenone ( 2 ), along with seven known xanthones ( 3 - 9 ) were obtained from mangrove endophytic fungus Penicillium sp. ZJ-SY₂ isolated from the leaves of Sonneratia apetala . Their structures were elucidated on the basis of MS, 1D, and 2D NMR data. Compounds 1 , 3 , 5 , and 7 showed potent immunosuppressive activity with IC 50 values ranging from 5.9 to 9.3 μg/mL.

  12. Developing Integrated Remote Sensing and Geographical Information Sciences Procedures to Assess Impacts of Climate Variations on Spatio-Temporal Distribution of Mangroves

    NASA Astrophysics Data System (ADS)

    Qaisar, Maha

    2016-07-01

    Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70

  13. Extent of Mangrove Nursery Habitats Determines the Geographic Distribution of a Coral Reef Fish in a South-Pacific Archipelago

    PubMed Central

    Paillon, Christelle; Wantiez, Laurent; Kulbicki, Michel; Labonne, Maylis; Vigliola, Laurent

    2014-01-01

    Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC) and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year). The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass). These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes. PMID:25140697

  14. Characterization and spatial distribution of mangrove forest types based on ALOS-PALSAR mosaic 25m-resolution in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Darmawan, S.; Takeuchi, W.; Nakazono, E.; Parwati, E.; Dien, V. T.; Oo, K. S.; Wikantika, K.; Sari, D. K.

    2016-06-01

    The objective of this research is to investigate characteristics of mangrove forest types and to identify spatial distribution of mangrove forest based on ALOS PALSAR mosaic 25m- resolution in Southeast Asia. Methodology consists of collecting of ALOS PALSAR image for overall Southeast Asia region, preprocessing include converting DN to NRCS and filtering, collecting regions of interest of mangrove forest in Southeast Asia, plotting, characterization and classification. Result on this research we found characteristics of mangrove forest on HH values around -10.88 dB to -6.65 dB and on HV value around -16.49 dB to -13.26 dB. On polarization of HH which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Thái Thủy Thai Binh Vietnam, and Vạn Ninh tp. Móng Cái Quảng Ninh Vietnam whereas the lowest backscattering value is mangrove forest in Thailand area. On polarization of HV which the highest backscattering value is mangrove forest in Preak Piphot River Cambodia, Sorong and Teluk Bintuni Indonesia whereas the lowest backscattering value is mangrove forest in Subang Indonesia, Giao Thiện Giao Thuỷ Nam Định, Vietnam and Puyu Mueng Satun Thailand. Based on characterization, we create a rule criteria for classification of mangrove areas and non mangrove area. Finally we found spatial distribution of mangrove forest based on ALOS PALSAR 25m-resolution in Southeast Asia.

  15. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    PubMed Central

    Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; LokaBharathi, P. A.

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for <0–72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727

  16. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.

    PubMed

    Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for <0-72% of the pore water nitrate reduced. Here, we show that up to 99% of nitrate removal in mangrove sediments is routed through dissimilatory nitrate reduction to ammonium (DNRA). The DNRA process was 2x higher at the relatively pristine site Tuvem compared to the anthropogenically-influenced Divar mangrove ecosystem. In systems receiving low extraneous nutrient inputs, this mechanism effectively conserves and re-circulates N minimizing nutrient loss that would otherwise occur through denitrification. In a global context, the occurrence of DNRA in mangroves has important implications for maintaining N levels and sustaining ecosystem productivity. For the first time, this study also highlights the significance of DNRA in buffering the climate by modulating the production of the greenhouse gas nitrous oxide.

  17. Mangrove diversity in the Serewe Gulf of Lombok Island West Nusa Tenggara

    NASA Astrophysics Data System (ADS)

    Irwansah, Sugiyarto, Mahajoeno, Edwi

    2017-08-01

    Mangrove forests are a valuable economic resource as important breeding grounds and nursery sites for various animal species, stabilizing coastal lands and offering protection against storms, tsunamis, and sea level rise. Mangrove forest growing along the coastline of Serewe Gulf. The Serewe Gulf has great potential in tourism and sea cultivation sector. The research was conducted in the Serewe Gulf of Lombok Island, West Nusa Tenggara for 2 months (November up to December 2016). The objective of this research is to determine the diversity of mangrove in the Serewe Gulf, Lombok Island, West Nusa Tenggara using belt transect method. The identification result shows that there are 9 families with 9 types such as Rhizophoraceae (Rhizophora mucronata), Avicenniaceae (Avicennia officinalis), Sonneratiaceae (Sonneratia alba), Casuarinaceae (Casuarina equisetifolia), Bignoniaceae (Dilochnadrone sthaceae), Malvaceae (Hibiscus tiliaceus), Lythraceae (Pemphis adicula), Aizoaceae (Sesivium portulacastrum), and Euphorbiaceae (Ricinus communis). The diversity of mangrove types in the research area is in medium rate with H' index of 1.668.

  18. D Visualization of Mangrove and Aquaculture Conversion in Banate Bay, Iloilo

    NASA Astrophysics Data System (ADS)

    Domingo, G. A.; Mallillin, M. M.; Perez, A. M. C.; Claridades, A. R. C.; Tamondong, A. M.

    2017-10-01

    Studies have shown that mangrove forests in the Philippines have been drastically reduced due to conversion to fishponds, salt ponds, reclamation, as well as other forms of industrial development and as of 2011, Iloilo's 95 % mangrove forest was converted to fishponds. In this research, six (6) Landsat images acquired on the years 1973, 1976, 2000, 2006, 2010, and 2016, were classified using Support Vector Machine (SVM) Classification to determine land cover changes, particularly the area change of mangrove and aquaculture from 1976 to 2016. The results of the classification were used as layers for the generation of 3D visualization models using four (4) platforms namely Google Earth, ArcScene, Virtual Terrain Project, and Terragen. A perception survey was conducted among respondents with different levels of expertise in spatial analysis, 3D visualization, as well as in forestry, fisheries, and aquatic resources to assess the usability, effectiveness, and potential of the various platforms used. Change detection showed that largest negative change for mangrove areas happened from 1976 to 2000, with the mangrove area decreasing from 545.374 hectares to 286.935 hectares. Highest increase in fishpond area occurred from 1973 to 1976 rising from 2,930.67 hectares to 3,441.51 hectares. Results of the perception survey showed that ArcScene is preferred for spatial analysis while respondents favored Terragen for 3D visualization and for forestry, fishery and aquatic resources applications.

  19. Litterfall production of mangroves in the Huizache-Caimanero lagoon system, México

    USGS Publications Warehouse

    Flores-Cárdenas, Francisco; Hurtado-Oliva, Miguel Ángel; Doyle, Thomas W.; Nieves-Sotol, Mario; Díaz-Castro, Sara; Manzano-Sarabia, Marlenne

    2017-01-01

    The ecological legacy of the Huizache-Caimanero lagoon system has long been known as a trophically rich and productive ecosystem that supported artisanal fisheries of local and regional importance; however, a decline in fisheries' yields has been observed in recent decades. Mangroves are a fundamental component of this ecosystem, though data records and field studies are lacking in describing their structure and seasonal characteristics. Mangrove litterfall production was monitored during 2012–13 and described for the dominant species, Avicennia germinans (L.) Stearn and Laguncularia racemosa (L.) C.F. Gaertn. Forest surveys and monthly litter collections were obtained along a latitudinal gradient within the larger lagoon system to characterize the forest structure, leaf biomass, and related biological indicators (chlorophyll a concentration and Normalized Difference Vegetation Index [NDVI] estimated on leaf tissues). Results showed that structural characteristics (diameter at breast height, basal area, height, and crown diameter) were greater in Huizache, corresponding to patches with a dominance of A. germinans, while higher stem density was recorded for L. racemosa in Caimanero, comparatively similar to other mangrove habitat in NW Mexico. Litterfall was highest from May to October for both species. Litterfall production was also higher overall in 2012 in comparison to 2013, possibly corresponding with meteorological differences, most notably wind conditions. Annual litterfall production was similar by species across northern and southern Sinaloa. A contrast of the NDVI by site and species showed a wide interval, including low values for A. germinans, suggesting stress conditions for this species.

  20. Mangrove soil and vegetation change after tidal wetland creation: a 20-year chronosequence in Tampa Bay, FL

    EPA Science Inventory

    Mangrove restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove loss (which has been high in recent decades: ~30-50% global loss). However, ecosystem development and functionality following mangrove restoration and creation is poorly u...

  1. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing.

    PubMed

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  2. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    PubMed Central

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem. PMID:29093705

  3. Effects of vegetation and sewage load on mangrove crab condition using experimental mesocosms

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Penha-Lopes, Gil; Paula, José

    2009-09-01

    Constructed wetlands, especially mangroves, have been studied for their usefulness in sewage treatment but the effects of mangrove vegetation and a sewage load on mangrove macrofauna have been given little attention. Ocypodid crabs are important components of mangrove forests and constitute good bioindicators of the functioning of the ecosystem as a whole. In constructed mangrove mesocosms, three vegetation treatments (bare substratum, and Avicennia marina and Rhizophora mucronata seedlings) were subjected to 0, 20, 60 and 100% sewage loads from a nearby hotel. The physiological condition of introduced Uca annulipes and Uca inversa was evaluated in terms of their RNA/DNA ratio after one, five and twelve months, and used as an indicator of ecological function in the system. Crab condition in 0% sewage load was similar to that of wild crabs throughout, suggesting no significant effects of the mesocosms on their RNA/DNA ratio. Overall, both species coped well with the administered sewage loads, suggesting good ecological function in the system. Both species manifested similar patterns in RNA/DNA ratio, being more affected by seasonal fluctuations than by sewage load and vegetation presence and type. Higher RNA/DNA ratios were recorded in the long compared to the short rainy season. Sewage enhanced crab condition in the bare substratum and R. mucronata treatments, especially after one year, probably as a result of enhanced food availability. Uca inversa may be more sensitive to sewage pollution than U. annulipes. In A. marina, no difference in crab condition was observed between sewage loads, and this mangrove yielded the best reduction in sewage impacts. Our results support the usefulness of constructed mangrove areas in sewage treatment, especially if planted with A. marina and inhabited by physiologically healthy ocypodid crabs to enhance the system's performance.

  4. Genome-Wide Convergence during Evolution of Mangroves from Woody Plants.

    PubMed

    Xu, Shaohua; He, Ziwen; Guo, Zixiao; Zhang, Zhang; Wyckoff, Gerald J; Greenberg, Anthony; Wu, Chung-I; Shi, Suhua

    2017-04-01

    When living organisms independently invade a new environment, the evolution of similar phenotypic traits is often observed. An interesting but contentious issue is whether the underlying molecular biology also converges in the new habitat. Independent invasions of tropical intertidal zones by woody plants, collectively referred to as mangrove trees, represent some dramatic examples. The high salinity, hypoxia, and other stressors in the new habitat might have affected both genomic features and protein structures. Here, we developed a new method for detecting convergence at conservative Sites (CCS) and applied it to the genomic sequences of mangroves. In simulations, the CCS method drastically reduces random convergence at rapidly evolving sites as well as falsely inferred convergence caused by the misinferences of the ancestral character. In mangrove genomes, we estimated ∼400 genes that have experienced convergence over the background level of convergence in the nonmangrove relatives. The convergent genes are enriched in pathways related to stress response and embryo development, which could be important for mangroves' adaptation to the new habitat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Methane emissions partially offset “blue carbon” burial in mangroves

    PubMed Central

    Maher, Damien T.

    2018-01-01

    Organic matter burial in mangrove forests results in the removal and long-term storage of atmospheric CO2, so-called “blue carbon.” However, some of this organic matter is metabolized and returned to the atmosphere as CH4. Because CH4 has a higher global warming potential than the CO2 fixed in the organic matter, it can offset the CO2 removed via carbon burial. We provide the first estimate of the global magnitude of this offset. Our results show that high CH4 evasion rates have the potential to partially offset blue carbon burial rates in mangrove sediments on average by 20% (sensitivity analysis offset range, 18 to 22%) using the 20-year global warming potential. Hence, mangrove sediment and water CH4 emissions should be accounted for in future blue carbon assessments.

  6. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    USGS Publications Warehouse

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  7. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea.

    PubMed

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest.

  8. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    PubMed Central

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  9. Methane flux from mangrove sediments along the southwestern coast of Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotomayor, D.; Corredor, J.E.; Morell, J.M.

    1994-03-01

    Although the sediments of coastal marine mangrove forests have been considered a minor source of atmospheric methane, these estimate have been based on sparse data from similar areas. We have gathered evidence that shows that external nutrient and freshwater loading in mangrove sediments may have a significant effect on methane flux. Experiments were performed to examine methane fluxes from anaerobic sediments in a mangrove forest subjected to secondary sewage effluents on the southwestern coast of Puerto Rico. Emission rates were measured in situ using a static chamber technique, and subsequent laboratory analysis of samples was by gas chromatography using amore » flame ionization detector. Results indicate that methane flux rates were lowest at the landward fringe nearest to the effluent discharge, higher in the seaward fringe occupied by red mangroves, and highest in the transition zone between black and red mangrove communities, with average values of 4 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], 42 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], and 82 mg CH[sub 4] m[sup [minus]2] d[sup [minus]1], respectively. Overall mean values show these sediments may emit as much as 40 times more methane than unimpacted pristine areas. Pneumatophores of Aviciennia germinans have been found to serve as conduits to the atmosphere for this gas. Fluctuating water level overlying the mangrove sediment is an important environmental factor controlling seasonal and interannual CH[sub 4] flux variations. Environmental controls such as freshwater inputs and increased nutrient loading influence in situ methane emissions from these environments. 34 refs., 3 figs., 3 tabs.« less

  10. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    PubMed

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  11. A decade of mangrove recovery at affected area by the 2004 tsunami along coast of Banda Aceh city

    NASA Astrophysics Data System (ADS)

    Onrizal; Mansor, M.

    2018-03-01

    Banda Aceh (BA) is the capital of Aceh Province, Indonesia. It was the most affected areas by the 2004 tsunami. Before the natural catastrophe, most of the BA mangroves disturbed by human activities and remaining mangroves were fragmented and had a low density of trees. Therefore, the objectives of this study were to calculate the impact of the tsunami on mangrove and subsequently to evaluate the mangrove recovery based on spatial and temporal analysis and ground truthing method within the period 11 years in intertidal areas of BA. Three regions of BA coastal areas were selected, namely Kuala Cangkoy, Gampong Jawa and Lambada coasts. Before the tsunami, the mangrove forests in BA were only 13.6% of BA coastlands and fragmented. Approximately 48.9% of the mangroves have destroyed due to the tsunami. The BA mangroves at 5 and 11 years after tsunami were 66.5% and 81.3% relative to the data before tsunami, respectively. It means that the BA is very vulnerable due to the future tsunami occur. Therefore, the mangrove restoration in BA needs to be improved and maintain based on green belt concept for coastal protection as well as productivity of estuarine ecosystem.

  12. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons.

    PubMed

    Kauffman, J Boone; Bhomia, Rupesh K

    2017-01-01

    Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were <1m in height and >35,000 trees ha-1 to tall and open stands >40m in height and <100 ha-1. Tremendous variation in ecosystem carbon (C) stocks was measured ranging from 154 to 1,484 Mg C ha-1. The mean total ecosystem carbon stock for all mangroves of West-Central Africa was 799 Mg C ha-1. Soils comprised an average of 86% of the total carbon stock. The greatest carbon stocks were found in the tall mangroves of Liberia and Gabon North with a mean >1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1) and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1). At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters). Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1) and Asia (1049 Mg C ha-1) but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC) values for mangroves (511 Mg C ha-1). This study provides an improved

  13. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons

    PubMed Central

    Bhomia, Rupesh K.

    2017-01-01

    Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world’s mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were <1m in height and >35,000 trees ha-1 to tall and open stands >40m in height and <100 ha-1. Tremendous variation in ecosystem carbon (C) stocks was measured ranging from 154 to 1,484 Mg C ha-1. The mean total ecosystem carbon stock for all mangroves of West-Central Africa was 799 Mg C ha-1. Soils comprised an average of 86% of the total carbon stock. The greatest carbon stocks were found in the tall mangroves of Liberia and Gabon North with a mean >1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1) and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1). At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters). Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1) and Asia (1049 Mg C ha-1) but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC) values for mangroves (511 Mg C ha-1). This study provides an

  14. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes.

    PubMed

    Lyu, Haomin; He, Ziwen; Wu, Chung-I; Shi, Suhua

    2018-01-01

    Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. How effective were mangroves as a defence against the recent tsunami?

    PubMed

    Dahdouh-Guebas, F; Jayatissa, L P; Di Nitto, D; Bosire, J O; Lo Seen, D; Koedam, N

    2005-06-21

    Whether or not mangroves function as buffers against tsunamis is the subject of in-depth research, the importance of which has been neglected or underestimated before the recent killer tsunami struck. Our preliminary post-tsunami surveys of Sri Lankan mangrove sites with different degrees of degradation indicate that human activity exacerbated the damage inflicted on the coastal zone by the tsunami.

  16. Sonneratia apetala Buch. Ham in the mangrove ecosystems of China: An invasive species or restoration species?

    Treesearch

    Hai Ren; Hongfang Lu; Weijun Shen; Charlie Huang; Qinfeng Guo; Zhi' an Li; Shuguang Jian

    2010-01-01

    By the end of 1990s when China initiated a 10-year mangrove reforestation project, the mangrove forest area had decreased from250,000 to 15,000 ha. Over 80% of current Chinese mangroves are degraded secondary forests or plantations. As an initial restoration and reforestation effort, Sonneratia apetala, a native of...

  17. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise.

    PubMed

    Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E

    2017-04-21

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  18. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    USGS Publications Warehouse

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  19. Nutritional composition of suspended particulate matter in a tropical mangrove creek during a tidal cycle (Can Gio, Vietnam)

    NASA Astrophysics Data System (ADS)

    David, Frank; Marchand, Cyril; Taillardat, Pierre; Thành-Nho, Nguyễn; Meziane, Tarik

    2018-01-01

    Mangrove forests are highly productive ecosystems and mangrove-derived organic matter has generally been assumed to play a basal role in sustaining coastal food webs. However, the mechanisms of mangrove-derived organic matter utilisation by consumers are not fully understood. In this study, we were interested in hourly changes in the nutritional quality of suspended particulate matter (SPM) entering and departing a mangrove creek during a tidal cycle. We determined the fatty acid composition and δ13C stable isotope signature of SPM during a 26 h tidal cycle in a creek of the Can Gio Mangrove Biosphere Reserve (Southern Vietnam). Regarding fatty acids, the nutritional quality of SPM was low during most of the tidal cycle. However, it greatly increased during the first part of the strongest flood tide, occurring during daytime. The pulse of highly nutritive organic matter brought to the ecosystem was mostly composed of algal cells growing in specific shallow zones of the mangrove, that use nutrients and CO2 exported during the preceding ebb tide and originating from the mineralisation of mangrove-derived organic matter, as evidenced by their δ13C signatures. This study confirms that mangrove-derived carbon plays a basal role in sustaining trophic webs of mangrove tidal creeks, but that its nutritive value is greatly enhanced when a first step of mineralisation is achieved and CO2 is photosynthesised by algal cells.

  20. Mangrove forest distributions and dynamics in Madagascar (1975-2005)

    USGS Publications Warehouse

    Giri, C.; Muhlhausen, J.

    2008-01-01

    Mangrove forests of Madagascar are declining, albeit at a much slower rate than the global average. The forests are declining due to conversion to other land uses and forest degradation. However, accurate and reliable information on their present distribution and their rates, causes, and consequences of change have not been available. Earlier studies used remotely sensed data to map and, in some cases, to monitor mangrove forests at a local scale. Nonetheless, a comprehensive national assessment and synthesis was lacking. We interpreted time-series satellite data of 1975, 1990, 2000, and 2005 using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of ?? one-half pixel, an accuracy necessary for change analysis. We used a postclassification change detection approach. Our results showed that Madagascar lost 7% of mangrove forests from 1975 to 2005, to a present extent of ???2,797 km2. Deforestation rates and causes varied both spatially and temporally. The forests increased by 5.6% (212 km2) from 1975 to 1990, decreased by 14.3% (455 km 2) from 1990 to 2000, and decreased by 2.6% (73 km2) from 2000 to 2005. Similarly, major changes occurred in Bombekota Bay, Mahajamba Bay, the coast of Ambanja, the Tsiribihina River, and Cap St Vincent. The main factors responsible for mangrove deforestation include conversion to agriculture (35%), logging (16%), conversion to aquaculture (3%), and urban development (1%). ?? 2008 by MDPI.

  1. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  2. Drawbacks of mangrove rehabilitation schemes: Lessons learned from the large-scale mangrove plantations

    NASA Astrophysics Data System (ADS)

    Barnuevo, Abner; Asaeda, Takashi; Sanjaya, Kelum; Kanesaka, Yoshikazu; Fortes, Miguel

    2017-11-01

    Mangrove rehabilitation programs received much attention in the past decades as a response to widespread global degradation. While the documented successes and failures of mangrove rehabilitation accomplishments were varied, the objective and scheme is common, mainly focused on planting and creating monospecific plantations. This study assessed the structural development and complexity of the large-scale plantations in the central part of Philippines and compared it with the adjacent natural stand as reference. Our study showed that planted forest in both sites had lower structural complexity than the reference natural forest. Between sites, secondary succession in the monospecific plantation in Banacon Island was inhibited as reflected by low regeneration potential, whereas recruitment and colonization of non-planted species was promoted in Olango Island. Even 60 years after the forest was created in Banacon Island, it still lacked the understory of young cohorts which together comprise the regeneration potential that can supposedly add to the structural complexity. Although a potential seed source from adjacent natural forest is available, recruitment and colonization of non-planted species did not progress. MDS analysis of tree density data showed clustering of planted forest from the natural stand. The average SIMPER dissimilarity was 79.9% and the species with highest contributions were R. stylosa (74.6%), S. alba (11.1%) and A. marina (10.6%). Within the natural forest, the same species had the highest dissimilarity contribution, whereas in the planted forest, only R. stylosa contributed the highest dissimilarity. The same trend was also revealed in the MDS ordination analysis of diameter at breast height (DBH). A one-way ANOSIM permutation test of the density and DBH showed a significant difference between the planted and natural forests. Thus, as part of silviculture management intervention, the current practices of mangrove reforestation needs to be

  3. Evaluation of Rhizophora Mucronata Growth at first-year Mangrove Restoration at Abandoned Ponds, Langkat, North Sumatra

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Telaumbanua, TFC; Wati, R.; Sulistyono, N.; Putri, LAP

    2018-03-01

    Degraded mangrove areas can be restored and rehabilitated. In Indonesia, one of the main recommended of mangrove species for restoration of degraded was Rhizophora mucronata. The purpose of the study was to evaluate R. mucronata growth at first-year mangrove restoration at abandoned shrimp ponds, Pulau Sembilan village, Langkat, North Sumatera, Indonesia. The recovery area divided into three zones based on the salinity concentration, landward, middle, and seaward zones. The evaluation parameters of mangrove reforestation consist of seedling diameter and height, leaves number, and seedling growth rate. Results showed that 3 of 4 evaluation parameters of R. mucronata growth belong to landward zone, namely seedlings diameter, the number of leaves, and percentage of growth. By contrast, height R. mucronata seedlings dominated in the middle area. The study also found that the proper zone for mangrove restoration with R. mucronata was in the landward with 96% growth rate and 30 part per thousand salinity concentration. The present study, therefore, suggested that the recommended species for the degraded area was the prerequisite for successful mangrove restoration.

  4. The isolation and identification of endophytic bacteria from mangrove (Sonneratia alba) that produces gelatinase

    NASA Astrophysics Data System (ADS)

    Nursyam, H.; Prihanto, A. A.; Warasari, N. I.; Saadah, M.; Masrifa, R. E.; Nabila, N. A.; Istiqfarin, N.; Siddiq, I. J.

    2018-04-01

    Gelatinase is an enzyme that hydrolyze gelatin into gelatin hydrolyzate. The purpose of this study was to isolate and to identify endophytic bacteria from Sonneratia alba mangrove which able to produce gelatinase enzyme. Sonneratia alba mangroves was obtained from Bajul Mati Beach, Malang Regency. The samples in this study were, stems, and leaves. Pure cultured bacteria were investigated for its capability for producing gelatinase enzyme by using gelatin media. Best producer would further be analyzed its species using microbact system. Screening process resulted in 3 positive isolates, namely code isolate of R, B, and L. R which was isolate from root of S. alba was the best producer for gelatinase. Identification process with morphology and microbact system revelaed that A. SBM is a Gram-negative bacterium that has a basil cell shape, with a diameter colony of 2.19 mm. Based on the microbact system test carried out, the bacteria is Pseudomonas aeruginosa.

  5. Biosphere-atmosphere Exchange of CO2 in a Subtropical Mangrove Wetland in Hong Kong

    NASA Astrophysics Data System (ADS)

    Liu, J.; Neogi, S.; Lai, D. Y. F.

    2017-12-01

    Mangrove ecosystems play an important role in the global carbon cycle due to their high primary productivity, carbon-rich sediment, and sensitivity to climate change. Yet, there is currently a paucity of studies that quantify the biosphere-atmosphere exchange of GHGs in mangrove wetlands continuously at the ecosystem level. In this study, the temporal variability of net ecosystem CO2 exchange (NEE) between the Kandelia obovata mangrove and the atmosphere was determined in the Mai Po Marshes Nature Reserve of subtropical Hong Kong using an eddy covariance system between February 2016 and January 2017. The daytime half-hourly NEE ranged between -5.0 and +3.3 µmol m-2 s-1, while the maximum nighttime NEE could reach +5.0 µmol m-2 s-1 during the wet, warm season. Temperature, photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), and surface water salinity were some key physical and hydrological controls of NEE. Tidal activity could also exert profound influence on CO2 fluxes in this mangrove ecosystem by exporting dissolved carbon to adjacent estuary and inhibiting soil respiration during the inundation period. Overall, this coastal mangrove was a net sink of atmospheric CO2. Our results suggest that the ability of subtropical mangrove ecosystems in sequestering CO2 could be highly dependent on future changes in temperature, precipitation, and salinity.

  6. [Mangrove dynamics in the Cispata lagoon system (Colombian Caribbean) during last 900 years].

    PubMed

    Castaño, Ana; Urrego, Ligia; Bernal, Gladys

    2010-12-01

    The lagoon complex of Cispatá (old Sinú river delta) located at the Northwestern coast of the Colombian Caribbean, encloses one of the biggest mangrove areas in this region. This area has changed during the last 330 years because of several environmental and climatic causes, mainly changes in the position of the delta (Sinú River), which is the main freshwater source in this area, and sea level rise. We hypothesized that the climatic and geomorphologic dynamics has caused changes in the extension and composition of mangrove vegetation, especially during last 150 years. The dynamics of mangroves during the last 900 years was reconstructed based on the changes in the stratigraphy, pollen record, calcite concentrations (CaCO3) and C/N ratio, along two sediment cores from La Flotante and Navio lagoons, located in Cispatá complex. The age model was built based on lineal interpolation of 210Pb ages and changes in granulometry. Establishment and expansion of mangrove forests during the last 900 years were related to fluviomarine dynamics in the area and the lagoon formation. During the period encompassed between 1064 and 1762 A.D., the Mestizos spit was formed when marine conditions predominated in the surroundings of La Flotante Lagoon. At the site of Navío, a river dominated lagoon, terrigenous conditions dominated since 1830. Although the colonization of herbaceous pioneer vegetation started between 1142 and 1331 A.D., mangrove colonization only took place since 1717 A.D. Mangrove colonization was a result of the delta progradation. In 1849 A.D. the Sinú river delta migrated to the Cispatá bay. The eustatic sea level rise, the increase in river discharges and sedimentation rates produced the establishment of mangrove forests dominated by Rhizophora since 1849. Since 1900 a marine intrusion was recorded in both lagoons. In 1938, the migration of the delta toward its actual location in Tinajones gave place to the formation of the present lagoon system and to the

  7. The role of the everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    USGS Publications Warehouse

    Rivera-Monroy, V. H.; Twilley, R.R.; Davis, S.E.; Childers, D.L.; Simard, M.; Chambers, R.; Jaffe, R.; Boyer, J.N.; Rudnick, D.T.; Zhang, K.; Castaneda-Moya, E.; Ewe, S.M.L.; Price, R.M.; Coronado-Molina, C.; Ross, M.; Smith, T.J.; Michot, B.; Meselhe, E.; Nuttle, W.; Troxler, T.G.; Noe, G.B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 ??g P g dw-1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (???1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER. Copyright ?? 2011 Taylor & Francis Group, LLC.

  8. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China.

    PubMed

    Wang, Haitao; Liao, Guanshun; D'Souza, Melissa; Yu, Xiaoqing; Yang, Jun; Yang, Xiaoru; Zheng, Tianling

    2016-01-01

    Tidal mangrove wetlands are a source of methane (CH4) and nitrous oxide (N2O); but considering the high productivity of mangroves, they represent a significant sink for carbon dioxide (CO2). An exotic plant Spartina alterniflora has invaded east China over the last few decades, threatening these coastal mangrove ecosystems. However, the atmospheric gas fluxes in mangroves are poorly characterized and the impact of biological invasion on greenhouse gas (GHG) fluxes in the wetland remains unclear. In this study, the temporal and spatial dynamics of key GHG fluxes (CO2, CH4, and N2O) at an unvegetated mudflat, cordgrass (S. alterniflora), and mangrove (Kandelia obovata) sites along an estuary of the Jiulong River in Southeast China were investigated over a 2-year period. The CO2 and CH4 fluxes demonstrated a seasonal and vegetation-dependent variation while N2O fluxes showed no such dependent pattern. Air temperature was the main factor influencing CO2 and CH4 fluxes. Cumulative global warming potential (GWP) ranked in the order of mangrove > cordgrass > mudflat and summer > spring > autumn > winter. Moreover, CH4 accounted for the largest proportion (68%) of GWP, indicating its dominant contribution to the warming potential in mangroves. Notwithstanding the lack of information on plant coverage, cordgrass invasion exhibited a minor influence on GHG emissions. These findings support the notion that mangrove forests are net accumulation sites for GHGs. As vegetation showed considerable effects on fluxes, more information about the significance of vegetation type with a special emphasis on the effects of invasive plants is crucial.

  9. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp.

    PubMed

    Arfi, Yonathan; Chevret, Didier; Henrissat, Bernard; Berrin, Jean-Guy; Levasseur, Anthony; Record, Eric

    2013-01-01

    Fungi are important for biomass degradation processes in mangrove forests. Given the presence of sea water in these ecosystems, mangrove fungi are adapted to high salinity. Here we isolate Pestalotiopsis sp. NCi6, a halotolerant and lignocellulolytic mangrove fungus of the order Xylariales. We study its lignocellulolytic enzymes and analyse the effects of salinity on its secretomes. De novo transcriptome sequencing and assembly indicate that this fungus possesses of over 400 putative lignocellulolytic enzymes, including a large fraction involved in lignin degradation. Proteomic analyses of the secretomes suggest that the presence of salt modifies lignocellulolytic enzyme composition, with an increase in the secretion of xylanases and cellulases and a decrease in the production of oxidases. As a result, cellulose and hemicellulose hydrolysis is enhanced but lignin breakdown is reduced. This study highlights the adaptation to salt of mangrove fungi and their potential for biotechnological applications.

  10. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  11. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    NASA Astrophysics Data System (ADS)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  12. Investigating Extreme Lifestyles through Mangrove Transcriptomics

    ERIC Educational Resources Information Center

    Dassanayake, Maheshi

    2009-01-01

    Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…

  13. Virtual increase or latent loss? A reassessment of mangrove populations and their conservation in Guangdong, southern China.

    PubMed

    Peng, Yisheng; Zheng, Mingxuan; Zheng, Zhouxiang; Wu, Guichang; Chen, Yuechao; Xu, Hualin; Tian, Guanghong; Peng, Shenghua; Chen, Guizhu; Lee, Shing Yip

    2016-08-30

    Contrary to the global trend, the area of mangrove in Guangdong Province, southern China, has been increasing over the last two decades. Currently, three exotic mangrove species have been introduced for large-scale afforestation since 1985. A reassessment of the overall status of the mangrove species, habitat change, population of introduced species, was conducted through a comprehensive literature review as well as field investigations covering 96 sites. The success of conservation efforts is also evaluated. Upstream and high intertidal habitats are more vulnerable than downstream and lower intertidal ones, with habitat alteration being the biggest threats. Five mangrove species have narrow distributional extents with small populations, which could incur regional extinction. With the introduced species having naturalized at 42 sites, their role in mangrove management needs to be reconsidered. These findings collectively suggest a need to manage latent species loss and habitat degradation beyond the apparent increase in mangrove area and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Arbitrary mangrove-to-water ratios imposed on shrimp farmers in Vietnam contradict with the aims of sustainable forest management.

    PubMed

    Baumgartner, Urs; Kell, Shelagh; Nguyen, Tuan Hoang

    2016-01-01

    Worldwide, an estimated 35 % of mangrove forests have been lost between 1980 and 2005-among other reasons due to expansion of aquaculture production systems. In Vietnam, where the total mangrove area decreased from 269,150 ha in 1980 to 157,500 ha in 2000, regulation of such systems in the form of 'mangrove-to-water surface ratio' has had limited success to halt these losses. In this study, a survey of 40 Vietnamese households was conducted in mangrove production forests in Rach Goc commune, Ngoc Hien district, Ca Mau province to understand whether fixed limits on minimal mangrove coverage influence farmers' decisions on mangrove protection. Results of the survey suggest that rural households greatly depend on the incomes generated from shrimp (and crab) farming but that they do not have a share in economic incentives from timber harvests due to lack of full ownership. A strong relationship between mangrove coverage and per pond area income was also revealed. Because farmers are not aware of applicable laws in terms of mangrove-to-water ratios, mangrove coverage tends to shift in favour of higher pond areas. Overall, the findings indicate that regulations in the form of universal mangrove-to-water ratios do not consider the realities of local households, nor are they economically or environmentally useful-rather, they appear to be arbitrary limitations that are not respected by affected communities. The findings question the efficiency of efforts put into stricter enforcement.

  15. Upstream petroleum degradation of mangroves and intertidal shores: the Niger Delta experience.

    PubMed

    Osuji, Leo C; Erondu, Ebere S; Ogali, Regina E

    2010-01-01

    This article was inspired by a field reconnaissance survey of outcrops along the Nembe-Brass axis of the petroliferous Niger Delta. It reviews various tradeoffs of the impact of upstream petroleum (seismic and production) operations on the mangrove ecosystems in that region, the largest in Sub-Saharan Africa. Mangroves and intertidal shores are considered critical to the economic well-being of this region owing to the people's dual occupation in fishing and farming. The mangrove ecosystem provides a nutrient medium, which serves as a nursery and spawning ground for many fish species and other biota. Oil and gas activities might destroy these spawn areas, causing reduction in resource output and community pressure. Devegetation of the mangrove forest as a result of seismic delineation leaves the fragile soil exposed, unprotected, and susceptible to erosion. Again, loss of vegetation might discourage the natural role of plants in air purification (CO(2) utilization and O(2) production). The release of nutrients (organic N(2), NH(3), and NO$\\rm{{_{3};{-}}}$) and polyaromatic hydrocarbons (PAHs) to the environment, with the attendant increase in microbial load, increases biochemical O(2) demand (BOD) and depletes dissolved O(2) (DO) in H(2)O to a level that is beyond the tolerance limit of organisms. This anoxic situation leads to asphyxiation and subsequent fish kill in affected areas. In order of increasing vulnerability, the mangroves and intertidal shores of the Niger Delta fall under categories 8 to 10 on the environmental sensitivity index (ESI) scale, which predisposes the areas to serious long-term effects and clean-up complexity. Thus, there is need to monitor mangrove systems and shoreline changes in the areas of considerable seismic and production activities, especially in the coastal Niger Delta, where pipeline corrosion due to salt intrusion into the swampy environment and 'unsighted fingers' of sabotage have increased the prevalence of oil spills.

  16. Bioinformatics analysis of the oxidosqualene cyclase gene and the amino acid sequence in mangrove plants

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wati, R.

    2017-01-01

    This study described the bioinformatics methods to analyze seven oxidosqualene cyclase (OSC) genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, similarity, subcellular localization and phylogenetic. The physical and chemical properties of seven mangrove OSC showed variation among the genes. The percentage of the secondary structure of seven mangrove OSC genes followed the order of a helix > random coil > extended chain structure. The values of chloroplast or signal peptide were too low, indicated that no chloroplast transit peptide or signal peptide of secretion pathway in mangrove OSC genes. The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the mangrove OSC gene, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, Kandelia KcMS join with Bruguiera BgLUS, Rhizophora RsM1 was close to Bruguiera BgbAS, and Rhizophora RcCAS join with Kandelia KcCAS. The present study, therefore, supported the previous results that plant OSC genes form distinct clusters in the tree.

  17. Blue carbon content of mangrove vegetation in Subang district

    NASA Astrophysics Data System (ADS)

    Nurruhwati, I.; Purwita, S. D.; Sunarto; Zahidah

    2018-04-01

    The purpose of this research was to know the carbon content of mangrove parts such as leave, stems and roots and to know its ability to absorb carbondioxide (CO2). The research was conducted in 27th April until 16th May 2017 in Blanakan Village, Langensari Village and Jayamukti Village. The samples are dried at Pilotplane Laboratory Faculty of Industrial Engineering Padjadjaran University. The method in this research is explorative survey method. The results showed that there were two dominant mangroves species in three research stations, they are Avicennia marina and Rhizophora mucronata. Index of Important value of each mangrove type on the three stations in the medium criterion with a range of values is 106,86 %- 193,13 %. The highest carbon content was found in Rhizophora mucronata at station 1 (93,43 %) which was equivalent with 342,87 % absorption of CO2 which was The lowest carbon content was in Avicennia marina at station 1 (67,49 %) which was equivalent with 247,70 % absorption of CO2.

  18. Study on water quality around mangrove ecosystem for coastal rehabilitation

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  19. The need for a holistic approach in mangrove-related fisheries research: a specific review of the German and Brazilian research project MADAM.

    PubMed

    Saint-Paul, U; Schneider, H

    2016-07-01

    The main objective of the bilateral German-Brazilian mangrove development and management (MADAM) programme (mangrove dynamics and management) was to generate the scientific basis to enable the sustainable stewardship of the resources of the Caeté mangrove estuary in north-east Brazil in the sense of integrated coastal (zone) management. Main emphasis was given to fishes and crabs captured by artisanal fishermen. This paper describes the project strategy as developed and modified in the context of research results obtained over a period of 10 years. It is argued that a continuous discussion process is essential to assess the validity of the strategies formulated at the beginning of a medium-term project, particularly if the project is of an interdisciplinary nature. To achieve this, it was necessary to acquire in-depth knowledge of natural processes as well as of the relevant institutional, cultural, economic, social and political dynamics. © 2016 The Fisheries Society of the British Isles.

  20. Coastal Landforms and Accumulation of Mangrove Peat Increase Carbon Sequestration and Storage

    NASA Astrophysics Data System (ADS)

    Costa, M. T.; Excurra, P.; Ezcurra, E.; Garcillan, P. P.; Aburto-Oropeza, O.

    2016-02-01

    Many studies have highlighted the considerable belowground carbon storage of mangroves and other coastal ecosystems (as much 30% of total ocean carbon storage). Mangroves are among the most carbon-rich forests in the tropics, containing on average more than 1,000 Mg C/ha. We sampled mangrove sediments in four locations along the Pacific Coast of Mexico, from the Baja California Sur in the north to Chiapas near the Guatemalan boarder. These sites varied in their coastal geomorphology and rainfall regimes. The mangroves of rainy Chiapas possessed the deepest and most carbon-rich Rhizophora peat deposits of any of the sites (in places more than 2,000 Mg/ha). More surprisingly, in Balandra, one of the desert mangrove lagoons of Baja California Sur, the Avicennia-dominated mudflat zone of the forest possessed deep and rich peat deposits, ranging from 400-1,300 Mg/ha. This forest, hemmed in by relatively steep hillsides demonstrates the potential for mangroves to accrete carbon-rich peat vertically when local topography precludes their landwards expansion with sea-level rise. Our microscopic examination of root fibers from these peat deposits revealed the importance of Avicennia to the formation of buried organic matter deposits. We used 14C dating to track the age of the Baja California deposits, whose ages ranged between 1193 and 1636 BP. Plotting the calibrated 14C age of each peat sample from Balandra against the depth of the sample below the mean sea-level, we found a very significant linear trend (r2 = 0.87, P < 0.0001) with a slope of 0.070 ±0.007 mm/yr. Belowground carbon sequestration rates during recent decades varied from very low (ca. 0.1 Mg.ha-1.yr-1) in a receding fringe in Bahía Magdalena or a halophilic hinterland in Balandra, to 9-20 Mg.ha-1.yr-1 in a Rhizophora mudflat in La Encrucijada. With only 0.49% of the total area, the mangroves around the Gulf of California store 18% of the total belowground carbon pool of the whole region, 76 Tg in total.

  1. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.

    PubMed

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H; Fortes, Miguel D

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010-2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.

  2. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    USGS Publications Warehouse

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  3. Habitat Use by Fishes in Coral Reefs, Seagrass Beds and Mangrove Habitats in the Philippines

    PubMed Central

    Honda, Kentaro; Nakamura, Yohei; Nakaoka, Masahiro; Uy, Wilfredo H.; Fortes, Miguel D.

    2013-01-01

    Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region. PMID:23976940

  4. Is geographic range of the Contiguous United States' mangroves expanding towards the pole due to climate change?

    NASA Astrophysics Data System (ADS)

    Giri, C. P.

    2016-12-01

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range could serve as an environmental indicator of climate change. It is hypothesized that the mangrove forests in the Continental United States (CONUS) are expanding towards the North Pole due to climate change emanating from decreases in the frequency and severity of extreme cold events and sea level rise. We used 35 y of satellite imagery and in-situ observation for the entire CONUS and reported that (i) pole-ward expansion of mangrove forest in CONUS is inconclusive, (ii) landward and seaward expansion is occurring within the historic northernmost limit, and (ii) specific causes of mangrove changes are multi-faceted and site specific. The northernmost latitudinal limit of mangrove forests in Florida (81.3172990 W, 29.9454140 N), Louisiana (88.8603570 W, 30.0380070 N), and Texas (-96.4102550 W, 28.4289130 N) have not expanded towards the pole from 1980 to 2015. However, mangrove area has expanded within the northernmost boundary. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. For instance, sea level rise is attributed to landward and seaward expansion and relatively milder winters and absence of sub-freezing temperatures in recent decades are causing mangrove variability and expansion. The total 2015 mangrove area in CONUS was 251,293 ha. covering 98.1% in Florida,0.6% in Louisiana, and 1.3% in Texas. Of the total CONUS area, Florida increased by 3.6% (3.8% or 9,026 ha. of Florida's area), decreased in Louisiana by 0.2% (-25% or 536 ha. of Louisiana's area), and increased in Texas by 0.9% (+234% or 2,259 ha of Texas' area). While 35 years of analysis provides reliable observations of recent drivers for mangrove dynamics, this timeframe is relatively

  5. Malaclemys terrapin rhizophorarum (mangrove diamond-backed terrapin)

    USGS Publications Warehouse

    Denton, Mathew J.; Hart, Kristen M.; Oelinik, Anton; Wood, Roger; Baldwin, John N.

    2015-01-01

    MALACLEMYS TERRAPIN RHIZOPHORARUM (Mangrove Diamond-backed Terrapin). DIET. Malaclemys terrapin rhizophorarum, one of seven subspecies of M. terrapin, inhabits subtropical mangrove habitats in South Florida, USA. In temperate climates M. terrapin is largely carnivorous, feeding primarily on gastropods, bivalves, and decapod crustaceans (Tucker et. al. 1995. Herpetologica 51:167–181; Butler et. al. 2012. Chelon. Conserv. Biol. 11:124–128). In addition to its preferred prey, M. t. rhizophorarum has also been reported to consume barnacles, fish, and vegetation (Tucker et. al. 1995, op. cit.; Butler et. al. 2012, op. cit.; Tulipani 2013. Ph.D. Dissertation. The College of William and Mary, Williamsburg, Virginia. 224 pp.). Herein, we report observations regarding the diet of M. t. rhizophorarum from the southernmost extent of their range in the Florida Keys, USA.

  6. Performance and bacterial community structure of a 10-years old constructed mangrove wetland.

    PubMed

    Tian, Tingting; Tam, Nora F Y; Zan, Qijie; Cheung, S G; Shin, Paul K S; Wong, Y S; Zhang, Li; Chen, Zhanghe

    2017-11-30

    Constructed mangrove wetland has been used for wastewater treatment but its long-term performance has not been reported. One-year monitoring of a 10-years old horizontal subsurface-flow constructed mangrove wetland consisting of three belts, two with mangrove plants and one without, revealed that the system maintained high and stable removal percentages of organic matter and nutrients, and planted belts performed better than unplanted control. Substrates in belts planted with Aegiceras corniculatum or Kandelia obovata had higher abundance of ammonifiers, nitrifiers and denitrifiers but lower total heterotrophic bacteria than unplanted substrate. Denaturing gradient gel electrophoresis showed that microbial diversity in planted substrate was significantly lower than that in unplanted one. The bacteria in substrates, irrespective to belts, were phylogenetically related to Proteobacteria (most dominant), Acidobacteria, Firmicutes, Nitrospirae, Gemmatimonadetes, Chloroflexi and Cyanobacteria. The steady performance of this 10-year old constructed mangrove wetland was affected by the abundance and diversity of bacterial community in substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Integrating Landscape Ecology into Natural Resource Management - Series: Cambridge Studies in Landscape Ecology

    NASA Astrophysics Data System (ADS)

    Jianguo Liu, Edited By; Taylor, William W.

    2002-08-01

    The rapidly increasing global population has dramatically increased the demands for natural resources and has caused significant changes in quantity and quality of natural resources. To achieve sustainable resource management, it is essential to obtain insightful guidance from emerging disciplines such as landscape ecology. This text addresses the links between landscape ecology and natural resource management. These links are discussed in the context of various landscape types, a diverse set of resources and a wide range of management issues. A large number of landscape ecology concepts, principles and methods are introduced. Critical reviews of past management practices and a number of case studies are presented. This text provides many guidelines for managing natural resources from a landscape perspective and offers useful suggestions for landscape ecologists to carry out research relevant to natural resource management. In addition, it will be an ideal supplemental text for graduate and advanced undergraduate ecology courses. Written, and rigorously reviewed, by many of the world's leading landscape ecologists and natural resource managers Contains numerous case studies and insightful guidelines for landscape ecologists and natural resource managers

  8. Structure of mangrove meiofaunal assemblages associated with local sediment conditions in subtropical eastern australia

    NASA Astrophysics Data System (ADS)

    Abdullah, Maizah M.; Lee, S. Y.

    2017-11-01

    Meiofauna are ubiquitous but poorly-studied components of soft-bottom marine habitats around the world, including mangroves. The dynamic environmental conditions and heterogeneous sediments of mangroves present challenges to understanding the structure of mangrove meiofaunal assemblages at various spatial and temporal scales. In this study, we investigated the meiofaunal assemblage structure of sediments colonised by three mangrove species, namely, Avicennia marina, Rhizophora stylosa and Aegiceras corniculatum, at three locations in subtropical eastern Australia. Spatial and temporal variations were tested by sampling at the three mangrove locations (i.e. Tallebudgera, Currumbin and Terranora) in autumn, with samplings repeated at Tallebudgera at two other times broadly representing during dry/cool winter and wet/hot summer seasons. We examined the variability of the sediment environments within each of the different mangrove species, and investigated how meiofaunal assemblages would respond to the particular changes in their habitats to result in differences in assemblage structure between and within sites. Total meiofaunal density was highest in Tallebudgera and Currumbin and lowest in Terranora (mean density of 424, 393 and 239 ind.10 cm-2, respectively). In Tallebudgera, the density was higher in winter and summer (mean density of 546 and 530 ind.10 cm-2, respectively). The meiofaunal assemblage in this study shows a trend and association with the environmental variables. High availability of food proxies such phaeopigments, Chl a or TOC, with moderate tannin content and appropriate habitat structure (sediment particle size, belowground root biomass and/or moisture content provide the best condition for the meiofauna to achieve the highest density. However, given the complex dynamic habitats and the spatial heterogeneity of the mangrove environments across different locations and seasons, no clear generalization could be made regarding the key environmental

  9. Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India

    NASA Astrophysics Data System (ADS)

    Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul

    2012-01-01

    The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for

  10. The ecology of fiddler crab Uca forcipata in mangrove forest

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mohammad; Ghaffar, Mazlan Abd; Usup, Gires; Cob, Zaidi Che

    2013-11-01

    Fiddler crab burrows increase oxygen dispersion in anoxic mangrove sediment and promote iron reduction and nitrification process over sulfate reduction in subsurface sediment. Therefore it is expected to accelerate decomposition rate under oxic and suboxic conditions. In this study the effect of environmental parameters on the local distribution of U. forcipata and subsequently the effect of crab burrows on sediment characteristics were investigated. Our result indicated that U. forcipata prefers to live in the open mudflats under the shade of mangrove trees. The most important factors determining their presence were sediment texture, porosity, organic content, water content, carbon content and temperature. Measurement of redox potential and iron pools clearly indicated a distinct oxidized layer around burrows although sediment porosity, organic and water content did not differ significantly between burrowed and non-burrowed mudflats and even among the burrow profiles. This result implies the oxidation created by burrowing activity of U .forcipata was not efficient to change physical properties of mangrove sediments.

  11. [Construction of large fragment metagenome library of natural mangrove soil].

    PubMed

    Jiang, Yun-Xia; Zheng, Tian-Ling

    2007-11-01

    Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.

  12. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: a lesson from Sonneratia alba.

    PubMed

    Yang, Yuchen; Li, Jianfang; Yang, Shuhuan; Li, Xinnian; Fang, Lu; Zhong, Cairong; Duke, Norman C; Zhou, Renchao; Shi, Suhua

    2017-01-18

    A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation

  13. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    PubMed

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Model for Local Experiential Learning: Workshop on Mangroves, Oceans & Climate in Kosrae

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.

    2015-12-01

    A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for schoolteachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water, and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors and graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.

  15. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients.

    PubMed

    Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  16. Stratified settlement and moulting competency of brachyuran megalopae in Ponta Rasa mangrove swamp, Inhaca Island (Mozambique)

    NASA Astrophysics Data System (ADS)

    Paula, J.; Dornelas, M.; Flores, A. A. V.

    2003-02-01

    Information on recruitment processes of mangrove crustaceans is very limited, in spite of the great importance of these environments for the coastal zone. This study describes the settlement patterns of brachyuran crabs at Ponta Rasa mangrove swamp, Inhaca Island, in order to assess if settlement patterns reflect adult distribution. Hoghair filter collectors were deployed at different strata within the mangrove, and at the adjacent intertidal flat as control. Sampling was conducted daily for a period of 82 days. The collected megalopae were reared in the laboratory to assess their moulting competency and to enable identification. Settlement intensity was tested for association with wind stress, from different directions and averaged over time lags up to 6 days. A total of 960 megalopae settled during this study. Only 8% of the megalopae that settled at the control site belonged to mangrove dwelling species. Settlers inside Ponta Rasa swamp were exclusively mangrove species. Ilyograpsus paludicola settled mainly among Rhizophora mucronata and the mixed area of Ceriops tagal and Bruguiera gymnorrhiza, where adults occur, and Perisesarma guttatum, the most abundant sesarmid at Ponta Rasa, settled mainly at the creek. Neosarmatium meinerti settled among Avicennia marina pnematophores, very close to the adult populations. Megalopae of mangrove taxa that settled outside the mangrove took longer to moult than the ones settling inside the swamp. In the intertidal areas of the mangrove, settlers took an average of 1-2 days to moult, whereas in subtidal areas time to moult was on an average 3-5 days. Thus, both distribution of settlers and moulting competency suggest that settling follows adult distribution. Tides have a strong influence on settlement at Ponta Rasa, with the effect that, due to the high sill at the entrance, neap tides do not penetrate the mangrove. The analysis of settlement data suggested a significant effect of wind-driven transport on onshore migration

  17. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  18. Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach.

    PubMed

    Kovacs, J M; King, J M L; Flores de Santiago, F; Flores-Verdugo, F

    2009-10-01

    Given the alarming global rates of mangrove forest loss it is important that resource managers have access to updated information regarding both the extent and condition of their mangrove forests. Mexican mangroves in particular have been identified as experiencing an exceptional high annual rate of loss. However, conflicting studies, using remote sensing techniques, of the current state of many of these forests may be hindering all efforts to conserve and manage what remains. Focusing on one such system, the Teacapán-Agua Brava-Las Haciendas estuarine-mangrove complex of the Mexican Pacific, an attempt was made to develop a rapid method of mapping the current condition of the mangroves based on estimated LAI. Specifically, using an AccuPAR LP-80 Ceptometer, 300 indirect in situ LAI measurements were taken at various sites within the black mangrove (Avicennia germinans) dominated forests of the northern section of this system. From this sample, 225 measurements were then used to develop linear regression models based on their relationship with corresponding values derived from QuickBird very high resolution optical satellite data. Specifically, regression analyses of the in situ LAI with both the normalized difference vegetation index (NDVI) and the simple ration (SR) vegetation index revealed significant positive relationships [LAI versus NDVI (R (2) = 0.63); LAI versus SR (R (2) = 0.68)]. Moreover, using the remaining sample, further examination of standard errors and of an F test of the residual variances indicated little difference between the two models. Based on the NDVI model, a map of estimated mangrove LAI was then created. Excluding the dead mangrove areas (i.e. LAI = 0), which represented 40% of the total 30.4 km(2) of mangrove area identified in the scene, a mean estimated LAI value of 2.71 was recorded. By grouping the healthy fringe mangrove with the healthy riverine mangrove and by grouping the dwarf mangrove together with the poor condition

  19. Mangrove habitat partitioning by Ucides cordatus (Ucididae): effects of the degree of tidal flooding and tree-species composition during its life cycle

    NASA Astrophysics Data System (ADS)

    Wunderlich, A. C.; Pinheiro, M. A. A.

    2013-06-01

    Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.

  20. Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil

    PubMed Central

    Chan, Chim Kei

    2018-01-01

    Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries. PMID:29805975

  1. Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay.

    PubMed

    Pérez, A; Machado, W; Gutiérrez, D; Borges, A C; Patchineelam, S R; Sanders, C J

    2018-01-01

    A dated sediment core from an eutrophic mangrove area presented non-significant differences in carbon accumulation rates before (55.7±10.2gm -2 yr -1 ) and after three decades of deforestation (59.7±7.2gm -2 yr -1 ). Although eutrophication effects appear to compensate the loss of mangrove organic matter input, the results in this work show a threefold lower carbon accumulation than the global averages estimated for mangrove sediments. The effects of increasing eutrophication and enhanced sediment dry bulk density observed after deforestation (~30% higher) did not result in higher carbon stocks. Moreover, the lower TOC:OP (<400) and C:N (~20) molar ratios, as well as increased nutrient accumulation, reflect the dominance of phytoplankton-derived organic matter after deforestation, resulting in less-efficient sedimentary carbon sinks. These results indicate that the organic material deposited from eutrophication may not compensate mangrove deforestation losses on carbon accumulation in mangrove ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Surface Elevation Change And Vertical Accretion In Created Mangroves In Tampa Bay, Florida, Usa

    EPA Science Inventory

    Mangroves protect coastlines, provide faunal habitat, and store large quantities of carbon (C). In South Florida and other parts of the Gulf of Mexico, large wetland areas, including mangrove forests, have been removed, degraded, or damaged. Wetland creation efforts have been use...

  3. Geoinformatics in mangrove monitoring: damage and recovery after the 2004 Indian Ocean tsunami in Phang Nga, Thailand

    NASA Astrophysics Data System (ADS)

    Kamthonkiat, D.; Rodfai, C.; Saiwanrungkul, A.; Koshimura, S.; Matsuoka, M.

    2011-07-01

    In the aftermath of the 2004 Indian Ocean Tsunami, it has been proven that mangrove ecosystems provide protection against coastal disasters by acting as bioshields. Satellite data have been effectively used to detect, assess, and monitor the changes in mangroves during the pre- and post- tsunami periods. However, not much information regarding mangrove restoration or reforestation is available. Rather than undertaking time-consuming fieldwork, this study proposed using geoinformatic technologies such as Remote Sensing (RS), Geographic Information System (GIS), and Global Positioning System (GPS) to monitor the mangrove recovery. The analysis focused only on the tsunami-impacted mangrove areas along the western coast of the Tai Muang, Takuapa and Khuraburi Districts of Phang Nga Province, southern region of Thailand. The results consisted of 2 parts, first: the supervised classification of main land uses, namely forest, mangrove, agricultural land, built-up area, bare soil, water body, and miscellaneous covers in ASTER images, was conducted using the maximum likelihood method with higher than 75 % for overall accuracy. Once the confusion between classes was improved in post-processing, the accuracy of mangrove class was greater than 85 % for all dates. The results showed that the mangrove area in 2005 was reduced by approximately 5 % (1054.5 ha) from 2003 due to the impact of the 2004 Indian Ocean Tsunami. Although the recovery program (replacing the same species of dead mangrove trees, mainly the Rhizophora apiculata Bl and Rhizophora mucronata Poir, in situ) had started by mid-2005, the areas gradually decreased to approximately 7-8 % in 2006 and 2010 compared with the reference year of 2003. Second, the recovery trend was observed in the Normalized Difference Vegetation Index (NDVI) fluctuation curve and the supporting field survey data. The recovery patterns were summarized into 2 categories: (i) gradually recovery, and (ii) fluctuating recovery. The gradually

  4. Transformations of Mangrove Forests in Bahia Magdalena, Baja California Sur, Mexico: Two Decade Results Based on Landsat Imageries

    NASA Astrophysics Data System (ADS)

    Suresh Babu, S.; Abdul Rahaman, S.; Muthushankar, G.; Jonathan, M. P.

    2014-12-01

    Mangrove forests which thrive along the tropical and subtropical regions are the most productive ecosystems in the world with a wide range of ecological and economical services to mankind. With the rapid urbanization across the globe, these forests tend to be destroying at an alarming rate. The area of concern for this study, Bahia Magdalena is very important for the economy of the state as nearly 50% of the artisan fisheries are established in the mangrove zone. Henceforth this study is an attempt for a regional assessment and to accurately quantify the mangroves using LANDSAT imageries for over two decades in Bahia Magdalena, Baja California. Satellite imageries from the year 1986 through 2014 were analysed to assess the prolonged changes taking place in and around the mangrove reserve. Using the estimates of land use/cover for all the years, the spatio - temporal data was validated using ArcGIS software. The results revealed that the spatial extent of mangroves are decreasing until 2005 due to the developmental plans such as tourism, shrimp farming and establishment of industries in this part of the country. During the past 10 years (~ after 2005) there is no much change in the area extent of mangrove reserves due to afforestation and conservation efforts. Thus the unbiased dataset generated may be widely used for an improved understanding of the role of mangrove forests in the socio economic aspects, protection from natural disasters, identify possible areas for conservation, restoration and rehabilitation; and improve estimates of the amount of carbon stored in mangrove vegetation and the associated marine environment. Keywords: Mangroves, LANDSAT, Bahia Magdalena, México.

  5. Preliminary assessment of post-Haiyan mangrove damage and short-term recovery in Eastern Samar, central Philippines.

    PubMed

    Primavera, J H; Dela Cruz, M; Montilijao, C; Consunji, H; Dela Paz, M; Rollon, R N; Maranan, K; Samson, M S; Blanco, A

    2016-08-30

    Strong winds and storm surges from Typhoon Haiyan caused damage of US$12-15billion and >10,000 human casualties in central Philippines in November 2013. To validate a proposed government US$22million mangrove replanting program, mangrove damage and short-term recovery were surveyed in seven natural and planted mangrove sites in Eastern Samar province at 2.5month and 4.5month post-Haiyan. The preliminary assessment showed that natural mangroves (except for those directly hit by the storm) were recovering by means of tree sprouts and surviving seedlings and saplings compared to the devastated plantation. Likewise, tree mortality was higher in the plantation and natural forests hit by the storm surge, compared to more undamaged and partially damaged trees in natural mangroves. Hence the main recommendations to government are (1) to protect recovering mangroves by not releasing rehabilitation funds (that will inadvertently pay for clearing of live trees and for removal of seedlings), (2) to only plant in totally damaged sites (e.g., plantations), and (3) to only plant naturally dominant species, e.g., Sonneratia alba and Avicennia marina (instead of the popular Rhizophora apiculata, R. mucronata and R. stylosa). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Leaf Stable Isotope and Nutrient Status of Temperate Mangroves As Ecological Indicators to Assess Anthropogenic Activity and Recovery from Eutrophication

    PubMed Central

    Gritcan, Iana; Duxbury, Mark; Leuzinger, Sebastian; Alfaro, Andrea C.

    2016-01-01

    We measured nitrogen stable isotope values (δ15N), and total phosphorus (%P) and total nitrogen (%N) contents in leaves of the temperate mangrove (Avicennia marina sp. australasica) from three coastal ecosystems exposed to various levels of human impact (Manukau, high; Mangawhai, low; and Waitemata, intermediate) in northern New Zealand. We measured δ15N values around 10‰ in environments where the major terrestrial water inputs are sewage. The highest average total nitrogen contents and δ15N values were found in the Auckland city region (Manukau Harbour) at 2.2%N and 9.9‰, respectively. The lowest values were found in Mangawhai Harbour, situated about 80 km north of Auckland city, at 2.0%N and 5.2‰, respectively. In the Waitemata Harbour, also located in Auckland city but with less exposure to human derived sewage inputs, both parameters were intermediate, at 2.1%N and 6.4‰. Total phosphorus contents did not vary significantly. Additionally, analysis of historical mangrove leaf herbarium samples obtained from the Auckland War Memorial Museum indicated that a reduction in both leaf total nitrogen and δ15N content has occurred over the past 100 years in Auckland’s harbors. Collectively, these results suggest that anthropogenically derived nitrogen has had a significant impact on mangrove nutrient status in Auckland harbors over the last 100 years. The observed decrease in nitrogenous nutrients probably occurred due to sewage system improvements. We suggest that mangrove plant physiological response to nutrient excess could be used as an indicator of long-term eutrophication trends. Monitoring leaf nutrient status in mangroves can be used to assess environmental stress (sewage, eutrophication) on coastal ecosystems heavily impacted by human activities. Moreover, nitrogen and phosphorus leaf contents can be used to assess levels of available nutrients in the surrounding environments. PMID:28066477

  7. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  8. Environmental tolerances of rare and common mangroves along light and salinity gradients.

    PubMed

    Dangremond, Emily M; Feller, Ilka C; Sousa, Wayne P

    2015-12-01

    Although mangroves possess a variety of morphological and physiological adaptations for life in a stressful habitat, interspecific differences in survival and growth under different environmental conditions can shape their local and geographic distributions. Soil salinity and light are known to affect mangrove performance, often in an interactive fashion. It has also been hypothesized that mangroves are intrinsically shade intolerant due to the high physiological cost of coping with saline flooded soils. To evaluate the relationship between stress tolerance and species distributions, we compared responses of seedlings of three widespread mangrove species and one narrow endemic mangrove species in a factorial array of light levels and soil salinities in an outdoor laboratory experiment. The more narrowly distributed species was expected to exhibit a lower tolerance of potentially stressful conditions. Two of the widespread species, Avicennia germinans and Lumnitzera racemosa, survived and grew well at low-medium salinity, regardless of light level, but performed poorly at high salinity, particularly under high light. The third widespread species, Rhizophora mangle, responded less to variation in light and salinity. However, at high salinity, its relative growth rate was low at every light level and none of these plants flushed leaves. As predicted, the rare species, Pelliciera rhizophorae, was the most sensitive to environmental stressors, suffering especially high mortality and reduced growth and quantum yield under the combined conditions of high light and medium-high salinity. That it only thrives under shaded conditions represents an important exception to the prevailing belief that halophytes are intrinsically constrained to be shade intolerant.

  9. Changes in Carbon Pool and Stand Structure of a Native Subtropical Mangrove Forest after Inter-Planting with Exotic Species Sonneratia apetala

    PubMed Central

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration. PMID:24618793

  10. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    PubMed

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  11. Microbial utilization of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek estuary, Bahamas

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Peele, Emily R.; Hodson, Robert E.

    1986-11-01

    Dissolved organic matter was leached from [ 14C]labeled leaves of the red mangrove, Rhizophora mangle, and used in studies to determine the rates and efficiencies of microbial utilization of the water-soluble components of mangrove leaves in the Fresh Creek estuary, Bahamas. Rates of microbial utilization (assimilation plus mineralization) of mangrove leachate ranged from 0·022 to 4·675 μg ml -1 h -1 depending on the concentration of leachate and the size or diversity of microbial populations. Microflora associated with decaying mangrove leaves utilized mangrove leachate at rates up to 18-fold higher than rates of leachate utilization by planktonic microflora. Chemical analyses indicated that tannins and other potentially inhibitory phenolic compounds made up a major fraction (18%) of the dissolved organic matter in mangrove leachate. Mangrove leachate did not appear to be inhibitory to the microbial uptake of leachate or the microbial degradation of the lignocellulosic component of mangrove leaves except at high concentrations (mg ml -1). The availability of molecular oxygen also was an important parameter affecting rates of leachate utilization; rates of microbial utilization of leachate were up to 8-fold higher under aerobic rather than anaerobic conditions. The overall efficiency of conversion of mangrove leachate into microbial biomass was high and ranged from 64% to 94%. As much as 42% of the added leachate was utilized during 2 to 12 h incubations, indicating that a major fraction of the leachable material from mangrove leaves is incorporated into microbial biomass, and thus available to animals in the estuarine food web.

  12. Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon).

    PubMed

    Atheull, Adolphe Nfotabong; Din, Ndongo; Longonje, Simon N; Koedam, Nico; Dahdouh-Guebas, Farid

    2009-11-17

    Worldwide there is growing research interest in the ethnobiology of mangrove forests. Notwithstanding that, little information has been published about ethnobiology of mangrove forests in Cameroon. The aims of this study were a) to analyze the harvesting methods and the local selling of mangrove wood products by loggers in the vicinity of Wouri estuary and b) to investigate the patterns of subsistence uses of mangrove wood products around the Douala-Edea reserve. Semi-structured interviews were conducted with 120 active mangrove loggers in 23 Douala wood markets and 103 households located in three villages (Mbiako, Yoyo I and Yoyo II) close to Douala-Edea reserve. In each of the three densely populated villages, every second household was chosen for sampling while in all markets, mangrove loggers were chosen randomly. In addition, log diameters were measured in each market using a wooden foldable tape measure. A post hoc analysis (Newman-Keuls test) was performed in order to detect the common wood class diameter sold in the Douala wood markets. The analysis of the loggers' survey data has shown that large logs of Rhizophora with diameter greater than 40 cm were common in the Douala wood markets and were more closely associated with loggers who used chainsaws. In addition to the general mangroves wood products selling, the analysis on a subsistence level (households' survey) suggests the local population's dependence on mangroves, with multiple uses of Rhizophora racemosa Meyer, R. harrisonii Leechman, Avicennia germinans L. Stearn., Laguncularia racemosa Gaertn. f. and Conocarpus erectus L. timbers for furniture, fences, smoking fish, and fuelwood. Finally, Nypa fruticans (Thunb.) Wurmb. leaves were used as thatching material for house walls and roofs. Our findings revealed that big logs of Rhizophora were commonly sold by the loggers. A majority of loggers (60%) reported that mangrove marketed wood constitute a principal source of income. Most of the villagers (85

  13. Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon)

    PubMed Central

    2009-01-01

    Background Worldwide there is growing research interest in the ethnobiology of mangrove forests. Notwithstanding that, little information has been published about ethnobiology of mangrove forests in Cameroon. The aims of this study were a) to analyze the harvesting methods and the local selling of mangrove wood products by loggers in the vicinity of Wouri estuary and b) to investigate the patterns of subsistence uses of mangrove wood products around the Douala-Edea reserve. Methods Semi-structured interviews were conducted with 120 active mangrove loggers in 23 Douala wood markets and 103 households located in three villages (Mbiako, Yoyo I and Yoyo II) close to Douala-Edea reserve. In each of the three densely populated villages, every second household was chosen for sampling while in all markets, mangrove loggers were chosen randomly. In addition, log diameters were measured in each market using a wooden foldable tape measure. A post hoc analysis (Newman-Keuls test) was performed in order to detect the common wood class diameter sold in the Douala wood markets. Results The analysis of the loggers' survey data has shown that large logs of Rhizophora with diameter greater than 40 cm were common in the Douala wood markets and were more closely associated with loggers who used chainsaws. In addition to the general mangroves wood products selling, the analysis on a subsistence level (households' survey) suggests the local population's dependence on mangroves, with multiple uses of Rhizophora racemosa Meyer, R. harrisonii Leechman, Avicennia germinans L. Stearn., Laguncularia racemosa Gaertn. f. and Conocarpus erectus L. timbers for furniture, fences, smoking fish, and fuelwood. Finally, Nypa fruticans (Thunb.) Wurmb. leaves were used as thatching material for house walls and roofs. Conclusion Our findings revealed that big logs of Rhizophora were commonly sold by the loggers. A majority of loggers (60%) reported that mangrove marketed wood constitute a principal

  14. 18S rDNA Sequences from Microeukaryotes Reveal Oil Indicators in Mangrove Sediment

    PubMed Central

    Santos, Henrique F.; Cury, Juliano C.; Carmo, Flavia L.; Rosado, Alexandre S.; Peixoto, Raquel S.

    2010-01-01

    Background Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. Methodology/Principal Findings We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. Conclusions/Significance We believe that

  15. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment.

    PubMed

    Santos, Henrique F; Cury, Juliano C; Carmo, Flavia L; Rosado, Alexandre S; Peixoto, Raquel S

    2010-08-26

    Microeukaryotes are an effective indicator of the presence of environmental contaminants. However, the characterisation of these organisms by conventional tools is often inefficient, and recent molecular studies have revealed a great diversity of microeukaryotes. The full extent of this diversity is unknown, and therefore, the distribution, ecological role and responses to anthropogenic effects of microeukaryotes are rather obscure. The majority of oil from oceanic oil spills (e.g., the May 2010 accident in the Gulf of Mexico) converges on coastal ecosystems such as mangroves, which are threatened with worldwide disappearance, highlighting the need for efficient tools to indicate the presence of oil in these environments. However, no studies have used molecular methods to assess the effects of oil contamination in mangrove sediment on microeukaryotes as a group. We evaluated the population dynamics and the prevailing 18S rDNA phylotypes of microeukaryotes in mangrove sediment microcosms with and without oil contamination, using PCR/DGGE and clone libraries. We found that microeukaryotes are useful for monitoring oil contamination in mangroves. Our clone library analysis revealed a decrease in both diversity and species richness after contamination. The phylogenetic group that showed the greatest sensitivity to oil was the Nematoda. After contamination, a large increase in the abundance of the groups Bacillariophyta (diatoms) and Biosoecida was detected. The oil-contaminated samples were almost entirely dominated by organisms related to Bacillariophyta sp. and Cafeteria minima, which indicates that these groups are possible targets for biomonitoring oil in mangroves. The DGGE fingerprints also indicated shifts in microeukaryote profiles; specific band sequencing indicated the appearance of Bacillariophyta sp. only in contaminated samples and Nematoda only in non-contaminated sediment. We believe that the microeukaryotic targets indicated by our work will be of great

  16. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion.

    PubMed

    Servino, Ricardo Nogueira; Gomes, Luiz Eduardo de Oliveira; Bernardino, Angelo Fraga

    2018-07-01

    Extreme weather events are likely to become more frequent in the 21st century bringing significant impacts to coastal ecosystems. However, the capacity to detect and measure those impacts are still limited, with effects largely unstudied. In June 2016, a hailstorm with wind gusts of over 100 km·h -1 caused an unprecedented mangrove dieback on Eastern Brazil. To quantify the scale of impact and short-term recovery of mangroves (15-mo), we used satellite imagery and field sampling to evaluate changes in forest structure in control and impacted areas after the hailstorm. Satellite imagery revealed mangrove dieback in over 500 ha, corresponding to 29.3% of the total forest area suddenly impacted after the hailstorm. Fifteen months after the hailstorm, some impacted areas show an initial recovery, while others continued to degrade. The El Niño years of 2014-2016 created mild drought conditions in Eastern Brazil. As observed in wetlands of semi-arid regions during the same period, mangrove recovery may have been impaired by continued physiological stress and climate change effects. Economic losses in the study site from typical mangrove ecosystem services including food provision, climate regulation, raw materials and nurseries are estimated to at least US$ 792,624 yr -1 . This is the first evidence of an extreme weather impact on mangroves in Brazil that typically provide unique ecological and economic subsistence to coastal populations. Our results reveal that there is a pressing need for long-term monitoring and climate change adaptation actions for coastal wetlands in Brazil, and to provide broad estimates of ecosystem values associated with these ecosystems given many areas are already experiencing chronic stress from local impacts, drought and high temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira

    2012-04-01

    The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34″S; 48°51'40″W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.

  18. Diet of diamondback terrapins (Malaclemys terrapin) in subtropical mangrove habitats in South Florida

    USGS Publications Warehouse

    Denton, Mathew J.; Hart, Kristen M.; Demopoulos, Amanda W.J.; Oleinik, Anton; Baldwin, John N.

    2016-01-01

    Unique among turtles as the only exclusively estuarine species, the diamondback terrapin’s (Malaclemys terrapin) life history predisposes it to impacts from humans both on land and in the near-shore environment. Terrapins are found in salt marshes and mangroves along the Atlantic and Gulf coasts from Massachusetts to Texas. Whereas previous dietary studies have elucidated terrapins’ role in temperate salt marsh food webs, food resources for terrapins inhabiting subtropical mangrove habitats have not been studied. We examined dietary resource use for diamondback terrapins in subtropical mangrove creek and island habitats within Everglades National Park, Florida, to determine foraging strategies of terrapins inhabiting south Florida (SF) mangrove systems. Fecal analysis revealed 6 categories of food items, with gastropods, crabs, and bivalves being the dominant food items. Multivariate analysis revealed differences in food sources based on habitat more so than by terrapin size class. Our results revealed that like their counterparts in temperate salt marshes, SF terrapins consume similar prey categories but with different species and abundances comprising each category.

  19. Assessing Niger-Delta Wetland Resources: A Case-Study of Mangrove Ecosystem

    NASA Astrophysics Data System (ADS)

    Anwan, R. H.; Ndimele, P. E.; Whenu, O. O.; Anetekhai, M. A.; Essien-Ibok, M. A.; Erondu, E. S.

    2016-02-01

    The Niger Delta is located in the Atlantic coast of Southern Nigeria and is the world's second largest delta with a coastline of about 450km. The Niger Delta region occupies a surface area of about 112,110km2, representing about 12% of Nigeria's total surface area. The Delta's environment can be broken down into four ecological zones: coastal barrier islands, mangrove swamp forests, freshwater swamps, and lowland rainforests. The mangrove swamps of Niger Delta, which is the largest delta in Africa constitute the dominant wetland ecosystem in the Niger Delta region and covers an area of about 1,900km2. Mangroves constitute important nurseries for fishes, crustaceans, sponges, algae and other invertebrates, and also acts as a sink, retaining pollutants from contaminated tidal water. The Niger Delta mangrove together with the creeks and rivers are a major source of food and livelihood for about 30 million people, which represents more than 17% of Nigeria's population. Other ecosystem services provided by this unique environment are flood control, ground water re-fill, reservoir of biodiversity, fuel wood, cultural values etc. This ecosystem also plays important role in climate change mitigation because of its high blue carbon sequestration potential. This is particularly important because of continuous gas flaring in Niger Delta from petroleum operations, which releases carbon dioxide among other gases into the atmosphere. This wetland is potentially a good site for ecotourism and also qualifies to be a world heritage site and Ramsar site if proper steps are taken. The benefits derivable from this fragile ecosystem are under severe threat by anthropogenic stressors. These include the installation of pipelines and seismic exploration by oil companies, crude oil pollution, deforestation, urbanization etc. This paper discusses the extent of depletion and loss of mangrove ecosystem in the Niger Delta region and the value of its goods and services.

  20. Mapping and monitoring Louisiana's mangroves in the aftermath of the 2010 Gulf of Mexico Oil spill

    USGS Publications Warehouse

    Giri, C.; Long, J.; Tieszen, L.

    2011-01-01

    Information regarding the present condition, historical status, and dynamics of mangrove forests is needed to study the impacts of the Gulf of Mexico oil spill and other stressors affecting mangrove ecosystems. Such information is unavailable for Louisiana at sufficient spatial and thematic detail. We prepared mangrove forest distribution maps of Louisiana (prior to the oil spill) at 1 m and 30 m spatial resolution using aerial photographs and Landsat satellite data, respectively. Image classification was performed using a decision-tree classification approach. We also prepared land-cover change pairs for 1983, 1984, and every 2 y from 1984 to 2010 depicting “ecosystem shifts” (e.g., expansion, retraction, and disappearance). This new spatiotemporal information could be used to assess short-term and long-term impacts of the oil spill on mangroves. Finally, we propose an operational methodology based on remote sensing (Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer [ASTER], hyperspectral, light detection and ranging [LIDAR], aerial photographs, and field inventory data) to monitor the existing and emerging mangrove areas and their disturbance and regrowth patterns. Several parameters such as spatial distribution, ecosystem shifts, species composition, and tree height/biomass could be measured to assess the impact of the oil spill and mangrove recovery and restoration. Future research priorities will be to quantify the impacts and recovery of mangroves considering multiple stressors and perturbations, including oil spill, winter freeze, sea-level rise, land subsidence, and land-use/land-cover change for the entire Gulf Coast.

  1. Control of "blue carbon" storage by mangrove ageing: Evidence from a 66-year chronosequence in French Guiana.

    PubMed

    Walcker, Romain; Gandois, Laure; Proisy, Christophe; Corenblit, Dov; Mougin, Éric; Laplanche, Christophe; Ray, Raghab; Fromard, François

    2018-06-01

    The role of mangroves in the blue carbon stock is critical and requires special focus. Mangroves are carbon-rich forests that are not in steady-state equilibrium at the decadal time scale. Over the last decades, the structure and zonation of mangroves have been largely disturbed by coastal changes and land use conversions. The amount of time since the last disturbance is a key parameter determining forest structure, but it has so far been overlooked in mangrove carbon stock projections. In particular, the carbon sequestration rates among mangrove successional ages after (re)establishment are poorly quantified and not used in large-scale estimations of the blue carbon stock. Here, it is hypothesized that ecosystem age structure significantly modulates mangrove carbon stocks. We analysed a 66-year chronosequence of the aboveground and belowground biomass and soil carbon stock of mangroves in French Guiana, and we found that in the year after forest establishment on newly formed mud banks, the aboveground, belowground and soil carbon stocks averaged 23.56 ± 7.71, 13.04 ± 3.37 and 84.26 ± 64.14 (to a depth of 1 m) Mg C/ha, respectively. The mean annual increment (MAI) in the aboveground and belowground reservoirs was 23.56 × Age -0.52 and 13.20 × Age -0.64  Mg C ha -1  year -1 , respectively, and the MAI in the soil carbon reservoir was 3.00 ± 1.80 Mg C ha -1  year -1 . Our results show that the plant carbon sink capacity declines with ecosystem age, while the soil carbon sequestration rate remains constant over many years. We suggest that global projections of the above- and belowground reservoirs of the carbon stock need to account for mangrove age structures, which result from historical changes in coastal morphology. Our work anticipates joint international efforts to globally quantify the multidecadal mangrove carbon balance based on the combined use of age-based parametric equations and time series of mangrove age maps at regional scales

  2. Kluyveromyces aestuarii, a potential environmental quality indicator yeast for mangroves in the State of Rio de Janeiro, Brazil

    PubMed Central

    Araujo, F.V.; Hagler, A. N.

    2011-01-01

    Kluyveromyces aestuarii was found in sediments from 7 of 8 mangroves in Rio de Janeiro; and absent only at one site with heavy plastic bag pollution. Its presence suggests influence in other habitats from a mangrove and its absence in a mangrove suggests some non- fecal pollution or other habitat alteration. PMID:24031711

  3. Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution

    PubMed Central

    dos Santos, Henrique Fragoso; Cury, Juliano Carvalho; do Carmo, Flávia Lima; dos Santos, Adriana Lopes; Tiedje, James; van Elsas, Jan Dirk; Rosado, Alexandre Soares; Peixoto, Raquel Silva

    2011-01-01

    Background Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. Conclusions/Significance We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest. PMID:21399677

  4. Use of multiple chemical tracers to define habitat use of Indo-Pacific mangrove crab, Scylla serrata (Decapoda: Portunidae)

    USGS Publications Warehouse

    Demopoulos, A.W.J.; Cormier, N.; Ewel, K.C.; Fry, B.

    2008-01-01

    The mangrove or mud crab, Scylla serrata, is an important component of mangrove fisheries throughout the Indo-Pacific. Understanding crab diets and habitat use should assist in managing these fisheries and could provide additional justification for conservation of the mangrove ecosystem itself. We used multiple chemical tracers to test whether crab movements were restricted to local mangrove forests, or extended to include adjacent seagrass beds and reef flats. We sampled three mangrove forests on the island of Kosrae in the Federated States of Micronesia at Lelu Harbor, Okat River, and Utwe tidal channel. Samples of S. serrata and likely food sources were analyzed for stable carbon (??13C), nitrogen (??15N), and sulfur (??34S) isotopes. Scylla serrata tissues also were analyzed for phosphorus (P), cations (K, Ca, Mg, Na), and trace elements (Mn, Fe, Cu, Zn, and B). Discriminant analysis indicated that at least 87% of the crabs remain in each site as distinct populations. Crab stable isotope values indicated potential differences in habitat use within estuaries. Values for ??13C and ??34S in crabs from Okat and Utwe were low and similar to values expected from animals feeding within mangrove forests, e.g., feeding on infauna that had average ??13C values near -26.5???. In contrast, crabs from Lelu had higher ?? 13C and ??34S values, with average values of -21.8 and 7.8???, respectively. These higher isotope values are consistent with increased crab foraging on reef flats and seagrasses. Given that S. serrata have been observed feeding on adjacent reef and seagrass environments on Kosrae, it is likely that they move in and out of the mangroves for feeding. Isotope mixing model results support these conclusions, with the greatest mangrove ecosystem contribution to S. serrata diet occurring in the largest mangrove forests. Conserving larger island mangrove forests (> 1 km deep) appears to support crab foraging activities. ?? 2007 Coastal and Estuarine Research

  5. Final Project Memorandum: Ecological implications of mangrove forest migration in the southeastern U.S.

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Larriviere, Jack C.; Hester, Mark W.; Yando, Erik S.; Willis, Jonathan A

    2014-01-01

    Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern United States. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better evaluate the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological impacts of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial-nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought; habitat loss; coastal protection) to biogeochemical processes (e.g., carbon storage; water quality). This research specifically investigated the impact of mangrove forest migration on coastal wetland soil processes and the consequent implications for coastal wetland responses to sea level rise and carbon storage.

  6. Petroleum residues degradation in laboratory-scale by rhizosphere bacteria isolated from the mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Rinanti, A.; Nainggolan, I. J.

    2018-01-01

    This research is about petroleum bioremediation experiment to obtain bacterial isolate from mangrove ecosystem which potentially degrade petroleum. It was conducted in an Erlenmeyer batch system filled with growth medium of Stone Mineral Salt Solution (SMSS) plus petroleum residue, placed in an incubator shaker with a rotation speed of 120 rpm, temperature 3000C, for 14 research days. Indigenous bacteria that have been isolated and identified from the roots of mangrove plants are Ochrobactrum anthropi and Bacillus sp., Ralstonia pickettii and Bacillus circulans. Those bacteriain both monoculture and consortium form (mixed culture) are incorporated into erlenmeyer as remediator agents. All bacteria can utilize hydrocarbon compounds, but Ralstonia pickettii and Bacillus circulans reached exponential phase faster with more cell count than other bacteria. Compared to single cultures, petroleum degradation by a bacterial consortium provides a higher TPH reduction efficiency, i.e. at 5%, 10%, and 15% of initial TPH of 94.4%, 72%, and 80.3%, respectively. This study proved that all bacteria could optimize hydrocarbon compounds up to 15% TPH load.

  7. Microbial populations and activities of mangrove, restinga and Atlantic forest soils from Cardoso Island, Brazil.

    PubMed

    Pupin, B; Nahas, E

    2014-04-01

    Mangroves provide a distinctive ecological environment that differentiates them from other ecosystems. This study deal to evaluate the frequency of microbial groups and the metabolic activities of bacteria and fungi isolated from mangrove, restinga and Atlantic forest soils. Soil samples were collected during the summer and winter at depths of 0-2, 2-5 and 5-10 cm. Except for fungi, the counts of the total, sporulating, Gram-negative, actinomycetes, nitrifying and denitrifying bacteria decreased significantly in the following order: Atlantic forest >mangrove > restinga. The counts of micro-organisms decreased by 11 and 21% from the surface to the 2-5 and 5-10 cm layers, but denitrifying bacteria increased by 44 and 166%, respectively. A larger growth of micro-organisms was verified in the summer compared with the winter, except for actinomycetes and fungi. The average frequency of bacteria isolated from mangrove, restinga and Atlantic forest soils was 95, 77 and 78%, and 93, 90 and 95% for fungi, respectively. Bacteria were amylolytic (33%), producers of acid phosphatase (79%) and solubilizers (18%) of inorganic phosphate. The proportions of fungi were 19, 90 and 27%. The mangrove soil studied had higher chemical characteristics than the Atlantic forest, but the high salinity may have restricted the growth of microbial populations. Estimates of the microbial counts and activities were important to elucidate the differences of mangrove ecosystem from restinga and Atlantic forest. © 2013 The Society for Applied Microbiology.

  8. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans.

    PubMed

    Dasgupta, Susmita; Sobhan, Istiak; Wheeler, David

    2017-10-01

    This paper investigates the possible impacts of climate change on aquatic salinity and mangrove species in the Bangladesh Sundarbans. The impact analysis combines the salinity tolerance ranges of predominant mangrove species with aquatic salinity measures in 27 scenarios of climate change by 2050. The estimates indicate significant overall losses for Heritiera fomes; substantial gains for Excoecaria agallocha; modest changes for Avicennia alba, A. marina, A. officinalis, Ceriops decandra, and Sonneratia apetala; and mixed results for species combinations. Changes in mangrove stocks are likely to change the prospects for forest-based livelihoods. The implications for neighboring communities are assessed by computing changes in high-value mangrove species for the five sub-districts in the Sundarbans. The results of the impact analysis indicate highly varied patterns of gain and loss across the five sub-districts. Overall, however, the results suggest that salinity-induced mangrove migration will have a strongly regressive impact on the value of timber stocks because of the loss of highest value timber species, Heritiera fomes. In addition, the augmented potential for honey production will likely increase conflicts between humans and wildlife in the region.

  9. A Multi-Sensor Approach to Enhance the Prediction of Mangrove Biophysical Characteristics in Chilika Lagoon and Bhitarkanika Wildlife Sanctuary, Odisha, India

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Bledsoe, R.; Mishra, D. R.; Cameron, C.; Dahal, S.; Remillard, C.; Stone, A.; Stupp, P.

    2017-12-01

    Mangroves, one of the most productive ecosystems on Earth, play a major role in coastal ecosystem processes from mitigating erosion to acting as a barrier against tidal and storm surges associated with tropical cyclones. India has about 5 % of the world's mangrove vegetation, and over half of which is found along the east coast of the country. Chilika Lagoon and Bhitarkanika Wildlife Sanctuary are Ramsar sites of international wetland importance, situated in the state of Odisha along the east coast of India. Chilika Lagoon holds three small, but distinct mangrove patches, while Bhitarkanika Wildlife Sanctuary has several large, dense patches of mangroves. There is growing concern for the effective management and conservation of these mangrove forests. This study demonstrated the use of a suite of satellite data (Terra, Landsat, and Sentinel-1) for meeting the following objectives: 1. Derive a long-term spatio-temporal phenological maps of the biophysical parameters (chlorophyll, leaf area index, gross primary productivity, and evapotranspiration); 2. Analyze long-term spatio-temporal variability of physical and meteorological parameters; 3. Document decadal changes in mangroves area estimates starting from 1995 to 2017 using Landsat and radar data. The time series developed in this study revealed a phenological pattern for mangrove biophysical characteristics. Historical analysis of land cover maps indicated decrease in dense mangrove area and increase in open mangrove area and fragmentation. The results of this study will be used as an efficient biophysical mapping and monitoring protocol for mangrove forests in restoration decision-making.

  10. De novo assembly of the transcriptome of Aegiceras corniculatum, a mangrove species in the Indo-West Pacific region.

    PubMed

    Fang, Lu; Yang, Yuchen; Guo, Wuxia; Li, Jianfang; Zhong, Cairong; Huang, Yelin; Zhou, Renchao; Shi, Suhua

    2016-08-01

    Aegiceras corniculatum (L.) Blanco is one of the most salt tolerant mangrove species and can thrive in 3% salinity at the seaward edge of mangrove forests. Here we sequenced the transcriptome of A. corniculatum used Illumina GA platform to develop its genomic resources for ecological and evolutionary studies. We obtained about 50 million high-quality paired-end reads with 75bp in length. Using the short read assembler Velvet, we yielded 49,437 contigs with the average length of 625bp. A total of 32,744 (66.23%) contigs showed significant similarity to the GenBank non-redundant (NR) protein database. 30,911 and 18,004 of these sequences were assigned to Gene Ontology and eukaryotic orthologous groups of proteins (KOG). A total of 4942 transcripts from our assemblies had significant similarity with KEGG Orthologs and were involved in 144 KEGG pathways, while 9899 unigenes had enzyme commission (EC) numbers. In addition, 9792 transcriptome-derived SSRs were identified from 7342 sequences. With our strict criteria, 4165 candidate SNPs were also identified from 2058 contigs. Some of these SNPs were further validated by Sanger sequencing. Genomic resources generated in this study should be valuable in ecological, evolutionary, and functional genomics studies for this mangrove species. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa.

    PubMed

    Ewers, Frank W; Lopez-Portillo, Jórge; Angeles, Guillermo; Fisher, Jack B

    2004-09-01

    We measured xylem pressure potentials, soil osmotic potentials, hydraulic conductivity and percent loss of conductivity (PLC) due to embolism, and made microscopic observations of perfused dye in the white mangrove tree, Laguncularia racemosa (L.) Gaertn. f., (1) to determine its vulnerability to air embolism compared with published results for the highly salt-tolerant red mangrove tree, Rhizophora mangle L., and (2) to identify possible relationships between air embolism, permanent blockage of vessels and stem diameter. Laguncularia racemosa was more vulnerable to embolism than reported for R. mangle, with 50 PLC at -3.4 MPa. Narrow stems (5-mm diameter) had higher PLC than larger stems (8.4- or 14-mm diameter) of the same plants. Basic fuchsin dye indicated that up to 89% of the vessels, especially in the narrow stems, had permanent blockage that could not be reversed by high pressure perfusion. Air embolism could lead to permanent vessel blockage and eventual stem mortality. Such vulnerability to embolism may restrict the growth of L. racemosa and limit its distribution to less salty areas of mangrove communities.

  12. Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus.

    PubMed

    Newell, S Y; Miller, J D; Fell, J W

    1987-10-01

    Samples of leaves of red mangrove (Rhizophora mangle) were incubated on an agar medium selective for pythiaceous oomycetes. Leaves on trees above the water did not contain oomycetes. Marine oomycetes, principally Phytophthora vesicula, had colonized leaves within 2 h of leaf submergence, probably finding them by chemotaxis. The frequency of occurrence of P. vesicula in submerged leaves reached 100% within 30 h of submergence. By 43 h most, if not all, parts of leaves were occupied, and surface treatment with a biocide indicated that leaves were occupied internally. Frequencies of P. vesicula remained near 100% through about 2 weeks of submergence and then declined to about 60% in older (>/=4 weeks) leaves. Leaves of white mangrove (Laguncularia racemosa) were also extensively occupied by P. vesicula after falling into the water column, but decaying leaves of turtlegrass (Thalassia testudinum) were not colonized by oomycetes. Ergosterol analysis indicated that the standing crop of living, non-oomycete (ergosterol-containing) fungal mass in submerged red-mangrove leaves did not rise above that which had been present in senescent leaves on the tree; decaying turtlegrass leaves had an ergosterol content that was only about 2% of the maximum concentration detected for red-mangrove leaves. These results suggest that oomycetes are the predominant mycelial eucaryotic saprotrophs of mangrove leaves that fall into the water column and that for turtlegrass leaves which live, die, and decompose under submerged conditions, mycelial eucaryotes make no substantial contribution to decomposition.

  13. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes

    NASA Astrophysics Data System (ADS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Reading, Michael J.; Sanders, Christian J.

    2017-10-01

    We hypothesise that mangroves play an important role in groundwater exchange processes in sub-tropical and tropical estuarine waters. To investigate this, multiple high resolution time series measurements of radium across a tidal estuary (Coffs Creek, NSW, Australia) were performed as well as a spatial survey in both bottom and surface layers. Results from the spatial survey revealed increasing radium concentrations in parts of the estuary surrounded by mangroves. The average radium concentration in estuary areas lined with mangroves was 2.5 times higher than the average concentration at the mouth of the estuary and 6.5-fold higher than upstream freshwater areas. Additionally, the area enriched in radium coincided with low dissolved oxygen concentrations, implying that porewater exchange may drive anoxia. A radium mass balance model based on 223Ra and 224Ra isotopes at different sections of the estuary confirmed higher porewater exchange rates from areas fringed with mangrove vegetation. Estimated porewater exchange rates were 27.8 ± 5.3 and 13.6 ± 2.1 cm d-1 (0.8 ± 0.1 and 0.4 ± 0.1 m3 s-1) based on 223Ra and 224Ra isotopes, respectively. The average saline porewater exchange was ∼ 10-fold larger than the upstream surface freshwater inputs to the estuary. We suggest that mangrove environments within subtropical estuaries are hotspots for porewater exchange due to the complex belowground structure of crab burrows and the effect of tidal pumping. Because porewater exchange releases carbon and nitrogen from coastal sediments, development and modification of mangrove areas in subtropical estuaries have a significant effect on coastal biogeochemical cycles.

  14. A Model for Local Experiential Learning: Teacher Workshop on Mangroves, Oceans & Climate in Kosrae

    NASA Astrophysics Data System (ADS)

    Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.

    2016-02-01

    A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for school teachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors, graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.

  15. Diversity of ndo Genes in Mangrove Sediments Exposed to Different Sources of Polycyclic Aromatic Hydrocarbon Pollution▿

    PubMed Central

    Gomes, Newton C. Marcial; Borges, Ludmila R.; Paranhos, Rodolfo; Pinto, Fernando N.; Krögerrecklenfort, Ellen; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2007-01-01

    Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves. PMID:17905873

  16. A Complete Profile on Blind-your-eye Mangrove Excoecaria Agallocha L. (Euphorbiaceae): Ethnobotany, Phytochemistry, and Pharmacological Aspects.

    PubMed

    Mondal, Sumanta; Ghosh, Debjit; Ramakrishna, K

    2016-01-01

    Traditional system of medicine consists of large number of plants with various medicinal and pharmacological importances. This article provides a comprehensive review of the complete profile of an important mangrove plant Excoecaria agallocha L. ( Euphorbiaceae ) and elaborately describing the ethnobotany, phytochemistry, and pharmacological properties. It is used traditionally in the treatment of various diseases such as epilepsy, ulcers, leprosy, rheumatism, and paralysis. The latex obtained from the bark is poisonous in nature and may cause temporary blindness, thus it is also known as the blind-your-eye mangrove plant. Many phytoconstituents were isolated from the plant, which were mainly diterpenoids, triterpenoids, flavonoids, sterols, and few other compounds. The plant also showed many pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory, analgesic, antiulcer, anticancer, antireverse transcriptase, antihistamine-release, antifilarial, DNA damage protective, antidiabetic, and antitumor protecting activities. Hence, this review could help guide researchers anticipating to undertake further investigations in these directions.

  17. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    PubMed

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. How Can a Little Shrimp Do so Much Damage?: Ecosystem Service Losses Associated with Land Cover Change in Mangroves

    NASA Astrophysics Data System (ADS)

    Kauffman, J. B.; Bhomia, R. K.

    2014-12-01

    Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.

  19. Differential in surface elevation change across mangrove forests in the intertidal zone

    NASA Astrophysics Data System (ADS)

    Fu, Haifeng; Wang, Wenqing; Ma, Wei; Wang, Mao

    2018-07-01

    A better understanding of surface elevation changes in different mangrove forests would improve our predictions of sea-level rise impacts, not only upon mangrove species distributions in the intertidal zone, but also on the functioning of these wetlands. Here, a two-year (2015-2017) dataset derived from 18 RSET-MH (rod surface elevation table-marker horizon) stations at Dongzhaigang Bay, Hainan, China, was analyzed to investigate how surface elevation changes differed across mangrove species zones. The current SET data indicated a rather high rate (9.6 mm y-1, on average) of surface elevation gain that was mostly consistent with that (8.1 mm y-1, on average) inferred from either the 137Cs or 210Pb dating of sediment cores. In addition, these surface elevation changes were sensitive to elevation in the intertidal zone and differed significantly between the two study sites (Sanjiang and Houpai). Mangrove species inhabiting the lower intertidal zone tended to experience greater surface elevation change at Sanjiang, which agrees with the general view that sedimentation and elevation gains are driven by elevation in the intertidal zone (i.e., greater when positioned lower in the intertidal profile). However, at Houpai, both surface elevation change and surface accretion showed the opposite trend (i.e., greater when positioned higher in the intertidal profile). This study's results indicate that the pattern of surface elevation changes across the intertidal profile maybe inconsistent due to intricate biophysical controls. Therefore, instead of using a constant rate, models should presume a topography that evolves at differing rates of surface elevation change in different species zones across the intertidal profile when predicting the impacts of sea-level rise on mangrove distributions.

  20. Eddy covarianace measurements in a hyper-arid and hyper-saline mangroves ecosystem

    NASA Astrophysics Data System (ADS)

    Perri, S.; Marpu, P.; Molini, A.; Armstrong, P.

    2017-12-01

    The natural environment of mangroves provides a number of ecosystem services for improving water quality, supporting healthy fisheries, and protecting the coasts. Also, their carbon storage is larger than any other forest type. Several authors have recognized the importance of mangroves in global carbon cycles. However, energy, water and carbon exchanges between ecosystem and atmosphere are still not completely understood. Eddy covariance measurements are extremely valuable to understand the role of the unique stressors of costal ecosystems in gas exchange. In particular, periodic flooding and elevated soil pore water salinity influence land-atmosphere interactions. Despites the importance of flux measurements in mangroves forests, such in-situ observations are extremely rare. Our research team set up an eddy covariance tower in the Mangrove National Park of Abu Dhabi, UAE. The study site (24.4509° N, 54.4288° E) is located in a dwarf Avicennia marina ecosystem experiencing extremely high temperatures and salinity. CO2 and H2O exchanges are estimated and related to water level and salinity measurements. This unique dataset will shed some light on the net ecosystem exchange (NEE) of carbon dioxide, on energy fluxes and on evapotranspiration rates for a halophyte ecosystem under severe salt-stress and high temperature.