Sample records for obtained hubble space

  1. Hubble Space Telescope

    NASA Image and Video Library

    2017-12-08

    The Hubble Space Telescope in a picture snapped by a Servicing Mission 4 crewmember just after the Space Shuttle Atlantis captured Hubble with its robotic arm on May 13, 2009, beginning the mission to upgrade and repair the telescope. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  2. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    David Leckrone, senior project scientist for Hubble at NASA's Goddard Space Flight Center in Greenbelt, Md. discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  3. Hubble Space Telescope and James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced ground breaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2000-07-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  5. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  6. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  7. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colorado discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  8. Creation of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2009-08-01

    The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.

  9. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  10. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  11. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss the top 10 astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  12. A Scientific Revolution: the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the most important astronomical discoveries of the last IO years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. I will describe how Hubble was upgraded and how and why we are building Webb.

  13. Hubble Space Telescope nears Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-73-040 (4 Dec 1993) --- Backdropped against the blackness of space, the Hubble Space Telescope (HST) nears the Space Shuttle Endeavour. With the aid of the Remote Manipulator System (RMS), the STS-61 crew members later grappled the spacecraft and berthed it in the cargo bay for five-days of servicing chores by four space walkers.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-02

    What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).

  15. Astronomy from Space: The Hubble, Herschel and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.

  16. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Fiight Center (MSFC), which is instrumented with individual cell voltage monitoring.

  17. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  18. NASA's Hubble Space Telescope: Presentation to the Freedom Museum

    NASA Technical Reports Server (NTRS)

    Leete, Stephen

    2017-01-01

    The Freedom Museum, located in Manassas, VA, requested a speaker through the NASA Speakers Bureau, on the topic of the Hubble Space Telescope. A public outreach presentation has been prepared. Many of the facts are drawn from a public source, the Wikipedia article on the Hubble Space Telescope. This covers the history of the development of the HST, as well as the initial flaw and its repair, and the subsequent series of servicing missions, for which I was involved in the last three. This has been the topic of numerous books. This has been supplemented mostly by facts known to the author, such as names of individuals who played key roles, but not any technical information. Because the reqeustor asked for a significant part of the talk to address major science findings and discoveries, significant portions of a public presentation on this topic developed by Kenneth Carpenter of GSFC were obtained and incorporated, with credit. I have confirmed that this material is also available through public sources.

  19. Hubble Space Telescope approaches Shuttle Endeavour

    NASA Image and Video Library

    1993-12-04

    STS061-93-031 (4 Dec 1993) --- Part of the vast Indian Ocean forms the backdrop for this scene of the Hubble Space Telescope (HST) as it approaches the Space Shuttle Endeavour. Denham Sound and Shark Bay, on Australia's west coast, are just below the waiting mechanical arm at lower right corner.

  20. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  1. Calibration of the Hubble Space Telescope polarimetric modes

    NASA Technical Reports Server (NTRS)

    Lupie, O. L.; Stockman, H. S.

    1988-01-01

    Stellar and galactic polarimetry from space is an unexplored observational regime and one which holds exciting promise for answering many fundamental astrophysical questions. The Hubble Space Telescope will be the first space observatory to provide a variety of polarimetric modes to astronomers including spectral, imaging, and single-aperture UV polarimetry. As part of the calibration program for these modes, the Space Telescope Science Institute has initiated a ground-based program to define faint standard fields and solicited community support to establish a temporal baseline for these potential standard targets. In this paper, the polarimetric capabilities of the Hubble Space Telescope, the philosophy and complications of in-flight calibration, and the status and direction of the standard targets program are discussed.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-02-08

    This photo, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys, is Hubble's latest view of an expanding halo of light around the distant star V838 Monocerotis, or V Mon, caused by an unusual stellar outburst that occurred back in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". Located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn), the star brightened to more than 600,000 times our Sun's luminosity. The light echo gives the illusion of contracting, until it finally disappears by the end of the decade.

  3. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2011-01-01

    Astronomy is going through a scientific revolution, responding to a Rood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, Dr. Gardner will discuss some of the most important astronomical discoveries of the last 10 years, and the role that space telescopes have played in those discoveries. The next decade looks equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope.

  4. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md., left foreground, NASA Administrator Charles F. Bolden, center, and NASA Deputy Administrator Lori Garver, right, along with members of the STS-125 and STS-31 space shuttle crews listen during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  5. The Hubble Space Telescope at 25: Lessons Learned for Future Missions

    NASA Astrophysics Data System (ADS)

    Wiseman, Jennifer

    2015-08-01

    This year we celebrate the 25th anniversary of the Hubble Space Telescope mission. Astronomy worldwide has been transformed by the discoveries made with Hubble. At this momentous milestone it is important to reflect on the unique successes of Hubble, and the components of that success, as the astronomical community develops facilities and a vision for future major international efforts in scientific space exploration. First, Hubble was envisioned by pioneering astronomers long before its launch, galvanizing support from astronomers, NASA, and governmental leaders for such an innovative and risky endeavor. Second, the interplay of the astronaut program with scientific exploration was paramount to the success of Hubble, not only with the initial dramatic repair mission, but also for the subsequent five servicing missions that kept the observatory perpetually refreshed. Cooperative missions involving astronauts, engineers, and scientists may be critical for constructing and operating large facilities in space in the future. Third, the scientific discoveries of Hubble involve both incredible successes that were planned from the outset as well as new discoveries and innovative uses of the observatory that could not have been planned in advance. Hubble has been used not only to gauge the expansion rate and age of the universe, but has also been a major player in the recent surprise detection of acceleration in that expansion. Hubble has also been key for studying star formation and now the atmospheres of exoplanets; even water has been detected in exoplanetary systems, something never envisioned for Hubble originally. And the incredible evolutionary picture of galaxies has been unveiled through Hubble observations, now enhanced by the revolutionary uses of gravitational lensing to study both dark matter in the lensing clusters, and extremely distant magnified galaxies. Finally, Hubble’s great success in public outreach has made the discoveries of astronomy easily

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1998-01-01

    This photograph is a Hubble Space Telescope (HST) image of a sky full of glittering jewels. The HST peered into the Sagittarius star cloud, a narrow dust free region, providing this spectacular glimpse of a treasure chest full of stars.

  7. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler listens to a reporters question during a press conference where NASA released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  8. Hubble Space Telescope,Spitzer Space Telescope

    NASA Image and Video Library

    2018-01-11

    This image showcases both the visible and infrared visualizations of the Orion Nebula. This view from a movie sequence looks down the 'valley' leading to the star cluster at the far end. The left side of the image shows the visible-light visualization, which fades to the infrared-light visualization on the right. These two contrasting models derive from observations by the Hubble and Spitzer space telescopes. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22089

  9. European astronaut selected for the third Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  10. Hubble Space Telescope-Concept

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler speaks at the podium as Sen. Barbara A. Mikulski, D-Md., left, listens during a press conference where NASA unveiled new images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  12. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2014, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  13. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan

    2008-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 2013, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  14. Hubble Space Telescope: Battery Capacity Trend Studies

    NASA Technical Reports Server (NTRS)

    Rao, M. Gopalakrishna; Hollandsworth, Roger; Armantrout, Jon

    2004-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. Capacity trend data is presented which suggests HST battery replacement is required in 2005-2007 or sooner.

  15. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    NASA is planning a successor to the Hubble Space Telescope designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, Dr. Gardner will discuss the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with Hubble through to the present day. He will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope. Webb is scheduled to launch in 201 3, and is designed to find the first galaxies that formed in the distant past and to penetrate the dusty clouds of gas where stars are still forming today. He will compare Webb to Hubble, and discuss recent progress in the construction of the observatory.

  16. Hubble Space Telescope secondary mirror vertex radius/conic constant test

    NASA Technical Reports Server (NTRS)

    Parks, Robert

    1991-01-01

    The Hubble Space Telescope backup secondary mirror was tested to determine the vertex radius and conic constant. Three completely independent tests (to the same procedure) were performed. Similar measurements in the three tests were highly consistent. The values obtained for the vertex radius and conic constant were the nominal design values within the error bars associated with the tests. Visual examination of the interferometric data did not show any measurable zonal figure error in the secondary mirror.

  17. Hubble Space Telescope. Update: 18 months in orbit

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1990, Space Shuttle Discovery launched the Hubble Space Telescope (HST). An 18 month in-orbit update of the operations and performance of the HST is presented. Numerous color photographs are shown of objects already observed, and mission plans are presented for future observations by the HST.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-07-09

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  19. Hubble Space Telescope Deep Field Lesson Package. Teacher's Guide, Grades 6-8. Amazing Space: Education On-Line from the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This lesson guide accompanies the Hubble Deep Field set of 10 lithographs and introduces 4 astronomy lesson plans for middle school students. Lessons include: (1) "How Many Objects Are There?"; (2) "Classifying and Identifying"; (3) "Estimating Distances in Space"; and (4) "Review and Assessment." Appendices…

  20. Hubble Nabs Space Invaders?

    NASA Image and Video Library

    2017-12-08

    The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www

  1. Hubble Nabs Space Invaders?

    NASA Image and Video Library

    2017-12-08

    The gravitational field surrounding this massive cluster of galaxies, Abell 68, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it. In this photo, the image of a spiral galaxy at upper left has been stretched and mirrored into a shape similar to that of a simulated alien from the classic 1970s computer game "Space Invaders!" A second, less distorted image of the same galaxy appears to the left of the large, bright elliptical galaxy. In the upper right of the photo is another striking feature of the image that is unrelated to gravitational lensing. What appears to be purple liquid dripping from a galaxy is a phenomenon called ram-pressure stripping. The gas clouds within the galaxy are being stripped out and heated up as the galaxy passes through a region of denser intergalactic gas. This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys. The image is based in part on data spotted by Nick Rose in the Hubble’s Hidden Treasures image processing competition. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington. To read more go to: 1.usa.gov/Z6uDUp Credit: NASA and ESA Acknowledgement: N. Rose For image files and more information about Abell 68, visit: hubblesite.org/news/2013/09 www.spacetelescope.org/news/heic04 heritage.stsci.edu/2013/09 www

  2. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  3. Hubble Space Telescope Deploy, Eastern Cuba, Haiti

    NASA Image and Video Library

    1990-04-29

    A close up deploy view of the Hubble Space Telescope on the end of the space shuttle remote manipulator system (RMS) with Eastern Cuba, (20.0N, 74.0W) seen on the left side of the telescope and northern Haiti seen on the right side of the telescope. The light colored blue feature in the water north of Haiti is the shallow waters of the Caicos Bank.

  4. Spectacles in Space: A Museum of the Hubble Telescope

    ERIC Educational Resources Information Center

    Vermillion, Patricia

    2004-01-01

    When the space shuttle "Columbia" was "lost entering the Earth's atmosphere," third graders at the Lamplighter School in Texas became curious about space travel. Using topics of interest and brainstorming exercises based on a presentation by Elaine Scott, author of "Adventures in Space: The Flight to Fix the Hubble,"…

  5. Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope

    NASA Image and Video Library

    2014-06-04

    Astronomers using NASA's Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope. Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble's Advanced Camera for Surveys and Wide Field Camera 3. Credit: NASA/ESA Read more: 1.usa.gov/1neD0se NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Hubble Space Telescope Program on STS-95 Supported by Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    2000-01-01

    John Glenn's historic return to space was a primary focus of the STS 95 space shuttle mission; however, the 83 science payloads aboard were the focus of the flight activities. One of the payloads, the Hubble Space Telescope Orbital System Test (HOST), was flown in the cargo bay by the NASA Goddard Space Flight Center. It served as a space flight test of upgrade components for the telescope before they are installed in the shuttle for the next Hubble Space Telescope servicing mission. One of the upgrade components is a cryogenic cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The cooling is required for low noise in the receiver's sensitive electronic instrumentation. Originally, a passive system using dry ice cooled NICMOS, but the ice leaked away and must be replaced. The active cryogenic cooler can provide the cold temperatures required for the NICMOS, but there was a concern that it would create vibrations that would affect the fine pointing accuracy of the Hubble platform.

  7. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  8. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being raised to a vertical position in the cargo bay of the Space Shuttle orbiter. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope (HST) being positioned for release from the Space Shuttle orbiter by the Remote Manipulator System (RMS). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. M Dwarfs from Hubble Space Telescope Star Counts. IV.

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Flynn, Chris; Gould, Andrew; Bahcall, John N.; Salim, Samir

    2001-07-01

    We study a sample of about 1400 disk M dwarfs that are found in 148 fields observed with the Wide Field Camera 2 (WFC2) on the Hubble Space Telescope and 162 fields observed with pre-repair Planetary Camera 1 (PC1), of which 95 of the WFC2 fields are newly analyzed. The method of maximum likelihood is applied to derive the luminosity function and the Galactic disk parameters. At first, we use a local color-magnitude relation and a locally determined mass-luminosity relation in our analysis. The results are consistent with those of previous work but with considerably reduced statistical errors. These small statistical errors motivate us to investigate the systematic uncertainties. Considering the metallicity gradient above the Galactic plane, we introduce a modified color-magnitude relation that is a function of Galactic height. The resultant M dwarf luminosity function has a shape similar to that derived using the local color-magnitude relation but with a higher peak value. The peak occurs at MV~12, and the luminosity function drops sharply toward MV~14. We then apply a height-dependent mass-luminosity function interpolated from theoretical models with different metallicities to calculate the mass function. Unlike the mass function obtained using local relations, which has a power-law index α=0.47, the one derived from the height-dependent relations tends to be flat (α=-0.10). The resultant local surface density of disk M dwarfs (12.2+/-1.6 Msolar pc-2) is somewhat smaller than the one obtained using local relations (14.3+/-1.3 Msolar pc-2). Our measurement favors a short disk scale length, H=2.75+/-0.16 (statistical)+/-0.25 (systematic) kpc. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-01

    This photograph shows the Hubble Space Telescope (HST) installed in the cargo bay of the Space Shuttle Orbiter Discovery for the STS-31 Mission at The Kennedy Space Center prior to launch on April 24, 1990. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1983-01-01

    This is a photograph of a 1/15 scale model of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13- meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  14. Hubble Space Telescope Deployment-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-04-01

    This image illustrates the overall Hubble Space Telescope (HST) configuration. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This artist's concept depicts the Hubble Space Telescope after being released into orbit, with the high gain anternas and solar arrays deployed and the aperture doors opened. The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is 42.5-feet (13-meters) long and weighs about 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. Exploring the Universe with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A general overview is given of the operations, engineering challenges, and components of the Hubble Space Telescope. Deployment, checkout and servicing in space are discussed. The optical telescope assembly, focal plane scientific instruments, wide field/planetary camera, faint object spectrograph, faint object camera, Goddard high resolution spectrograph, high speed photometer, fine guidance sensors, second generation technology, and support systems and services are reviewed.

  18. The Hubble Space Telescope Scientific Instruments

    NASA Technical Reports Server (NTRS)

    Moore, J. V.

    1986-01-01

    The paper describes the status of the five Scientific Instruments (SI's) to be flown on the Hubble Space Telescope (HST) which is planned to be launched by the Space Transportation System in the last half of 1986. Concentration is on the testing experience for each of the instruments both at the instrument level and in conjunction with the other instruments and subsystems of the HST. Since the Acceptance/Flight Qualification Program of the HST is currently underway a description of the test and verification plans to be accomplished prior to shipment to the Kennedy Space Center (KSC) and pre-launch tests plans prior to launch are provided. The paper concludes with a brief description of anticipated orbital performance.

  19. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  20. Hot Star Extension to the Hubble Space Telescope Stellar Spectral Library

    NASA Astrophysics Data System (ADS)

    Khan, Islam; Worthey, Guy

    2017-01-01

    CCD spectra of 36 stars were obtained from the Space Telescope Imaging Spectrograph (STIS) installed in the Hubble Space Telescope (HST) using three low resolution gratings - G230LB, G430L, and G750L, combined in processing to make single, continuous spectra from 0.2 to 1.0 micrometers. These spectra will be added to the Next Generation Stellar Library (NGSL) after completing the data analysis, reduction, and the required corrections. The stars include normal O-type stars, helium-burning stars, and post-asymptotic giant branch (PAGB) stars. Difficult steps in the data reduction process were removing the cosmic rays from the raw images and defringing of the G750L spectra using fringe flats. Most stars have detectable dust extinction. To aid in analysis, synthetic spectra were generated with various effective temperatures and surface gravities. A five parameter analytic model for the dust extinction correction was adopted. The parameters were varied in order to fit especially the ultraviolet portion of the observed and comparison synthetic spectra. Cross-correlation was used to bring the spectra to a common, final, zero velocity wavelength scale. Some star temperatures obtained from fitting synthetic versus observed spectra vary significantly from literature values. The dust extinction correction parameters also varied for several stars, mostly O stars, indicating variations in dust properties for different lines of sight. Analysis of scattered light effects showed that it was significant only for our two coolest stars.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Support for this work was provided by NASA through grant number HST-GO-14141 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  1. Shuttle to Space Station. Heart Assist Implant. Hubble Update. X-30 Mock-Up

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Shuttle to Space Station, Heart Assist Implant, Hubble Update, and X-30 Mockup are the four parts that are discussed in this video. The first part, Shuttle to Space Station, is focussed on the construction and function of the Space Station Freedom. While part two, Heart Assist Implant, discusses a newly developed electromechanical device that helps to reduce heart attack by using electric shocks. Interviews with the co-inventor and patients are also included. Brief introduction to Hubble Telescope, problem behind its poor image quality (mirror aberration), and the plan to correct this problem are the three issues that are discussed in part three, Hubble Update. The last part, part four, reviews the X-30 Mockup designed by the staff and students of Mississippi State University.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  3. How Long Can the Hubble Space Telescope Operate Reliably?

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Lum, G.; Haskins, D. N.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    Total ionizing dose exposure of electronic parts in the Hubble Space Telescope is analyzed using 3-D ray trace and Monte Carlo simulations. Results are discussed along with other potential failure mechanisms for science operations.

  4. Neutral Buoyancy Test - Hubble Space Telescope Scientific Instruments (SI)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the first and flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Pictured is MSFC's Neutral Buoyancy Simulator that served as the test center for shuttle astronauts training for Hubble related missions. Shown is an astronaut training on a mock-up of a modular section of the HST in the removal and replacement of scientific instruments.

  5. Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.

    1998-01-01

    The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.

  6. -V2 plane on the Hubble Space Telescope

    NASA Image and Video Library

    2002-03-03

    STS109-E-5104 (3 March 2002) --- The Hubble Space Telescope is seen in the cargo bay of the Space Shuttle Columbia. Each present set of solar array panels will be replaced during one of the space walks planned for the coming week. The crew aimed various cameras, including the digital still camera used for this frame, out the shuttle's aft flight deck windows to take a series of survey type photos, the first close-up images of the telescope since December of 1999.

  7. -V2 plane on the Hubble Space Telescope

    NASA Image and Video Library

    2002-03-03

    STS109-E-5102 (3 March 2002) --- The Hubble Space Telescope is seen in the cargo bay of the Space Shuttle Columbia. Each present set of solar array panels will be replaced during one of the space walks planned for the coming week. The crew aimed various cameras, including the digital still camera used for this frame, out the shuttle's aft flight deck windows to take a series of survey type photos, the first close-up images of the telescope since December of 1999.

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This is an artist's concept of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  10. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  11. "Amazing Space": Creating Educational Resources from Current Scientific Research Results from the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    Christian, C. A.; Eisenhamer, B.; Eisenhamer, Jonathan; Teays, Terry

    2001-01-01

    Introduces the Amazing Space program which is designed to enhance student mathematics, science, and technology skills using recent data and results from the National Aeronautics and Space Administration's (NASA) Hubble Space Telescope mission. Explains the process of designing multi-media resources in a five-week summer workshop that partners…

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  13. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1979-03-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. New set of solar arrays deployed on Hubble Space Telescope

    NASA Image and Video Library

    1993-12-09

    STS061-99-002 (2-13 Dec 1993) --- The new set of solar array panels deployed on the Hubble Space Telescope (HST) is backdropped against the blackness of space and a widely cloud-covered area on Earth. The 70mm frame was exposed by one of the Space Shuttle Endeavour's seven crew members on the aft flight deck.

  16. A Scientific Revolution: The Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2010-01-01

    Astronomy is going through a scientific revolution, responding to a flood of data from the Hubble Space Telescope, other space missions, and large telescopes on the ground. In this talk, I will discuss some of the important discoveries of the last decade, from dwarf planets in the outer Solar System to the mysterious dark energy that overcomes gravity to accelerate the expansion of the Universe. The next decade will be equally bright with the newly refurbished Hubble and the promise of its successor, the James Webb Space Telescope. An infrared-optimized 6.5m space telescope, Webb is designed to find the first galaxies that formed in the early universe and to peer into the dusty gas clouds where stars and planets are born. With MEMS technology, a deployed primary mirror and a tennis-court sized sunshield, the mission presents many technical challenges. I will describe Webb's scientific goals, its design and recent progress in constructing the observatory. Webb is scheduled for launch in 2014.

  17. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  18. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope is following dramatic and rapid changes in Jupiter's turbulent atmosphere that will be critical for targeting observations made by the Galileo space probe when it arrives at the giant planet later this year.

    This Hubble image provides a detailed look at a unique cluster of three white oval-shaped storms that lie southwest (below and to the left) of Jupiter's Great Red Spot. The appearance of the clouds, as imaged on February 13, 1995 is considerably different from their appearance only seven months earlier. Hubble shows these features moving closer together as the Great Red Spot is carried westward by the prevailing winds while the white ovals are swept eastward. (This change in appearance is not an effect of last July's comet Shoemaker-Levy 9 collisions with Jupiter.)

    The outer two of the white storms formed in the late 1930s. In the centers of these cloud systems the air is rising, carrying fresh ammonia gas upward. New, white ice crystals form when the upwelling gas freezes as it reaches the chilly cloud top level where temperatures are -200 degrees Fahrenheit (- 130 degrees Centigrade).

    The intervening white storm center, the ropy structure to the left of the ovals, and the small brown spot have formed in low pressure cells. The white clouds sit above locations where gas is descending to lower, warmer regions. The extent of melting of the white ice exposes varied amounts of Jupiter's ubiquitous brown haze. The stronger the down flow, the less ice, and the browner the region.

    A scheduled series of Hubble observations will help target regions of interest for detailed scrutiny by the Galileo spacecraft, which will arrive at Jupiter in early December 1995. Hubble will provide a global view of Jupiter while Galileo will obtain close-up images of structure of the clouds that make up the large storm systems such as the Great Red Spot and white ovals that are seen in this picture.

    This color picture is assembled from a

  19. Hubble space telescope six-battery test bed

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.; Bush, J. R., Jr.; Lanier, J. R., Jr.

    1990-01-01

    A test bed for a large space power system breadboard for the Hubble Space Telescope (HST) was designed and built to test the system under simulated orbital conditions. A discussion of the data acquisition and control subsystems designed to provide for continuous 24 hr per day operation and a general overview of the test bed is presented. The data acquisition and control subsystems provided the necessary monitoring and protection to assure safe shutdown with protection of test articles in case of loss of power or equipment failure over the life of the test (up to 5 years).

  20. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  1. The Hubble Space Telescope servicing missions: Past, present, and future operational challenges

    NASA Technical Reports Server (NTRS)

    Ochs, William R.; Barbehenn, George M.; Crabb, William G.

    1996-01-01

    The Hubble Space Telescope was designed to be serviced by the Space Shuttle to upgrade systems, replace failed components and boost the telescope into higher orbits. There exists many operational challenges that must be addressed in preparation for the execution of a servicing mission, including technical and managerial issues. The operational challenges faced by the Hubble operations and ground system project for the support of the first servicing mission and future servicing missions, are considered. The emphasis is on those areas that helped ensure the success of the mission, including training, testing and contingency planning.

  2. Near-infrared Detection of WD 0806-661 B with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Morley, C. V.; Burgasser, A. J.; Esplin, T. L.; Bochanski, J. J.

    2014-10-01

    WD 0806-661 B is one of the coldest known brown dwarfs (T eff = 300-345 K) based on previous mid-infrared photometry from the Spitzer Space Telescope. In addition, it is a benchmark for testing theoretical models of brown dwarfs because its age and distance are well constrained via its primary star (2 ± 0.5 Gyr, 19.2 ± 0.6 pc). We present the first near-infrared detection of this object, which has been achieved through F110W imaging (~Y + J) with the Wide Field Camera 3 on board the Hubble Space Telescope. We measure a Vega magnitude of m 110 = 25.70 ± 0.08, which implies J ~ 25.0. When combined with the Spitzer photometry, our estimate of J helps to better define the empirical sequence of the coldest brown dwarfs in M 4.5 versus J - [4.5]. The positions of WD 0806-661 B and other Y dwarfs in that diagram are best matched by the cloudy models of Burrows et al. and the cloudless models of Saumon et al., both of which employ chemical equilibrium. The calculations by Morley et al. for 50% cloud coverage differ only modestly from the data. Spectroscopy would enable a more stringent test of the models, but based on our F110W measurement, such observations are currently possible only with Hubble, and would require at least ~10 orbits to reach a signal-to-noise ratio of ~5. Based on observations made with the NASA/ESA Hubble Space Telescope through program 12815, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, and observations with the ESO Telescopes at Paranal Observatory under programs ID 089.C-0428 and ID 089.C-0597.

  3. Discarded solar array panel removed from Hubble Space telescope

    NASA Image and Video Library

    1993-12-06

    STS061-95-031 (6 Dec 1993) --- The damaged solar array panel removed from the Hubble Space Telescope (HST) is backdropped over northern Sudan. Astronaut Kathryn C. Thornton, just out of frame at top right, watched the panel after releasing it moments earlier.

  4. Finding Our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2003-01-01

    NASA's Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  5. Finding our Origins with the Hubble and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2004-01-01

    NASA s Origins program is a series of space telescopes designed to study the origins of galaxies, stars, planets and life in the universe. In this talk, I will concentrate on the origin and evolution of galaxies, beginning with the Big Bang and tracing what we have learned with the Hubble Space Telescope through to the present day. I will introduce several of the tools that astronomers use to measure distances, measure velocities, and look backwards in time. I will show that results from studies with Hubble have led to plans for its successor, the James Webb Space Telescope, which is designed to find the first galaxies that formed in the distant past. I will finish with a short discussion of other missions in the Origins theme, including the Terrestrial Planet Finder.

  6. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the "Black Eye" or "Evil Eye" galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.

  7. Hubble Space Telescope On-orbit Transfer Function Test

    NASA Technical Reports Server (NTRS)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  8. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1969-01-01

    This image of the Egg Nebula, also known as CRL-2688 and located roughly 3,000 light-years from us, was taken in red light with the Wide Field Planetary Camera 2 (WF/PC2) aboard the Hubble Space Telescope (HST). The image shows a pair of mysterious searchlight beams emerging from a hidden star, crisscrossed by numerous bright arcs. This image sheds new light on the poorly understood ejection of stellar matter that accompanies the slow death of Sun-like stars. The image is shown in false color.

  10. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  11. Hubble Against Earth Horizon 1997

    NASA Image and Video Library

    1997-10-10

    The Hubble Space Telescope hovers at the boundary of Earth and space in this picture, taken after Hubble second servicing mission in 1997. Hubble drifts 353 miles (569 km) above the Earth's surface, where it can avoid the atmosphere and clearly see objects in space. http://photojournal.jpl.nasa.gov/catalog/PIA18165

  12. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.

    2005-01-01

    During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.

  13. Appendange deployment mechanism for the Hubble Space Telescope program

    NASA Technical Reports Server (NTRS)

    Greenfield, H. T.

    1985-01-01

    The key requirements, a design overview, development testing (qualification levels), and two problems and their solutions resolved during the mechanism development testing phase are presented. The mechanism described herein has demonstrated its capability to deploy/restow two large Hubble Space Telescope deployable appendages in a varying but controlled manner.

  14. Hubble Space Telescope Battery Capacity Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Rao, Gopalakrishna M.

    2007-01-01

    Orbital battery performance for the Hubble Space Telescope is discussed and battery life is predicted which supports decision to replace orbital batteries by 2009-2010 timeframe. Ground characterization testing of cells from the replacement battery build is discussed, with comparison of data from battery capacity characterization with cell studies of Cycle Life and 60% Stress Test at the Naval Weapons Surface Center (NWSC)-Crane, and cell Cycle Life testing at the Marshal Space Flight Center (MSFC). The contents of this presentation includes an update to the performance of the on-orbit batteries, as well as a discussion of the HST Service Mission 4 (SM4) batteries manufactured in 1996 and activated in 2000, and a second set of SM4 backup replacement batteries which began manufacture Jan 11, 2007, with delivery scheduled for July 2008.

  15. Eyes on the Universe: The Legacy of the Hubble Space Telescope and Looking to the Future with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Straughn, Amber

    2011-01-01

    Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1996-01-16

    Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of "etchings" in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  17. NASA Astrophysics E/PO: A Quarter Century of Discovery and Inspiration with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Jirdeh, Hussein; Straughn, Amber; Smith, Denise Anne; Eisenhamer, Bonnie

    2015-08-01

    April 24, 2015 marked the 25th anniversary of the launch of the Hubble Space Telescope. In its quarter-century in orbit, the Hubble Space Telescope has transformed the way we understand the Universe, helped us find our place among the stars, and paved the way to incredible advancements in science and technology.In this presentation, we explain how NASA and ESA, including the Space Telescope Science Institute (STScI) and partners, is using the 25th anniversary of Hubble’s launch as a unique opportunity to communicate to students, educators, and the public the significance of the past quarter-century of discovery with the Hubble Space Telescope. We describe the various programs, resources, and experiences we are utilizing to enhancethe public understanding of Hubble’s many contributions to the scientific world. These include educator professional development opportunities, exhibits, events, traditional and social media, and resources for educators (formal k-12, informal, and higher education). We also highlight how we are capitalizing on Hubble’s cultural popularity to make the scientific connection to NASA’s next Great Observatory, the James Webb Space Telescope.This presentation highlights many of the opportunities by which students, educators, and the public are joining in the anniversary activities, both in-person and online. Find out more at hubble25th.org and follow #Hubble25 on social media.

  18. Repairing Hubble Exhibit Reception

    NASA Image and Video Library

    2014-04-23

    Individuals in attendance who had a hand in the development or servicing of the Hubble Space Telescope pose for a group photo at an event unveiling a new exhibit featuring Hubble's Corrective Optics Space Telescope Axial Replacement (COSTAR) and the WFPC2 on Wednesday, April 23, 2014 at the Smithsonian National Air and Space Museum in Washington, DC. COSTAR and WFPC2 were installed in Hubble during the first space shuttle servicing mission in 1993 and returned to Earth on the fifth and final servicing mission in 2009. Photo Credit: (NASA/Joel Kowsky)

  19. The Hubble Constant from Supernovae

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Macri, Lucas M.

    The decades-long quest to obtain a precise and accurate measurement of the local expansion rate of the universe (the Hubble Constant or H0) has greatly benefited from the use of supernovae (SNe). Starting from humble beginnings (dispersions of ˜ 0.5 mag in the Hubble flow in the late 1960s/early 1970s), the increasingly more sophisticated understanding, classification, and analysis of these events turned type Ia SNe into the premiere choice for a secondary distance indicator by the early 1990s. While some systematic uncertainties specific to SNe and to Cepheid-based distances to the calibrating host galaxies still contribute to the H0 error budget, the major emphasis over the past two decades has been on reducing the statistical uncertainty by obtaining ever-larger samples of distances to SN hosts. Building on early efforts with the first-generation instruments on the Hubble Space Telescope, recent observations with the latest instruments on this facility have reduced the estimated total uncertainty on H0 to 2.4 % and shown a path to reach a 1 % measurement by the end of the decade, aided by Gaia and the James Webb Space Telescope.

  20. The Hubble Space Telescope Cluster Supernova Survey. III. Correlated

    Science.gov Websites

    Properties SAO/NASA ADS Astronomy Abstract Service Title: The Hubble Space Telescope Cluster Street, Cambridge, MA 02138, USA), AF(Department of Physics and Astronomy, University of Utah, Salt Lake , USA), AH(Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka

  1. Theoretical colours and isochrones for some Hubble Space Telescope colour systems

    NASA Technical Reports Server (NTRS)

    Edvardsson, B.; Bell, R. A.

    1989-01-01

    Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.

  3. A Decade of Hubble Space Telescope Science

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Noll, Keith; Stiavelli, Massimo

    2003-06-01

    1. HST studies of Mars J. F. Bell; 2. HST images of Jupiter's UV aurora J. T. Clarke; 3. Star formation J. Bally; 4. SN1987A: the birth of a supernova remnant R. McCray; 5. Globular clusters: the view from HST W. E. Harris; 6. Ultraviolet absorption line studies of the Galactic interstellar medium with the Goddard High Resolution Spectrograph B. D. Savage; 7. HST's view of the center of the Milky Way galaxy M. J. Rieke; 8. Stellar populations in dwarf galaxies: a review of the contribution of HST to our understanding of the nearby universe E. Tolstoy; 9. The formation of star clusters B. C. Whitmore; 10. Starburst galaxies observed with the Hubble Space Telescope C. Leitherer; 11. Supermassive black holes F. D. Macchetto; 12. The HST Key Project to measure the Hubble Constant W. L. Freedman, R. C. Kennicutt, J. R. Mould and B. F. Madore; 13. Ho from Type Ia Supernovae G. A. Tammann, A. Sandage and A. Saha; 14. Strong gravitational lensing: cosmology from angels and redshifts A. Tyson.

  4. Feasibility of Exoplanet Coronagraphy with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Woodruff, Robert A.; Brown, Robert; Noecker, M. Charley; Cheng, Edward

    2010-01-01

    Herein we report on a preliminary study to assess the use of the Hubble Space Telescope (HST) for the direct detection and spectroscopic characterization of exoplanets and debris disks - an application for which HST was not originally designed. Coronagraphic advances may enable the design of a science instrument that could achieve limiting contrasts approx.10deg beyond 275 milli-arcseconds (4 lambda/D at 800 nm) inner working angle, thereby enabling detection and characterization of several known jovian planets and imaging of debris disks. Advantages of using HST are that it already exists in orbit, it's primary mirror is thermally stable and it is the most characterized space telescope yet flown. However there is drift of the HST telescope, likely due to thermal effects crossing the terminator. The drift, however, is well characterized and consists of a larger deterministic components and a smaller stochastic component. It is the effect of this drift versus the sensing and control bandwidth of the instrument that would likely limit HST coronagraphic performance. Herein we discuss the science case, quantifY the limiting factors and assess the feasibility of using HST for exoplanet discovery using a hypothetical new instrument. Keywords: Hubble Space Telescope, coronagraphy, exoplanets, telescopes

  5. The Hubble Space Telescope high speed photometer

    NASA Technical Reports Server (NTRS)

    Vancitters, G. W., Jr.; Bless, R. C.; Dolan, J. F.; Elliot, J. L.; Robinson, E. L.; White, R. L.

    1988-01-01

    The Hubble Space Telescope will provide the opportunity to perform precise astronomical photometry above the disturbing effects of the atmosphere. The High Speed Photometer is designed to provide the observatory with a stable, precise photometer with wide dynamic range, broad wavelenth coverage, time resolution in the microsecond region, and polarimetric capability. Here, the scientific requirements for the instrument are examined, the unique design features of the photometer are explored, and the improvements to be expected over the performance of ground-based instruments are projected.

  6. NASA in Crisis: The Space Agency's Public Relations Efforts Regarding the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    Kauffman, James

    1997-01-01

    Examines the National Aeronautics and Space Administration's (NASA) public relations efforts concerning the Hubble telescope. Proposes that NASA's poor public relations exacerbated problems: NASA oversold the telescope before it was deployed, failed to develop a plan for release of images, provided misleading flight reports, and reported…

  7. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1994-01-01

    A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.

  8. Hubble Space Telescope Imaging of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.

    2003-02-01

    We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the

  9. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-09-08

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  10. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  11. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIII. ACS/WFC parallel-field catalogues

    NASA Astrophysics Data System (ADS)

    Simioni, M.; Bedin, L. R.; Aparicio, A.; Piotto, G.; Milone, A. P.; Nardiello, D.; Anderson, J.; Bellini, A.; Brown, T. M.; Cassisi, S.; Cunial, A.; Granata, V.; Ortolani, S.; van der Marel, R. P.; Vesperini, E.

    2018-05-01

    As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about 0.3 deg2 of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about 6.5 arcmin from the cluster centre, thus covering a mean area of about 23 arcmin2 for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrized atlases for each of these fields.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-25

    In this photograph, the Hubble Space Telescope (HST) was being deployed on April 25, 1990. The photograph was taken by the IMAX Cargo Bay Camera (ICBC) mounted in a container on the port side of the Space Shuttle orbiter Discovery (STS-31 mission). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. During four spacewalks, new instruments were installed into the HST that had optical corrections. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. Photo Credit: NASA/Smithsonian Institution/Lockheed Corporation.

  13. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  14. The new European Hubble archive

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Arevalo, Maria; Merin, Bruno

    2016-01-01

    The European Hubble Archive (hereafter eHST), hosted at ESA's European Space Astronomy Centre, has been released for public use in October 2015. The eHST is now fully integrated with the other ESA science archives to ensure long-term preservation of the Hubble data, consisting of more than 1 million observations from 10 different scientific instruments. The public HST data, the Hubble Legacy Archive, and the high-level science data products are now all available to scientists through a single, carefully designed and user friendly web interface. In this talk, I will show how the the eHST can help boost archival research, including how to search on sources in the field of view thanks to precise footprints projected onto the sky, how to obtain enhanced previews of imaging data and interactive spectral plots, and how to directly link observations with already published papers. To maximise the scientific exploitation of Hubble's data, the eHST offers connectivity to virtual observatory tools, easily integrates with the recently released Hubble Source Catalog, and is fully accessible through ESA's archives multi-mission interface.

  15. Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly

    NASA Image and Video Library

    1988-03-31

    A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.

  16. Hubble Space Telescope - Scientific, Technological and Social Contributions to the Public Discourse on Science

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2012-01-01

    The Hubble Space Telescope has unified the world with a sense of awe and wonder for 2 I years and is currently more scientifically powerful than ever. I will present highlights of discoveries made with the Hubble Space Telescope, including details of planetary weather, star formation, extra-solar planets, colliding galaxies, and a universe expanding with the acceleration of dark energy. I will also present the unique technical challenges and triumphs of this phenomenal observatory, and discuss how our discoveries in the cosmos affect our sense of human unity, significance, and wonder.

  17. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.

    2017-04-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.

  18. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-06-09

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  20. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  1. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its "star factories" are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  2. Hubble Space Telescope Constraints on the Winds and Astrospheres of Red Giant Stars

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Harper, Graham M.

    2016-10-01

    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope, focusing on spectra of the Mg II h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg II surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities (V w ) are generally found to decrease with spectral type, with V w decreasing from ˜40 km s-1 at K2 III to ˜20 km s-1 at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V w , but is lower than predicted by the Rankine-Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13462. This paper also presents observations obtained with the Harlan J. Smith Telescope at McDonald Observatory of the University of Texas at Austin.

  3. Artist concept of Hubble Space Telescope (HST) orbiting Earth after deploy

    NASA Image and Video Library

    1990-04-05

    This artist concept shows the Hubble Space Telescope (HST) in operational configuration orbiting the Earth after its deploy from Discovery, Orbiter Vehicle (OV) 103 during STS-31. The high gain antennas (HGAs) and solar arrays (SAs) have been extended. HST's aperature door is open as it views the universe from a vantage point above the Earth's atmosphere. View provided by the Marshall Space Flight Center (MSFC).

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  5. Hubble Space Telescope spectroscopy of the Balmer lines in Sirius B*

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.; Bond, Howard E.; Holberg, J. B.; Burleigh, M. R.; Hubeny, I.; Koester, D.

    2005-10-01

    Sirius B is the nearest and brightest of all white dwarfs, but it is very difficult to observe at visible wavelengths due to the overwhelming scattered light contribution from Sirius A. However, from space we can take advantage of the superb spatial resolution of the Hubble Space Telescope (HST) to resolve the A and B components. Since the closest approach in 1993, the separation between the two stars has become increasingly favourable and we have recently been able to obtain a spectrum of the complete Balmer line series for Sirius B using the HST Space Telescope Imaging Spectrograph (STIS). The quality of the STIS spectra greatly exceeds that of previous ground-based spectra, and can be used to provide an important determination of the stellar temperature (Teff= 25193 K) and gravity (logg= 8.556). In addition, we have obtained a new, more accurate, gravitational redshift of 80.42 +/- 4.83 km s-1 for Sirius B. Combining these results with the photometric data and the Hipparcos parallax, we obtain new determinations of the stellar mass for comparison with the theoretical mass-radius relation. However, there are some disparities between the results obtained independently from logg and the gravitational redshift which may arise from flux losses in the narrow 50 × 0.2 arcsec2 slit. Combining our measurements of Teff and logg with the Wood evolutionary mass-radius relation, we obtain a best estimate for the white dwarf mass of 0.978 Msolar. Within the overall uncertainties, this is in agreement with a mass of 1.02 Msolar obtained by matching our new gravitational redshift to the theoretical mass-radius relation.

  6. The shape and surface variation of 2 Pallas from the Hubble Space Telescope.

    PubMed

    Schmidt, B E; Thomas, P C; Bauer, J M; Li, J-Y; McFadden, L A; Mutchler, M J; Radcliffe, S C; Rivkin, A S; Russell, C T; Parker, J Wm; Stern, S A

    2009-10-09

    We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct color and albedo variations across the surface of this large asteroid. Pallas's shape is an ellipsoid with radii of 291 (+/-9), 278 (+/-9), and 250 (+/-9) kilometers, implying a density of 2400 (+/-250) kilograms per cubic meter-a value consistent with a body that formed from water-rich material. Our observations are consistent with the presence of an impact feature, 240 (+/-25) kilometers in diameter, within Pallas's ultraviolet-dark terrain. Our observations imply that Pallas is an intact protoplanet that has undergone impact excavation and probable internal alteration.

  7. European astronomers' successes with the Hubble Space Telescope*

    NASA Astrophysics Data System (ADS)

    1997-02-01

    [Figure: Laguna Nebula] Their work spans all aspects of astronomy, from the planets to the most distant galaxies and quasars, and the following examples are just a few European highlights from Hubble's second phase, 1994-96. A scarcity of midget stars Stars less massive and fainter than the Sun are much numerous in the Milky Way Galaxy than the big bright stars that catch the eye. Guido De Marchi and Francesco Paresce of the European Southern Observatory as Garching, Germany, have counted them. With the wide-field WFPC2 camera, they have taken sample censuses within six globular clusters, which are large gatherings of stars orbiting independently in the Galaxy. In every case they find that the commonest stars have an output of light that is only one-hundredth of the Sun's. They are ten times more numerous than stars like the Sun. More significant for theories of the Universe is a scarcity of very faint stars. Some astronomers have suggested that vast numbers of such stars could account for the mysterious dark matter, which makes stars and galaxies move about more rapidly than expected from the mass of visible matter. But that would require an ever-growing count of objects at low brightnesses, and De Marchi and Paresce find the opposite to be the case -- the numbers diminish. There may be a minimum size below which Nature finds starmaking difficult. The few examples of very small stars seen so far by astronomers may be, not the heralds of a multitude of dark-matter stars, but rareties. Unchanging habits in starmaking Confirmation that very small stars are scarce comes from Gerry Gilmore of the Institute of Astronomy in Cambridge (UK). He leads a European team that analyses long-exposure images in the WFPC2 camera, obtained as a by-product when another instrument is examining a selected object. The result is an almost random sample of well-observed stars and galaxies. The most remarkable general conclusion is that the make-up of stellar populations never seems to

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2002-12-01

    This series of photos, captured by the NASA Hubble Space Telescope's (HST) Advanced Camera for Surveys from May to December 2002, dramatically demonstrates the reverberation of light through space caused by an unusual stellar outburst in January 2002. A burst of light from the bizarre star is spreading into space and reflecting off of surrounding circumstellar dust. As different parts are sequentially illuminated, the appearance of the dust changes. This effect is referred to as a "light echo". The red star at the center of the eyeball like feature is the unusual erupting super giant called V838 Monocerotis, or V Mon, located about 20,000 light-years away in the winter constellation Monoceros (the Unicorn). During its outburst, the star brightened to more than 600,000 times our Sun's luminosity. The circular feature has now expanded to slightly larger than the angular size of Jupiter on the sky, and will continue to expand for several more years until the light from the back side of the nebula begins to arrive. The light echo will then give the illusion of contracting, until it finally disappears by the end of the decade.

  9. Hubble Space Telescope 2004 Battery Update

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Roger; Armantrout, Jon; Whitt, Tom; Rao, Gopalakrishna M.

    2006-01-01

    Battery cell wear out mechanisms and signatures are examined and compared to orbital data from the six on-orbit Hubble Space Telescope (HST) batteries, and the Flight Spare Battery (FSB) Test Bed at Marshall Space Flight Center (MSFC), which is instrumented with individual cell voltage monitoring. The on-orbit HST batteries were manufactured on an expedited basis after the Challenger Shuttle Disaster in 1986. The original design called for the HST to be powered by six 50 Ah Nickel Cadmium batteries, which would have required a shuttle mission every 5 years for battery replacement. The decision to use NiH2 instead has resulted in a longer life battery set which was launched with HST in April 1990, with a design life of 7 years that has now exceeded 14+ years of orbital cycling. This chart details the specifics of the original HST NiH2 cell design. The HST replacement batteries for Service Mission 4, originally scheduled for Spring 2005, are currently in cold storage at NASA Goddard Space Flight Center (GSFC). The SM4 battery cells utilize slurry process electrodes having 80% porosity.

  10. Hubble Space Telescope Servicing begins.

    NASA Astrophysics Data System (ADS)

    1993-12-01

    The day's work began when astronauts Story Musgrave and Jeff Hoffman stepped out into the cargo bay at 9h41 pm CST, Saturday (4h41 am CET, Sunday). They immediately set to work replacing two gyroscope assemblies, known as the Rate Sensor Units, two associated electronics boxes, called Electronic Control Units, and eight electrical fuse plugs. The work was completed ahead of schedule, but the astronauts had trouble closing the doors of the compartment housing the gyros and took over an hour to get them shut. The astronauts also prepared equipment for the replacement of the solar arrays. "The feeling down here is one of great satisfaction for a tremendous job today" said spacecraft communicator Greg Harbaugh in mission control. "We are very proud of the work that you all did and we are very confident in the continued success of the mission. Everything is going great and tomorrow is going to be another great day". ESA astronaut Claude Nicollier played a vital role during the spacewalk moving the astronauts and their equipment around the cargo bay with the shuttle's robot arm. The Hubble Space Telescope servicing mission features more robot arm operations than any other shuttle flight. The telescope's left-hand solar array was rolled up successfully at 6h24 am CST (1h24 pm CET). The 11-tonne observatory was rotated 180 degrees on its turntable before commands were sent to retract the second array at 8h23 am CST (3h23 pm CET). The crew stopped the retraction when it appeared the system may have jammed. Mission control instructed the crew to jettison the array, a procedure that they have trained for. Tomorrow astronauts Kathy Thornton and Tom Akers will make a six-hour spacewalk to jettison the troublesome wing, store the other in the cargo bay, and install two new panels supplied by ESA. The second set of arrays feature thermal shields and a modified thermal compensation system to prevent the flexing that affected the first pair. The Hubble Space Telescope was plucked

  11. The Chrysalis Opens? Photometry from the η Carinae Hubble Space Telescope Treasury Project, 2002-2006

    NASA Astrophysics Data System (ADS)

    Martin, J. C.; Davidson, Kris; Koppelman, M. D.

    2006-12-01

    During the past decade η Car has brightened markedly, possibly indicating a change of state. Here we summarize photometry gathered by the Hubble Space Telescope (HST) as part of the HST Treasury Project on this object. Our data include Space Telescope Imaging Spectrograph (STIS) CCD acquisition images, Advanced Camera for Surveys HRC images in four filters, and synthetic photometry in flux-calibrated STIS spectra. The HST's spatial resolution allows us to examine the central star separate from the bright circumstellar ejecta. Its apparent brightness continued to increase briskly during 2002-2006, especially after the mid-2003 spectroscopic event. If this trend continues, the central star will soon become brighter than its ejecta, quite different from the state that existed only a few years ago. One precedent may be the rapid change observed in 1938-1953. We conjecture that the star's mass-loss rate has been decreasing throughout the past century. This research was conducted as part of the η Car Hubble Space Telescope Treasury project via grant GO-9973 from the Space Telescope Science Institute. HST is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

  12. Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.

    1994-06-01

    There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the

  13. Hubble Space Telescope: The GO and GTO Observing Programs. Version 1.0

    NASA Technical Reports Server (NTRS)

    Saha, Abhijit

    1990-01-01

    Selected information from the current Hubble Space Telescope (HST) science programs for the Guaranteed Time Observers (GTO's) and General Observers (GO's) is presented. Included are program abstracts, detailed listings of specific targets, and exposure information.

  14. Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.

  15. Imaging the nuclear environment of NGC 1365 with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kristen, Helmuth; Jorsater, Steven; Lindblad, Per Olof; Boksenberg, Alec

    1997-12-01

    The region surrounding the active nucleus of the barred spiral galaxy NGC 1365 is observed in the [Oiii] lambda 5007 line and neighbouring continuum using the Faint Object Camera (FOC) aboard the Hubble Space Telescope (HST). In the continuum light numerous bright ``super star clusters'' (SSCs) are seen in the nuclear region. They tend to fall on an elongated ring around the nucleus and contribute about 20 % of the total continuum flux in this wavelength regime. Without applying any extinction correction the brightest SSCs have an absolute luminosity M_B=-14fm1 +/- 0fm3 and are very compact with radii R la 3 pc. Complementary ground-based spectroscopy gives an extinction estimate A_B = 2fm5 +/- 0fm5 towards these regions, indicating a true luminosity M_B = -16fm6 +/- 0fm6 . The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that it is a ``radio supernova''. The HST observations resolve the inner structure of the conical outflow previously seen in the [Oiii] lambda 5007 line in ground-based observations, and reveal a complicated structure of individual emission-line clouds, some of which gather in larger agglomerations. The total luminosity in the [Oiii] line amounts to L_[OIII] =~ 3.7x 10(40) erg s(-1) where about 40 % is emitted by the clouds. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and observations at the European Southern Observatory (ESO), La Silla, Chile.

  16. Hubble Space Telescope: A cosmic time machine

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Harms, R. J.; Brandt, J. C.; Bless, R. C.; Macchetto, F. D.; Jefferys, W. H.

    1991-01-01

    The mission of the Hubble Space Telescope (HST) is to explore the expanding and evolving universe. During the 3,000 operating hours every year for the next 15 years or more, the HST will be used to study: galaxies; pulsars; globular clusters; neighboring stars where planets may be forming; binary star systems; condensing gas clouds and their chemical composition; and the rings of Saturn and the swirling ultraviolet clouds of Venus. The major technical achievements - its nearly perfect mirrors, its precise guidance system of rate gyroscopes, reaction wheels, star trackers, and fine guidance sensors are briefly discussed. The scientific instruments on board HST are briefly described. The integration of the equipment and instruments is outlined. The Space Telescope Science Institute (STScI) has approved time for 162 observations from among 556 proposals. The mission operation and data flow are explained.

  17. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; hide

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  18. NASA's Hubble Zooms in on a Space Oddity

    NASA Image and Video Library

    2011-01-11

    NASA image release January 10, 2011 In this image by NASA's Hubble Space Telescope, an unusual, ghostly green blob of gas appears to float near a normal-looking spiral galaxy. The bizarre object, dubbed Hanny's Voorwerp (Hanny's Object in Dutch), is the only visible part of a 300,000-light-year-long streamer of gas stretching around the galaxy, called IC 2497. The greenish Voorwerp is visible because a searchlight beam of light from the galaxy's core illuminated it. This beam came from a quasar, a bright, energetic object that is powered by a black hole. The quasar may have turned off about 200,000 years ago. This Hubble view uncovers a pocket of star clusters, the yellowish-orange area at the tip of Hanny's Voorwerp. The star clusters are confined to an area that is a few thousand light-years wide. The youngest stars are a couple of million years old. The Voorwerp is the size of our Milky Way galaxy, and its bright green color is from glowing oxygen. Hubble also shows that gas flowing from IC 2497 may have instigated the star birth by compressing the gas in Hanny's Voorwerp. The galaxy is located about 650 million light-years from Earth. What appears to be a gaping hole in Hanny's Voorwerp actually may be a shadow cast by an object in the quasar's light path. The feature gives the illusion of a hole about 20,000 light-years wide. Hubble reveals sharp edges but no other changes in the gas around the apparent opening, suggesting that an object close to the quasar may have blocked some of the light and projected a shadow on the Voorwerp. This phenomenon is similar to a fly on a movie projector lens casting a shadow on a movie screen. An interaction between IC 2497 and another galaxy about a billion years ago may have created Hanny's Voorwerp and fueled the quasar. The Hubble image shows that IC 2497 has been disturbed, with complex dust patches, warped spiral arms, and regions of star formation around its core. These features suggest the aftermath of a galaxy merger

  19. Two ESA astronauts named to early Hubble Space Telescope servicing mission

    NASA Astrophysics Data System (ADS)

    1999-03-01

    Nicollier and three NASA astronauts, who had already been training for a Hubble servicing mission planned for June 2000, have been reassigned to this earlier mission (STS-103). Jean-Francois Clervoy and two other NASA astronauts will complete the STS-103 crew. The repairs and maintenance of the telescope will require many hours spent working outside the Shuttle and will make extensive use of the Shuttle's robotic arm Nicollier, of Swiss nationality and making his fourth flight, will be part of the team that will perform the "spacewalks". An astronomer by education, he took part in the first Hubble servicing mission (STS-61) in 1993, controlling the Shuttle's robotic arm while astronauts on the other end of the arm performed the delicate repairs to the telescope. He also served on STS-46 in 1992 using the robotic arm to deploy ESA's Eureca retrievable spacecraft from the Shuttle, and on STS-75 with the Italian Tethered Satellite System in 1996. Nicollier is currently the chief of the robotics branch in NASA's astronaut office and ESA's lead astronaut in Houston. Jean-Francois Clervoy, of French nationality and making his third flight, will have the lead role in the operation of the robotic arm for this mission. He previously served on STS-66 in 1994 using the robotic arm to deploy and later retrieve the German CRISTA-SPAS atmospheric research satellite, and on STS-84 in 1997, a Shuttle mission to the Russian Mir space station. The other STS-103 crewmembers are: Commander Curtis Brown, pilot Scott Kelly, and mission specialists Steven Smith, Michael Foale and John Grunsfeld. During the flight, the astronauts will replace Hubble's failing pointing system, which allows the telescope to aim at stars, planets and other targets, and install other equipment that will be ready for launch at that time. A second mission to complete the previously-scheduled Hubble refurbishment work is foreseen at a later date. The crew for that mission has not yet been assigned. The Hubble

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2003-11-28

    This image of SN 1987A, taken November 28, 2003 by the Advanced Camera for Surveys aboard NASA's Hubble Space Telescope (HST), shows many bright spots along a ring of gas, like pearls on a necklace. These cosmic pearls are being produced as superior shock waves unleashed during an explosion slam into the ring at more than a million miles per hour. The collision is heating the gas ring, causing its irnermost regions to glow. Astronomers detected the first of these hot spots in 1996, but now they see dozens of them all around the ring. With temperatures surging from a few thousand degrees to a million degrees, the flares are increasing in number. In the next few years, the entire ring will be ablaze as it absorbs the full force of the crash and is expected to become bright enough to illuminate the star's surroundings. Astronomers will then be able to obtain information on how the star ejected material before the explosion. The elongated and expanding object in the center of the ring is debris form the supernova blast which is being heated by radioactive elements, principally titanium 44, that were created in the explosion. This explosion was first observed by astronomers seventeen years ago in 1987, although the explosion took place about 160,000 years ago.

  1. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  2. Ending Hubble's Troubles. A Product Service Job Succeeds 357 Miles in Space. Resources in Technology.

    ERIC Educational Resources Information Center

    Deal, Walter E., III; And Others

    1995-01-01

    Provides information on the problems with the Hubble Space Telescope and how the National Aeronautics and Space Administration is trying to fix it. Includes a student quiz and possible student outcomes. (JOW)

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its principal use will be to measure extremely-rapid variations or pulses in light from celestial objects, such as pulsating stars. The HSP produces brightness readings. Light passes into one of four special signal-multiplying tubes that record the data. The HSP can measure energy fluctuations from objects that pulsate as rapidly as once every 10 microseconds. From HSP data, astronomers expect to learn much about such mysterious objects as pulsars, black holes, and quasars. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  4. Hubble Space Telescope studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends

    NASA Astrophysics Data System (ADS)

    Maguire, K.; Sullivan, M.; Ellis, R. S.; Nugent, P. E.; Howell, D. A.; Gal-Yam, A.; Cooke, J.; Mazzali, P.; Pan, Y.-C.; Dilday, B.; Thomas, R. C.; Arcavi, I.; Ben-Ami, S.; Bersier, D.; Bianco, F. B.; Fulton, B. J.; Hook, I.; Horesh, A.; Hsiao, E.; James, P. A.; Podsiadlowski, P.; Walker, E. S.; Yaron, O.; Kasliwal, M. M.; Laher, R. R.; Law, N. M.; Ofek, E. O.; Poznanski, D.; Surace, J.

    2012-11-01

    We present an analysis of the maximum light, near-ultraviolet (NUV; 2900 < λ < 5500 Å) spectra of 32 low-redshift (0.001 < z < 0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST) using the Space Telescope Imaging Spectrograph. We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure SN Ia photometric parameters, such as stretch (light-curve width), optical colour and brightness (Hubble residual). By comparing our new data to a comparable sample of SNe Ia at intermediate redshift (0.4 < z < 0.9), we detect modest spectral evolution (3σ), in the sense that our mean low-redshift NUV spectrum has a depressed flux compared to its intermediate-redshift counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. We show that these trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual SN spectra. We find a general correlation between SN stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, which also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and host galaxy stellar mass. We find no significant trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify does not directly correlate with Hubble diagram residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in

  5. HUBBLE SHOOTS THE MOON

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In a change of venue from peering at the distant universe, NASA's Hubble Space Telescope has taken a look at Earth's closest neighbor in space, the Moon. Hubble was aimed at one of the Moon's most dramatic and photogenic targets, the 58 mile-wide (93 km) impact crater Copernicus. The image was taken while the Space Telescope Imaging Spectrograph (STIS) was aimed at a different part of the moon to measure the colors of sunlight reflected off the Moon. Hubble cannot look at the Sun directly and so must use reflected light to make measurements of the Sun's spectrum. Once calibrated by measuring the Sun's spectrum, the STIS can be used to study how the planets both absorb and reflect sunlight. (upper left) The Moon is so close to Earth that Hubble would need to take a mosaic of 130 pictures to cover the entire disk. This ground-based picture from Lick Observatory shows the area covered in Hubble's photomosaic with the Wide Field Planetary Camera 2.. (center) Hubble's crisp bird's-eye view clearly shows the ray pattern of bright dust ejected out of the crater over one billion years ago, when an asteroid larger than a mile across slammed into the Moon. Hubble can resolve features as small as 600 feet across in the terraced walls of the crater, and the hummock-like blanket of material blasted out by the meteor impact. (lower right) A close-up view of Copernicus' terraced walls. Hubble can resolve features as small as 280 feet across. Credit: John Caldwell (York University, Ontario), Alex Storrs (STScI), and NASA

  6. Long range science scheduling for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Johnston, Mark

    1991-01-01

    Observations with NASA's Hubble Space Telescope (HST) are scheduled with the assistance of a long-range scheduling system (SPIKE) that was developed using artificial intelligence techniques. In earlier papers, the system architecture and the constraint representation and propagation mechanisms were described. The development of high-level automated scheduling tools, including tools based on constraint satisfaction techniques and neural networks is described. The performance of these tools in scheduling HST observations is discussed.

  7. Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

  8. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  9. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  10. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  11. Outer layers of a carbon star: The view from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Ensman, Lisa M.; Alexander, D. R.; Avrett, E. H.; Brown, A.; Carpenter, K. G.; Eriksson, K.; Gustafsson, B.; Jorgensen, U. G.; Judge, Philip D.

    1995-01-01

    To advance our understanding of the relationship between stellar chromospheres and mass loss, which is a common property of carbon stars and other asymptotic giant branch stars, we have obtained ultraviolet spectra of the nearby N-type carbon star UU Aur using the Hubble Space Telescope (HST). In this paper we describe the HST observations, identify spectral features in both absorption and emission, and attempt to infer the velocity field in the chromosphere, upper troposphere, and circumstellar envelope from spectral line shifts. A mechanism for producing fluoresced emission to explain a previously unobserved emission line is proposed. Some related ground-based observations are also described.

  12. Hubble Camera Resumes Science Operation With Picture Of 'Butterfly' In Space.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    he Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this black-and-white image of the 'butterfly wing'-shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles. Our own Sun will eject a nebula about 5 billion years from now. However, the Sun is not a double star, so its nebula may well be more spherical in shape. The image was taken through a filter that shows the light of glowing

  13. Hubble Space Telescope: the new telemetry archiving system

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2000-07-01

    The Hubble Space Telescope (HST), the first of NASA's Great Observatories, was launched on April 24, 1990. The HST was designed for a minimum fifteen-year mission with on-orbit servicing by the Space Shuttle System planned at approximately three-year intervals. Major changes to the HST ground system have been implemented for the third servicing mission in December 1999. The primary objectives of the ground system re- engineering effort, a project called 'Vision 2000 Control Center System (CCS),' are to reduce both development and operating costs significantly for the remaining years of HST's lifetime. Development costs are reduced by providing a more modern hardware and software architecture and utilizing commercial off the shelf (COTS) products wherever possible. Part of CCS is a Space Telescope Engineering Data Store, the design of which is based on current Data Warehouse technology. The Data Warehouse (Red Brick), as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope, represents the first use of a commercial Data Warehouse to manage engineering data. The purpose of this data store is to provide a common data source of telemetry data for all HST subsystems. This data store will become the engineering data archive and will provide a queryable database for the user to analyze HST telemetry. The access to the engineering data in the Data Warehouse is platform-independent from an office environment using commercial standards (Unix, Windows98/NT). The latest Internet technology is used to reach the HST engineering community. A WEB-based user interface allows easy access to the data archives. This paper will provide a CCS system overview and will illustrate some of the CCS telemetry capabilities: in particular the use of the new Telemetry Archiving System. Vision 20001 is an ambitious project, but one that is well under way. It will allow the HST program to realize reduced operations costs for the Third Servicing Mission and

  14. Hubble Space Telescope imaging of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hester, J. J.; Westphal, James A.; Light, Robert M.; Currie, Douglas G.; Groth, Edward J.

    1991-01-01

    New high spatial resolution observations of the material around Eta Carinae, obtained with the Hubble Space Telescope Wide Field/Planetary Camera, are presented. The star Eta Carinae is one of the most massive and luminous stars in the Galaxy, and has been episodically expelling significant quantities of gas over the last few centuries. The morphology of the bright central nebulosity (the homunculus) indicates that it is a thin shell with very well defined edges, and is clumpy on 0.2 arcsec (about 10 to the 16th cm) scales. An extension to the northeast of the star (NN/NS using Walborn's 1976 nomenclature) appears to be a stellar jet and its associated bow shock. The bow shock is notable for an intriguing series of parallel linear features across its face. The S ridge and the W arc appear to be part of a 'cap' of emission located to the SW and behind the star. Together, the NE jet and the SW cap suggest that the symmetry axis for the system runs NE-SW rather than SE-NW, as previously supposed. Overall, the data indicate that the material around the star may represent an oblate shell with polar blowouts, rather than a bipolar flow.

  15. Hubble Space Telescope observations of Europa in and out of eclipse

    USGS Publications Warehouse

    Sparks, W.B.; McGrath, M.; Hand, K.; Ford, H.C.; Geissler, P.; Hough, J.H.; Turner, E.L.; Chyba, C.F.; Carlson, R.; Turnbull, M.

    2010-01-01

    Europa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes. ?? 2010 Cambridge University Press.

  16. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  17. New Hubble Space Telescope Multi-Wavelength Imaging of the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Levay, Zoltan G.; Christian, Carol A.; Mack, Jennifer; Frattare, Lisa M.; Livio, Mario; Meyett, Michele L.; Mutchler, Maximilian J.; Noll, Keith S.; Hubble Heritage

    2015-01-01

    One of the most iconic images from the Hubble Space Telescope has been the 1995 WFPC2 image of the Eagle Nebula (M16, sometimes known as the "Pillars of Creation"). Nineteen years after those original observations, new images have been obtained with HST's current instrumentation: a small mosaic in visible-light, narrow-band filters with WFC3/UVIS, infrared, broad-band filters with WFC3/IR, and parallel Hα imaging with ACS/WFC. The wider field of view, higher resolution, and broader wavelength coverage of the new images highlight the improved capabilities of HST over its long-lasting operation, made possible by the upgraded instrumentation installed during Space Shuttle servicing missions. Csite images from these datasets are presented to commemorate the 25th anniversary of HST's launch. Carefully combined, aligned and calibrated datasets from the primary WFC3 fields are available as High-Level Science Products in MAST (http://archive.stsci.edu/prepds/heritage/). Color composite images from these datasets are presented to commemorate the 25th anniversary of HST's launch.

  18. Hubble Space Telescope Snapshot Survey for Resolved Companions of Galactic Cepheids

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-05-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera 3 (WFC3) of 70 Galactic Cepheids, typically within 1 kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color-magnitude diagrams, and having separations ⩾ 5'' from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K. Thus the fact that the two most probable companions (those of FF Aql and RV Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4000 au in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations (δ Cep and S Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations > 5'' is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    NASA Astrophysics Data System (ADS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  20. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  1. Hubble Space Telescope Deploy, Cuba, Bahamas and Gulf of Mexico

    NASA Image and Video Library

    1990-04-29

    STS031-151-010 (25 April 1990) --- The Hubble Space Telescope (HST), still in the grasp of Discovery's Remote Manipulator System (RMS), is backdropped over Cuba and the Bahama Islands. In this scene, it has yet to have deployment of its solar array panels and its high gain antennae. This scene was captured with a large format Aero Linhof camera used by several previous flight crews to record Earth scenes.

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-08-24

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  3. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-02-01

    The nearby intense star-forming region known as the Great Nebula in the Orion constellation reveals a bow shock around a very young star as seen by NASA's Hubble Space Telescope (HST). Named for the crescent-shaped wave made by a ship as it moves through the water, a bow shock can be created in space where two streams of gas collide. LL Ori emits a vigorous solar wind, a stream of charged particles moving rapidly outward from the star. Our own sun has a less energetic version of this wind. The material in the fast wind from LL Ori collides with slow moving gas evaporating away form the center of the Orion Nebula, which is located in the lower right of this image, producing the crescent shaped bow shock seen in the image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the many complex phenomena associated with the birth of stars. A close visitor in our Milky Way Galaxy, the nebula is only 1,500 light years away from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

  4. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong; Macri, Lucas; Anderson, Jay; MacKenty, John W.; Bowers, J. Bradley; Clubb, Kelsey I.; Filippenko, Alexei V.; Jones, David O.; Tucker, Brad E.

    2018-03-01

    We present new measurements of the parallax of seven long-period (≥10 days) Milky Way (MW) Cepheid variables (SS CMa, XY Car, VY Car, VX Per, WZ Sgr, X Pup, and S Vul) using one-dimensional astrometric measurements from spatial scanning of Wide-Field Camera 3 on the Hubble Space Telescope (HST). The observations were obtained at ∼6 month intervals over 4 years. The distances are 1.7–3.6 kpc, with a mean precision of 45 μas (signal-to-noise ratio (S/N) ≈ 10) and a best precision of 29 μas (S/N = 14). The accuracy of the parallaxes is demonstrated through independent analyses of >100 reference stars. This raises to 10 the number of long-period Cepheids with significant parallax measurements, 8 obtained from this program. We also present high-precision mean F555W, F814W, and F160W magnitudes of these Cepheids, allowing a direct, zeropoint-independent comparison to >1800 extragalactic Cepheids in the hosts of 19 SNe Ia. This sample addresses two outstanding systematic uncertainties affecting prior comparisons of MW and extragalactic Cepheids used to calibrate the Hubble constant (H 0): their dissimilarity of periods and photometric systems. Comparing the new parallaxes to their predicted values derived from reversing the distance ladder gives a ratio (or independent scale for H 0) of 1.037 ± 0.036, consistent with no change and inconsistent at the 3.5σ level with a ratio of 0.91 needed to match the value predicted by Planck cosmic microwave background data in concert with ΛCDM. Using these data instead to augment the Riess et al. measurement of H 0 improves the precision to 2.3%, yielding 73.48 ± 1.66 km s‑1 Mpc‑1, and the tension with Planck + ΛCDM increases to 3.7σ. The future combination of Gaia parallaxes and HST spatial scanning photometry of 50 MW Cepheids can support a <1% calibration of H 0.

  5. Live from the Hubble Space Telescope: a possibility of astronomical education using Internet.

    NASA Astrophysics Data System (ADS)

    Agata, H.; Miura, H.; Ito, S.; Koyama, H.; Turuoka, N.; Ebisuzaki, T.

    1996-12-01

    The authors have joined in "Live from the Hubble Space Telescope" which was operated by a Passport to Knowledge Project team. The authors are sure that collaboration between scientists and teachers using Internet have an effect on science education.

  6. The Hubble Space Telescope Frontier Fields Program

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  7. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  8. Astrometry of the omega Centauri Hubble Space Telescope Calibration Field

    NASA Technical Reports Server (NTRS)

    Mighell, Kenneth J.

    2000-01-01

    Astrometry, on the International Celestial Reference Frame (epoch J2000.0), is presented for the Walker (1994, PASP, 106, 828) stars in the omega Centauri (=NGC 5139=C 1323-1472) Hubble Space Telescope Wide Field/Planetary Camera (WF/PC) calibration field of Harris et al. (1993, AJ, 105, 1196). Harris et al. stars were first identified on a WFPC2 observation of the omega Cen HST calibration field. Relative astrometry of the Walker stars in this field was then obtained using Walker's CCD positions and astrometry derived using the STSDAS METRIC task on the positions of the Harris et al. stars on the WFPC2 observation. Finally, the relative astrometry, which was based on the HST Guide Star Catalog, is placed on the International Celestial Reference Frame with astrometry from the USNO-A2.0 catalog. An ASCII text version of the astrometric data of the Walker stars in the omega Cen HST calibration field is available electronically in the online version of the article.

  9. Small-Scale Mechanical Characterization of Space-Exposed Fluorinated Ethylene Propylene Recovered from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jones, J. S.; Sharon, J. A.; Mohammed, J.; Hemker, K. J.

    2012-01-01

    Multi-layer insulation panels from the Hubble Space Telescope have been recovered after 19.1 years of on-orbit service and micro-tensile experiments have been performed to characterize the effect of space exposure on the mechanical response of the outermost layer. This outer layer, 127 m thick fluorinated ethylene propylene with a 100 nm thick vapor deposited aluminum reflective coating, maintained significant tensile ductility but exhibited a degradation of strength that scales with severity of space exposure. This change in properties is attributed to damage from incident solar flux, atomic oxygen damage, and thermal cycling.

  10. 18 years of science with the Hubble Space Telescope.

    PubMed

    Dalcanton, Julianne J

    2009-01-01

    After several decades of planning, the Hubble Space Telescope (HST) was launched in 1990 as the first of NASA's Great Observatories. After a rocky start arising from an error in the fabrication of its main mirror, it went on to change forever many fields of astronomy, and to capture the public's imagination with its images. An ongoing programme of servicing missions has kept the telescope on the cutting edge of astronomical research. Here I review the advances made possible by the HST over the past 18 years.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-10-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. HUBBLE SPACE TELESCOPE ON TRACK FOR MEASURING THE EXPANSION RATE OF THE UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    rate with an estimate of how much matter is in space. The younger age values from each team assume the Universe is at a critical density where it contains just enough matter to expand indefinitely. The higher age estimates are calculated based on a low density of matter in space. (See 'Science Background' for more information on the expanding Universe.) 'A point of great interest is whether the age of the Universe arrived at this way is really older than the independently derived ages of the oldest stars,' said Saha, an investigator on both Hubble teams. 'The numbers lean on the side that the stellar ages are a little lower, or that the hypothesis that we live in a critical density universe needs to be questioned,' said Saha. 'As further results accumulate over the next few years, we hope to tighten the constraints on these issues.' THE OBSERVATIONS The Key Project team is midway along in their three-year program to derive the expansion rate of the Universe based on precise distance measurements to galaxies. They have now measured Cepheid distances to a dozen galaxies, and are about halfway through their overall program. The Key Project team also presented a preliminary estimate of the distance to the Fornax cluster of galaxies. The estimate was obtained through the detection and measurement with the Hubble Space Telescope of pulsating stars known as Cepheid variables found in the Fornax cluster. The Fornax cluster is measured to be approximately as far away as the Virgo cluster of galaxies -- about 60 million light-years. The Key Project team member who led this effort, Caltech astronomer Barry Madore said, 'This cluster allows us to make independent estimates of the expansion rate of the Universe using a number of different techniques. All of these methods are now in excellent agreement. With Fornax we are now at turning point in this field.' The team is measuring Cepheid distances to the Virgo and Fornax clusters of galaxies as a complementary test. Their strategy

  14. NASA's Hubble Universe in 3-D

    NASA Image and Video Library

    2017-12-08

    This image depicts a vast canyon of dust and gas in the Orion Nebula from a 3-D computer model based on observations by NASA's Hubble Space Telescope and created by science visualization specialists at the Space Telescope Science Institute (STScI) in Baltimore, Md. A 3-D visualization of this model takes viewers on an amazing four-minute voyage through the 15-light-year-wide canyon. Credit: NASA, G. Bacon, L. Frattare, Z. Levay, and F. Summers (STScI/AURA) Go here to learn more about Hubble 3D: www.nasa.gov/topics/universe/features/hubble_imax_premier... or www.imax.com/hubble/ Take an exhilarating ride through the Orion Nebula, a vast star-making factory 1,500 light-years away. Swoop through Orion's giant canyon of gas and dust. Fly past behemoth stars whose brilliant light illuminates and energizes the entire cloudy region. Zoom by dusty tadpole-shaped objects that are fledgling solar systems. This virtual space journey isn't the latest video game but one of several groundbreaking astronomy visualizations created by specialists at the Space Telescope Science Institute (STScI) in Baltimore, the science operations center for NASA's Hubble Space Telescope. The cinematic space odysseys are part of the new Imax film "Hubble 3D," which opens today at select Imax theaters worldwide. The 43-minute movie chronicles the 20-year life of Hubble and includes highlights from the May 2009 servicing mission to the Earth-orbiting observatory, with footage taken by the astronauts. The giant-screen film showcases some of Hubble's breathtaking iconic pictures, such as the Eagle Nebula's "Pillars of Creation," as well as stunning views taken by the newly installed Wide Field Camera 3. While Hubble pictures of celestial objects are awe-inspiring, they are flat 2-D photographs. For this film, those 2-D images have been converted into 3-D environments, giving the audience the impression they are space travelers taking a tour of Hubble's most popular targets. "A large-format movie is a

  15. Hubble Sees 'Island Universe' in the Coma Cluster

    NASA Image and Video Library

    2017-12-08

    NASA image release August 10, 2010 A long-exposure Hubble Space Telescope image shows a majestic face-on spiral galaxy located deep within the Coma Cluster of galaxies, which lies 320 million light-years away in the northern constellation Coma Berenices. The galaxy, known as NGC 4911, contains rich lanes of dust and gas near its center. These are silhouetted against glowing newborn star clusters and iridescent pink clouds of hydrogen, the existence of which indicates ongoing star formation. Hubble has also captured the outer spiral arms of NGC 4911, along with thousands of other galaxies of varying sizes. The high resolution of Hubble's cameras, paired with considerably long exposures, made it possible to observe these faint details. NGC 4911 and other spirals near the center of the cluster are being transformed by the gravitational tug of their neighbors. In the case of NGC 4911, wispy arcs of the galaxy's outer spiral arms are being pulled and distorted by forces from a companion galaxy (NGC 4911A), to the upper right. The resultant stripped material will eventually be dispersed throughout the core of the Coma Cluster, where it will fuel the intergalactic populations of stars and star clusters. The Coma Cluster is home to almost 1,000 galaxies, making it one of the densest collections of galaxies in the nearby universe. It continues to transform galaxies at the present epoch, due to the interactions of close-proximity galaxy systems within the dense cluster. Vigorous star formation is triggered in such collisions. Galaxies in this cluster are so densely packed that they undergo frequent interactions and collisions. When galaxies of nearly equal masses merge, they form elliptical galaxies. Merging is more likely to occur in the center of the cluster where the density of galaxies is higher, giving rise to more elliptical galaxies. This natural-color Hubble image, which combines data obtained in 2006, 2007, and 2009 from the Wide Field Planetary Camera 2 and the

  16. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2001-02-01

    Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Goddard High-Resolution Spectrograph (GHRS). The HST's two spectrographs, the GHRS and the Faint Object Spectrograph (FOS), can detect a broader range of wavelengths than is possible from Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The GHRS can detect fine details in the light from somewhat brighter objects but only ultraviolet light. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  18. Hubble Space Telescope, Faint Object Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  19. Technicians assembly the Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A, technicians install a high gain antenna (HGA) on the Hubble Space Telescope (HST) mockup. On the ground a technician operates the controls for the overhead crane that is lifting the HGA into place on the Support System Module (SSM) forward shell. Others in a cherry picker basket wait for the HGA to near its final position so they can secure it on the mockup.

  20. 2010 Space Telescope Science Institute Calibration Workshop - Hubble after SM4. Preparing JWST

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Oliveira, Cristina

    2010-07-01

    After the successful servicing mission in May 2009 (SM4), the Hubble Space Telescope now has five working science instruments: COS, WFC3, STIS, ACS, FGS. NICMOS is currently on hold. Construction has started on the James Webb Space Telescope and its instruments. Conducting research projects at the vanguard often means pushing the instruments to their limits and requires understanding and calibrating complex instrument effects.

  1. EVA 2 activity on Flight Day 5 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-15

    S82-E-5404 (15 Feb. 1997) --- Astronaut Gregory J. Harbaugh on the Remote Manipulator System (RMS) with the Fine Guidance Sensor (FGS), during the repair of the Hubble Space Telescope (HST). This view was taken with an Electronic Still Camera (ESC).

  2. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1999-05-29

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  3. A Unique test for Hubble's new Solar Arrays

    NASA Astrophysics Data System (ADS)

    2000-10-01

    In mid-October, a team from the European Space Agency (ESA) and NASA will perform a difficult, never-before-done test on one of the Hubble Space Telescope's new solar array panels. Two of these panels, or arrays, will be installed by astronauts in November 2001, when the Space Shuttle Columbia visits Hubble on a routine service mission. The test will ensure that the new arrays are solid and vibration free before they are installed on orbit. The test will be conducted at ESA's European Space Research and Technology Center (ESTEC) in Noordwijk, The Netherlands. Because of the array's size, the facility's special features, and ESA's longstanding experience with Hubble's solar arrays, ESTEC is the only place in the world the test can be performed. This test is the latest chapter in a longstanding partnership between ESA and NASA on the Hubble Space Telescope. The Large Space Simulator at ESTEC, ESA's world-class test facility, features a huge vacuum chamber containing a bank of extremely bright lights that simulate the Sun's intensity - including sunrise and sunset. By exposing the solar wing to the light and temperature extremes of Hubble's orbit, engineers can verify how the new set of arrays will act in space. Hubble orbits the Earth once every 90 minutes. During each orbit, the telescope experiences 45 minutes of searing sunlight and 45 minutes of frigid darkness. This test will detect any tiny vibrations, or jitters, caused by these dramatic, repeated changes. Even a small amount of jitter can affect Hubble's sensitive instruments and interfere with observations. Hubble's first set of solar arrays experienced mild jitter and was replaced in 1993 with a much more stable pair. Since that time, advances in solar cell technology have led to the development of even more efficient arrays. In 2001, NASA will take advantage of these improvements, by fitting Hubble with a third-generation set of arrays. Though smaller, this new set generates more power than the previous

  4. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  5. Expert systems tools for Hubble Space Telescope observation scheduling

    NASA Technical Reports Server (NTRS)

    Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark

    1987-01-01

    The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.

  6. Zero CTE Glass in the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2008-01-01

    Orbiting high above the turbulence of the Earth's atmosphere, the Hubble Space Telescope (HST) has provided breathtaking views of astronomical objects never before seen in such detail. The steady diffraction-limited images allow this medium-size telescope to reach faint galaxies fainter than 30th stellar magnitude. Some of these galaxies are seen as early as 2 billion years after the Big Bang in a 13.7 billion year old universe. Up until recently, astronomers assumed that all of the laws of physics and astronomy applied back then as they do today. Now, using the discovery that certain supernovae are "standard candles," astronomers have found that the universe is expanding faster today than it was back then: the universe is accelerating in its expansion. The Hubble Space Telescope is a two-mirror Ritchey-Chretien telescope of 2.4m aperture in low earth orbit. The mirrors are made of Ultra Low Expansion (ULE) glass by Corning Glass Works. This material allows rapid figuring and outstanding performance in space astronomy applications. The paper describes how the primary mirror was mis-figured in manufacturing and later corrected in orbit. Outstanding astronomical images taken over the last 17 years show how the application of this new technology has advanced our knowledge of the universe. Not only has the acceleration of the expansion been discovered, the excellent imaging capability of HST has allowed gravitational lensing to become a tool to study the distribution of dark matter and dark energy in distant clusters of galaxies. The HST has touched practically every field of astronomy enabling astronomers to solve many long-standing puzzles. It will be a long time until the end of the universe when the density is near zero and all of the stars have long since evaporated. It is remarkable that humankind has found the technology and developed the ability to interpret the measurements in order to understand this dramatic age we live in.

  7. Interactive, Collaborative Science via the 'Net: Live from the Hubble Space Telescope.

    ERIC Educational Resources Information Center

    Federman, Alan N.; Edwards, Sheri

    1997-01-01

    As a part of the Passport to Knowledge Project "Live from the Hubble Space Telescope," over 60 schools collaborated by making weather observations that were displayed via the Internet during the week of April 15-19, 1996. Describes the weather activity, technical information, and the experiences of participating students in grades 5/6 at…

  8. STS-31 Hubble Space Telescope (HST) (SA & HGA deployed) is grappled by RMS

    NASA Image and Video Library

    1990-04-24

    STS031-76-026 (25 April 1990) --- Most of the giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery's Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae. The photo was taken with a handheld Hasselblad camera. This was among the first photos NASA released on April 30, 1990, from the five-day STS 31 mission.

  9. Hubble Space Telescope on-line telemetry archive for monitoring scientific instruments

    NASA Astrophysics Data System (ADS)

    Miebach, Manfred P.

    2002-12-01

    A major milestone in an effort to update the aging Hubble Space Telescope (HST) ground system was completed when HST operations were switched to a new ground system, a project called "Vision 2000 Control Center System CCS)", at the time of the third Servicing Mission in December 1999. A major CCS subsystem is the Space Telescope Engineering Data Store, the design of which is based on modern Data Warehousing technology. In fact, the Data Warehouse (DW) as implemented in the CCS Ground System that operates and monitors the Hubble Space Telescope represents, the first use of a commercial Data Warehouse to manage engineering data. By the end of February 2002, the process of populating the Data Warehouse with HST historical telemetry data had been completed, providing access to HST engineering data for a period of over 12 years with a current data volume of 2.8 Terabytes. This paper describes hands-on experience from an end user perspective, using the CCS system capabilities, including the Data Warehouse as an HST engineering telemetry archive. The Engineering Team at the Space Telescope Science Institute is using HST telemetry extensively for monitoring the Scientific Instruments, in particular for · Spacecraft anomaly resolutions · Scientific Instrument trending · Improvements of Instrument operational efficiency The overall idea is to maximize science output of the space observatory. Furthermore, the CCS provides a powerful feature to build, save, and recall real-time display pages customized to specific subsystems and operational scenarios. Engineering teams are using the real-time monitoring capabilities intensively during Servicing Missions and real time commanding to handle anomaly situations, while the Flight Operations Team (FOT) monitors the spacecraft around the clock.

  10. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I. Survey Description

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Smith, L. J.; Andrews, J. E.; Ubeda, L.; Bright, S. N.; Thilker, D.; Aloisi, A.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; da Silva, R.; de Mink, S. E.; Dobbs, C.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Schaerer, D.; Schiminovich, D.; Tosi, M.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.

    2015-02-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ˜kiloparsec-size clustered structures. Five-band imaging from the near-ultraviolet to the I band with the Wide-Field Camera 3 (WFC3), plus parallel optical imaging with the Advanced Camera for Surveys (ACS), is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the WFC3 are F275W(λ2704 Å), F336W(λ3355 Å), F438W(λ4325 Å), F555W(λ5308 Å), and F814W(λ8024 Å) the parallel observations with the ACS use the filters F435W(λ4328 Å), F606W(λ5921 Å), and F814W(λ8057 Å). The multiband images are yielding accurate recent (≲50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial scientific results. Because LEGUS will provide a reference survey and a foundation for future observations with the James Webb Space Telescope and with ALMA, a large number of data products are planned for delivery to the community. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  11. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    NASA Astrophysics Data System (ADS)

    1999-11-01

    Today the HST Archives contain more than 260 000 astronomical observations. More than 13 000 astronomical objects have been observed by hundreds of different groups of scientists. Direct proof of the scientific significance of this project is the record-breaking number of papers published : over 2400 to date. Some of HST's most memorable achievements are: * the discovery of myriads of very faint galaxies in the early Universe, * unprecedented, accurate measurements of distances to the farthest galaxies, * significant improvement in the determination of the Hubble constant and thus the age of the Universe, * confirmation of the existence of blacks holes, * a far better understanding of the birth, life and death of stars, * a very detailed look at the secrets of the process by which planets are created. Europe and HST ESA's contribution to HST represents a nominal investment of 15%. ESA provided one of the two imaging instruments - the Faint Object Camera (FOC) - and the solar panels. It also has 15 scientists and computer staff working at the Space Telescope Science Institute in Baltimore (Maryland). In Europe the astronomical community receives observational assistance from the Space Telescope European Coordinating Facility (ST-ECF) located in Garching, Munich. In return for ESA's investment, European astronomers have access to approximately 15% of the observing time. In reality the actual observing time competitively allocated to European astronomers is closer to 20%. Looking back at almost ten years of operation, the head of ST-ECF, European HST Project Scientist Piero Benvenuti states: "Hubble has been of paramount importance to European astronomy, much more than the mere 20% of observing time. It has given the opportunity for European scientists to use a top class instrument that Europe alone would not be able to build and operate. In specific areas of research they have now, mainly due to HST, achieved international leadership." One of the major reasons for

  12. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  13. The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Schaefer, Gail H.; Gilliland, Ronald L.; Holberg, Jay B.; Mason, Brian D.; Lindenblad, Irving W.; Seitz-McLeese, Miranda; Arnett, W. David; Demarque, Pierre; Spada, Federico; Young, Patrick A.; Barstow, Martin A.; Burleigh, Matthew R.; Gudehus, Donald

    2017-05-01

    Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1 V star Sirius A, the brightest star in the sky, orbited in a 50.13 year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063+/- 0.023 {M}⊙ and 1.018+/- 0.011 {M}⊙ for Sirius A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of ˜15-25 {M}{Jup}. The location of Sirius B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of ˜126 Myr. The position of Sirius B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 ± 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 {Z}⊙ , to fit its location on the luminosity-radius plane. The age of Sirius A based on these models is about 237-247 Myr, with uncertainties of ±15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high. Based in part on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, and from

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. Hubble Space Telescope, Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates the Hubble Space Telescope's (HST's), Faint Object Spectrograph (FOS). The HST's two spectrographs, the Goddard High-Resolution Spectrograph and the FOS, can detect a broader range of wavelengths than is possible from the Earth because there is no atmosphere to absorb certain wavelengths. Scientists can determine the chemical composition, temperature, pressure, and turbulence of the stellar atmosphere producing the light, all from spectral data. The FOC can detect detail in very faint objects, such as those at great distances, and light ranging from ultraviolet to red spectral bands. Both spectrographs operate in essentially the same way. The incoming light passes through a small entrance aperture, then passes through filters and diffraction gratings, that work like prisms. The filter or grating used determines what range of wavelength will be examined and in what detail. Then the spectrograph detectors record the strength of each wavelength band and sends it back to Earth. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  16. Hubble Spots an Irregular Island in a Sea of Space

    NASA Image and Video Library

    2017-12-08

    This image, courtesy of the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), captures the glow of distant stars within NGC 5264, a dwarf galaxy located just over 15 million light-years away in the constellation of Hydra (The Sea Serpent). Dwarf galaxies like NGC 5264 typically possess around a billion stars — just 1 percent of the number of stars found within the Milky Way. They are usually found orbiting other larger galaxies such as our own, and are thought to form from the material left over from the messy formation of their larger cosmic relatives. NGC 5264 clearly possesses an irregular shape — unlike the more common spiral or elliptical galaxies — with knots of blue star formation. Astronomers believe that this is due to the gravitational interactions between NGC 5264 and other galaxies nearby. These past flirtations sparked the formation of new generations of stars, which now glow in bright shades of blue. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Near-ultraviolet imaging of Jupiter's satellite Io with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Sartoretti, P.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.

    1992-01-01

    The surface of Jupiter's Galilean satellite Io has been resolved for the first time in the near ultraviolet at 2850 A by the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The restored images reveal significant surface structure down to the resolution limit of the optical system corresponding to approximately 250 km at the sub-earth point.

  18. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST &om contamination and the instruments from self-contamination.

  19. Lessons Learned from the Hubble Space Telescope (HST) Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Hedgeland, Randy J.

    2004-01-01

    Over the past two decades, the Hubble Space Telescope (HST) Contamination Control Program has evolved from a ground-based integration program to a space-based science-sustaining program. The contamination controls from the new-generation Scientific Instruments and Orbital Replacement Units were incorporated into the HST Contamination Control Program to maintain scientific capability over the life of the telescope. Long-term on-orbit scientific data has shown that these contamination controls implemented for the instruments, Servicing Mission activities (Orbiter, Astronauts, and mission), and on-orbit operations successfully protected the HST from contamination and the instruments from self-contamination.

  20. Perkinelmer Lamda 950 Measurements in Support of Nasa's Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Miller, Kevin H.; Quijada, Manuel A.

    2014-01-01

    We present visible spectroscopy measurements using the PerkinElmer Lambda 950 grating monochromator in support of two projects at NASA Goddard Space Flight Center. The first and primary project to be discussed is the Wide Field Planetary Camera 2 as an upgrade to the Hubble Space Telescope. Numerous optical filters were measured in the visible and near-infrared regions to experimentally vet the theoretical prediction upon which the filters were engineered. The second topic of our presentation will cover the measurement of SNAP prototype filters from three venders (ASAHI, BARR and JDSU) with applications towards NASAs the Joint Dark Energy Mission (JDEM).

  1. Improvements to the Hubble Space Telescope COS/FUV Wavelength Calibration at Lifetime Position 4

    NASA Astrophysics Data System (ADS)

    Plesha, Rachel; Ake, Thomas B.; De Rosa, Gisella; Oliveira, Cristina M.; Penton, Steven V.; Snyder, Elaine M.

    2018-06-01

    The Cosmic Origins Spectrograph (COS) was installed on the Hubble Space Telescope in 2009, and the FUV detector is currently operating at the 4th lifetime position (LP4). The COS team at the Space Telescope Science Institute has been improving the wavelength calibration of the FUV channel at each lifetime position. For the LP4 solution we obtained special calibration data as well as new lamp spectra to update the lamp template used at LP4 with the goal of achieving a wavelength calibration accuracy of ± 3 pixels. Additionally, we derived a new solution for the G130M/1222 cenwave which we expect to be more frequently used at this lifetime position due to the COS2025 policy in place on the other G130M settings. Here we present the results and methodology behind the wavelength calibration solutions at LP4.

  2. Hubble Space Telescope photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-008 (4 Dec 1993) --- This view of the Earth-orbiting Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. This view was taken during rendezvous operations. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  3. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  6. Reflective correctors for the Hubble Space Telescope axial instruments

    NASA Technical Reports Server (NTRS)

    Bottema, Murk

    1993-01-01

    Reflective correctors to compensate the spherical aberration in the Hubble Space Telescope are placed in front of three of the axial scientific instruments (a camera and two spectrographs) during the first scheduled refurbishment mission. The five correctors required are deployed from a new module that replaces the fourth axial instrument. Each corrector consists of a field mirror and an aspherical, aberration-correcting reimaging mirror. In the camera the angular resolution capability is restored, be it in reduced fields, and in the spectrographs the potential for observations in crowded areas is regained along with effective light collection at the slits.

  7. Hubble Space Telescope NiH2 six battery test

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Lanier, J. Roy

    1991-01-01

    The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.

  8. Hubble Space Telescope Thermal Blanket Repair Design and Implementation

    NASA Technical Reports Server (NTRS)

    Ousley, Wes; Skladany, Joseph; Dell, Lawrence

    2000-01-01

    Substantial damage to the outer layer of Hubble Space Telescope (HST) thermal blankets was observed during the February 1997 servicing mission. After six years in LEO, many areas of the aluminized Teflon(R) outer blanket layer had significant cracks, and some material was peeled away to expose inner layers to solar flux. After the mission, the failure mechanism was determined, and repair materials and priorities were selected for follow-on missions. This paper focuses on the thermal, mechanical, and EVA design requirements for the blanket repair, the creative solutions developed for these unique problems, hardware development, and testing.

  9. HUBBLE SPACE TELESCOPE CAPTURES FIRST DIRECT IMAGE OF A STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is the first direct image of a star other than the Sun, made with NASA's Hubble Space Telescope. Called Alpha Orionis, or Betelgeuse, it is a red supergiant star marking the shoulder of the winter constellation Orion the Hunter (diagram at right). The Hubble image reveals a huge ultraviolet atmosphere with a mysterious hot spot on the stellar behemoth's surface. The enormous bright spot, more than ten times the diameter of Earth, is at least 2,000 Kelvin degrees hotter than the surface of the star. The image suggests that a totally new physical phenomenon may be affecting the atmospheres of some stars. Follow-up observations will be needed to help astronomers understand whether the spot is linked to oscillations previously detected in the giant star, or whether it moves systematically across the star's surface under the grip of powerful magnetic fields. The observations were made by Andrea Dupree of the Harvard- Smithsonian Center for Astrophysics in Cambridge, MA, and Ronald Gilliland of the Space Telescope Science Institute in Baltimore, MD, who announced their discovery today at the 187th meeting of the American Astronomical Society in San Antonio, Texas. The image was taken in ultraviolet light with the Faint Object Camera on March 3, 1995. Hubble can resolve the star even though the apparent size is 20,000 times smaller than the width of the full Moon -- roughly equivalent to being able to resolve a car's headlights at a distance of 6,000 miles. Betelgeuse is so huge that, if it replaced the Sun at the center of our Solar System, its outer atmosphere would extend past the orbit of Jupiter (scale at lower left). Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  10. Hubble Space Telescope: Servicing Mission 3A. Media Reference Guide

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has provided scientific data and images of unprecedented resolution from which many new and exciting discoveries have been made. The Telescope's purpose is to spend 20 years probing the farthest and faintest reaches of the cosmos. Crucial to fulfilling this objective is a series of on-orbit manned servicing missions. The First Servicing Mission (SM1) took place in December 1993 and the Second Servicing Mission (SM2) was flown in February 1997. During these missions, astronauts perform planned repairs and maintenance activities to restore and upgrade the observatory s capabilities. To facilitate this process, the Telescope s designers configured science instruments and several vital engineering subsystems as Orbital Replacement Units (ORU) -- modular packages with standardized fittings accessible to astronauts in pressurized suits. Hubble's Third Servicing Mission has been separated into two parts: Servicing Mission 3A (SM3A) will fly in Fall of 1999 and Servicing Mission 3B (SM3B) is planned for 2001. The principal objective of SM3A is to replace all six gyroscopes that compose the three Rate Sensor Units (RSU). In addition, space-walking astronauts will install a new Advanced Computer that will dramatically increase the computing power, speed, and storage capability of HST. They will change out one of the Fine Guidance Sensors (FGS) and replace a tape recorder with a new Solid State Recorder (SSR). The Extravehicular Activity (EVA) crew also will install a new S-band Single-Access Transmitter (SSAT), and Voltage/Temperature Improvement Kits (VIK) for the Telescope s nickel-hydrogen batteries. Finally, they will begin repair of the multilayer insulation on Hubble s outer surface. During SM3B astronauts will install a new science instrument, the Advanced Camera for Surveys (ACS), and an Aft Shroud Cooling System (ASCS) for the other axial science instruments. They will attach a new cryogenic cooler to

  11. EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-17

    STS082-711-067 (11-21 Feb. 1997) --- Astronaut Gregory J. Harbaugh, mission specialist, floats horizontally in the cargo bay of the Earth-orbiting Space Shuttle Discovery, backdropped against its giant temporary passenger, the Hubble Space Telescope (HST). Harbaugh, sharing this space walking activity with astronaut Joseph R. Tanner (out of frame), is actually recognizable through his helmet visor in the 70mm frame. He is near the Second Axial Carrier (SAC), Axial Scientific Instrument Protection Enclosure (ASIPE). STS-82 marked the first flight of the exit airlock, partially visible at bottom edge of photo.

  12. NASA's Hubble Space Telescope Finds Dead Stars 'Polluted with Planet Debris'

    NASA Image and Video Library

    2017-12-08

    This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI) --- NASA's Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place-- the atmospheres of a pair of burned-out stars called white dwarfs. These dead stars are located 150 light-years from Earth in a relatively young star cluster, Hyades, in the constellation Taurus. The star cluster is only 625 million years old. The white dwarfs are being polluted by asteroid-like debris falling onto them. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Space Telescope Crew Rescue Analysis

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri L.; Canga, Michael A.; Cates, Grant R.

    2010-01-01

    In the aftermath of the 2003 Columbia accident, NASA removed the Hubble Space Telescope (HST) Servicing Mission 4 (SM4) from the Space Shuttle manifest. Reasons cited included concerns that the risk of flying the mission would be too high. The HST SM4 was subsequently reinstated and flown as Space Transportation System (STS)-125 because of improvements in the ascent debris environment, the development of techniques for astronauts to perform on orbit repairs to damaged thermal protection, and the development of a strategy to provide a viable crew rescue capability. However, leading up to the launch of STS-125, the viability of the HST crew rescue capability was a recurring topic. For STS-125, there was a limited amount of time available to perform a crew rescue due to limited consumables (power, oxygen, etc.) available on the Orbiter. The success of crew rescue depended upon several factors, including when a problem was identified; when and what actions, such as powering down, were begun to conserve consumables; and where the Launch on Need (LON) vehicle was in its ground processing cycle. Crew rescue success also needed to be weighed against preserving the Orbiter s ability to have a landing option in case there was a problem with the LON vehicle. This paper focuses on quantifying the HST mission loss of crew rescue capability using Shuttle historical data and various power down strategies. Results from this effort supported NASA s decision to proceed with STS-125, which was successfully completed on May 24th 2009.

  14. HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its

  15. Hubble Space Telescope Bi-Stem Thermal Shield Analyses

    NASA Technical Reports Server (NTRS)

    Finlay, Katherine A.

    2004-01-01

    The Hubble Space Telescope (HST) was launched April 24, 1990, and was deployed April 25 into low Earth orbit (LEO). It was soon discovered that the metal poles holding the solar arrays were expanding and contracting as the telescope orbited the Earth passing between the sunlight and the Earth s shadow. The expansion and contraction, although very small, was enough to cause the telescope to shake because of thermal-induced jitters, a detrimental effect when trying to take pictures millions of miles away. Therefore, the European Space Agency (ESA, the provider of the solar arrays) built new solar arrays (SA-11) that contained bi-stem thermal shields which insulated the solar array metal poles. These thermal shields were made of 2 mil thick aluminized-Teflon fluorinated ethylene propylene (FEP) rings fused together into a circular bellows shape. The new solar arrays were put on the HST during an extravehicular activity (EVA), also called an astronaut space walk, during the first servicing mission (SM1) in December 1993. An on-orbit photograph of the HST with the SA-11, and a close up of the bellows-like structure of the thermal shields is provided in Figure 1.

  16. Photogrammetric Assessment of the Hubble Space Telescope Solar Arrays During the Second Servicing Mission

    NASA Technical Reports Server (NTRS)

    Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.

    1998-01-01

    This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.

  17. Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technicians complete assembly of the Hubble Space Telescope (HST) mockup at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. In the foreground, a technician holds the controls for an overhead crane attached to one of the HST's high gain antennas (HGAs). Technicians on the ground prepare the HGA to be hoisted into position on the mockup's Support System Module (SSM) forward shell as others work on SSM from a cherry picker.

  18. New Horizons: Long-Range Kuiper Belt Targets Observed by the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Benecchi, S. D.; Noll, K. S.; Weaver, H. A.; Spencer, J. R.; Stern, S. A.; Buie, M. W.; Parker, A. H.

    2014-01-01

    We report on Hubble Space Telescope (HST) observations of three Kuiper Belt Objects (KBOs), discovered in our dedicated ground-based search campaign, that are candidates for long-range observations from the New Horizons spacecraft: 2011 epochY31, 2011 HZ102, and 2013 LU35. Astrometry with HST enables both current and future critical accuracy improvements for orbit precision, required for possible New Horizons observations, beyond what can be obtained from the ground. Photometric colors of all three objects are red, typical of the Cold Classical dynamical population within which they reside; they are also the faintest KBOs to have had their colors measured. None are observed to be binary with HST above separations of approx. 0.02 arcsec (approx. 700 km at 44 AU) and delta m less than or equal to 0.5.

  19. An Intensive Hubble Space Telescope Survey for z>1 Type Ia Supernovae by

    Science.gov Websites

    Targ SAO/NASA ADS Astronomy Abstract Service Title: An Intensive Hubble Space Telescope Survey Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; E. O. Lawrence Berkeley National , Clinton, NY 13323, USA), AH(National Optical Astronomy Observatory, Tucson, AZ 85726-6732, USA), AI

  20. Deep space target location with Hubble Space Telescope (HST) and Hipparcos data

    NASA Technical Reports Server (NTRS)

    Null, George W.

    1988-01-01

    Interplanetary spacecraft navigation requires accurate a priori knowledge of target positions. A concept is presented for attaining improved target ephemeris accuracy using two future Earth-orbiting optical observatories, the European Space Agency (ESA) Hipparcos observatory and the Nasa Hubble Space Telescope (HST). Assuming nominal observatory performance, the Hipparcos data reduction will provide an accurate global star catalog, and HST will provide a capability for accurate angular measurements of stars and solar system bodies. The target location concept employs HST to observe solar system bodies relative to Hipparcos catalog stars and to determine the orientation (frame tie) of these stars to compact extragalactic radio sources. The target location process is described, the major error sources discussed, the potential target ephemeris error predicted, and mission applications identified. Preliminary results indicate that ephemeris accuracy comparable to the errors in individual Hipparcos catalog stars may be possible with a more extensive HST observing program. Possible future ground and spacebased replacements for Hipparcos and HST astrometric capabilities are also discussed.

  1. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope Using Hubble Space Telescope Flux Standards

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.

    2011-05-01

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.

  2. Hubble-V

    NASA Image and Video Library

    1999-12-10

    Resembling curling flames from a campfire, a magnificent nebula in a nearby galaxy observed by NASA Hubble Space Telescope provides new insight into the fierce birth of stars as it may have occurred in the early universe.

  3. Hubble Space Telescope-The Support Systems Module

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This illustration depicts the design features of the Hubble Space Telescope's (HST's) Support Systems Module (SSM). The SSM is one of the three major elements of the HST and encloses the other two elements, the Optical Telescope Assembly (OTA) and the Scientific Instruments (SI's). The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5-feet (13-meters) long and weighs 25,000 pounds (11,600 kilograms). Two communication anternas, two solar array panels that collect energy for the HST, and storage bays for electronic gear are on the outside. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  4. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    View taken through overhead window W7 aboard Discovery, Orbiter Vehicle (OV) 103, shows the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) and held in a 90 degree pitch position against the blackness of space. The solar array (SA) panel (center) and the high gain antennae (HGA) (on either side) are visible along the Support System Module (SSM) forward shell prior to deployment during STS-31.

  5. Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  6. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  7. Hubble Space Telescope photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-001 (4 Dec 1993) --- This medium close-up view of the top portion of the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope over a period of five days. Four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment to service the giant telescope. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  8. Hubble Captures Cosmic Ice Sculptures

    NASA Image and Video Library

    2017-12-08

    NASA image release September 16, 2010 Enjoying a frozen treat on a hot summer day can leave a sticky mess as it melts in the Sun and deforms. In the cold vacuum of space, there is no edible ice cream, but there is radiation from massive stars that is carving away at cold molecular clouds, creating bizarre, fantasy-like structures. These one-light-year-tall pillars of cold hydrogen and dust, imaged by the Hubble Space Telescope, are located in the Carina Nebula. Violent stellar winds and powerful radiation from massive stars are sculpting the surrounding nebula. Inside the dense structures, new stars may be born. This image of dust pillars in the Carina Nebula is a composite of 2005 observations taken of the region in hydrogen light (light emitted by hydrogen atoms) along with 2010 observations taken in oxygen light (light emitted by oxygen atoms), both times with Hubble's Advanced Camera for Surveys. The immense Carina Nebula is an estimated 7,500 light-years away in the southern constellation Carina. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. Technicians complete assembly of Hubble Space Telescope (HST) mockup at JSC

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A technician listens to instructions as he operates the controls for the overhead crane that is lifting one of the Hubble Space Telescope (HST) high gain antennas (HGAs) into place on the HST Support System Module (SSM) forward shell. Others in a cherry picker basket wait to install the HGA on the SSM mockup. The HST mockup will be used for astronaut training and is being assembled in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.

  10. The Hubble Space Telescope Servicing Mission 3A Contamination Control Program

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2000-01-01

    After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.

  11. 25+ Years of the Hubble Space Telescope and a Simple Error That Cost Millions

    ERIC Educational Resources Information Center

    Shakerin, Said

    2016-01-01

    A simple mistake in properly setting up a measuring device caused millions of dollars to be spent in correcting the initial optical failure of the Hubble Space Telescope (HST). This short article is intended as a lesson for a physics laboratory and discussion of errors in measurement.

  12. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  13. Hubble's Cosmic Atlas

    NASA Image and Video Library

    2017-12-08

    Morphologies, masses, and structures - oh, my! This beautiful clump of glowing gas, dark dust and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). This image was produced by the NASA/ESA Hubble Space Telescope as it embarked upon compiling the first Hubble ultraviolet “atlas,” for which the telescope targeted 50 nearby star-forming galaxies. The collection spans all kinds of different morphologies, masses, and structures. Studying this sample can help us to piece together the star-formation history of the Universe. By exploring how massive stars form and evolve within such galaxies, astronomers can learn more about how, when, and where star formation occurs, how star clusters change over time, and how the process of forming new stars is related to the properties of both the host galaxy and the surrounding interstellar medium (the gas and dust that fills the space between individual stars). This galaxy was imaged with observations from Hubble’s Wide Field Camera 3. Image credit: ESA/Hubble & NASA

  14. Hubble Supernova Bubble Resembles Holiday Ornament

    NASA Image and Video Library

    2017-12-08

    NASA image release December 14, 2010 A delicate sphere of gas, photographed by NASA's Hubble Space Telescope, floats serenely in the depths of space. The pristine shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second). Astronomers have concluded that the explosion was one of an especially energetic and bright variety of supernovae. Known as Type Ia, such supernova events are thought to result from a white dwarf star in a binary system that robs its partner of material, takes on much more mass than it is able to handle, and eventually explodes. Hubble's Advanced Camera for Surveys observed the supernova remnant on Oct. 28, 2006 with a filter that isolates light from glowing hydrogen seen in the expanding shell. These observations were then combined with visible-light images of the surrounding star field that were imaged with Hubble's Wide Field Camera 3 on Nov. 4, 2010. With an age of about 400 years as seen from Earth, the supernova might have been visible to southern hemisphere observers around the year 1600, however, there are no known records of a "new star" in the direction of the LMC near that time. A more recent supernova in the LMC, SN 1987A, did catch the eye of Earth viewers and continues to be studied with ground- and space-based telescopes, including Hubble. For images and more information about SNR 0509, visit: hubblesite.org/news/2010/27 heritage.stsci.edu/2010/27 www.nasa.gov/hubble

  15. Hubble Space Telescope Trigonometric Parallax of Polaris B, Companion of the Nearest Cepheid

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Nelan, Edmund P.; Remage Evans, Nancy; Schaefer, Gail H.; Harmer, Dianne

    2018-01-01

    Polaris, the nearest and brightest Cepheid, is a potential anchor point for the Leavitt period–luminosity relation. However, its distance is a matter of contention, with recent advocacy for a parallax of ∼10 mas, in contrast with the Hipparcos measurement of 7.54 ± 0.11 mas. We report an independent trigonometric parallax determination, using the Fine Guidance Sensors (FGS) on the Hubble Space Telescope. Polaris itself is too bright for FGS, so we measured its eighth-magnitude companion Polaris B, relative to a network of background reference stars. We converted the FGS relative parallax to absolute, using estimated distances to the reference stars from ground-based photometry and spectral classification. Our result, 6.26 ± 0.24 mas, is even smaller than that found by Hipparcos. We note other objects for which Hipparcos appears to have overestimated parallaxes, including the well-established case of the Pleiades. We consider possible sources of systematic error in the FGS parallax, but find no evidence they are significant. If our “long” distance is correct, the high luminosity of Polaris indicates that it is pulsating in the second overtone of its fundamental mode. Our results raise several puzzles, including a long pulsation period for Polaris compared to second-overtone pulsators in the Magellanic Clouds, and a conflict between the isochrone age of Polaris B (∼2.1 Gyr) and the much younger age of Polaris A. We discuss possibilities that B is not a physical companion of A, in spite of the strong evidence that it is, or that one of the stars is a merger remnant. These issues may be resolved when Gaia provides parallaxes for both stars. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  16. Hubble Space Telescope: Goddard high resolution spectrograph instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Ebbets, Dennis

    1990-01-01

    The Goddard High Resolution Spectrograph (GHRS) is an ultraviolet spectrometer which has been designed to exploit the imaging and pointing capabilities of the Hubble Space Telescope. It will obtain observations of astronomical sources with greater spectral, spatial and temporal resolution than has been possible with previous space-based instruments. Data from the GHRS will be applicable to many types of scientific investigations, including studies of the interstellar medium, stellar winds, chromospheres and coronae, the byproducts and endproducts of stellar evolution, planetary atmospheres, comets, and many kinds of extragalactic sources. This handbook is intended to introduce the GHRS to potential users. The main purpose is to provide enough information to explore the feasibility of possible research projects and to plan, propose and execute a set of observations. An overview of the instrument performance, which should allow one to evaluate the suitability of the GHRS to specific projects, and a somewhat more detailed description of the GHRS hardware are given. How observing programs will be carried out, the various operating modes of the instrument, and the specific information about the performance of the instrument needed to plan an observation are discussed.

  17. Hubble Space Telescope far-ultraviolet imaging of the jet in 3C273: a common emission component from optical to X-rays

    NASA Astrophysics Data System (ADS)

    Jester, Sebastian; Meisenheimer, Klaus; Martel, André R.; Perlman, Eric S.; Sparks, William B.

    2007-09-01

    We present far-ultraviolet (far-UV) observations at ~150 nm of the jet of quasar 3C273 obtained with the Advanced Camera for Surveys (ACS) Solar Blind Channel onboard the Hubble Space Telescope. While the jet morphology is very similar to that in the optical and near-UV, the spectral energy distributions of the jet's subregions show an upturn in νfν at 150nm compared to 300nm everywhere in the jet. Moreover, the 150-nm flux is compatible with extrapolating the X-ray power law down to the UV region. This constitutes strong support for a common origin of the jet's far-UV and X-ray emission. It implies that even a substantial fraction of the visible light in the X-ray brightest parts of the jet arises from the same spectral component as the X-rays, as had been suggested earlier based on Spitzer Space Telescope observations. We argue that the identification of this UV/X-ray component opens up the possibility to establish the synchrotron origin of the X-ray emission by optical polarimetry. Based on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with HST programme GO-9814. This work was begun at the Particle Astrophysics Center, Fermilab, Batavia, IL 60510, USA. ‡ E-mail: jester@mpia.de

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2001-09-06

    Scientists using NASA's Hubble Space Telescope (HST) are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. One such galaxy, Galaxy NGC 3310, a hotbed of star formation showcased in this HST photograph, is forming clusters of stars at a prodigious rate. The image shows several hundred star clusters, visible as the bright blue diffuse objects tracing the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more that one hundred million years. This suggests the starburst "turned on" more than 100 million years ago.

  19. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-01-01

    These eerie, dark, pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the Eagle Nebula (also called M16), a nearby star-forming region 7,000 light-years away, in the constellation Serpens. The ultraviolet light from hot, massive, newborn stars is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three-dimensional nature of the clouds. This image was taken on April 1, 1995 with the Hubble Space Telescope Wide Field Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emissions from singly-ionized sulfur atoms, green shows emissions from hydrogen, and blue shows light emitted by doubly-ionized oxygen atoms.

  20. Hubble Space Telescope CALSPEC Flux Standards: Sirius (and Vega)

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.

    2014-06-01

    The Space Telescope Imaging Spectrograph (STIS) has measured the flux for Sirius from 0.17 to 1.01 μm on the Hubble Space Telescope (HST) White Dwarf scale. Because of the cool debris disk around Vega, Sirius is commonly recommended as the primary IR flux standard. The measured STIS flux agrees well with predictions of a special Kurucz model atmosphere, adding confidence to the modeled IR flux predictions. The IR flux agrees to 2%-3% with respect to the standard template of Cohen and to 2% with the Midcourse Space Experiment absolute flux measurements in the mid-IR. A weighted average of the independent visible and mid-IR absolute flux measures implies that the monochromatic flux at 5557.5 Å (5556 Å in air) for Sirius and Vega, respectively, is 1.35 × 10-8 and 3.44 × 10-9 erg cm-2 s-1 Å-1 with formal uncertainties of 0.5%. Contrary to previously published conclusions, the Hipparcos photometry offers no support for the variability of Vega. Pulse pileup severely affects the Hp photometry for the brightest stars.

  1. Hubble Space Telescope Discovery of a z = 3.9 Multiply Imaged Galaxy Behind

    Science.gov Websites

    the SAO/NASA ADS Astronomy Abstract Service Title: Hubble Space Telescope Discovery of a z College, Clinton, NY 13323, USA), AI(Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA), AJ(Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1

  2. Hubble Finds New Dark Spot on Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet.

    The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared.

    Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere.

    Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere.

    The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  3. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31 checkout, the Hubble Space Telescope (HST) is held in a pre-deployment position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS). The view, taken from the crew cabin overhead window W7, shows the starboard solar array (SA) panel (center) and two high gain antennae (HGA) (on either side) stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  4. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  5. A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction

    NASA Technical Reports Server (NTRS)

    Sharkey, John P.

    1987-01-01

    Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.

  6. EVA 1 activity on Flight Day 4 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-14

    STS082-730-090 (11-21 Feb. 1997) --- Astronaut Steven L. Smith handles one of the Goddard High Resolution Spectrograph (GHRS) boxes, changed out on the Hubble Space Telescope (HST) on Flight Day 4. Astronauts Smith and Mark C. Lee were participating in the first of five eventual days of Extravehicular Activity (EVA) to service the giant orbital observatory. Smith is standing on the end of the Remote Manipulator System (RMS) arm, which was controlled by astronaut Steven A. Hawley inside the Space Shuttle Discovery's crew cabin.

  7. Venus Cloud Tops Viewed by Hubble

    NASA Image and Video Library

    1999-05-18

    Venus Cloud Tops Viewed by Hubble. This is a NASA Hubble Space Telescope ultraviolet-light image of the planet Venus, taken on January 24 1995, when Venus was at a distance of 70.6 million miles 113.6 million kilometers from Earth.

  8. Dismantling Hubble's Legacy?

    NASA Astrophysics Data System (ADS)

    Way, Michael J.

    2014-01-01

    Edwin Hubble is famous for a number of discoveries that are well known to amateur and professional astronomers, students and even the general public. The origins of three of the most well-known discoveries are examined: The distances to nearby spiral nebulae, the classification of extragalactic-nebulae and the Hubble constant. In the case of the first two a great deal of supporting evidence was already in place, but little credit was given. The Hubble Constant had already been estimated in 1927 by Georges Lemaitre with roughly the same value that Hubble obtained in 1929 using redshifts provided mostly by Vesto M. Slipher. These earlier estimates were not adopted or were forgotten by the astronomical community for complex scientific, sociological and psychological reasons.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1989-12-05

    The mission insignia for NASA's STS-31 mission features the Hubble Space Telescope (HST) in its observing configuration against a background of the universe it will study. The cosmos includes a stylistic depiction of galaxies in recognition of the contribution made by Sir Edwin Hubble to our understanding of the nature of galaxies and the expansion of the universe. The STS-31 crew points out that is it in honor of Hubble's work that this great observatory in space bears his name. The depicted Space Shuttle trails a spectrum symbolic of both the red shift observations that were so important to Hubble's work and new information which will be obtained with the HST. Encircling the art work, designed by the crew, are the names of its members.

  10. EVA 3 activity on Flight Day 6 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-16

    S82-E-5572 (16 Feb. 1997) --- Pausing near the foot-restraint of the Remote Manipulator System (RMS), astronauts Steven L. Smith (left) and Mark C. Lee communicate with and look toward their in-cabin team members during the third Extravehicular Activity (EVA) to perform servicing chores on the Hubble Space Telescope (HST). This view was taken with an Electronic Still Camera (ESC).

  11. Hubble Captures Detailed Image of Uranus Atmosphere

    NASA Image and Video Library

    1998-08-02

    NASA Hubble Space Telescope peered deep into Uranus atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus atmosphere.

  12. A Mechanical Cryogenic Cooler for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.

  13. EVA 2 activity on Flight Day 5 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-15

    STS082-742-047 (11-21 Feb. 1997) --- On Flight Day 5, astronaut Joseph R. Tanner (left) holds a 500 pound piece of hardware as he stands on the end of the Space Shuttle Discovery's Remote Manipulator System (RMS) arm, as tethered astronaut Gregory J. Harbaugh works nearby. The piano-shaped object held aloft by Tanner is actually the Fine Guidance Sensor 1 (FGS-1), which Tanner had just removed from the Hubble Space Telescope (HST). Harbaugh is inspecting the FGS' bay to set the stage for the two to insert the replacement hardware. EDITOR'S NOTE: For orientation purposes, the picture should be held with Space Shuttle's OMS pods at top.

  14. Hubble's Megamaser Galaxy

    NASA Image and Video Library

    2017-12-08

    Feast your eyes on Hubble's Megamaser galaxy! Phenomena across the Universe emit radiation spanning the entire electromagnetic spectrum — from high-energy gamma rays, which stream out from the most energetic events in the cosmos, to lower-energy microwaves and radio waves. Microwaves, the very same radiation that can heat up your dinner, are produced by a multitude of astrophysical sources, including strong emitters known as masers (microwave lasers), even stronger emitters with the somewhat villainous name of megamasers and the centers of some galaxies. Especially intense and luminous galactic centers are known as active galactic nuclei. They are in turn thought to be driven by the presence of supermassive black holes, which drag surrounding material inwards and spit out bright jets and radiation as they do so. The two galaxies shown here, imaged by the NASA/ESA Hubble Space Telescope, are named MCG+01-38-004 (the upper, red-tinted one) and MCG+01-38-005 (the lower, blue-tinted one). MCG+01-38-005 (also known as NGC 5765B) is a special kind of megamaser; the galaxy’s active galactic nucleus pumps out huge amounts of energy, which stimulates clouds of surrounding water. Water’s constituent atoms of hydrogen and oxygen are able to absorb some of this energy and re-emit it at specific wavelengths, one of which falls within the microwave regime, invisible to Hubble but detectable by microwave telescopes. MCG+01-38-005 is thus known as a water megamaser! Astronomers can use such objects to probe the fundamental properties of the Universe. The microwave emissions from MCG+01-38-005 were used to calculate a refined value for the Hubble constant, a measure of how fast the Universe is expanding. This constant is named after the astronomer whose observations were responsible for the discovery of the expanding Universe and after whom the Hubble Space Telescope was named, Edwin Hubble.

  15. EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-17

    S82-E-5606 (17 Feb. 1997) --- Astronaut Gregory J. Harbaugh at work on Hubble Space Telescope (HST), with the assistance of astronaut Joseph R. Tanner (out of frame) on Remote Manipulator System (RMS). After replacing the HST's Solar Array Drive Electronics (SADE), Harbaugh and Tanner replaced the Magnetic Sensing System (MSS) protective lids with new, permanent covers; and they installed pre-cut insulation pieces to correct tears in the HST's protective covering caused by temperature changes in space. This view was taken with an Electronic Still Camera (ESC).

  16. Automation of Hubble Space Telescope Mission Operations

    NASA Technical Reports Server (NTRS)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  17. The Hubble Catalog of Variables

    NASA Astrophysics Data System (ADS)

    Gavras, P.; Bonanos, A. Z.; Bellas-Velidis, I.; Charmandaris, V.; Georgantopoulos, I.; Hatzidimitriou, D.; Kakaletris, G.; Karampelas, A.; Laskaris, N.; Lennon, D. J.; Moretti, M. I.; Pouliasis, E.; Sokolovsky, K.; Spetsieri, Z. T.; Tsinganos, K.; Whitmore, B. C.; Yang, M.

    2017-06-01

    The Hubble Catalog of Variables (HCV) is a 3 year ESA funded project that aims to develop a set of algorithms to identify variables among the sources included in the Hubble Source Catalog (HSC) and produce the HCV. We will process all HSC sources with more than a predefined number of measurements in a single filter/instrument combination and compute a range of lightcurve features to determine the variability status of each source. At the end of the project, the first release of the Hubble Catalog of Variables will be made available at the Mikulski Archive for Space Telescopes (MAST) and the ESA Science Archives. The variability detection pipeline will be implemented at the Space Telescope Science Institute (STScI) so that updated versions of the HCV may be created following the future releases of the HSC.

  18. The Hubble Space Telescope's Student ERO Pilot Project: Implementing Formal and Informal Collaborative Projects

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Ryer, H.; McCallister, D.; Taylor, J.; Bishop, M.

    2010-05-01

    The Hubble Space Telescope's Early Release Observations (EROs) were revealed to the public on September 9, 2009, and K-12 students and educators in six states across the country are joining in the celebration. Students and educators in Maryland, Ohio, New York, California, New Mexico, and Delaware have been invited to participate in the Hubble Space Telescope's Student ERO Pilot Project. This is an interdisciplinary project created by STScI's Office of Public Outreach in which students research the four ERO objects and create various types of projects. In recognition of their participation, the projects are displayed at host institutions in each state (museum, science center, school, planetarium or library) during a special public event for participating students, their families, and teachers. As part of its evaluation program, STScI's Office of Public Outreach has been conducting an evaluation of the project to determine the viability and potential of conducting large-scale, formal/informal collaborative projects in the future. This poster will highlight preliminary findings and share lessons learned.

  19. Hubble Space Telescope (HST) above OV-103's PLB during STS-31 deployment

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST) is raised above the payload bay (PLB) in low hover position during STS-31 checkout and pre-deployment procedures aboard Discovery, Orbiter Vehicle (OV) 103. Stowed along the HST Support System Module (SSM) are the high gain antenna (HGA) (center) and the two solar arrays (one either side). In the background are the orbital maneuvering system (OMS) pods and the Earth's surface.

  20. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  1. Astrometry With the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, ABELL 31, and DeHt 5

    DTIC Science & Technology

    2009-12-01

    reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi

  2. Hubble reveals the Ring Nebula’s true shape

    NASA Image and Video Library

    2017-12-08

    Caption: In this composite image, visible-light observations by NASA’s Hubble Space Telescope are combined with infrared data from the ground-based Large Binocular Telescope in Arizona to assemble a dramatic view of the well-known Ring Nebula. Credit: NASA, ESA, C.R. Robert O’Dell (Vanderbilt University), G.J. Ferland (University of Kentucky), W.J. Henney and M. Peimbert (National Autonomous University of Mexico) Credit for Large Binocular Telescope data: David Thompson (University of Arizona) ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the

  3. NASA's Hubble Celebrates 21st Anniversary with "Rose" of Galaxies

    NASA Image and Video Library

    2017-12-08

    NASA image release April 20, 2011 To see a video of this image go here: www.flickr.com/photos/gsfc/5637796622 To celebrate the 21st anniversary of the Hubble Space Telescope's deployment into space, astronomers at the Space Telescope Science Institute in Baltimore, Md., pointed Hubble's eye at an especially photogenic pair of interacting galaxies called Arp 273. The larger of the spiral galaxies, known as UGC 1810, has a disk that is distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. This image is a composite of Hubble Wide Field Camera 3 data taken on December 17, 2010, with three separate filters that allow a broad range of wavelengths covering the ultraviolet, blue, and red portions of the spectrum. Hubble was launched April 24, 1990, aboard Discovery's STS-31 mission. Hubble discoveries revolutionized nearly all areas of current astronomical research from planetary science to cosmology. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) To read more about this image go here: www.nasa.gov/mission_pages/hubble/science/hubble-rose.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Flight software operation of the Hubble Space Telescope fine guidance sensor

    NASA Technical Reports Server (NTRS)

    Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.

    1988-01-01

    The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.

  5. Hubble Space Telescope Fine Guidance Sensors Instrument Handbook, version 4.0

    NASA Technical Reports Server (NTRS)

    Holfeltz, S. T. (Editor)

    1994-01-01

    This is a revised version of the Hubble Space Telescope Fine Guidance Sensor Instrument Handbook. The main goal of this edition is to help the potential General Observer (GO) learn how to most efficiently use the Fine Guidance Sensors (FGS's). First, the actual performance of the FGS's as scientific instruments is reviewed. Next, each of the available operating modes of the FGS's are reviewed in turn. The status and findings of pertinent calibrations, including Orbital Verification, Science Verification, and Instrument Scientist Calibrations are included as well as the relevant data reduction software.

  6. Space environmental effects observed on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Edelman, Joel E.; Mason, James B.

    1995-01-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interest to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG's). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.

  7. Space environmental effects observed on the Hubble Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelman, J.E.; Mason, J.B.

    1995-02-01

    The Hubble Space Telescope (HST) Repair Mission of December, 1993, was first and foremost a mission to improve the performance of the observatory. But for a specialized segment of the aerospace industry, the primary interest is in the return to Earth of numerous pieces of the HST hardware, pieces which have been replaced, repaired, improved, or superseded. The returned hardware is of interest because of the information it potentially carries about the effects of exposure to the space environment for three and a half years. Like the LDEF retrieval mission four years ago, the HST repair mission is of interestmore » to many engineering disciplines, including all of the disciplines represented by the LDEF Special Investigation Groups (SIG`s). There is particular interest in the evaluation of specific materials and systems in the returned components. Some coated surfaces have been processed with materials which are newer and still in use by, or under consideration for, other spacecraft in a variety of stages of development. Several of the systems are being returned because a specific failure or anomaly has been observed and thus there is, at the outset, a specific investigative trail that needs to be followed. These systems are much more complex than those flown on LDEF and, in two instances, comprised state-of-the-art science instruments. Further, the parts used in these systems generally were characterized more rigorously prior to flight than were those in the LDEF systems, and thus post flight testing may yield more significant results.« less

  8. Detection of the Red Giant Branch Stars in the M82 Using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Madore, B.; Sakai, S.

    1999-01-01

    We present color-magnitude diagrams and luminosity functions or stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2.

  9. EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-17

    S82-E-5652 (17 Feb. 1997) --- Astronaut Gregory J. Harbaugh (solid stripe on EMU) uses Remote Manipulator System (RMS) as a cherry-picker device to service Hubble Space Telescope (HST). In cooperation with astronaut Joseph R. Tanner, nearby, the mission specialist was in the process of replacing the HST's Magnetic Sensing System (MSS) protective caps with new, permanent covers. This view was taken with an Electronic Still Camera (ESC).

  10. STS-31 Hubble Space Telescope (HST) solar array panel deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), the Hubble Space Telescope's (HST's) starboard solar array (SA) bistem cassette is released from its stowed position on the Support System Module (SSM) forward shell. The spreader bar & bistem begin to unfurl the SA wing. View was taken by an STS-31 crewmember through an overhead window & is backdropped against the surface of the Earth.

  11. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  12. Hubble Takes Mars Portrait Near Close Approach

    NASA Image and Video Library

    2017-12-08

    Mars is looking mighty fine in this portrait nabbed by the Hubble Space Telescope on a near close approach! Read more: go.nasa.gov/1rWYiBT The Hubble Space Telescope is more well known for its picturesque views of nebulae and galaxies, but it's also useful for studying our own planets, including Mars. Hubble imaged Mars on May 12, 2016 - ten days before Mars would be on the exact opposite side of the Earth from the Sun. Bright, frosty polar caps, and clouds above a vivid, rust-colored landscape reveal Mars as a dynamic seasonal planet in this NASA Hubble Space Telescope view taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across. The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth-century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view. A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact. The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute) #nasagoddard #mars #hubble #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics

  13. Scaling Relations and Overabundance of Massive Clusters at z >~ 1 from Weak-lensing Studies with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Jee, M. J.; Dawson, K. S.; Hoekstra, H.; Perlmutter, S.; Rosati, P.; Brodwin, M.; Suzuki, N.; Koester, B.; Postman, M.; Lubin, L.; Meyers, J.; Stanford, S. A.; Barbary, K.; Barrientos, F.; Eisenhardt, P.; Ford, H. C.; Gilbank, D. G.; Gladders, M. D.; Gonzalez, A.; Harris, D. W.; Huang, X.; Lidman, C.; Rykoff, E. S.; Rubin, D.; Spadafora, A. L.

    2011-08-01

    We present weak gravitational lensing analysis of 22 high-redshift (z >~ 1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current ΛCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power-law slope of the M-TX relation (MvpropT α), we obtain α = 1.54 ± 0.23. This is consistent with the theoretical self-similar prediction α = 3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20%-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current ΛCDM model. The combined probability of finding the four most massive clusters in this sample after the marginalization over cosmological parameters is less than 1%. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, under program 9290, 9919, and 10496.

  14. Hubble Portrait of the Double

    NASA Image and Video Library

    1998-03-28

    This is the clearest view yet of the distant planet Pluto and its moon, Charon, as revealed by NASA Hubble Space Telescope. The image was taken by the European Space Agency Faint Object Camera on February 21, 1994.

  15. Hubble IMAX Premier

    NASA Image and Video Library

    2010-03-09

    Dr. Ed Weiler, left, is interviewed by Miles O'Brien prior to the World Premiere of "Hubble 3D", screened at the Smithsonian's Air and Space Museum Tuesday evening, March 9, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  16. Fixed-head star tracker attitude updates on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Nadelman, Matthew S.; Karl, Jeffrey B.; Hallock, Lou

    1994-01-01

    The Hubble Space Telescope (HST) was launched in April 1990 to begin observing celestial space to the edge of the universe. National Aeronautics and Space Administration (NASA) standard fixed-head star trackers (FHST's) are used operationally onboard the HST to regularly adjust ('update') the spacecraft attitude before the acquisition of guide stars for science observations. During the first 3 months of the mission, the FHST's updated the spacecraft attitude successfully only 85 percent of the time. During the other periods, the trackers were unable to find the selected stars -- either they failed to find any star, or worse, they selected incorrect stars and produced erroneous attitude updates. In July 1990, the HST project office at Goddard Space Flight Center (GSFC) requested that Computer Sciences Corporation (CSC) form an investigative 'tiger' team to examine these FHST update failures. This paper discusses the work of the FHST tiger team, describes the investigations that led the team to identify the sources of the errors, and defines the solutions that were subsequently developed, which ultimately increased the success rate of FHST updates to approximately 98 percent.

  17. Hubble Probes Comet 103P/Hartley 2 in Preparation for DIXI flyby

    NASA Image and Video Library

    2017-12-08

    NASA image release October 5, 2010 Hubble Space Telescope observations of comet 103P/Hartley 2, taken on September 25, are helping in the planning for a November 4 flyby of the comet by NASA's Deep Impact eXtended Investigation (DIXI) spacecraft. Analysis of the new Hubble data shows that the nucleus has a diameter of approximately 0.93 miles (1.5 km), which is consistent with previous estimates. The comet is in a highly active state, as it approaches the Sun. The Hubble data show that the coma is remarkably uniform, with no evidence for the types of outgassing jets seen from most "Jupiter Family" comets, of which Hartley 2 is a member. Jets can be produced when the dust emanates from a few specific icy regions, while most of the surface is covered with relatively inert, meteoritic-like material. In stark contrast, the activity from Hartley 2's nucleus appears to be more uniformly distributed over its entire surface, perhaps indicating a relatively "young" surface that hasn't yet been crusted over. Hubble's spectrographs - the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS) -- are expected to provide unique information about the comet's chemical composition that might not be obtainable any other way, including measurements by DIXI. The Hubble team is specifically searching for emissions from carbon monoxide (CO) and diatomic sulfur (S2). These molecules have been seen in other comets but have not yet been detected in 103P/Hartley 2. 103P/Hartley has an orbital period of 6.46 years. It was discovered by Malcolm Hartley in 1986 at the Schmidt Telescope Unit in Siding Spring, Australia. The comet will pass within 11 million miles of Earth (about 45 times the distance to the Moon) on October 20. During that time the comet may be visible to the naked eye as a 5th magnitude "fuzzy star" in the constellation Auriga. Credit: NASA, ESA, and H. Weaver (The Johns Hopkins University/Applied Physics Lab) The Hubble Space Telescope is a

  18. Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II

    NASA Technical Reports Server (NTRS)

    Paltoglou, G.; Bell, R. A.

    1991-01-01

    A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.

  19. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  20. Genetic algorithms applied to the scheduling of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Sponsler, Jeffrey L.

    1989-01-01

    A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.

  1. Observing supernova 1987A with the refurbished Hubble Space Telescope.

    PubMed

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M; Larsson, Josefin; Lawrence, Stephen S; Lundqvist, Peter; Panagia, Nino; Pun, Chun S J; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Stocke, John T; Wang, Lifan; Wheeler, J Craig

    2010-09-24

    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 with the use of the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Lyα and Hα lines from shock emission continue to brighten, whereas their maximum velocities continue to decrease. We observe broad, blueshifted Lyα, which we attribute to resonant scattering of photons emitted from hot spots on the equatorial ring. We also detect N v λλ1239, 1243 angstrom line emission, but only to the red of Lyα. The profiles of the N v lines differ markedly from that of Hα, suggesting that the N4+ ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.

  2. Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0

    NASA Technical Reports Server (NTRS)

    Nota, A. (Editor); Jedrzejewski, R. (Editor); Greenfield, P. (Editor); Hack, W. (Editor)

    1994-01-01

    The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program.

  3. Hubble Space Telescope COSTAR asphere verification with a modified computer-generated hologram interferometer. [Corrective Optics Space Telescope Axial Replacement

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Wilson, M.

    1993-01-01

    To correct for the spherical aberration in the Hubble Space Telescope primary mirror, five anamorphic aspheric mirrors representing correction for three scientific instruments have been fabricated as part of the development of the corrective-optics space telescope axial-replacement instrument (COSTAR). During the acceptance tests of these mirrors at the vendor, a quick and simple method for verifying the asphere surface figure was developed. The technique has been used on three of the aspheres relating to the three instrument prescriptions. Results indicate that the three aspheres are correct to the limited accuracy expected of this test.

  4. Hubble Space Telescope Snapshot Search for Planetary Nebulae in Globular Clusters of the Local Group

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    2015-04-01

    Single stars in ancient globular clusters (GCs) are believed incapable of producing planetary nebulae (PNs), because their post-asymptotic-giant-branch evolutionary timescales are slower than the dissipation timescales for PNs. Nevertheless, four PNs are known in Galactic GCs. Their existence likely requires more exotic evolutionary channels, including stellar mergers and common-envelope binary interactions. I carried out a snapshot imaging search with the Hubble Space Telescope (HST) for PNs in bright Local Group GCs outside the Milky Way. I used a filter covering the 5007 Å nebular emission line of [O iii], and another one in the nearby continuum, to image 66 GCs. Inclusion of archival HST frames brought the total number of extragalactic GCs imaged at 5007 Å to 75, whose total luminosity slightly exceeds that of the entire Galactic GC system. I found no convincing PNs in these clusters, aside from one PN in a young M31 cluster misclassified as a GC, and two PNs at such large angular separations from an M31 GC that membership is doubtful. In a ground-based spectroscopic survey of 274 old GCs in M31, Jacoby et al. found three candidate PNs. My HST images of one of them suggest that the [O iii] emission actually arises from ambient interstellar medium rather than a PN; for the other two candidates, there are broadband archival UV HST images that show bright, blue point sources that are probably the PNs. In a literature search, I also identified five further PN candidates lying near old GCs in M31, for which follow-up observations are necessary to confirm their membership. The rates of incidence of PNs are similar, and small but nonzero, throughout the GCs of the Local Group. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, and from the data archive at STScI, which are operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Hubble Servicing Mission Press Conference

    NASA Image and Video Library

    2009-04-22

    Ed Weiler, Associate Administrator, Science Mission Directorate at NASA Headquarters, seated second from left, speaks during a press conference on the upcoming Hubble Space Telescope servicing mission as David Leckrone, Hubble Project Scientist, Preston Burch and Mike Klenlen, seated right, look on, Thursday, April 23, 2009, at NASA Headquarters in Washington. J.D. Harrington, Public Affairs officer for the Science Mission Directorate looks on at left. Photo Credit: (NASA/Paul. E. Alers)

  6. Hubble Legacy Archive And The Public

    NASA Astrophysics Data System (ADS)

    Harris, Jessica; Whitmore, B.; Eisenhamer, B.; Bishop, M.; Knisely, L.

    2012-01-01

    The Hubble Legacy Archive (HLA) at the Space Telescope Science Institute (STScI) hosts the Image of the Month (IOTM) Series. The HLA is a joint project of STScI, the Space Telescope European Coordinating Facility (ST-ECF), and the Canadian Astronomy Data Centre (CADC). The HLA is designed optimize science from the Hubble Space Telescope by providing online enhanced Hubble products and advanced browsing capabilities. The IOTM's are created for astronomers and the public to highlight various features within HLA, such as the "Interactive Display", "Footprint” and "Inventory” features to name a few. We have been working with the Office of Public Outreach (OPO) to create a standards based educational module for middle school to high school students of the IOTM: Rings and the Moons of Uranus. The set of Uranus activities are highlighted by a movie that displays the orbit of five of Uranus’ largest satellites. We made the movie based on eight visits of Uranus from 2000-06-16 to 2000-06-18, using the PC chip on the Wide Field Planetary Camera 2 (WFPC2) and filter F850LP (proposal ID: 8680). Students will be engaged in activities that will allow them to "discover” the rings and satellites around Uranus, calculate the orbit of the satellites, and introduces students to analyze real data from Hubble.

  7. Large Space Optics: From Hubble to JWST and Beyond

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of

  8. Hubble Spies Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Spiral galaxy NGC 3274 is a relatively faint galaxy located over 20 million light-years away in the constellation of Leo (The Lion). This NASA/ESA Hubble Space Telescope image comes courtesy of Hubble's Wide Field Camera 3 (WFC3), whose multi-color vision allows astronomers to study a wide range of targets, from nearby star formation to galaxies in the most remote regions of the cosmos. This image combines observations gathered in five different filters, bringing together ultraviolet, visible and infrared light to show off NGC 3274 in all its glory. NGC 3274 was discovered by Wilhelm Herschel in 1783. The galaxy PGC 213714 is also visible on the upper right of the frame, located much farther away from Earth. Image Credit: ESA/Hubble & NASA, D. Calzetti NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. New Hubble Servicing Mission to upgrade instruments

    NASA Astrophysics Data System (ADS)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  10. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  11. UV Spectroscopy with Hubble Space Telescope- A Success Story of Pro/Am Collaboration

    NASA Astrophysics Data System (ADS)

    Alexander, W. R.; Linsky, J. L.; Wood, B. E.

    2000-05-01

    The Hubble Space Telescope amateur program has provided a unique opportunity for amateur astronomers to not only perform research on HST, but to also to interact with many professional astronomers during their research. In particular, a very successful partnership was established between William Alexander (amateur) and Jeff Linsky and Brian Wood (professionals). At the heart of this project was the use of the Goddard High Resolution Spectrograph (GHRS) aboard HST to provide high-resolution UV spectra in the Lyman-alpha region at 1216 angstroms. These spectra were needed to study the Deuterium to Hydrogen (D/H) ratio along the line of sight toward lambda-Andromedae and epsilon-Indi. These measurements were important to more fully understand big bang nucleosynthesis. The amateur, Alexander, was fully involved at each stage of the project, from obtaining all of the raw data to collaborating with Linsky and Wood in the writing of the article that appeared in The Astrophysical Journal (APJ, 470: 1157-1171). This collaboration has shown that amateurs can provide significant `academic' contributions to astronomy. This contribution can be added to the numerous observational contributions that amateurs have made to astronomy through out the centuries. Funding support was provided by NASA grant GO-0100.01-92A from the Space Telescope Science Institute.

  12. STS 31 PAYLOAD HUBBLE SPACE TELESCOPE ENCLOSED IN AN AIR-TIGHT PLASTIC BAG FOR PROTECTION IN VERTICA

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Preparations are made to enclose the Hubble Space Telescope [HST] inside an air-tight plastic bag in the VPF. Processing of the 94- inch primary mirror telescope for launch on the Discovery in March 1990, involves working within strict controls to prevent contamination.

  13. Mothers of Invention: Hubble Engineers Push Robotic 'Evolution' to Save Telescope, Enable New Exploration

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Robotic technology being developed out of necessity to keep the Hubble Space Telescope operating could also lead to new levels of man-machine team-work in deep-space exploration down the road-if it survives the near-term scramble for funding. Engineers here who have devoted their NASA careers to the concept of humans servicing the telescope in orbit are planning modifications to International Space Station (ISS) robots that would leave the humans on the ground. The work. forced by post-Columbia flight rules that killed a planned shuttle-servicing mission to Hubble, marks another step in the evolution of robot-partners for human space explorers. "Hubble has always been a pathfider for this agency," says Mike Weiss. Hubble deputy program manager technical. "When the space station was flown and assembled, Hubble was the pathfinder. not just for modularity, but for operations, for assembly techniques. Exploration is the next step. Things we're going to do on Hubble are going to be applied to exploration. It's not just putting a robot in space. It's operating a robot in space. It's adapting that robot to what needs to be done the next time you're up there."

  14. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  15. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2006-06-09

    In the 19th century, astronomer V. M. Slipher first discovered a hat-like object that appeared to be rushing away from us at 700 miles per second. This enormous velocity offered some of the earliest clues that it was really another galaxy, and that the universe was expanding in all directions. The trained razor sharp eye of the Hubble Space Telescope (HST) easily resolves this Sombrero galaxy, Messier 104 (M104). The galaxy is 50,000 light-years across and is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. At a relatively bright magnitude of +8, M104 is just beyond the limit of naked-eye visibility and is easily seen through small telescopes. This rich system of globular clusters are estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. The ages of the clusters are similar to the clusters in the Milky Way, ranging from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. X-ray emission suggests that there is material falling into the compact core, where a 1-billion-solar-mass black hole resides. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  16. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  17. Hubble Space Telescope: High speed photometer instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    White, Richard L. (Editor)

    1990-01-01

    This manual is a guide for astronomers who intend to use the High Speed Photometer (HSP), one of the scientific instruments onboard the Hubble Space Telescope (HST). All the information needed for ordinary uses of the HSP is presented, including: (1) an overview of the instrument; (2) a detailed description of some details of the HSP-ST system that may be important for some observations; (3) tables and figures describing the sensitivity and limitations of the HSP; (4) how to go about planning an observation with the HSP; and (5) a description of the standard calibration to be applied to HSP data and the resulting data products.

  18. Hubble Images of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a series of Hubble Space Telescope observations of the region around the nucleus of Hale-Bopp, taken on eight different dates since September 1995. They chronicle changes in the evolution of the nucleus as it moves ever closer to, and is warmed by, the sun.

    The first picture in the sequence, seen at upper left shows a strong dust outburst on the comet that occurred when it was beyond the orbit of Jupiter. Images in the Fall of 1996 show multiple jets that are presumably connected to the activation of multiple vents on the surface of the nucleus.

    In these false color images, taken with the Wide Field and Planetary Camera 2, the faintest regions are black, the brightest regions are white, and intermediate intensities are represented by different levels of red. All images are processed at the same spatial scale of 280 miles per pixel (470 kilometers), so the solid nucleus, no larger than 25 miles across, is far below Hubble's resolution.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  19. Hubble Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-05

    Lying at the southern edge of the rich Virgo cluster of galaxies, Messier 104, also called the Sombrero galaxy, is one of the most famous objects in the sky in this image from NASA Hubble Space Telescope.

  20. The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope Control Center System

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken

    1999-01-01

    This is a report to the Third Annual International Virtual Company Conference, on The Development of a Virtual Company to Support the Reengineering of the NASA/Goddard Hubble Space Telescope (HST) Control Center System. It begins with a HST Science "Commercial": Brief Tour of Our Universe showing various pictures taken from the Hubble Space Telescope. The presentation then reviews the project background and goals. Evolution of the Control Center System ("CCS Inc.") is then reviewed. Topics of Interest to "virtual companies" are reviewed: (1) "How To Choose A Team" (2) "Organizational Model" (3) "The Human Component" (4) "'Virtual Trust' Among Teaming Companies" (5) "Unique Challenges to Working Horizontally" (6) "The Cultural Impact" (7) "Lessons Learned".

  1. STS-31 Hubble Space Telescope (HST) solar array (SA) deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31, the Hubble Space Telescope (HST) is held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) above the payload bay (PLB) and crew compartment cabin. While in this position the solar array (SA) wing bistem cassette (HST center) is deployed from its stowed location along side the Support System Module (SSM) forward shell. A high gain antenna (HGA) remains stowed along the SSM. The Earth's surface and the Earth limb creates a dramatic backdrop.

  2. Erratum: The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy R.; Huchra, John P.; Freedman, Wendy L.; Kennicutt, Robert C., Jr.; Ferrarese, Laura; Ford, Holland C.; Gibson, Brad K.; Graham, John A.; Hughes, Shaun M. G.; Illingworth, Garth D.; Kelson, Daniel D.; Macri, Lucas M.; Madore, Barry F.; Sakai, Shoko; Sebo, Kim M.; Silbermann, Nancy A.; Stetson, Peter B.

    2000-12-01

    In the article ``The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant'' (ApJ, 529, 786 [2000]), by Jeremy R. Mould, John P. Huchra, Wendy L. Freedman, Robert C. Kennicutt, Jr., Laura Ferrarese, Holland C. Ford, Brad K. Gibson, John A. Graham, Shaun M. G. Hughes, Garth D. Illingworth, Daniel D. Kelson, Lucas M. Macri, Barry F. Madore, Shoko Sakai, Kim M. Sebo, Nancy A. Silbermann, and Peter B. Stetson, some sign errors need to be corrected. 1. In equation (A2) the minus signs should be plus signs. The correct version is Vcosmic=VH+Vc,LG+Vin,Virgo+Vin,GA+Vin,Shap+... 2. In Table A1 the declination of the Great Attractor (GA) is -44°, and that of the Shapley supercluster is -31°, i.e., south declination, not north, as implied in the table. The first error is the authors' and the second occurred in the publication process. In both cases the computer code was correct, and the errors are in the published representation. None of the results presented in the paper are therefore affected in any way. The authors thank Dr. Jim Condon for pointing out the error in equation (A2)

  3. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Larger Particles

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V.; Colaux, J. L.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    The Wide Field and Planetary Camera 2 (WFPC2) was returned from the Hubble Space Telescope (HST) by shuttle mission STS-125 in 2009. In space for 16 years, the surface accumulated hundreds of impact features on the zinc orthotitanate paint, some penetrating through into underlying metal. Larger impacts were seen in photographs taken from within the shuttle orbiter during service missions, with spallation of paint in areas reaching 1.6 cm across, exposing alloy beneath. Here we describe larger impact shapes, the analysis of impactor composition, and the micrometeoroid (MM) types responsible.

  4. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  5. Hubble Space Telescope Celebrates 25 Years of Unveiling the Universe

    NASA Image and Video Library

    2015-04-23

    This visualization provides a three-dimensional perspective on Hubble's 25th anniversary image of the nebula Gum 29 with the star cluster Westerlund 2 at its core. The flight traverses the foreground stars and approaches the lower left rim of the nebula Gum 29. Passing through the wispy darker clouds on the near side, the journey reveals bright gas illuminated by the intense radiation of the newly formed stars of cluster Westerlund 2. Within the nebula, several pillars of dark, dense gas are being shaped by the energetic light and strong stellar winds from the brilliant cluster of thousands of stars. Note that the visualization is intended to be a scientifically reasonable interpretation and that distances within the model are significantly compressed. Download here: hubblesite.org/newscenter/archive/releases/2015/12/video/ Credit: NASA, ESA, G. Bacon, L. Frattare, Z. Levay, and F. Summers (Viz3D Team, STScI), and J. Anderson (STScI) Acknowledgment: The Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), the Westerlund 2 Science Team, and ESO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Chandra Independently Determines Hubble Constant

    NASA Astrophysics Data System (ADS)

    2006-08-01

    A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion

  7. UV-spektra från Hubble-teleskopet avslöjar en stjärna i Vargen som lagrar tunga isotoper av mycket tunga grundämnen.

    NASA Astrophysics Data System (ADS)

    Johansson, S. E.; Leckrone, D. S.; Wahlgren, G. M.

    1994-09-01

    UV spectra from the Hubble Space Telescope reveal a star that stores heavy isotopes of very heavy elements. Atomic and plasma physics arguments for UV spectroscopy from space borne observatories are given. As an example, the authors discuss the analysis of high resolution spectra of the chemically peculiar star χ Lupi, obtained with the Hubble Space Telescope, in terms of identification of spectral lines of very heavy elements.

  8. Hubble Observes the Moons and Rings of Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings, at least five of the inner moons, and bright clouds in the planet's southern hemisphere. Hubble now allows astronomers to revisit the planet at a level of detail not possible since the Voyager 2 spacecraft flew by the planet briefly, nearly a decade ago.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. Similar details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft that flew by Uranus in 1986 (the rings were discovered by stellar occultation experiments in 1977, but not seen directly until Voyager flew to Uranus). Since the flyby, none of these inner satellites has been observed further, and detailed observations of the rings and Uranus' atmosphere have not been possible, because the rings are lost in the planet's glare as seen through ground-based optical telescopes.

    Each of the inner moons appears as a string of three dots in this picture because it is a composite of three images, taken about six minutes apart. When these images are combined, they show the motion of the moons compared with the sky background. Because the moons move much more rapidly than our own Moon, they change position noticeably over only a few minutes. (These multiple images also help to distinguish the moons from stars and imaging detector artifacts, i.e., cosmic rays and electronic noise).

    Thanks to Hubble's capabilities, astronomers will now be able to determine the orbits more precisely. With this increase in accuracy, astronomers can better probe the unusual dynamics of Uranus' complicated satellite system. Measuring the moons' brightness in several colors might offer clues to the satellites' origin by providing new information on their mineralogical composition. Similar measurements of the rings should yield new insights into their composition and origin.

    One of

  9. Hubble Space Telescope servicing mission scientific instrument protective enclosure design requirements and contamination controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Hughes, David W.; Hedgeland, Randy J.; Chivatero, Craig J.; Studer, Robert J.; Kostos, Peter J.

    1994-01-01

    The Scientific Instrument Protective Enclosures were designed for the Hubble Space Telescope Servicing Missions to provide a beginning environment to a Scientific Instrument during ground and on orbit activities. The Scientific Instruments required very stringent surface cleanliness and molecular outgassing levels to maintain ultraviolet performance. Data from the First Servicing Mission verified that both the Scientific Instruments and Scientific Instrument Protective Enclosures met surface cleanliness level requirements during ground and on-orbit activities.

  10. Hubble 2007: Science Year in Review

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This book epitomizes Hubbles continuing years of glorious accomplishments, presenting a sample of the activities, operations and observations, and scientific findings from 2007. Here is our observatory. Here are a few of our talented people. Here is what we have done. NASA plans a final servicing mission to Hubble in 2008. Two powerful new instruments are to be installed, and repairs made. After the astronauts do their wonderful work, Hubble will be more capable than at any time since launch. The science community eagerly anticipates the new opportunities for research offered by a refurbished observatory. While we do not know exactly what new science stories will appear in future editions of this book, we are certain that the frontiers of science will continue to be pushed outward by the forces of human curiosity and cleverness, channeled by the Hubble Space Telescope.

  11. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Toloza, Odette

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spinmore » of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.« less

  12. A computer controlled power tool for the servicing of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Konkel, Carl; Smith, Chris; Brown, Lee; Wagner, Ken

    1996-01-01

    The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.

  13. Hubble Sees Pinwheel of Star Birth

    NASA Image and Video Library

    2017-12-08

    NASA image release October 19, 2010 Though the universe is chock full of spiral-shaped galaxies, no two look exactly the same. This face-on spiral galaxy, called NGC 3982, is striking for its rich tapestry of star birth, along with its winding arms. The arms are lined with pink star-forming regions of glowing hydrogen, newborn blue star clusters, and obscuring dust lanes that provide the raw material for future generations of stars. The bright nucleus is home to an older population of stars, which grow ever more densely packed toward the center. NGC 3982 is located about 68 million light-years away in the constellation Ursa Major. The galaxy spans about 30,000 light-years, one-third of the size of our Milky Way galaxy. This color image is composed of exposures taken by the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), the Advanced Camera for Surveys (ACS), and the Wide Field Camera 3 (WFC3). The observations were taken between March 2000 and August 2009. The rich color range comes from the fact that the galaxy was photographed invisible and near-infrared light. Also used was a filter that isolates hydrogen emission that emanates from bright star-forming regions dotting the spiral arms. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: A. Riess (STScI) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us

  14. STS-31 Hubble Space Telescope (HST) pre-deployment procedures aboard OV-103

    NASA Image and Video Library

    1990-04-24

    During STS-31, the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) end effector is held in appendage deploy position above Discovery, Orbiter Vehicle (OV) 103. The solar array (SA) bistem cassette has been released from its latch fittings. The bistem spreader bars begin to unfurl the SA wing. The secondary deployment mechanism (SDM) handle is visible at the SA end. Stowed against either side of the HST System Support Module (SSM) forward shell are the high-gain antennae (HGA). Puerto Rico and the Dominican Republic are recognizable at the left of the frame.

  15. Hubble's Wide View of 'Mystic Mountain' in Infrared

    NASA Image and Video Library

    2010-04-23

    NASA image release April 22, 2010 This is a NASA Hubble Space Telescope near-infrared-light image of a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby stars in the tempestuous stellar nursery called the Carina Nebula, located 7,500 light-years away in the southern constellation Carina. The image marks the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. The image reveals a plethora of stars behind the gaseous veil of the nebula's wall of hydrogen, laced with dust. The foreground pillar becomes semi-transparent because infrared light from background stars penetrates through much of the dust. A few stars inside the pillar also become visible. The false colors are assigned to three different infrared wavelength ranges. Hubble's Wide Field Camera 3 observed the pillar in February and March 2010. Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. III. Measurement for Ursa Minor

    NASA Astrophysics Data System (ADS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2005-07-01

    This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields. Each field contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion for Ursa Minor, expressed in the equatorial coordinate system, is (μα,μδ)=(-50+/-17,22+/-16) mas century-1. Removing the contributions of the solar motion and the motion of the local standard of rest yields the proper motion in the Galactic rest frame: (μGrfα,μGrfδ)=(-8+/-17,38+/-16) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=-75+/-44 km s-1 and a tangential component of Vt=144+/-50 km s-1. Integrating the motion of Ursa Minor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 40 (10, 76) and 89 (78, 160) kpc, respectively, where the values in the parentheses represent the 95% confidence intervals derived from Monte Carlo experiments. The eccentricity of the orbit is 0.39 (0.09, 0.79), and the orbital period is 1.5 (1.1, 2.7) Gyr. The orbit is retrograde and inclined by 124° (94°, 136°) to the Galactic plane. Ursa Minor is not a likely member of a proposed stream of galaxies on similar orbits around the Milky Way, nor is the plane of its orbit coincident with a recently proposed planar alignment of galaxies around the Milky Way. Comparing the orbits of Ursa Minor and Carina shows no reason for the different star formation histories of these two galaxies. Ursa Minor must contain dark matter to have a high probability of having survived disruption by the Galactic tidal force until the present. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 < z < 10 from the complete Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  18. Hubble View of Neptune

    NASA Image and Video Library

    1998-08-02

    These NASA Hubble Space Telescope views of the blue-green planet Neptune provide three snapshots of changing weather conditions. The images were taken in 1994 on 3 separate days when Neptune was 2.8 billion miles 4.5 billion kilometers from Earth.

  19. A natural language query system for Hubble Space Telescope proposal selection

    NASA Technical Reports Server (NTRS)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  20. Hubble Space Telescope: Fine guidance sensors instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Taff, Larry (Editor)

    1990-01-01

    The Fine Guidance Sensors (FGS) are a system of photomultiplier tubes and white light amplitude interferometers (Koester's prism) which are used for the fine guidance of the Hubble Space Telescope (HST). The purpose of the handbook is to provide information to a potential user of the FGS so that he may explore the feasibility of performing various observations. A brief overview is given of how the FGS works, along with an explanation of the instrument in some detail. The procedure for estimating exposure times is explained. The observing modes are described. Some details needed to specify the exposures and observation requirements on the proposal forms are explained. Data reduction procedures are outlined.

  1. Detecting opportunities for parallel observations on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Lucks, Michael

    1992-01-01

    The presence of multiple scientific instruments aboard the Hubble Space Telescope provides opportunities for parallel science, i.e., the simultaneous use of different instruments for different observations. Determining whether candidate observations are suitable for parallel execution depends on numerous criteria (some involving quantitative tradeoffs) that may change frequently. A knowledge based approach is presented for constructing a scoring function to rank candidate pairs of observations for parallel science. In the Parallel Observation Matching System (POMS), spacecraft knowledge and schedulers' preferences are represented using a uniform set of mappings, or knowledge functions. Assessment of parallel science opportunities is achieved via composition of the knowledge functions in a prescribed manner. The knowledge acquisition, and explanation facilities of the system are presented. The methodology is applicable to many other multiple criteria assessment problems.

  2. Identification of the Infrared Counterpart of SGR 1935+2154 with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Kouveliotou, Chryssa; Fruchter, Andrew

    2018-02-01

    We present deep Hubble Space Telescope observations of a new magnetar source, the soft gamma-repeater SGR 1935+2154, discovered by Swift. We obtained three epochs of observations: while the source was active in 2015 March, during a quiescent period in 2015 August, and during a further active phase in 2016 May. Close to the center of the X-ray error region identified by Chandra, we find a faint (F140W(AB) = 25.3) source, which fades by a factor of ∼2 over the course of 5 months between the first two epochs of observations, before rebrightening during the second active period. If this source is indeed the counterpart to SGR 1935+2154, then it is among the faintest yet located for a magnetar. Our observations are spaced over 1.3 years and enable us to place limits on the source velocity of μ = (60 ± 40) km s‑1 kpc‑1 observations on timescales of a decade can hence probe proper motion limits smaller than the velocities observed for the majority of pulsars. The comparison of the optical/IR and X-ray light curves of the source suggests that emission in the two regimes is associated but not directly correlated, offering support for a magnetospheric versus a fallback disk origin.

  3. Evolution of the Hubble Space Telescope Safing Systems

    NASA Technical Reports Server (NTRS)

    Pepe, Joyce; Myslinski, Michael

    2006-01-01

    The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the

  4. Hubble Sees a Star ‘Inflating’ a Giant Bubble

    NASA Image and Video Library

    2017-12-08

    For the 26th birthday of NASA’s Hubble Space Telescope, astronomers are highlighting a Hubble image of an enormous bubble being blown into space by a super-hot, massive star. The Hubble image of the Bubble Nebula, or NGC 7635, was chosen to mark the 26th anniversary of the launch of Hubble into Earth orbit by the STS-31 space shuttle crew on April 24, 1990 “As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment. The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C. The Bubble Nebula is seven light-years across—about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri, and resides 7,100 light-years from Earth in the constellation Cassiopeia. The seething star forming this nebula is 45 times more massive than our sun. Gas on the star gets so hot that it escapes away into space as a “stellar wind” moving at over four million miles per hour. This outflow sweeps up the cold, interstellar gas in front of it, forming the outer edge of the bubble much like a snowplow piles up snow in front of it as it moves forward. As the surface of the bubble's shell expands outward, it slams into dense regions of cold gas on one side of the bubble. This asymmetry makes the star appear dramatically off-center from the bubble, with its location in the 10 o’clock position in the Hubble view. Dense pillars of cool hydrogen gas laced with dust appear at the upper left of the picture, and more “fingers” can be seen nearly face-on, behind the translucent bubble. The gases heated to varying temperatures emit different colors: oxygen is hot enough to emit blue

  5. Hubble Space Telescope Astrometry of the Procyon System

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  6. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  7. Hubble Captures Detailed Image of Uranus' Atmosphere

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Hubble Space Telescope has peered deep into Uranus' atmosphere to see clear and hazy layers created by a mixture of gases. Using infrared filters, Hubble captured detailed features of three layers of Uranus' atmosphere.

    Hubble's images are different from the ones taken by the Voyager 2 spacecraft, which flew by Uranus 10 years ago. Those images - not taken in infrared light - showed a greenish-blue disk with very little detail.

    The infrared image allows astronomers to probe the structure of Uranus' atmosphere, which consists of mostly hydrogen with traces of methane. The red around the planet's edge represents a very thin haze at a high altitude. The haze is so thin that it can only be seen by looking at the edges of the disk, and is similar to looking at the edge of a soap bubble. The yellow near the bottom of Uranus is another hazy layer. The deepest layer, the blue near the top of Uranus, shows a clearer atmosphere.

    Image processing has been used to brighten the rings around Uranus so that astronomers can study their structure. In reality, the rings are as dark as black lava or charcoal.

    This false color picture was assembled from several exposures taken July 3, 1995 by the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Hubble On Its Way

    NASA Image and Video Library

    2009-05-21

    This still image of the Hubble Space Telescope was captured by an STS-125 crew member as the two spacecraft continue their relative separation. During the week five spacewalks were performed to complete the final servicing mission for the orbital observatory. Photo credit: NASA May 19, 2009

  9. Hubble Feathers the Peacock

    NASA Image and Video Library

    2014-09-19

    This picture, taken by the NASA/ESA Hubble Space Telescope WFPC2, shows a galaxy known as NGC 6872 in the constellation of Pavo The Peacock. Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872.

  10. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    Telescope. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177 and 12328.

  11. A Hubble Space Telescope Survey for Novae in M87. I. Light and Color Curves, Spatial Distributions, and the Nova Rate

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Doyle, Trisha F.; Lauer, Tod R.; Zurek, David; Neill, J. D.; Madrid, Juan P.; Mikołajewska, Joanna; Welch, D. L.; Baltz, Edward A.

    2016-11-01

    The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87: {363}-45+33 novae yr‑1. We also derive the luminosity-specific classical nova rate for this galaxy, which is {7.88}-2.6+2.3 {yr}}-1/{10}10 {L}ȯ {,}K. Both rates are 3–4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  12. NASA Hubble Sees Comet ISON Intact

    NASA Image and Video Library

    2013-10-09

    This image from NASA Hubble Space Telescope of the sunward plunging comet ISON suggests that the comet is intact despite some predictions that the fragile icy nucleus might disintegrate as the sun warms it. In this NASA Hubble Space Telescope image taken on October 9, 2013 the comet's solid nucleus is unresolved because it is so small. If the nucleus broke apart then Hubble would have likely seen evidence for multiple fragments. Moreover, the coma or head surrounding the comet's nucleus is symmetric and smooth. This would probably not be the case if clusters of smaller fragments were flying along. What's more, a polar jet of dust first seen in Hubble images taken in April is no longer visible and may have turned off. This color composite image was assembled using two filters. The comet's coma appears cyan, a greenish-blue color due to gas, while the tail is reddish due to dust streaming off the nucleus. The tail forms as dust particles are pushed away from the nucleus by the pressure of sunlight. The comet was inside Mars' orbit and 177 million miles from Earth when photographed. Comet ISON is predicted to make its closest approach to Earth on 26 December, at a distance of 39.9 million miles. http://photojournal.jpl.nasa.gov/catalog/PIA18153

  13. Hubble Frontier Field Abell 2744

    NASA Image and Video Library

    2014-01-07

    This long-exposure image from NASA Hubble Space Telescope of massive galaxy cluster Abell 2744 is the deepest ever made of any cluster of galaxies. Shown in the foreground is Abell 2744, located in the constellation Sculptor.

  14. Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  15. Artist concept of the Hubble Space Telescope (HST) after STS-31 deployment

    NASA Image and Video Library

    1988-09-21

    Artist concept shows the Hubble Space Telescope (HST) placed in orbit above the Earth's distorting layer of atmosphere by Discovery, Orbiter Vehicle (OV) 103, during mission STS-31. Tracking and data relay satellite (TDRS) is visible in the background and ground station is visible below on the Earth's surface. HST is the first of the great observatories to go into service and one of NASA's highest priority scientific spacecraft. Capable of observing in both visible and ultraviolet wavelengths, HST has been termed the most important scientific instrument ever designed for use on orbit. It will literally be able to look back in time, observing the universe as it existed early in its lifetime and providing information on how matter has evolved over the eons. The largest scientific payload ever built, the 12 1/2-ton, 43-foot HST was developed by Lockheed Missiles & Space Company, spacecraft prime contractor, and Perkin-Elmer Corporation, prime contractor for the optical assembly. The European Space Agency (ESA) furnished the power generating solar array and one of the system's five major instruments. Marshall Space Flight Center (MSFC) manages the HST project; Goddard Space Flight Center (GSFC) will be responsible, when the spacecraft is in orbit, for controlling the telescope and processing the images and instrument data returns.

  16. How Long Can the Hubble Space Telescope Operate Reliably? A Total Dose Perspective

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2014-01-01

    The Hubble Space Telescope has been at the forefront of discoveries in the field of astronomy for more than 20 years. It was the first telescope designed to be serviced in space and the last such servicing mission occurred in May 2009. The question of how much longer this valuable resource can continue to return science data remains. In this paper a detailed analysis of the total dose exposure of electronic parts at the box level is performed using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are related to parts that have been proposed as possible total dose concerns. The spacecraft subsystem that appears to be at the greatest risk for total dose failure is identified. This is discussed with perspective on the overall lifetime of the spacecraft.

  17. Innovative Resources for Education and Public Information: Electronic Services, Data and Information from NASA's Hubble Space Telescope and Other NASA Missions.

    ERIC Educational Resources Information Center

    Christian, Carol A.

    The Space Telescope Science Institute (STScI), which supports the operation of the Hubble Space Telescope, is actively investigating and supporting innovative and experimental methods for improving science and math education content. The educational resources on the World Wide Web are derived from the latest data, scientific results, and advances…

  18. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 Hubble Frontier Fields data, revealing a steep faint-end slope that extends to the limits of the data. The lack of any apparent turnover in the luminosity functions means that faint galaxies in the early Universe may have provided sufficient ionizing radiation to sustain reionization.

  19. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  20. Pixel Stability in the Hubble Space Telescope WFC3/UVIS Detector

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Baggett, Sylvia M.; Borncamp, David; Desjardins, Tyler D.; Grogin, Norman A.; Wide Field Camera 3 Team

    2018-06-01

    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Ultraviolet-Visible (UVIS) detector has acquired roughly 12,000 dark images since the installation of WFC3 in 2009, as part of a daily monitoring program to measure the instrinsic dark current of the detector. These images have been reconfigured into 'pixel history' images in which detector columns are extracted from each dark and placed into a new time-ordered array, allowing for efficient analysis of a given pixel's behavior over time. We discuss how we measure each pixel's stability, as well as plans for a new Data Quality (DQ) flag to be introduced in a future release of the WFC3 calibration pipeline (CALWF3) for flagging pixels that are deemed unstable.

  1. Hubble confirms cosmic acceleration with weak lensing

    NASA Image and Video Library

    2017-12-08

    NASA/ESA Hubble Release Date: March 25, 2010 This image shows a smoothed reconstruction of the total (mostly dark) matter distribution in the COSMOS field, created from data taken by the NASA/ESA Hubble Space Telescope and ground-based telescopes. It was inferred from the weak gravitational lensing distortions that are imprinted onto the shapes of background galaxies. The colour coding indicates the distance of the foreground mass concentrations as gathered from the weak lensing effect. Structures shown in white, cyan, and green are typically closer to us than those indicated in orange and red. To improve the resolution of the map, data from galaxies both with and without redshift information were used. The new study presents the most comprehensive analysis of data from the COSMOS survey. The researchers have, for the first time ever, used Hubble and the natural "weak lenses" in space to characterise the accelerated expansion of the Universe. Credit: NASA, ESA, P. Simon (University of Bonn) and T. Schrabback (Leiden Observatory) To learn more abou this image go to: www.spacetelescope.org/news/html/heic1005.html For more information about Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

  2. Hubble's Necklace

    NASA Image and Video Library

    2017-12-08

    Image released 11 Aug 2011. The "Necklace Nebula" is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red). The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles wide, dotted with dense, bright knots of gas that resemble diamonds in a necklace. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanullah, R.; Goobar, A.; Johansson, J.

    The wavelength dependence of the extinction of Type Ia SN 2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of an SN Ia is characterized over the full wavelength range of 0.2-2 μm. A total-to-selective extinction, R{sub V} ≥ 3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields R{sub V} = 1.4 ± 0.1. The observed reddening of SN 2014J is also compatiblemore » with a power-law extinction, A {sub λ}/A{sub V} = (λ/λ {sub V}) {sup p} as expected from multiple scattering of light, with p = –2.1 ± 0.1. After correcting for differences in reddening, SN 2014J appears to be very similar to SN 2011fe over the 14 broadband filter light curves used in our study.« less

  4. Hubble the Rotation of Uranus

    NASA Image and Video Library

    1998-08-02

    These three NASA Hubble Space Telescope images of the planet Uranus reveal the motion of a pair of bright clouds in the planet southern hemisphere, and a high altitude haze that forms a cap above the planet south pole.

  5. Hubble's new view of the cosmos

    PubMed

    Villard, R

    1996-05-01

    Since the December 1993 repair of NASA's Hubble Space Telescope's (HST) optics by the crew of the Space Shuttle Endeavour, the rapid-fire scientific achievements have brought a new era of discovery to the field of astronomy. Hubble has confirmed some astronomical theories, challenged others, and often come up with complete surprises. Some images are so unexpected that astronomers have to develop new theories to explain what they are seeing. The HST has detected galaxies out to the visible horizon of the cosmos, and has made an attempt at pinning down the universe's expansion rate. Both of these key research areas should ultimately yield answers to age-old questions: What has happened since the beginning of time, and will the universe go on forever?

  6. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368

  7. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  8. Hubble gets revitalised in new Servicing Mission for more and better science!

    NASA Astrophysics Data System (ADS)

    2002-02-01

    As a unique collaboration between the European Space Agency (ESA), and NASA, Hubble has had a phenomenal scientific impact. The unsurpassed sharp images from this space observatory have penetrated into the hidden depths of space and revealed breathtaking phenomena. But Hubble's important contributions to science have only been possible through a carefully planned strategy to service and upgrade Hubble every two or three years. ESA, the European Space Agency has a particular role to play in this Servicing Mission. One of the most exciting events of this mission will come when the ESA-built solar panels are replaced by newer and more powerful ones. The new panels, developed in the US, are equipped with ESA developed drive mechanisms and were tested at the facilities at ESA's European Space Research and Technology Centre (ESTEC) in the Netherlands. This facility is the only place in the world where such tests can be performed. According to Ton Linssen, HST Project Manager at ESA, who supervised all ESA involvement in the new solar panels development including the test campaign at Estec - "a particularly tense moment occurs when the present solar panels have to be rolled up to fit into the Shuttle's cargo bay. The hard environment of space has taken its toll on the panels and it will be a very delicate operation to roll them up. Our team will be waiting and watching with bated breath. If the panels can't be rolled up they will possibly have to be left in space." "With this Servicing Mission Hubble is once again going to be brought back to the frontline of scientific technology", says Piero Benvenuti, Hubble Project Scientist at ESA. "New super-advanced instrumentation will revitalise the observatory. For example, Hubble's new digital camera - The new Advanced Camera for Surveys, or ACS - can take images of twice the area of the sky and with five times the sensitivity of Hubble's previous instruments, therefore increasing by ten times Hubble's discovery capability! The

  9. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classicalmore » methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.« less

  10. The Mass of the Candidate Exoplanet Companion to HD 33636 from Hubble Space Telescope Astrometry and High-Precision Radial Velocities

    NASA Astrophysics Data System (ADS)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Harrison, Thomas E.; Bizyaev, Dmitry; Nelan, Edmund; Smith, Verne V.

    2007-08-01

    We have determined a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. Our result is based on an analysis of Hubble Space Telescope (HST) astrometry and ground-based radial velocity data. We have obtained high-cadence radial velocity measurements spanning 1.3 yr of HD 33636 with the Hobby-Eberly Telescope at McDonald Observatory. We combined these data with previously published velocities to create a data set that spans 9 yr. We used this data set to search for, and place mass limits on, the existence of additional companions in the HD 33636 system. Our high-precision astrometric observations of the system with the HST Fine Guidance Sensor 1r span 1.2 yr. We simultaneously modeled the radial velocity and astrometry data to determine the parallax, proper motion, and perturbation orbit parameters of HD 33636. Our derived parallax, πabs=35.6+/-0.2 mas, agrees within the uncertainties with the Hipparcos value. We find a perturbation period P=2117.3+/-0.8 days, semimajor axis aA=14.2+/-0.2 mas, and system inclination i=4.1deg+/-0.1deg. Assuming the mass of the primary star to be MA=1.02+/-0.03 Msolar, we obtain a companion mass MB=142+/-11 MJup=0.14+/-0.01 Msolar. The much larger true mass of the companion relative to its minimum mass estimated from the spectroscopic orbit parameters (Msini=9.3 MJup) is due to the nearly face-on orbit orientation. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Based on data obtained with the NASA/ESA Hubble Space Telescope (HST) and the Hobby-Eberly Telescope (HET). The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford

  11. Hubble's Slice of Sagittarius

    NASA Image and Video Library

    2017-12-08

    This stunning image, captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), shows part of the sky in the constellation of Sagittarius (The Archer). The region is rendered in exquisite detail — deep red and bright blue stars are scattered across the frame, set against a background of thousands of more distant stars and galaxies. Two features are particularly striking: the colors of the stars, and the dramatic crosses that burst from the centers of the brightest bodies. While some of the colors in this frame have been enhanced and tweaked during the process of creating the image from the observational data, different stars do indeed glow in different colors. Stars differ in color according to their surface temperature: very hot stars are blue or white, while cooler stars are redder. They may be cooler because they are smaller, or because they are very old and have entered the red giant phase, when an old star expands and cools dramatically as its core collapses. The crosses are nothing to do with the stars themselves, and, because Hubble orbits above Earth’s atmosphere, nor are they due to any kind of atmospheric disturbance. They are actually known as diffraction spikes, and are caused by the structure of the telescope itself. Like all big modern telescopes, Hubble uses mirrors to capture light and form images. Its secondary mirror is supported by struts, called telescope spiders, arranged in a cross formation, and they diffract the incoming light. Diffraction is the slight bending of light as it passes near the edge of an object. Every cross in this image is due to a single set of struts within Hubble itself! Whilst the spikes are technically an inaccuracy, many astrophotographers choose to emphasize and celebrate them as a beautiful feature of their images. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science

  12. Spike: AI scheduling for Hubble Space Telescope after 18 months of orbital operations

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    This paper is a progress report on the Spike scheduling system, developed by the Space Telescope Science Institute for long-term scheduling of Hubble Space Telescope (HST) observations. Spike is an activity-based scheduler which exploits artificial intelligence (AI) techniques for constraint representation and for scheduling search. The system has been in operational use since shortly after HST launch in April 1990. Spike was adopted for several other satellite scheduling problems; of particular interest was the demonstration that the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. We describe the recent progress made in scheduling search techniques, the lessons learned from early HST operations, and the application of Spike to other problem domains. We also describe plans for the future evolution of the system.

  13. First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.

    1994-01-01

    As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.

  14. Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.

    2017-01-01

    We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.

  15. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. IV. Kinematic Profiles and Average Masses of Blue Straggler Stars

    NASA Astrophysics Data System (ADS)

    Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.

    2016-08-01

    We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  16. Hubble 2006: Science Year in Review

    NASA Technical Reports Server (NTRS)

    Brown, R.

    2007-01-01

    The 10 science articles selected for this years annual science report exemplify the range of Hubble research from the Solar System, across our Milky Way, and on to distant galaxies. The objects of study include a new feature on Jupiter, binaries in the Kuiper Belt, Cepheid variable stars, the Orion Nebula, distant transiting planets, lensing galaxies, active galactic nuclei, red-and-dead galaxies, and galactic outflows and jets. Each narrative strives to construct the readers understanding of the topics and issues, and to place the latest research in historical, as well as scientific, context. These essays reveal trends in the practice of astronomy. More powerful computers are permitting astronomers to study ever larger data sets, enabling the discovery of subtle effects and rare objects. (Two investigations created mosaic images that are among the largest produced to date.) Multiwavelength data sets from ground-based telescopes, as well as other great observatories Spitzer and Chandraare increasingly important for holistic interpretations of Hubble results. This yearbook also presents profiles of 12 individuals who work with Hubble, or Hubble data, on a daily basis. They are representative of the many students, scientists, engineers, and other professions who are proudly associated with Hubble. Their stories collectively communicate the excitement and reward of careers related to space science and technology.

  17. Analysis of Retrieved Hubble Space Telescope Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; Dever, Joyce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Astronaut observations and photographs from the Second Servicing Mission (SM2) revealed large cracks in the metallized Teflon FEP, the outer-layer of the multi-layer insulation (MLI), in many locations around the telescope. Also, the emissivity of the bonded metallized Teflon FEP radiator surfaces of the telescope has increased over time. Samples of the top layer of the MLI and radiator material were retrieved during SM2, and a thorough investigation into the de-radiation followed in order to determine the primary cause of the damage. Mapping of the cracks on HST and the ground testing showed that thermal cycling with deep-layer damage from electron and proton radiation are necessary to cause the observed embrittlement. Further, strong, evidence was found indicating that chain scission (reduced molecular weight) is the dominant form of damage to the metallized Teflon FEP.

  18. Hubble Observes a New Saturn Storm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the ringed planet Saturn shows a rare storm that appears as a white arrowhead-shaped feature near the planet's equator. The storm is generated by an upwelling of warmer air, similar to a terrestrial thunderhead. The east-west extent of this storm is equal to the diameter of the Earth (about 7,900 miles). Hubble provides new details about the effects of Saturn's prevailing winds on the storm. The new image shows that the storm's motion and size have changed little since its discovery in September, 1994.

    The storm was imaged with Hubble's Wide Field Planetary Camera 2 (WFPC2) in the wide field mode on December 1, 1994, when Saturn was 904 million miles from the Earth. The picture is a composite of images taken through different color filters within a 6 minute interval to create a 'true-color' rendition of the planet. The blue fringe on the right limb of the planet is an artifact of image processing used to compensate for the rotation of the planet between exposures.

    The Hubble images are sharp enough to reveal that Saturn's prevailing winds shape a dark 'wedge' that eats into the western (left) side of the bright central cloud. The planet's strongest eastward winds (clocked at 1,000 miles per hour from analysis of Voyager spacecraft images taken in 1980-81) are at the latitude of the wedge.

    To the north of this arrowhead-shaped feature, the winds decrease so that the storm center is moving eastward relative to the local flow. The clouds expanding north of the storm are swept westward by the winds at higher latitudes. The strong winds near the latitude of the dark wedge blow over the northern part of the storm, creating a secondary disturbance that generates the faint white clouds to the east (right) of the storm center.

    The storm's white clouds are ammonia ice crystals that form when an upward flow of warmer gases shoves its way through Saturn's frigid cloud tops. This current storm is larger than the white clouds

  19. Hubble's Glittering Frisbee Galaxy

    NASA Image and Video Library

    2017-12-08

    This image from Hubble’s Wide Field Camera 3 (WFC3) shows a section of NGC 1448, a spiral galaxy located about 50 million light-years from Earth in the little-known constellation of Horologium (The Pendulum Clock). We tend to think of spiral galaxies as massive and roughly circular celestial bodies, so this glittering oval does not immediately appear to fit the visual bill. What’s going on? Imagine a spiral galaxy as a circular frisbee spinning gently in space. When we see it face on, our observations reveal a spectacular amount of detail and structure — a great example from Hubble is the telescope’s view of Messier 51, otherwise known as the Whirlpool Galaxy. However, the NGC 1448 frisbee is very nearly edge-on with respect to Earth, giving it an appearance that is more oval than circular. The spiral arms, which curve out from NGC 1448’s dense core, can just about be seen. Although spiral galaxies might appear static with their picturesque shapes frozen in space, this is very far from the truth. The stars in these dramatic spiral configurations are constantly moving as they orbit around the galaxy’s core, with those on the inside making the orbit faster than those sitting further out. This makes the formation and continued existence of a spiral galaxy’s arms something of a cosmic puzzle, because the arms wrapped around the spinning core should become wound tighter and tighter as time goes on — but this is not what we see. This is known as the winding problem. Credit: ESA/Hubble & NASA #nasagoddard #space #science #Hubble #star NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Hubble Friday - Heavy Metal Stars

    NASA Image and Video Library

    2017-12-08

    Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW

  1. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  2. Degradation of FEP thermal control materials returned from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Zuby, Thomas M.; Degroh, Kim K.; Smith, Daniela C.

    1995-01-01

    After an initial 3.6 years of space flight, the Hubble Space Telescope was serviced through a joint effort with the NASA and the European Space Agency. Multi-layer insulation (MLI) was retrieved from the electronics boxes of the two magnetic sensing systems (MSS), also called the magnetometers, and from the returned solar array (SA-I) drive arm assembly. The top layer of each MLI assembly is fluorinated ethylene propylene (FEP, a type of Teflon). Dramatic changes in material properties were observed when comparing areas of high solar fluence to areas of low solar fluence. Cross sectional analysis shows atomic oxygen (AO) erosion values up to 25.4 mu m (1 mil). Greater occurrences of through-thickness cracking and surface microcracking were observed in areas of high solar exposure. Atomic force microscopy (AFM) showed increases in surface microhardness measurements with increasing solar exposure. Decreases in FEP tensile strength and elongation were measured when compared to non-flight material. Erosion yield and tensile results are compared with FEP data from the Long Duration Exposure Facility. AO erosion yield data, solar fluence values, contamination, micrometeoroid or debris impact sites, and optical properties are presented.

  3. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. II. Measurement for Carina

    NASA Astrophysics Data System (ADS)

    Piatek, Slawomir; Pryor, Carlton; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2003-11-01

    This article presents and discusses a measurement of the proper motion for the Carina dwarf spheroidal galaxy (dSph) from images in two distinct fields in the direction of Carina taken with the Hubble Space Telescope, at three epochs. Each field contains a confirmed quasi-stellar object that is the reference point for measuring the proper motion of the dSph. The consecutive epochs are 1-2 yr apart. The components of the measured proper motion for Carina, expressed in the equatorial coordinate system, are μα=22+/-9 mas century-1 and μδ=15+/-9 mas century-1. The quoted proper motion is a weighted mean of two independent measurements and has not been corrected for the motions of the Sun and of the local standard of rest. Given the proper motion and its uncertainty, integrating the family of possible orbits of Carina in a realistic gravitational potential for the Milky Way indicates that Carina is bound gravitationally to the Milky Way and is close to apogalacticon. The best estimate of, and the 95% confidence interval for, the apogalacticon of the orbit is 102 kpc and (102,113) kpc, for the perigalacticon is 20 kpc and (3.0,63) kpc, and for the orbital period is 1.4 Gyr and (1.3,2.0) Gyr. Carina does not seem to be on a polar orbit. The best estimate of the inclination of the orbit with respect to the Galactic plane is 39°, but the 95% confidence interval is so wide, (23°,102°), that it includes a polar orbit. We are unable to confirm or to rule out the membership of Carina in a ``stream'' of galaxies in the Galactic halo because the difference between the observed and predicted directions of the proper motion is 1.6 times the uncertainty of the difference. Carina must contain dark matter to have survived the tidal interaction with the Milky Way until the present. The triggering of star formation by perigalacticon passages and crossings of the Galactic disk do not explain the history of star formation in Carina. Based on observations with NASA/ESA Hubble Space

  4. Hubble's Hockey Stick Galaxy

    NASA Image and Video Library

    2017-12-08

    The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Hubble Spies Spooky Shadow on Jupiter's Giant Eye

    NASA Image and Video Library

    2014-10-28

    This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Design of a new high-performance pointing controller for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, C. D.

    1993-01-01

    A new form of high-performance, disturbance-adaptive pointing controller for the Hubble Space Telescope (HST) is proposed. This new controller is all linear (constant gains) and can maintain accurate 'pointing' of the HST in the face of persistent randomly triggered uncertain, unmeasurable 'flapping' motions of the large attached solar array panels. Similar disturbances associated with antennas and other flexible appendages can also be accommodated. The effectiveness and practicality of the proposed new controller is demonstrated by a detailed design and simulation testing of one such controller for a planar-motion, fully nonlinear model of HST. The simulation results show a high degree of disturbance isolation and pointing stability.

  7. Correlation of the Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) On-Orbit Data with Pre-launch Predictions and Ground Contamination Controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2003-01-01

    The Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) was deployed on-orbit in February 1997. The contamination program for STIS was stringently controlled as the five-year end-of-life deposition was set at 158, per optical element. Contamination was controlled through materials selection, extensive vacuum outgassing certifications, cleaning techniques, and environmental controls. In addition to ground contamination controls, on-orbit contamination controls were implemented for both the HST servicing mission activities and early post-servicing mission checkout. The extensive contamination control program will be discussed and the STIS on-orbit data will be correlated with the prelaunch analytical predictions.

  8. Hubble Spies Big Bang Frontiers

    NASA Image and Video Library

    2017-12-08

    Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe. Some of these galaxies formed just 600 million years after the big bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined for the first time with some confidence that these small galaxies were vital to creating the universe that we see today. An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the big bang— one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young. Read more: www.nasa.gov/feature/goddard/hubble-spies-big-bang-frontiers Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Morphology and time variation of the Jovian Far UV aurora: Hubble Space Telescope observations

    NASA Technical Reports Server (NTRS)

    Gerard, Jean-Claude; Dols, Vincent; Paresce, Francesco; Prange, Renee

    1993-01-01

    High spatial resolution images of the north polar region of Jupiter have been obtained with the Faint Object Camera (FOC) on board the Hubble Space Telescope (HST). The first set of two images collected 87 min apart in February 1992 shows a bright (approximately or equal to 180 kR) emission superimposed on the background in rotation with the planet. Both Ly alpha images show common regions of enhanced emission but differences are also observed, possibly due to temporal variations. The second group of images obtained on June 23 and 26, 1992 isolates a spectral region near 153 nm dominated by the H2 Lyman bands and continuum. Both pictures exhibit a narrow arc structure fitting the L = 30 magnetotail field line footprint in the morning sector and a broader diffuse aurora in the afternoon. They show no indication of an evening twilight enhancement. Although the central meridian longitudes were similar, significant differences are seen in the two exposures, especially in the region of diffuse emission, and interpreted as signatures of temporal variations. The total power radiated in the H2 bands is approximately or equal to 2 x 10(exp 12) W, in agreement with previous UV spectrometer observations. The high local H2 emission rates (approximately 450 kR) imply a particle precipitation carrying an energy flux of about 5 x 10(exp -2) W/sq m.

  10. Hubble Sees Turquoise-Tinted Plumes in Large Magellanic Cloud

    NASA Image and Video Library

    2017-12-08

    The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/European Space Agency (ESA) Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the color is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1,000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. Image Credit: ESA/Hubble & NASA: acknowledgement: Josh Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science

  11. Spike: Artificial intelligence scheduling for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  12. A Hubble Sky Full of Stars

    NASA Image and Video Library

    2017-12-08

    So Coldplay isn't the only one to see a sky full of stars, these are 22K light-years away Located approximately 22,000 light-years away in the constellation of Musca (The Fly), this tightly packed collection of stars — known as a globular cluster — goes by the name of NGC 4833. This NASA/ESA Hubble Space Telescope image shows the dazzling stellar group in all its glory. NGC 4833 is one of the over 150 globular clusters known to reside within the Milky Way. These objects are thought to contain some of the oldest stars in our galaxy. Studying these ancient cosmic clusters can help astronomers to unravel how a galaxy formed and evolved, and give an idea of the galaxy’s age. Globular clusters are responsible for some of the most striking sights in the cosmos, with hundreds of thousands of stars congregating in the same region of space. Hubble has observed many of these clusters during its time in orbit around our planet, each as breathtaking as the last. bit.ly/2b85p36 Image credit: ESA/Hubble and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs

    NASA Technical Reports Server (NTRS)

    Garvis, Michael; Dougherty, Andrew; Whittier, Wallace

    1996-01-01

    Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.

  14. Early Scientific Results and Future Prospects for the Rejuvenated Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Niedner, Malcolm B.

    2010-01-01

    Following the extraordinarily successful Servicing Mission 4 (SM4) of Hubble Space Telescope (HST) in May of 2009, the Observatory is now fully equipped with a broad array of powerful science instruments that put it at the pinnacle of its scientific power. Relevant to the subject matter of the Beyond 2010 Conference, HST will be well-placed over the next five-plus years to advance our knowledge of the formation of high-redshift galaxies and their growth with cosmic time; the emergence of structure in the early universe via Dark Matter-driven gravitational instability; and the universe's expansion history and any resulting implications for the temporal character of Dark Energy. These are fitting projects for the iconic facility now celebrating its 20th anniversary in orbit.

  15. HUBBLE TRACKS 'PERFECT STORM' ON MARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap. When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades. Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun. Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2. Credit: NASA, James Bell (Cornell Univ.), Michael Wolff (Space Science Inst.), and the Hubble Heritage Team (STScI/AURA)

  16. Maintaining an expert system for the Hubble Space Telescope ground support

    NASA Technical Reports Server (NTRS)

    Lindenmayer, Kelly; Vick, Shon; Rosenthal, Don

    1987-01-01

    The transformation portion of the Hubble Space Telescope (HST) Proposal Entry Processor System converts astronomer-oriented description of a scientific observing program into a detailed description of the parameters needed for planning and scheduling. The transformation system is one of a very few rulebased expert systems that has ever entered an operational phase. The day to day operations of the system and its rulebase are no longer the responsibility of the original developer. As a result, software engineering properties of the rulebased approach become more important. Maintenance issues associated with the coupling of rules within a rulebased system are discussed and a method is offered for partitioning a rulebase so that the amount of knowledge needed to modify the rulebase is minimized. This method is also used to develop a measure of the coupling strength of the rulebase.

  17. Hubble 25

    NASA Image and Video Library

    2015-04-23

    If you love Hubble as much as we do you will LOVE this video. Sit back and enjoy 25 mesmerizing years of Hubble images! #Hubble25 You can view all of these images on Flickr here: www.flickr.com/photos/40523828@N07/sets/72157649692430461 Credit NASA Goddard

  18. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  19. The Carnegie-Chicago Hubble Program. I. An Independent Approach to the Extragalactic Distance Scale Using Only Population II Distance Indicators

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael L.; Freedman, Wendy L.; Madore, Barry F.; Bono, Giuseppe; Carlson, Erika K.; Clementini, Gisella; Durbin, Meredith J.; Garofalo, Alessia; Hatt, Dylan; Jang, In Sung; Kollmeier, Juna A.; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark; Sturch, Laura; Yang, Soung-Chul

    2016-12-01

    We present an overview of the Carnegie-Chicago Hubble Program, an ongoing program to obtain a 3% measurement of the Hubble constant (H 0) using alternative methods to the traditional Cepheid distance scale. We aim to establish a completely independent route to H 0 using RR Lyrae variables, the tip of the red giant branch (TRGB), and Type Ia supernovae (SNe Ia). This alternative distance ladder can be applied to galaxies of any Hubble type, of any inclination, and, using old stars in low-density environments, is robust to the degenerate effects of metallicity and interstellar extinction. Given the relatively small number of SNe Ia host galaxies with independently measured distances, these properties provide a great systematic advantage in the measurement of H 0 via the distance ladder. Initially, the accuracy of our value of H 0 will be set by the five Galactic RR Lyrae calibrators with Hubble Space Telescope Fine-Guidance Sensor parallaxes. With Gaia, both the RR Lyrae zero-point and TRGB method will be independently calibrated, the former with at least an order of magnitude more calibrators and the latter directly through parallax measurement of tip red giants. As the first end-to-end “distance ladder” completely independent of both Cepheid variables and the Large Magellanic Cloud, this path to H 0 will allow for the high-precision comparison at each rung of the traditional distance ladder that is necessary to understand tensions between this and other routes to H 0. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #13472 and #13691.

  20. Minimum Weight Design of a Leaf Spring Tapered in Thickness and Width for the Hubble Space Telescope-Space Support Equipment

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.

    1990-01-01

    A linear elastic solution to the problem of minimum weight design of cantilever beams with variable width and depth is presented. The solution shown is for the specific application of the Hubble Space Telescope maintenance mission hardware. During these maintenance missions, delicate instruments must be isolated from the potentially damaging vibration environment of the space shuttle cargo bay during the ascent and descent phases. The leaf springs are designed to maintain the isolation system natural frequency at a level where load transmission to the instruments in a minimum. Nonlinear programming is used for the optimization process. The weight of the beams is the objective function with the deflection and allowable bending stress as the constraint equations. The design variables are the width and depth of the beams at both the free and the fixed ends.

  1. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  2. Hubble Provides Clear Images of Saturn's Aurora

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is the first image of Saturn's ultraviolet aurora taken by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope in October 1997, when Saturn was a distance of 810 million miles (1.3 billion kilometers) from Earth. The new instrument, used as a camera, provides more than ten times the sensitivity of previous Hubble instruments in the ultraviolet. STIS images reveal exquisite detail never before seen in the spectacular auroral curtains of light that encircle Saturn's north and south poles and rise more than a thousand miles above the cloud tops.

    Saturn's auroral displays are caused by an energetic wind from the Sun that sweeps over the planet, much like the Earths aurora that is occasionally seen in the nighttime sky and similar to the phenomenon that causes fluorescent lamps to glow. But unlike the Earth, Saturn's aurora is only seen in ultraviolet light that is invisible from the Earths surface, hence the aurora can only be observed from space. New Hubble images reveal ripples and overall patterns that evolve slowly, appearing generally fixed in our view and independent of planet rotation. At the same time, the curtains show local brightening that often follow the rotation of the planet and exhibit rapid variations on time scales of minutes. These variations and regularities indicate that the aurora is primarily shaped and powered by a continual tug-of-war between Saturn's magnetic field and the flow of charged particles from the Sun.

    Study of the aurora on Saturn had its beginnings just seventeen years ago. The Pioneer 11 spacecraft observed a far-ultraviolet brightening on Saturn's poles in 1979. The Saturn flybys of the Voyager 1 and 2 spacecraft in the early 1980s provided a basic description of the aurora and mapped for the first time planets enormous magnetic field that guides energetic electrons into the atmosphere near the north and south poles.

    The first images of Saturn's aurora were provided in 1994-5 by the

  3. Hubble Captures View of Mystic Mountain

    NASA Image and Video Library

    2010-04-22

    NASA Hubble Space Telescope captures the chaotic activity atop a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby bright stars in a tempestuous stellar nursery called the Carina Nebula.

  4. Hubble and the Language of Images

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.

    2005-12-01

    Images released from the Hubble Space Telescope have been very highly regarded by the astronomy-attentive public for at least a decade. Due in large part to these images, Hubble has become an iconic figure, even among the general public. This iconic status is both a boon and a burden for those who produce the stream of images fl owing from this telescope. While the benefits of attention are fairly obvious, the negative aspects are less visible. One of the most persistent challenges is the need to continue to deliver images that "top" those released before. In part this can be accomplished because of Hubble's upgraded instrumentation. But it can also be a source of pressure that could, if left unchecked, erode ethical boundaries in our communication with the public. These pressures are magnified in an atmosphere of uncertainty with regard to the future of the mission.

  5. Hubble Tarantula Treasury Project V. The Star Cluster Hodge 301: The Old Face of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sabbi, E.; van der Marel, R. P.; Lennon, D. J.; Tosi, M.; Grebel, E. K.; Gallagher, J. S., III; Aloisi, A.; de Marchi, G.; Gouliermis, D. A.; Larsen, S.; Panagia, N.; Smith, L. J.

    2016-12-01

    Based on color-magnitude diagrams (CMDs) from the Hubble Space Telescope Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800 M ⊙ and average reddening E(B - V) ≈ 0.22-0.24 mag, with a differential reddening δE(B - V) ≈ 0.04 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  6. Mechanical Properties Degradation of Teflon(Trademark) FEP Returned from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; deGroh, Kim K.; Townsend, Jacqueline A.; Wang, L. Len

    1998-01-01

    After 6.8 years on orbit, degradation has been observed in the mechanical properties of second-surface metalized Teflon(Reg) FEP (fluorinated ethylene propylene) used on the Hubble Space Telescope (HST) on the outer surface of the multi-layer insulation (MLI) blankets and on radiator surfaces. Cracking of FEP surfaces on HST was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission (SM1) conducted 3.6 years after HST was put into orbit. Astronaut observations and photographs from the second servicing mission (SM2), conducted after 6.8 years on orbit, revealed severe cracks in the FEP surfaces of the MLI on many locations around the telescope. This paper describes results of mechanical properties testing of FEP surfaces exposed for 3.6 years and 6.8 years to the space environment on HST. These tests include tensile testing, surface micro-hardness testing, and bend testing.

  7. Hubble Space Telescope STIS Observations of the Wolf-Rayet Star HD 5980 in the Small Magellanic Cloud. II. The Interstellar Medium Components

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina

    2001-01-01

    Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. NiH2 Reliability Impact Upon Hubble Space Telescope Battery Replacement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Hollandsworth, Roger; Armantrout, Jon; Day, John H. (Technical Monitor)

    2002-01-01

    The NASA Hubble Space Telescope (HST) was designed to be deployed and later serviced for maintenance and upgrades, as required, by the space shuttle fleet, with a Goodyear mission life for the batteries. HST was deployed 380 miles above the Earth, from Space Shuttle Discovery, on April 25, 1990. Four servicing missions, (SM1, SM2, SM3A, AND SM3B) have been performed. Astronauts have replaced or modified optics, solar arrays, a power control unit, and various science packages. A fifth Servicing Mission, SM4 scheduled for early 2004, is planned to replace the batteries for the first time. The HST is powered by solar array wings and nickel hydrogen (NiH2) Duracell batteries, which are grouped into two parallel battery modules of three parallel batteries each. With a design life of 7 years at launch, these batteries have surpassed 12 years in orbit, which gives HST the highest number of charge/discharge cycles of any NiH2 battery currently in low earth orbit (LEO) application. Being in a LEO orbit, HST has a 45-minute umbra period, during which spacecraft power requirements normally force the batteries into discharge, and a 60-minute sun period, which is available for battery recharge. The intent of this paper is to address the issue of NiH2 battery reliability and how battery capacity degradation can impact scheduling of a Servicing Mission to bring replacement batteries to HST, and extend mission life till deployment of Next Generation Space Telescope (NGST), planned for 2008 at the earliest.

  9. Hubble Sees the Force Awakening in a Newborn Star

    NASA Image and Video Library

    2015-12-17

    In the center of this image from the Hubble Space Telescope, partially obscured by a dark cloud of dust, a newborn star shoots twin jets out into space as a sort of birth announcement to the universe.

  10. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS

    PubMed Central

    Godon, Patrick; Sion, Edward M.; Starrfield, Sumner; Livio, Mario; Williams, Robert E.; Woodward, Charles E.; Kuin, Paul; Page, Kim L.

    2018-01-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10−5 M⊙ to 3.3 × 10−4 M⊙, and assuming a mass accretion rate of 10−8−10−7 M⊙ yr−1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E(B − V) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E(B−V) ≤ 0.50) and white dwarf mass (0.70 M⊙ ≤ Mwd ≤ 1.35 M⊙) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening. PMID:29430290

  11. HUBBLE SPACE TELESCOPE FAR ULTRAVIOLET SPECTROSCOPY OF THE RECURRENT NOVA T PYXIDIS.

    PubMed

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  12. Hubble Watches Super Star Create Holiday Light Show

    NASA Image and Video Library

    2017-12-08

    This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than our sun and 200 times larger. RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than our sun’s luminosity. The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula. By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Acknowledgment: H. Bond (STScI and Pennsylvania State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  13. Milky J “Hubble Gotchu" of Late Night with Jimmy Fallon visits Goddard

    NASA Image and Video Library

    2017-12-08

    Fans of 'Late Night with Jimmy Fallon' know the setup: A guy in a Yankees jacket shows off Hubble images and shouts to the audience that, 'Hubble gotchu!' Monday night's episode showcased footage shot right here at Goddard Space Flight Center. Left to Right: Phil Driggers, Katie Lilly, Milky J “Hubble Gotchu”, Mike Menzel, Amber Straughn, Ray Lundquist. Read more about Milky J's visit here: geeked.gsfc.nasa.gov/?p=2066 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center/Chris Gun

  14. A Hubble Cosmic Couple

    NASA Image and Video Library

    2017-12-08

    Here we see the spectacular cosmic pairing of the star Hen 2-427 — more commonly known as WR 124 — and the nebula M1-67 which surrounds it. Both objects, captured here by the NASA/ESA Hubble Space Telescope are found in the constellation of Sagittarius and lie 15,000 light-years away. The star Hen 2-427 shines brightly at the very center of this explosive image and around the hot clumps of surrounding gas that are being ejected into space at over 93,210 miles (150,000 km) per hour. Hen 2-427 is a Wolf–Rayet star, named after the astronomers Charles Wolf and Georges Rayet. Wolf–Rayet are super-hot stars characterized by a fierce ejection of mass. The nebula M1-67 is estimated to be no more than 10,000 years old — just a baby in astronomical terms — but what a beautiful and magnificent sight it makes. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Hubble Sees a Galactic Sunflower

    NASA Image and Video Library

    2017-12-08

    The arrangement of the spiral arms in the galaxy Messier 63, seen here in an image from the NASA/ESA Hubble Space Telescope, recall the pattern at the center of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence. Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy. Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars and clusters, readily seen in this Hubble image. Image credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. HUBBLE SEES A VAST 'CITY' OF STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In these pictures, a 'city' of a million stars glitters like a New York City skyline. The images capture the globular cluster 47 Tucanae, located 15,000 light-years from Earth in the southern constellation Tucana. Using NASA's Hubble Space Telescope, astronomers went hunting in this large city for planetary companions: bloated gaseous planets that snuggle close to their parent stars, completing an orbit in a quick three to five days. To their surprise, they found none. This finding suggests that the cluster's environment is too hostile for breeding planets or that it lacks the necessary elements for making them. The picture at left, taken by a terrestrial telescope, shows most of the cluster, a tightly packed group of middle-aged stars held together by mutual gravitational attraction. The box near the center represents the Hubble telescope's view. The image at right shows the Hubble telescope's close-up look at a swarm of 35,000 stars near the cluster's central region. The stars are tightly packed together: They're much closer together than our Sun and its closest stars. The picture, taken by the Wide Field and Planetary Camera 2, depicts the stars' natural colors and tells scientists about their composition and age. For example, the red stars denote bright red giants nearing the end of their lives; the more common yellow stars are similar to our middle-aged Sun. Most of the stars in the cluster are believed to have formed about 10 billion years ago. The bright, blue stars -- thought to be remnants of stellar collisions and mergers -- provide a few rejuvenated, energetic stars in an otherwise old system. The Hubble picture was taken in July 1999. Credits for Hubble image: NASA and Ron Gilliland (Space Telescope Science Institute) Credits for ground-based image: David Malin, c Anglo-Australian Observatory

  17. Hubble Space Telescope Servicing Mission Four (HST SM4) EVA Challenges for Safe Execution of STS-125

    NASA Technical Reports Server (NTRS)

    Dedalis, Robert P.; Hill, William H.; Rice, Karin Bergh; Cooter, Ann M.

    2010-01-01

    In May of 2009, the world-renowned Hubble Space Telescope (HST) received a suite of new instruments and a refurbished bus to enable science for many years to come. The restoration was conducted on-orbit by four space-walkers on five carefully scripted Extra-Vehicular Activity (EVA) days. Assuring the safety of the space-walkers and their crew-mates required careful attention to tool development, detailed procedures for every activity and many rehearsals with engineers and crew to ensure that everything worked together. Additionally, evolution of EVA requirements since the last servicing mission in 2002, and the broad scope of the mission demanded a much higher degree of safety participation in hardware design and risk acceptance than for previous servicing missions.

  18. Long term trending of engineering data for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  19. Hubble space telescope: The GO and GTO observing programs, version 3.0

    NASA Technical Reports Server (NTRS)

    Downes, Ron

    1992-01-01

    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  20. Degradation of Hubble Space Telescope Metallized Teflon(trademark) FEP Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Yoshikawa, Yukio; Castro, J. David; Triolo, Jack J.; Peters, Wanda C.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon Fluorinated Ethylene Propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) have degraded over the seven years the telescope has been in orbit. Astronaut observations and photographic documentation from the Second Servicing Mission revealed severe cracks of the multi-layer insulation (MLI) blanket outer layer in many locations around the telescope, particularly on solar facing surfaces. Two samples, the outer Teflon FEP MLI layer and radiator surfaces, were characterized post- mission through exhaustive mechanical, thermal, chemical, and optical testing. The observed damage to the thermal control materials, the sample retrieval and handling, and the significant changes to the radiator surfaces of HST will be discussed. Each of these issues is addressed with respect to current and future mission requirements.

  1. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  2. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milone, A. P.; Marino, A. F.; Jerjen, H.

    2015-07-20

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by themore » data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium.« less

  3. Hubble Space Telescope Servicing Mission 3A Rendezvous Operations

    NASA Technical Reports Server (NTRS)

    Lee, S.; Anandakrishnan, S.; Connor, C.; Moy, E.; Smith, D.; Myslinski, M.; Markley, L.; Vernacchio, A.

    2001-01-01

    The Hubble Space Telescope (HST) hardware complement includes six gas bearing, pulse rebalanced rate integrating gyros, any three of which are sufficient to conduct the science mission. After the loss of three gyros between April 1997 and April 1999 due to a known corrosion mechanism, NASA decided to split the third HST servicing mission into SM3A, accelerated to October 1999, and SM3B, scheduled for November 2001. SM3A was developed as a quick turnaround 'Launch on Need' mission to replace all six gyros. Loss of a fourth gyro in November 1999 caused HST to enter Zero Gyro Sunpoint (ZGSP) safemode, which uses sun sensors and magnetometers for attitude determination and momentum bias to maintain attitude stability during orbit night. Several instances of large attitude excursions during orbit night were observed, but ZGSP performance was adequate to provide power-positive sun pointing and to support low gain antenna communications. Body rates in ZGSP were estimated to exceed the nominal 0.1 deg/sec rendezvous limit, so rendezvous operations were restructured to utilize coarse, limited life, Retrieval Mode Gyros (RMGs) under Hardware Sunpoint (HWSP) safemode. Contingency procedures were developed to conduct the rendezvous in ZGSP in the event of RMGA or HWSP computer failure. Space Shuttle Mission STS-103 launched on December 19, 1999 after a series of weather and Shuttle-related delays. After successful rendezvous and grapple under HWSP/RMGA, the crew changed out all six gyros. Following deploy and systems checkout, HST returned to full science operations.

  4. Hubble Spies Spooky Shadow on Jupiter's Giant Eye (color)

    NASA Image and Video Library

    2014-10-28

    This trick that the planet is looking back at you is actually a Hubble treat: An eerie, close-up view of Jupiter, the biggest planet in our solar system. Hubble was monitoring changes in Jupiter’s immense Great Red Spot (GRS) storm on April 21, 2014, when the shadow of the Jovian moon, Ganymede, swept across the center of the storm. This gave the giant planet the uncanny appearance of having a pupil in the center of a 10,000 mile-diameter “eye.” For a moment, Jupiter “stared” back at Hubble like a one-eyed giant Cyclops. Credit: NASA, ESA, and A. Simon (Goddard Space Flight Center) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. HUBBLE VIEWS THE GALILEO PROBE ENTRY SITE ON JUPITER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [left] - This Hubble Space Telescope image of Jupiter was taken on Oct. 5, 1995, when the giant planet was at a distance of 534 million miles (854 million kilometers) from Earth. The arrow points to the predicted site at which the Galileo Probe will enter Jupiter's atmosphere on December 7, 1995. At this latitude, the eastward winds have speeds of about 250 miles per hour (110 meters per second). The white oval to the north of the probe site drifts westward at 13 miles per hour (6 meters per second), rolling in the winds which increase sharply toward the equator. The Jupiter image was obtained with the high resolution mode of Hubble's Wide Field Planetary Camera 2 (WFPC2). Because the disk of the planet is larger than the field of view of the camera, image processing was used to combine overlapping images from three consecutive orbits to produce this full disk view of the planet. [right] - These four enlarged Hubble images of Jupiter's equatorial region show clouds sweeping across the predicted Galileo probe entry site, which is at the exact center of each frame (a small white dot has been inserted at the centered at the predicted entry site). The first image (upper left quadrant) was obtained with the WFPC2 on Oct. 4, 1995 at (18 hours UT). The second, third and fourth images (from upper right to lower right) were obtained 10, 20 and 60 hours later, respectively. The maps extend +/- 15 degrees in latitude and longitude. The distance across one of the images is about three Earth diameters (37,433 kilometers). During the intervening time between the first and fourth maps, the winds have swept the clouds 15,000 miles (24,000 kilometers) eastward. Credit: Reta Beebe (New Mexico State University), and NASA

  6. The future of space imaging. Report of a community-based study of an advanced camera for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A. (Editor)

    1993-01-01

    The scientific and technical basis for an Advanced Camera (AC) for the Hubble Space Telescope (HST) is discussed. In March 1992, the NASA Program Scientist for HST invited the Space Telescope Science Institute to conduct a community-based study of an AC, which would be installed on a scheduled HST servicing mission in 1999. The study had three phases: a broad community survey of views on candidate science program and required performance of the AC, an analysis of technical issues relating to its implementation, and a panel of experts to formulate conclusions and prioritize recommendations. From the assessment of the imaging tasks astronomers have proposed for or desired from HST, we believe the most valuable 1999 instrument would be a camera with both near ultraviolet/optical (NUVO) and far ultraviolet (FUV) sensitivity, and with both wide field and high resolution options.

  7. Hubble Sees Spiral in Serpens

    NASA Image and Video Library

    2017-12-08

    This new NASA/ESA Hubble Space Telescope image shows a beautiful spiral galaxy known as PGC 54493, located in the constellation of Serpens (The Serpent). This galaxy is part of a galaxy cluster that has been studied by astronomers exploring an intriguing phenomenon known as weak gravitational lensing. This effect, caused by the uneven distribution of matter (including dark matter) throughout the Universe, has been explored via surveys such as the Hubble Medium Deep Survey. Dark matter is one of the great mysteries in cosmology. It behaves very differently from ordinary matter as it does not emit or absorb light or other forms of electromagnetic energy — hence the term "dark." Even though we cannot observe dark matter directly, we know it exists. One prominent piece of evidence for the existence of this mysterious matter is known as the "galaxy rotation problem." Galaxies rotate at such speeds and in such a way that ordinary matter alone — the stuff we see — would not be able to hold them together. The amount of mass that is "missing" visibly is dark matter, which is thought to make up some 27 percent of the total contents of the Universe, with dark energy and normal matter making up the rest. PGC 55493 has been studied in connection with an effect known as cosmic shearing. This is a weak gravitational lensing effect that creates tiny distortions in images of distant galaxies. European Space Agency ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Life Extension Activities for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Walyus, Keith D.; Pepe, Joyce A. K.; Prior, Michael

    2004-01-01

    With the cancellation of the Hubble Space Telescope (HST) Servicing Mission 4 (SM4), the HST Project will face numerous challenges to keep the Telescope operating during the remainder of the decade. As part of the SM4, the HST Project had planned to install various upgrades to the Telescope including the installation of new batteries and new rate integrating gyros. Without these upgrades, reliability analysis indicates that the spacecraft will lose the capability to conduct science operations later this decade. The HST team will be severely challenged to maximize the Telescope's remaining operational lifetime, while still trying to maximize - its science output and quality. Two of the biggest areas of concern are the age and condition of the batteries and gyros. Together they offer the largest potential extension in Telescope lifetime and present the biggest challenges to the HST team. The six Ni-H batteries on HST are the original batteries from launch. With fourteen years of operational life, these batteries have collectively lasted longer than any other comparable mission. Yet as with all batteries, their capacity has been declining. Engineers are examining various methods to prolong the life of these mission critical batteries, and retard the rate of degradation. This paper will focus on these and other efforts to prolong the life of the HST, thus enabling it to remain a world-class observatory for as long as possible.

  9. Hubble Spotlights a Celestial Sidekick

    NASA Image and Video Library

    2017-12-08

    This image was captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), a highly efficient wide-field camera covering the optical and near-infrared parts of the spectrum. While this lovely image contains hundreds of distant stars and galaxies, one vital thing is missing — the object Hubble was actually studying at the time! This is not because the target has disappeared. The ACS actually uses two detectors: the first captures the object being studied — in this case an open star cluster known as NGC 299 — while the other detector images the patch of space just ‘beneath’ it. This is what can be seen here. Technically, this picture is merely a sidekick of the actual object of interest — but space is bursting with activity, and this field of bright celestial bodies offers plenty of interest on its own. It may initially seem to show just stars, but a closer look reveals many of these tiny objects to be galaxies. The spiral galaxies have arms curving out from a bright center. The fuzzier, less clearly shaped galaxies might be ellipticals. Some of these galaxies contain millions or even billions of stars, but are so distant that all of their starry residents are contained within just a small pinprick of light that appears to be the same size as a single star! The bright blue dots are very hot stars, sometimes distorted into crosses by the struts supporting Hubble’s secondary mirror. The redder dots are cooler stars, possibly in the red giant phase when a dying star cools and expands. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  11. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  12. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  13. Hubble Source Catalog

    NASA Astrophysics Data System (ADS)

    Lubow, S.; Budavári, T.

    2013-10-01

    We have created an initial catalog of objects observed by the WFPC2 and ACS instruments on the Hubble Space Telescope (HST). The catalog is based on observations taken on more than 6000 visits (telescope pointings) of ACS/WFC and more than 25000 visits of WFPC2. The catalog is obtained by cross matching by position in the sky all Hubble Legacy Archive (HLA) Source Extractor source lists for these instruments. The source lists describe properties of source detections within a visit. The calculations are performed on a SQL Server database system. First we collect overlapping images into groups, e.g., Eta Car, and determine nearby (approximately matching) pairs of sources from different images within each group. We then apply a novel algorithm for improving the cross matching of pairs of sources by adjusting the astrometry of the images. Next, we combine pairwise matches into maximal sets of possible multi-source matches. We apply a greedy Bayesian method to split the maximal matches into more reliable matches. We test the accuracy of the matches by comparing the fluxes of the matched sources. The result is a set of information that ties together multiple observations of the same object. A byproduct of the catalog is greatly improved relative astrometry for many of the HST images. We also provide information on nondetections that can be used to determine dropouts. With the catalog, for the first time, one can carry out time domain, multi-wavelength studies across a large set of HST data. The catalog is publicly available. Much more can be done to expand the catalog capabilities.

  14. Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A

    NASA Technical Reports Server (NTRS)

    Litvak, M. M.

    1991-01-01

    Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.

  15. Alien aurorae spotted on Uranus by Hubble

    NASA Image and Video Library

    2017-12-08

    This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. Ever since Voyager 2 beamed home spectacular images of the planets in the 1980s, planet-lovers have been hooked on auroras on other planets. Auroras are caused by streams of charged particles like electrons that come from various origins such as solar winds, the planetary ionosphere, and moon volcanism. They become caught in powerful magnetic fields and are channeled into the upper atmosphere, where their interactions with gas particles, such as oxygen or nitrogen, set off spectacular bursts of light. The auroras on Jupiter and Saturn are well-studied, but not much is known about the auroras of the giant ice planet Uranus. In 2011, the NASA/ESA Hubble Space Telescope became the first Earth-based telescope to snap an image of the auroras on Uranus. In 2012 and 2014 a team led by an astronomer from Paris Observatory took a second look at the auroras using the ultraviolet capabilities of the Space Telescope Imaging Spectrograph (STIS) installed on Hubble. They tracked the interplanetary shocks caused by two powerful bursts of solar wind traveling from the sun to Uranus, then used Hubble to capture their effect on Uranus’ auroras — and found themselves observing the most intense auroras ever seen on the planet. By watching the auroras over time, they collected the first direct evidence that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the featureless planet surface. Credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  16. Hubble space telescope near-ultraviolet spectroscopy of the bright cemp-no star BD+44°493

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placco, Vinicius M.; Beers, Timothy C.; Smith, Verne V.

    2014-07-20

    We present an elemental-abundance analysis, in the near-ultraviolet (NUV) spectral range, for the extremely metal-poor star BD+44°493 a ninth magnitude subgiant with [Fe/H] =–3.8 and enhanced carbon, based on data acquired with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. This star is the brightest example of a class of objects that, unlike the great majority of carbon-enhanced metal-poor (CEMP) stars, does not exhibit over-abundances of heavy neutron-capture elements (CEMP-no). In this paper, we validate the abundance determinations for a number of species that were previously studied in the optical region, and obtain strong upper limits for berylliummore » and boron, as well as for neutron-capture elements from zirconium to platinum, many of which are not accessible from ground-based spectra. The boron upper limit we obtain for BD+44°493, log ε (B) <–0.70, the first such measurement for a CEMP star, is the lowest yet found for very and extremely metal-poor stars. In addition, we obtain even lower upper limits on the abundances of beryllium, log ε (Be) <–2.3, and lead, log ε (Pb) <–0.23 ([Pb/Fe] <+1.90), than those reported by previous analyses in the optical range. Taken together with the previously measured low abundance of lithium, the very low upper limits on Be and B suggest that BD+44°493 was formed at a very early time, and that it could well be a bona-fide second-generation star. Finally, the Pb upper limit strengthens the argument for non-s-process production of the heavy-element abundance patterns in CEMP-no stars.« less

  17. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  18. Hubble's View of Comet Siding Spring

    NASA Image and Video Library

    2017-12-08

    MARCH 27, 2014: Comet Siding Spring is plunging toward the Sun along a roughly 1-million-year orbit. The comet, discovered in 2013, was within the radius of Jupiter's orbit when the Hubble Space Telescope photographed it on March 11, 2014. Hubble resolves two jets of dust coming from the solid icy nucleus. These persistent jets were first seen in Hubble pictures taken on Oct. 29, 2013. The feature should allow astronomers to measure the direction of the nucleus's pole, and hence, rotation axis. The comet will make its closest approach to our Sun on Oct. 25, 2014, at a distance of 130 million miles, well outside Earth's orbit. On its inbound leg, Comet Siding Spring will pass within 84,000 miles of Mars on Oct. 19, 2014, which is less than half the Moon's distance from Earth. The comet is not expected to become bright enough to be seen by the naked eye. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Hubble Sees Material Ejected From Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These NASA Hubble Space Telescope pictures of comet Hale-Bopp show a remarkable 'pinwheel' pattern and a blob of free-flying debris near the nucleus. The bright clump of light along the spiral (above the nucleus, which is near the center of the frame) may be a piece of the comet's icy crust that was ejected into space by a combination of ice evaporation and the comet's rotation, and which then disintegrated into a bright cloud of particles.

    Although the 'blob' is about 3.5 times fainter than the brightest portion at the nucleus, the lump appears brighter because it covers a larger area. The debris follows a spiral pattern outward because the solid nucleus is rotating like a lawn sprinkler, completing a single rotation about once per week.

    Ground-based observations conducted over the past two months have documented at least two separate episodes of jet and pinwheel formation and fading. By coincidence, the first Hubble images of Hale-Bopp, taken on September 26, 1995, immediately followed one of these outbursts and allow researchers to examine it at unprecedented detail. For the first time they see a clear separation between the nucleus and some of the debris being shed. By putting together information from the Hubble images and those taken during the recent outburst using the 82 cm telescope of the Teide Observatory (Tenerife, Canary Islands, Spain), astronomers find that the debris is moving away from the nucleus at a speed (projected on the sky) of about 68 miles per hour (109 kilometers per hour).

    The Hubble observations will be used to determine if Hale-Bopp is really a giant comet or rather a more moderate-sized object whose current activity is driven by outgassing from a very volatile ice which will 'burn out' over the next year. Comet Hale-Bopp was discovered on July 23, 1995 by amateur astronomers Alan Hale and Thomas Bopp. Though this comet is still well outside the orbit of Jupiter (almost 600 million miles, or one billion kilometers from Earth

  20. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  1. Hubble Revisits a Globular Cluster’s Age

    NASA Image and Video Library

    2014-08-13

    This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behavior is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data have been obtained and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA and NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the

  2. The in-flight calibration of the Hubble Space Telescope attitude sensors

    NASA Technical Reports Server (NTRS)

    Welter, Gary L.

    1991-01-01

    A detailed review of the in-flight calibration of the Hubble Space Telescope attitude sensors is presented. The review, which covers the period from the April 24, 1990, launch of the spacecraft until the time of this writing (June 1991), describes the calibrations required and accuracies achieved for the four principal attitude sensing systems on the spacecraft: the magnetometers, the fixed head star trackers, the gyroscopes, and the fine guidance sensors (FGS's). In contrast to the other three sensor groups, the Hubble Telecope's FGS's are unique in the precision and performance levels being attempted; spacecraft control and astrometric research at the near-milliarcsecond level are the ultimate goals. FGS calibration accuracies at the 20-milliarcsecond level have already been achieved, and plans for new data acquisitions and reductions that should substantially improve these results are in progress. A summary of the basic attributes of each of the four sensor groups with respect to its usage as an attitude measuring system is presented, followed by a discussion of the calibration items of interest for that group. The calibration items are as follows: for the magnetometers, the corrections for the spacecraft's static and time-varying magnetic fields; for the fixed-head star trackers, their relative alignments and use in performing onboard attitude updates; for the gyroscopes, their scale factors, alignments, and drift rate biases; and for the FGS's, their magnifications, optical distortions, and alignments. The discussion covers the procedures used for each calibration, as well as the order of the calibrations within the general flow of orbital verification activities. It also includes a synopsis of current plans for the eventual calibration of the FGS's to achieve their near-milliarcsecond design accuracy. The conclusions include a table indicating the current and predicted ultimate accuracies for each of the calibration items.

  3. Contamination design of a Scientific Instrument Protective Enclosure for the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Hedgeland, Randy J.; Hansen, Patricia A.

    1993-01-01

    A Scientific Instrument Protective Enclosure (SIPE) was designed to accommodate second generation science instruments (SIs) for the Hubble Space Telescope (HST) First Servicing Mission (FSM). One of the main design drivers for the SIPE is to provide a protective environment for the SIs against particulate and molecular contaminants that pose a viable threat to the SI performance. The focus of this paper will detail the methodology incorporated in the design of the SIPE to provide a controlled environment for SI protection at the launch site, during pre-launch/launch activities, and during on-orbit operations in the Shuttle bay.

  4. Micrometeoroid Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Smaller Particle Impacts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.; hide

    2014-01-01

    The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.

  5. Passive isolation/damping system for the Hubble space telescope reaction wheels

    NASA Technical Reports Server (NTRS)

    Hasha, Martin D.

    1987-01-01

    NASA's Hubble Space Telescope contain large, diffraction limited optics with extraordinary resolution and performance for surpassing existing observatories. The need to reduce structural borne vibration and resultant optical jitter from critical Pointing Control System components, Reaction Wheels, prompted the feasibility investigation and eventual development of a passive isolation system. Alternative design concepts considered were required to meet a host of stringent specifications and pass rigid tests to be successfully verified and integrated into the already built flight vehicle. The final design employs multiple arrays of fluid damped springs that attenuate over a wide spectrum, while confining newly introduced resonances to benign regions of vehicle dynamic response. Overall jitter improvement of roughly a factor of 2 to 3 is attained with this system. The basis, evolution, and performance of the isolation system, specifically discussing design concepts considered, optimization studies, development lessons learned, innovative features, and analytical and ground test verified results are presented.

  6. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less

  7. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope.

    PubMed

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-05-28

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current.

  8. Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope

    PubMed Central

    Nichols, J D; Badman, S V; Baines, K H; Brown, R H; Bunce, E J; Clarke, J T; Cowley, S W H; Crary, F J; Dougherty, M K; Gérard, J-C; Grocott, A; Grodent, D; Kurth, W S; Melin, H; Mitchell, D G; Pryor, W R; Stallard, T S

    2014-01-01

    We present observations of significant dynamics within two UV auroral storms observed on Saturn using the Hubble Space Telescope in April/May 2013. Specifically, we discuss bursts of auroral emission observed at the poleward boundary of a solar wind-induced auroral storm, propagating at ∼330% rigid corotation from near ∼01 h LT toward ∼08 h LT. We suggest that these are indicative of ongoing, bursty reconnection of lobe flux in the magnetotail, providing strong evidence that Saturn's auroral storms are caused by large-scale flux closure. We also discuss the later evolution of a similar storm and show that the emission maps to the trailing region of an energetic neutral atom enhancement. We thus identify the auroral form with the upward field-aligned continuity currents flowing into the associated partial ring current. PMID:26074636

  9. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Hubble Catches Stellar Exodus in Action

    NASA Image and Video Library

    2015-05-14

    Using NASA’s Hubble Space Telescope, astronomers have captured for the first time snapshots of fledging white dwarf stars beginning their slow-paced, 40-million-year migration from the crowded center of an ancient star cluster to the less populated suburbs. White dwarfs are the burned-out relics of stars that rapidly lose mass, cool down and shut off their nuclear furnaces. As these glowing carcasses age and shed weight, their orbits begin to expand outward from the star cluster’s packed downtown. This migration is caused by a gravitational tussle among stars inside the cluster. Globular star clusters sort out stars according to their mass, governed by a gravitational billiard ball game where lower mass stars rob momentum from more massive stars. The result is that heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move across the cluster to the edge. This process is known as "mass segregation." Until these Hubble observations, astronomers had never definitively seen the dynamical conveyor belt in action. Astronomers used Hubble to watch the white-dwarf exodus in the globular star cluster 47 Tucanae, a dense swarm of hundreds of thousands of stars in our Milky Way galaxy. The cluster resides 16,700 light-years away in the southern constellation Tucana. Read more: www.nasa.gov/feature/goddard/hubble-catches-stellar-exodu... Credits: NASA, ESA, and H. Richer and J. Heyl (University of British Columbia, Vancouver, Canada); acknowledgement: J. Mack (STScI) and G. Piotto (University of Padova, Italy) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. HUBBLE FINDS NEW DARK SPOT ON NEPTUNE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet's northern hemisphere is now tilted away from Earth, the new feature appears near the limb of the planet. The spot is a near mirror-image to a similar southern hemisphere dark spot that was discovered in 1989 by the Voyager 2 probe. In 1994, Hubble showed that the southern dark spot had disappeared. Like its predecessor, the new spot has high altitude clouds along its edge, caused by gasses that have been pushed to higher altitudes where they cool to form methane ice crystal clouds. The dark spot may be a zone of clear gas that is a window to a cloud deck lower in the atmosphere. Planetary scientists don t know how long lived this new feature might be. Hubble's high resolution will allow astronomers to follow the spot's evolution and other unexpected changes in Neptune's dynamic atmosphere. The image was taken on November 2, 1994 with Hubble's Wide Field Planetary Camera 2, when Neptune was 2.8 billion miles (4.5 billion kilometers) from Earth. Hubble can resolve features as small as 625 miles (1,000 kilometers) across in Neptune's cloud tops. Credit: H. Hammel (Massachusetts Institute of Technology) and NASA

  12. Studies of Binary Pulsar Evolution Through Hubble Space Telescope Imaging of White Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Lundgren, S. C.; Foster, R. S.; Camilo, F.

    1995-12-01

    In observations of six binary millisecond pulsars with the Hubble Space Telescope, we have discovered white dwarf companions to PSRs J0034-0534, J1022+1001, and J1713+0747 and improved photometry on PSRs J1640+2224 and J2145-0750. The companion to PSR J2019+2425 was not detected down to m_I=25.4. For the five companions detected, effective temperatures were estimated for the colors measured. Two of the white dwarfs, J0034-0534 and J1713+0747, are among the coolest and oldest known. Using distance estimates to the pulsars, the absolute luminosities were determined. Constrains on the masses and cooling times were obtained from the luminosities and temperatures. The results for each pulsar were related to expectations based on models for white dwarf cooling, Roche lobe overflow in the preceding low-mass X-ray binary phase, and mass accretion rate/neutron star spin period relations. Precision pulsar astrophysics at the Naval Research Laboratory is supported by the Office of Naval Research. SL is supported by a post-doctoral fellowship through the National Research Council. FC acknowledges support from NSF grant AST 91-15103 and a fellowship under the auspices of the European Commission.

  13. Hubble Finds New Dark Spot on Neptune

    NASA Image and Video Library

    1998-08-02

    In 1995, NASA Hubble Space Telescope discovered a new great dark spot, located in the northern hemisphere of the planet Neptune. Because the planet northern hemisphere was tilted away from Earth, the new feature appeared near the limb of the planet.

  14. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  15. Hubble's Little Sombrero

    NASA Image and Video Library

    2015-02-06

    Galaxies can take many shapes and be oriented any way relative to us in the sky. This can make it hard to figure out their actual morphology, as a galaxy can look very different from different viewpoints. A special case is when we are lucky enough to observe a spiral galaxy directly from its edge, providing us with a spectacular view like the one seen in this picture of the week. This is NGC 7814, also known as the “Little Sombrero.” Its larger namesake, the Sombrero Galaxy, is another stunning example of an edge-on galaxy — in fact, the “Little Sombrero” is about the same size as its bright namesake at about 60,000 light-years across, but as it lies farther away, and so appears smaller in the sky. NGC 7814 has a bright central bulge and a bright halo of glowing gas extending outwards into space. The dusty spiral arms appear as dark streaks. They consist of dusty material that absorbs and blocks light from the galactic center behind it. The field of view of this NASA/ESA Hubble Space Telescope image would be very impressive even without NGC 7814 in front; nearly all the objects seen in this image are galaxies as well. Credit: ESA/Hubble & NASA Acknowledgement: Josh Barrington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Hubble Space Telescope - New view of an ancient universe

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Longair, Malcolm S.; Stockman, Peter; Olivier, Jean R.

    1989-01-01

    Scheduled for a March 1990 Shuttle launch, the Hubble Space Telescope (HST) will give astronomers a tool of unprecedented accuracy to observe the universe: an optically superb instrument free of the atmospheric turbulence, distortion, and brightness that plague all earthbound telescopes. The observatory will carry into orbit two cameras, a pair of spectrographs, a photometer, and fine guidance sensors optimized for astrometry. The diffraction limit for the 2.4-m aperture of the HST corresponds to 90 percent of the radiation from a point source falling within a circle of 0.1 arcsec angular radius at a wavelength of 633 nm. The 15-year mission will make observations in the ultraviolet as well as the optical spectral region, thus, widening the wavelength window to a range extending from the Lyman alpha wavelengnth of 122 nm to just about 2 microns. The observational program that awaits the HST will include the study of planetary atmospheres, in particular the search for aerosols; the study of globular star clusters within the Galaxy; and the determination of the present rate of expansion of the universe. The HST will achieve resolutions of 0.1 arcsec consistently, regardless of observation duration. The HST engineering challenge is also discussed.

  17. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  18. Constraints on water vapor and sulfur dioxide at Ceres: Exploiting the sensitivity of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2018-05-01

    Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.

  19. Hubble Exoplanet Pro/Am Collaboration (Abstract)

    NASA Astrophysics Data System (ADS)

    Conti, D. M.

    2016-06-01

    (Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.

  20. NASA’s Hubble Sees Martian Moon Orbiting the Red Planet

    NASA Image and Video Library

    2017-12-08

    While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash onto the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. Credit: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Jupiter After the 2009 Impact: Hubble Space Telescope Imaging of the Impact-Generated Debris and Its Temporal Evolution

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Wong, M. H.; Clarke, J. T.; de Pater, I.; Fletcher, L. N.; Hueso, R.; Noll, K.; Orton, G. S.; Perez-Hoyos, S.; Sanchez-Lavega, A.; hide

    2010-01-01

    We report Hubble Space Telescope images of Jupiter during the aftermath of an impact by an unknown object in 2009 July, The 2009 impact-created debris field evolved more slowly than those created in 1994 by the collision of the tidally disrupted comet D/Shoemaker-Levy 9 (SL9). The slower evolution, in conjunction with the isolated nature of this single impact, permits a more detailed assessment of the altitudes and meridional motion of the debris than was possible with SL9. The color of the 2009 debris was markedly similar to that seen in 1994, thus this dark debris is likely to be Jovian material that is highly thermally processed. The 2009 impact site differed from the 1994 SL9 sites in UV morphology and contrast lifetime; both are suggestive of the impacting body being asteroidal rather than cometary. Transport of the 2009 Jovian debris as imaged by Hubble shared similarities with transport of volcanic aerosols in Earth's atmosphere after major eruptions.

  2. Hubble Monitors Supernova In Nearby Galaxy M82

    NASA Image and Video Library

    2014-02-26

    This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  3. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  4. Hubble illuminates the universe

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1992-01-01

    Latest observations by the Hubble Space Telescope (HST) are described, including the first 'parallel' observations (on January 6, 1992) by the two of the Hubble's instruments of two different targets at the same time. On this date, the faint-object camera made images of the quasar 3C 273 in Virgo, while the wide-field and planetary camera recorded an adjacent field. The new HST images include those of the nucleus and the jet of M85, the giant elliptical galaxy at the heart of the Virgo cluster, and what appears to be a black hole of mass 2.6 billion solar masses in M87, and an image of N66, a planetary nebula in the LMC. Other images yield evidence of 'blue stragglers' in the core of 47 Tucanae, a globular cluster about 16,000 light-years from earth. The Goddard spectrograph recorded the spectrum of the star Capella at very high wavelength resolution, which made it possible to measure deuterium from the Big Bang.

  5. Fabrication of MgF2 and LiF windows for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Gormley, Daphne; Bottema, Murk; Darnell, Barbara; Fowler, Walter; Medenica, Walter

    1988-01-01

    Two prototype test windows (MgF2 and LiF) to be used on the 75-mm UV MAMA detector tubes for the Hubble Space Telescope Imaging Spectrograph are described. The spatial and optical constraints of this instrument dictate that the thickness of the window materials be no greater than 2-3 mm to achieve a minimum 50-percent transmission at hydrogen Lyman alpha (121.6 nm), and that the window must be domed to minimize optical aberrations and provide structural strength. The detector window has an input diameter of about 100 mm with a radius-of-curvature of 70 mm. The manufacturing processes involved in the fabrication of these windows is discussed, as well as test programs (optical and structural) to be performed at Goddard Space Flight Center.

  6. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar

    2018-05-01

    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.

  7. Version 1 of the Hubble Source Catalog

    DOE PAGES

    Whitmore, Bradley C.; Allam, Sahar S.; Budavari, Tamas; ...

    2016-05-11

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160 thousand HST exposures. Source lists from Data Release 8 of the Hubble Legacy Archive are matched using an algorithm developed by Budavari & Lubow (2012). The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (i.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better thanmore » $$\\sim$$0.1 arcsec for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. Here, we provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.« less

  8. Resolution of massive compact clusters in the 30 Doradus periphery with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Walborn, Nolan R.; Mackenty, John W.; Saha, Abhijit; White, Richard L.; Parker, Joel WM.

    1995-01-01

    Hubble Space Telescope Wide Field/Planetary Camera UBV images of three massive, compact multiple systems with the SNR 30 Dor B/NGC 2060 and 30 Dor C/NGC 2044 are discussed and illustrated. In two cases, WN+OB objects have been resolved into additional components to those previously known from ground-based observations, substantially reducing the luminosities of the WN stars and rendering them currently unidentified; in the third case, the components of a B+K composite-spectrum object have been clearly identified. The results are of significance for evolutionary interpretations of these massive stars and for determinations of the upper IMF in extragalactic systems.

  9. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 23, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA's Hubble Sees Asteroid Spout Six Comet-like Tails

    NASA Image and Video Library

    2013-11-13

    P/2013 P5 on September 10, 2013. --- This NASA Hubble Space Telescope set of images reveals a never-before-seen set of six comet-like tails radiating from a body in the asteroid belt, designated P/2013 P5. The asteroid was discovered as an unusually fuzzy-looking object with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey telescope in Hawaii. The multiple tails were discovered in Hubble images taken on Sept. 10, 2013. When Hubble returned to the asteroid on Sept. 23, the asteroid's appearance had totally changed. It looked as if the entire structure had swung around. One interpretation is that the asteroid's rotation rate has been increased to the point where dust is falling off the surface and escaping into space where the pressure of sunlight sweeps out fingerlike tails. According to this theory, the asteroid's spin has been accelerated by the gentle push of sunlight. The object, estimated to be no more than 1,400 feet across, has ejected dust for at least five months, based on analysis of the tail structure. These visible-light, false-color images were taken with Hubble's Wide Field Camera 3. Object Name: P/2013 P5 Image Type: Astronomical/Annotated Credit: NASA, ESA, and D. Jewitt (UCLA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Delivering Hubble Discoveries to the Classroom

    NASA Astrophysics Data System (ADS)

    Eisenhamer, B.; Villard, R.; Weaver, D.; Cordes, K.; Knisely, L.

    2013-04-01

    Today's classrooms are significantly influenced by current news events, delivered instantly into the classroom via the Internet. Educators are challenged daily to transform these events into student learning opportunities. In the case of space science, current news events may be the only chance for educators and students to explore the marvels of the Universe. Inspired by these circumstances, the education and news teams developed the Star Witness News science content reading series. These online news stories (also available in downloadable PDF format) mirror the content of Hubble press releases and are designed for upper elementary and middle school level readers to enjoy. Educators can use Star Witness News stories to reinforce students' reading skills while exposing students to the latest Hubble discoveries.

  12. Hubble Views a Dwarf Galaxy

    NASA Image and Video Library

    2017-12-08

    The constellation of Ursa Major (The Great Bear) is home to Messier 101, the Pinwheel Galaxy. Messier 101 is one of the biggest and brightest spiral galaxies in the night sky. Like the Milky Way, Messier 101 is not alone, with smaller dwarf galaxies in its neighborhood. NGC 5477, one of these dwarf galaxies in the Messier 101 group, is the subject of this image from the NASA/ESA Hubble Space Telescope. Without obvious structure, but with visible signs of ongoing star birth, NGC 5477 looks much like an typical dwarf irregular galaxy. The bright nebulae that extend across much of the galaxy are clouds of glowing hydrogen gas in which new stars are forming. These glow pinkish red in real life, although the selection of green and infrared filters through which this image was taken makes them appear almost white. The observations were taken as part of a project to measure accurate distances to a range of galaxies within about 30 million light-years from Earth, by studying the brightness of red giant stars. In addition to NGC 5477, the image includes numerous galaxies in the background, including some that are visible right through NGC 5477. This serves as a reminder that galaxies, far from being solid, opaque objects, are actually largely made up of the empty space between their stars. This image is a combination of exposures taken through green and infrared filters using Hubble's Advanced Camera for Surveys. The field of view is approximately 3.3 by 3.3 arcminutes. ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  14. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-08-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by ~64° from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130°. It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast (Δr/r ≈ 0.4). The maximum visible radial extent is ~254 AU. With mean surface brightness of V ≈ 24 mag arcsec-2, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by ~28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  15. Hubble's deepest view ever of the Universe unveils earliest galaxies

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Hubble sees galaxies galore hi-res Size hi-res: 446 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble sees galaxies galore Galaxies, galaxies everywhere - as far as the NASA/ESA Hubble Space Telescope can see. This view of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. Called the Hubble Ultra Deep Field, this galaxy-studded view represents a ‘deep’ core sample of the universe, cutting across billions of light-years. Hubble reveals galactic drama hi-res Size hi-res: 879 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 886 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. Here three galaxies just below centre are enmeshed in battle, their shapes distorted by the brutal encounter. Hubble reveals galactic drama hi-res Size hi-res: 892 kb Credits: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team Hubble reveals galactic drama A galactic brawl. A close encounter with a spiral galaxy. Blue wisps of galaxies. These close-up snapshots of galaxies in the Hubble Ultra Deep Field reveal the drama of galactic life. The galaxies in this panel were plucked from a harvest of nearly 10,000 galaxies in the Ultra Deep Field, the deepest visible-light image of the cosmos. This historic new view is actually made up by two separate images taken by Hubble's Advanced Camera for Surveys (ACS) and the Near Infrared Camera and

  16. Wide-field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399

    NASA Astrophysics Data System (ADS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-05-01

    the literature and split the resulting sample at the median rh value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, langσcmprang = 225 ± 25 km s-1, than their extended counterparts, langσextrang = 317 ± 21 km s-1. Considering the weaker statistical correlation in the GC rh color and the GC rh -R gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  17. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  18. Solar Effects on Tensile and Optical Properties of Hubble Space Telescope Silver-Teflon(Registered Trademark) Insulation

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Dever, Joyce A.; Snyder, Aaron; Kaminski, Sharon; McCarthy, Catherine E.; Rapoport, Alison L.; Rucker, Rochelle N.

    2006-01-01

    A section of the retrieved Hubble Space Telescope (HST) solar array drive arm (SADA) multilayer insulation (MLI), which experienced 8.25 years of space exposure, was analyzed for environmental durability of the top layer of silver-Teflon (DuPont) fluorinated ethylene propylene (Ag-FEP). Because the SADA MLI had solar and anti-solar facing surfaces and was exposed to the space environment for a long duration, it provided a unique opportunity to study solar effects on the environmental degradation of Ag-FEP, a commonly used spacecraft thermal control material. Data obtained included tensile properties, solar absorptance, surface morphology and chemistry. The solar facing surface was found to be extremely embrittled and contained numerous through-thickness cracks. Tensile testing indicated that the solar facing surface lost 60% of its mechanical strength and 90% of its elasticity while the anti-solar facing surface had ductility similar to pristine FEP. The solar absorptance of both the solar facing surface (0.155 plus or minus 0.032) and the anti-solar facing surface (0.208 plus or minus 0.012) were found to be greater than pristine Ag-FEP (0.074). Solar facing and anti-solar facing surfaces were microscopically textured, and locations of isolated contamination were present on the anti-solar surface resulting in increased localized texturing. Yet, the overall texture was significantly more pronounced on the solar facing surface indicating a synergistic effect of combined solar exposure and increased heating with atomic oxygen erosion. The results indicate a very strong dependence of degradation, particularly embrittlement, upon solar exposure with orbital thermal cycling having a significant effect.

  19. A Precision Metrology System for the Hubble Space Telescope Wide Field Camera 3 Instrument

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2003-01-01

    The Wide Field Camera 3 (WFC3) instrument for the Hubble Space Telescope (HST) will replace the current Wide Field and Planetary Camera 2 (WFPC2). By providing higher throughput and sensitivity than WFPC2, and operating from the near-IR to the near-UV, WFC3 will once again bring the performance of HST above that from ground-based observatories. Crucial to the integration of the WFC3 optical bench is a pair of 2-axis cathetometers used to view targets which cannot be seen by other means when the bench is loaded into its enclosure. The setup and calibration of these cathetometers is described, along with results from a comparison of the cathetometer system with other metrology techniques.

  20. Hubble Space Telescope Discovery of a Probable Caustic-Crossing Event in the MACS1149 Galaxy Cluster Field

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Rodney, Steven; Diego, Jose Maria; Zitrin, Adi; Broadhurst, Tom; Selsing, Jonatan; Balestra, Italo; Benito, Alberto Molino; Bradac, Marusa; Bradley, Larry; Brammer, Gabriel; Cenko, Brad; Christensen, Lise; Coe, Dan; Filippenko, Alexei V.; Foley, Ryan; Frye, Brenda; Graham, Melissa; Graur, Or; Grillo, Claudio; Hjorth, Jens; Howell, Andy; Jauzac, Mathilde; Jha, Saurabh; Kaiser, Nick; Kawamata, Ryota; Kneib, Jean-Paul; Lotz, Jennifer; Matheson, Thomas; McCully, Curtis; Merten, Julian; Nonino, Mario; Oguri, Masamune; Richard, Johan; Riess, Adam; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Smith, Nathan; Strolger, Lou; Treu, Tommaso; Wang, Xin; Weiner, Ben; Williams, Liliya; Zheng, Weikang

    2016-05-01

    While monitoring the MACS1149 (z = 0.54) galaxy cluster as part of the RefsdalRedux program (PID 14199; PI Kelly) with the Hubble Space Telescope (HST) WFC3 IR camera, we have detected a rising transient that appears to be coincident ( Target-of-opportunity optical follow-up imaging in several ACS and WFC3 bands with the FrontierSN program (PID 14208; PI Rodney) has revealed that its rest-frame ultraviolet through optical spectrum may be reasonably well fit with that of a B star at z=1.49 exhibiting a strong Balmer break.

  1. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    NASA Technical Reports Server (NTRS)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  2. Hubble's diagram and cosmic expansion

    PubMed Central

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology. PMID:14695886

  3. Hubble Captures Spectacular "Landscape" in the Carina Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 NASA's Hubble Space Telescope captured this billowing cloud of cold interstellar gas and dust rising from a tempestuous stellar nursery located in the Carina Nebula, 7,500 light-years away in the southern constellation Carina. This pillar of dust and gas serves as an incubator for new stars and is teeming with new star-forming activity. Hot, young stars erode and sculpt the clouds into this fantasy landscape by sending out thick stellar winds and scorching ultraviolet radiation. The low-density regions of the nebula are shredded while the denser parts resist erosion and remain as thick pillars. In the dark, cold interiors of these columns new stars continue to form. In the process of star formation, a disk around the proto-star slowly accretes onto the star's surface. Part of the material is ejected along jets perpendicular to the accretion disk. The jets have speeds of several hundreds of miles per second. As these jets plow into the surround nebula, they create small, glowing patches of nebulosity, called Herbig-Haro (HH) objects. Long streamers of gas can be seen shooting in opposite directions off the pedestal on the upper right-hand side of the image. Another pair of jets is visible in a peak near the top-center of the image. These jets (known as HH 901 and HH 902, respectively) are common signatures of the births of new stars. This image celebrates the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. Hubble's Wide Field Camera 3 observed the pillar on Feb. 1-2, 2010. The colors in this composite image correspond to the glow of oxygen (blue), hydrogen and nitrogen (green), and sulfur (red). Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization

  4. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  5. Hubble's View of a Dying Star

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A recent image of a dying star containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. The image of protoplanetary nebula IRAS22036+5306 (in the Infrared Astronomical Satellite Point Source Catalog) was taken on Dec. 15, 2001, by the Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, onboard NASA's Hubble Space Telescope. It is one of the best images yet to capture a fleeting period at the end of a Sun-like star's life, called the protoplanetary nebula phase.

    This phase, which looks like a beautiful cloud of glowing gas lit up by ultraviolet light from the star's core, results when a star evolves into a bloated red giant and sheds its outer layers. 'Protoplanetary nebulas are rare objects with short lifetimes,' said JPL astrophysicist Dr. Raghvendra Sahai. 'It has generally been very difficult to obtain images of such objects in which their structure can be resolved in detail.'

    This image is particularly important because it contains a series of what Sahai and his colleagues call 'knotty jets,' blob-like objects emerging along roughly straight lines from the center of the cigar-shaped, bipolar nebula (See insets). There are various theories about what may produce such jets, though it is hard to prove their existence due to their short-lived, episodic nature. Detailed multi-wavelength studies of these nebulas with NASA's Great Observatories are being carried out to understand the nature and origin of these enigmatic jets, and how they may be sculpting shrouds of dying stars into exotic shapes. The Hubble Space Telescope is one of NASA's Great Observatories.

  6. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

    NASA Image and Video Library

    1997-01-18

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.

  7. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Hubble Images Reveal Jupiter's Auroras

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.

    The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.

    The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.

    The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.

    The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.

    This image and

  9. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  10. Total Dose Survivability of Hubble Electronic Components

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.

    2017-01-01

    A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.

  11. Hubble Finds Misbehaving Spiral

    NASA Image and Video Library

    2016-01-29

    Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable. Located about one billion light-years away in the constellation of Eridanus, this striking galaxy — known as LO95 0313-192 — has a spiral shape similar to that of the Milky Way. It has a large central bulge, and arms speckled with brightly glowing gas mottled by thick lanes of dark dust. Its companion, sitting in the right of the frame, is known rather unpoetically as [LOY2001] J031549.8-190623. Jets, outbursts of superheated gas moving at close to the speed of light, have long been associated with the cores of giant elliptical galaxies, and galaxies in the process of merging. However, in an unexpected discovery, astronomers found LO95 0313-192, even though it is a spiral galaxy, to have intense radio jets spewing out from its center. The galaxy appears to have two more regions that are also strongly emitting in the radio part of the spectrum, making it even rarer still. The discovery of these giant jets in 2003 — not visible in this image, but indicated in this earlier Hubble composite — has been followed by the unearthing of a further three spiral galaxies containing radio-emitting jets in recent years. This growing class of unusual spirals continues to raise significant questions about how jets are produced within galaxies, and how they are thrown out into the cosmos. Image credit: ESA/Hubble & NASA; acknowledgement, Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Hubble Space Telescope Parallel Observations Supporting the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Caldwell, J.; Borucki, W.

    1999-09-01

    Kepler will detect Earth-like planets by monitoring 100,000 stars over four years for planetary transits. The required photometric precision is one part in 100.000. It is expected that if such ``Earths" are common, about 200 will be detected. In order to achieve the necessary precision, Kepler will be intentionally unfocussed, spreading the light of a single star over an area of 25 pixels. This will minimize the effect of space-craft jitter on photon counting. However, it will also allow the possibility of confusion with background objects which may be in the line of sight to a Kepler target. The greatest concern is that there may be a distant eclipsing binary star which could introduce a photometric signature that is similar to a planetary transit. For the brightest stars in Kepler's intended magnitude range, which is 9 to 14 mv, this will not be serious, because the profiles are different: eclipses have a ``V" shape, transits are flat-bottomed, and Kepler will differentiate the two. However, in this magnitude range, the number of stars per magnitude doubles at each fainter magnitude. More than half of Kepler's discoveries will be in the magnitude which is the faintest in which the precision of the photometry will be able to reveal a transit. That is, most of the discoveries will be low signal to noise events, in which the reality of a small decrease in the light from the region of the target star is certain, but the details of the decrease are not. Hubble Space Telescope images indicate there will be, on average, 0.5 background objects in the magnitude range that could be a problem for Kepler in the 25 pixel blur region of Kepler's optics. Approximately half of the stars will be binaries. The probability that a binary will be eclipsing is the same as that a planetary orbit will be transitting. In order to reduce the chance of a misidentification, various strategies can be used. Rather than integrating the signal over the 25 pixels and returning only the sum, the

  13. Hubble Unveils a Tapestry of Dazzling Diamond-Like Stars

    NASA Image and Video Library

    2016-01-21

    Resembling an opulent diamond tapestry, this image from NASA Hubble Space Telescope shows a glittering star cluster that contains a collection of some of the brightest stars seen in our Milky Way galaxy called Trumpler 14.

  14. Star from the Lizard Constellation Photobombs Hubble Observation

    NASA Image and Video Library

    2017-12-08

    In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right — it has bright bursts of star formation and recorded supernova explosions— it blends into the background somewhat thanks to the gloriously bright star hogging the limelight next to it. The bright object seen in this Hubble image is a single and little-studied star named TYC 3203-450-1, located in the constellation of Lacerta (The Lizard). The star is much closer than the much more distant galaxy. Only this way can a normal star outshine an entire galaxy, consisting of billions of stars. Astronomers studying distant objects call these stars “foreground stars” and they are often not very happy about them, as their bright light is contaminating the faint light from the more distant and interesting objects they actually want to study. In this case, TYC 3203-450-1 is million times closer than NGC 7250, which lies more than 45 million light-years away from us. If the star were the same distance from us as NGC 7250, it would hardly be visible in this image. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Properties of the nuclei and comae of 10 ecliptic comets from Hubble Space Telescope multi-orbit observations

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Toth, I.; Weaver, H. A.; A'Hearn, M. F.; Jorda, L.

    2011-04-01

    We report on our on-going effort to detect and characterize cometary nuclei with the Hubble Space Telescope (HST). During cycle 9 (2000 July to 2001 June), we performed multi-orbit observations of 10 ecliptic comets with the Wide Field Planetary Camera 2. Nominally, eight contiguous orbits covering a time interval of ˜11 h were devoted to each comet but a few orbits were occasionally lost. In addition to the standard R band, we could additionally observe four of them in the V band and the two brightest ones in the B band. Time series photometry was used to constrain the size, shape and rotational period of the 10 nuclei. Assuming a geometric albedo of 0.04 for the R band, a linear phase law with a coefficient of 0.04 mag deg-1 and an opposition effect similar to that of comet 19P/Borrelly, we determined the following mean values of the effective radii 47P/Ashbrook-Jackson: 2.86±0.08 km, 61P/Shajn-Schaldach: 0.62±0.02 km, 70P/Kojima: 1.83±0.05 km, 74P/Smirnova-Chernykh: 2.23±0.04 km, 76P/West-Kohoutek-Ikemura: 0.30±0.02 km, 82P/Gehrels 3: 0.69±0.02 km, 86P/Wild 3: 0.41±0.03 km, 87P/Bus: 0.270.01 km, 110P/Hartley 3: 2.15±0.04 km and 147P/Kushida-Muramatsu: 0.21±0.01 km. Because of the limited time coverage (˜11 h), the rotational periods could not be accurately determined, multiple solutions were sometime found and three periods were not constrained at all. Our estimates range from ˜5 to ˜32 h. The lower limits for the ratio a/b of the semi-axis of the equivalent spheroids range from 1.10 (70P) to 2.20 (87P). The four nuclei for which we could measure (V-R) are all significantly redder than the Sun, with 86P/Wild 3 (V-R) = 0.86 ± 0.10 appearing as an ultrared object. We finally determined the dust activity parameter Afρ of their coma in the R band, the colour indices and the reflectivity spectra of four of them. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at Space Telescope Science Institute, which is operated by the

  16. Hubble Space Telescope - First Servicing Mission: Down to Earth Logistics - From GSFC to KSC and Back

    NASA Technical Reports Server (NTRS)

    Kubicko, Richard M.; Herrick, Robert

    1995-01-01

    The Hubble Space Telescope First Servicing Mission is a major accomplishment for NASA and has drawn world-wide attention and interest. The extravehicular servicing and repair activities performed by the STS-61 crew were the most ambitious ever undertaken. Their unprecedented success in performing on-orbit repair and maintenance, particularly in correcting the aberration in the primary mirror, has enabled the HST to provide sensational images and the anticipation of exciting scientific discoveries. Although the whole world watched the televised logistics activities (on-orbit maintenance) that took place in space, few are aware of the time and effort that went into planning and executing the space logistics that takes place with our feet on the ground. This paper addresses a major part of that effort - the packaging, handling, and transportation (PH&T) activities required to ship the GSFC HST space flight hardware and ground support equipment to KSC for launch and the post launch return to GSFC. It addresses the logistics and transportation planning for the containers for the Solar Array Carrier, the Orbital Replacement Unit Carrier, and the Flight Support System and their transporters, and the over land and water portions of the shipments.

  17. Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Heng, Kevin; Kirshner, Robert P.; Challis, Peter; Bouchet, Patrice; Crotts, Arlin; Dwek, Eli; Fransson, Claes; Garnavich, Peter M.; hide

    2010-01-01

    The young remnant of supernova 1987A (SN 1987A) offers an unprecedented glimpse into the hydrodynamics and kinetics of fast astrophysical shocks. We have been monitoring SN 1987A with the Hubble Space Telescope (HST) since it was launched. The recent repair of the Space Telescope Imaging Spectrograph (STIS) allows us to compare observations in 2004, just before its demise, with those in 2010, shortly after its resuscitation by NASA astronauts. We find that the Ly-alpha and H-alpha lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We report evidence for nearly coherent, resonant scattering of Lya photons (to blueshifts approximately -12,000 km /s) from hotspots on the equatorial ring. We also report emission to the red of Ly-alpha that we attribute to N v lambda lambda 1239,1243 Angstrom line emission. These lines are detectable because, unlike hydrogen atoms, N4+ ions emit hundreds of photons before they are ionized. The profiles of the N v lines differ markedly from that of H-alpha. We attribute this to scattering of N4+ ions by magnetic fields in the ionized plasma. Thus, N v emission provides a unique probe of the isotropization zone of the collisionless shock. Observations with the recently installed Cosmic Origins Spectrograph (COS) will enable us to observe the N v lambda lambda 1239,1243 Angstrom line profiles with much higher signal-to-noise ratios than possible with STIS and may reveal lines of other highly ionized species (such as C IVlambda lambda 1548,1551 Angstrom) that will test our explanation for the N v emission

  18. TURTLE IN SPACE DESCRIBES NEW HUBBLE IMAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has shown us that the shrouds of gas surrounding dying, sunlike stars (called planetary nebulae) come in a variety of strange shapes, from an 'hourglass' to a 'butterfly' to a 'stingray.' With this image of NGC 6210, the Hubble telescope has added another bizarre form to the rogues' gallery of planetary nebulae: a turtle swallowing a seashell. Giving this dying star such a weird name is less of a challenge than trying to figure out how dying stars create these unusual shapes. The larger image shows the entire nebula; the inset picture captures the complicated structure surrounding the dying star. The remarkable features of this nebula are the numerous holes in the inner shells with jets of material streaming from them. These jets produce column-shaped features that are mirrored in the opposite direction. The multiple shells of material ejected by the dying star give this planetary nebula its odd form. In the 'full nebula' image, the brighter central region looks like a 'nautilus shell'; the fainter outer structure (colored red) a 'tortoise.' The dying star is the white dot in the center. Both pictures are composite images based on observations taken Aug. 6, 1997 with the telescope's Wide Field and Planetary Camera 2. Material flung off by this central star is streaming out of holes it punched in the nautilus shell. At least four jets of material can be seen in the 'full nebula' image: a pair near 6 and 12 o'clock and another near 2 and 8 o'clock. In each pair, the jets are directly opposite each other, exemplifying their 'bipolar' nature. The jets are thought to be driven by a 'fast wind' - material propelled by radiation from the hot central star. In the inner 'nautilus' shell, bright rims outline the escape holes created by this 'wind,' such as the one at 2 o'clock. This same 'wind' appears to give rise to the prominent outer jet in the same direction. The hole in the inner shell acts like a hose nozzle, directing the flow of

  19. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the

  20. The M31 Velocity Vector. I. Hubble Space Telescope Proper-motion Measurements

    NASA Astrophysics Data System (ADS)

    Sohn, Sangmo Tony; Anderson, Jay; van der Marel, Roeland P.

    2012-07-01

    We present the first proper-motion (PM) measurements for the galaxy M31. We obtained new V-band imaging data with the Hubble Space Telescope ACS/WFC and the WFC3/UVIS instruments of three fields: a spheroid field near the minor axis, an outer disk field along the major axis, and a field on the Giant Southern Stream. The data provide five to seven year time baselines with respect to pre-existing deep first-epoch observations of the same fields. We measure the positions of thousands of M31 stars and hundreds of compact background galaxies in each field. High accuracy and robustness is achieved by building and fitting a unique template for each individual object. The average PM for each field is obtained from the average motion of the M31 stars between the epochs with respect to the background galaxies. For the three fields, the observed PMs (μ W , μ N ) are, in units of mas yr-1, (- 0.0458, -0.0376) ± (0.0165, 0.0154), (- 0.0533, -0.0104) ± (0.0246, 0.0244), and (- 0.0179, -0.0357) ± (0.0278, 0.0272), respectively. The ability to average over large numbers of objects and over the three fields yields a final displacement accuracy of a few thousandths of a pixel, corresponding to only 12 μas yr-1. This is comparable to what has been achieved for other Local Group galaxies using Very Long Baseline Array observations of water masers. Potential systematic errors are controlled by an analysis strategy that corrects for detector charge transfer inefficiency, spatially and time-dependent geometric distortion, and point-spread function variations. The robustness of the PM measurements and uncertainties are supported by the fact that data from different instruments, taken at different times and with different telescope orientations, as well as measurements of different fields, all yield statistically consistent results. Papers II and III of this series explore the implications of the new measurements for our understanding of the history, future, and mass of the Local

  1. Dual-mode disturbance-accommodating pointing controller for Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Addington, Stewart I.; Johnson, C. D.

    1995-03-01

    Cyclic thermal expansions and mechanical stiction effects in the solar arrays on the Hubble Space Telescope (HST) are triggering repeated occurrences of damped, relaxation-type flex-body vibrations of the solar arrays. Those solar array vibrations are, in turn, causing unwanted deviations of the telescope from its specified pointing direction. In this paper we propose two strategies one can adopt in designing a telescope-pointing controller to cope with the aforementioned disturbances: 1) a total isolation (TI) control strategy whereby the HST controller torques are designed to adaptively counteract and cancel out the persistent disturbing torques that are causing the unwanted telescope motions and 2) an array damping (AD) control strategy whereby the HST controller torques are used to actively augment the natural dampening of the solar array vibrations and the attendant telescope motions, between triggerings of the stiction-related flex-body relaxation oscillations. Using the principles of disturbance accommodation control theory, a dual-mode controller for a generic, planar-motion (single-axis) model of the HST is proposed. This controller incorporates both the TI and AD modes of disturbance accommodation. Simulation studies of the closed-loop system using generic parameter values clearly indicate, qualitatively, the enhanced pointing performance such a controller can achieve.

  2. Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe

    NASA Image and Video Library

    2017-12-08

    NASA image release September 25, 2012 Like photographers assembling a portfolio of best shots, astronomers have assembled a new, improved portrait of mankind's deepest-ever view of the universe. Called the eXtreme Deep Field, or XDF, the photo was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full moon. The Hubble Ultra Deep Field is an image of a small area of space in the constellation Fornax, created using Hubble Space Telescope data from 2003 and 2004. By collecting faint light over many hours of observation, it revealed thousands of galaxies, both nearby and very distant, making it the deepest image of the universe ever taken at that time. The new full-color XDF image is even more sensitive, and contains about 5,500 galaxies even within its smaller field of view. The faintest galaxies are one ten-billionth the brightness of what the human eye can see. To read more go to:http://www.nasa.gov/mission_pages/hubble/science/xdf.html Credit: NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Hubble Peers Through the Elliptical Haze

    NASA Image and Video Library

    2017-12-08

    Like a lighthouse in the fog, the luminous core of NGC 2768 slowly fades outwards to a dull white haze in this image taken by the NASA/ESA Hubble Space Telescope. NGC 2768 is an elliptical galaxy in the constellation of Ursa Major (The Great Bear). It is a huge bundle of stars, dominated by a bright central region, where a supermassive black hole feasts on a constant stream of gas and dust being fed to it by its galactic host. The galaxy is also marked by a prominent plume of dust reaching out from the center and lying perpendicular to the galaxy’s plane. This dust conceals a symmetrical, S-shaped pair of jets that are being produced by the supermassive black hole as it feeds. Credit: ESA/Hubble, NASA and S. Smartt (Queen's University Belfast) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Imaging of four planetary nebulae in the Magellanic Clouds using the Hubble Space Telescope Faint Object Camera

    NASA Technical Reports Server (NTRS)

    Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.

    1992-01-01

    Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.

  5. Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer Observations of the GLIMPSE9 Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John; Trombley, Christine

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ~1 mag, indicating an interstellar extinction A _K_s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun, integrated down to 1 M sun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  6. Space Balls Artist Concept

    NASA Image and Video Library

    2010-07-22

    NASA Spitzer Space Telescope has at last found buckyballs resembling soccer balls in space shown in this artist concept using Hubble picture of the NGC 2440 nebula. Hubble image cred: NASA, ESA, STScI

  7. Version 1 of the Hubble Source Catalog

    NASA Astrophysics Data System (ADS)

    Whitmore, Bradley C.; Allam, Sahar S.; Budavári, Tamás; Casertano, Stefano; Downes, Ronald A.; Donaldson, Thomas; Fall, S. Michael; Lubow, Stephen H.; Quick, Lee; Strolger, Louis-Gregory; Wallace, Geoff; White, Richard L.

    2016-06-01

    The Hubble Source Catalog is designed to help optimize science from the Hubble Space Telescope (HST) by combining the tens of thousands of visit-based source lists in the Hubble Legacy Archive (HLA) into a single master catalog. Version 1 of the Hubble Source Catalog includes WFPC2, ACS/WFC, WFC3/UVIS, and WFC3/IR photometric data generated using SExtractor software to produce the individual source lists. The catalog includes roughly 80 million detections of 30 million objects involving 112 different detector/filter combinations, and about 160,000 HST exposures. Source lists from Data Release 8 of the HLA are matched using an algorithm developed by Budavári & Lubow. The mean photometric accuracy for the catalog as a whole is better than 0.10 mag, with relative accuracy as good as 0.02 mag in certain circumstances (e.g., bright isolated stars). The relative astrometric residuals are typically within 10 mas, with a value for the mode (I.e., most common value) of 2.3 mas. The absolute astrometric accuracy is better than 0''\\hspace{-0.5em}. 1 for most sources, but can be much larger for a fraction of fields that could not be matched to the PanSTARRS, SDSS, or 2MASS reference systems. In this paper we describe the database design with emphasis on those aspects that enable the users to fully exploit the catalog while avoiding common misunderstandings and potential pitfalls. We provide usage examples to illustrate some of the science capabilities and data quality characteristics, and briefly discuss plans for future improvements to the Hubble Source Catalog.

  8. Hubble Paints a Spattering of Blue

    NASA Image and Video Library

    2014-09-12

    Far beyond the stars in the constellation of Leo (The Lion) is irregular galaxy IC 559. IC 559 is not your everyday galaxy. With its irregular shape and bright blue spattering of stars, it is a fascinating galactic anomaly. It may look like sparse cloud, but it is in fact full of gas and dust which is spawning new stars. Discovered in 1893, IC 559 lacks the symmetrical spiral appearance of some of its galactic peers and not does not conform to a regular shape. It is actually classified as a “type Sm” galaxy — an irregular galaxy with some evidence for a spiral structure. Irregular galaxies make up about a quarter of all known galaxies and do not fall into any of the regular classes of the Hubble sequence. Most of these uniquely shaped galaxies were not always so — IC 559 may have once been a conventional spiral galaxy that was then distorted and twisted by the gravity of a nearby cosmic companion. This image, captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3, combines a wide range of wavelengths spanning the ultraviolet, optical, and infrared parts of the spectrum. Image credit: ESA/Hubble, NASA, D. Calzetti (UMass) and the LEGUS Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Hubble Sees 'Ghost Light' From Dead Galaxies

    NASA Image and Video Library

    2014-10-30

    NASA’s Hubble Space Telescope has picked up the faint, ghostly glow of stars ejected from ancient galaxies that were gravitationally ripped apart several billion years ago. The mayhem happened 4 billion light-years away, inside an immense collection of nearly 500 galaxies nicknamed “Pandora’s Cluster,” also known as Abell 2744. The scattered stars are no longer bound to any one galaxy, and drift freely between galaxies in the cluster. By observing the light from the orphaned stars, Hubble astronomers have assembled forensic evidence that suggests as many as six galaxies were torn to pieces inside the cluster over a stretch of 6 billion years. Read more: 1.usa.gov/1yK2Ucp Credit: NASA/ESA/IAC/HFF Team, STScI NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Hubble Frontier Fields view of MACSJ0717.5+3745

    NASA Image and Video Library

    2015-10-22

    This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACSJ0717.5+3745. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Due to the huge mass of the cluster it is bending the light of background objects, acting as a magnifying lens. It is one of the most massive galaxy clusters known, and it is also the largest known gravitational lens. Of all of the galaxy clusters known and measured, MACS J0717 lenses the largest area of the sky.

  11. HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Brown, Justin

    2013-09-20

    Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less

  12. Crew of Hubble Space Telescope servicing mission visits Europe

    NASA Astrophysics Data System (ADS)

    1994-01-01

    The Hubble Space telescope servicing mission in December (STS-61) was a great success and the fully refurbished orbiting telescope produced absolutely remarkable first results just two weeks ago. The 7-member crew who carried out the mission will soon be in Europe to share their experience with the Press, ESA space specialists and the European space community. Public conferences will also be held in Switzerland, the home country of ESA astronaut Claude Nicollier. The visit of the STS-61 crew is scheduled as follows: Friday 11 February, 1994 - ESA Paris, France Presentation and Press Conference Location: ESA, 8/10 Rue Mario Nikis, 75015 Paris time: 16:00 hrs - 17:30 hrs contact: ESA, Public Relations Office Tel. (+33) 1 42 73 71 55 Fax. (+33) 1 42 73 76 90 Monday 14 February, 1994 - British Aerospace, Bristol, United Kingdom Presentation and Press Conference Location: British Aerospace, FPC 333, Filton, Bristol BS12 7QW time: 10:00 hrs - 12:00 hrs contact: BAe, Public Relations Tel. (+44) 272 36 33 69 Tel. (+44) 272 36 33 68 Tuesday 15 February, 1994 - ESA/ESTEC, Noordwijk, the Netherlands Presentation and Press Conference Location: Noordwijk Space Expo, Keplerlaan 3, 2201 AZ Noordwijk, the Netherlands time: 09:30 hrs - 12:00 hrs contact: ESTEC Public Relations Office Tel. (+31) 1719 8 3006 Fax. (+31) 1719 17 400 Wednesday 16 February, 1944 - ESO, Garching - Munich, Germany Presentation and Press Conference Location: European Southern Observatory, Karl- Schwarzschild-Str. 2, 85748 Garching -Munich, Germany time: to be decided contact: ESO Information Service Tel. (+49) 89 32 006 276 Fax. (+49) 89 320 23 62 Thursday 17 February, 1994 - Bern, Switzerland a. Presentation and Press Conference Location: Hotel Bern, Zeughausgasse 9, 3001 Bern, Switzerland time: 09:30 hrs contact: Press & Information Service of the Federal Dept. for Education & Sciences Tel. (+41) 31 322 80 34 Fax. (+41) 31 312 30 15 b. Public conference Location: University of Bern, Institute of Physics

  13. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  14. Hubble Sees Stars and a Stripe in Celestial Fireworks

    NASA Image and Video Library

    2008-07-01

    A delicate ribbon of gas floats eerily in our galaxy. This image, taken by NASA Hubble Space Telescope, is a very thin section of a supernova remnant caused by a stellar explosion that occurred more than 1,000 years ago.

  15. Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-01-01

    We analyse newly obtained Hubble Space Telescope imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1, which has a well resolved source, we break the mass-versus-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 ± 0.15 × 1010 M⊙, a 7 per cent increase on the previous estimate. For SNL-2, the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible active galactic nucleus microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2's nearby companion galaxy, measuring a lensing mass of 12.59 ± 0.30 × 1010 M⊙, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent, respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 ± 0.09 and 0.96 ± 0.10 for SNL-1 and SNL-2, relative to a Milky Way like (Kroupa) initial mass function.

  16. HUBBLE SPACE TELESCOPE SPECTROSCOPY OF BROWN DWARFS DISCOVERED WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy

    2015-05-10

    We present a sample of brown dwarfs identified with the Wide-field Infrared Survey Explorer (WISE) for which we have obtained Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (22 in total) was observed with the G141 grism covering 1.10–1.70 μm, while 15 were also observed with the G102 grism, which covers 0.90–1.10 μm. The additional wavelength coverage provided by the G102 grism allows us to (1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.,ammonia bands) and (2) construct a smooth spectral sequence across the T/Y boundary. We find no evidencemore » of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35+280548.5 (Y0.5), WISE J120604.38+840110.6 (Y0), and WISE J235402.77+024015.0 (Y1), are the 19th, 20th, and 21st spectroscopically confirmed Y dwarfs to date. We also present HST grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.« less

  17. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1995-12-01

    This deepest-ever view of the universe unveils myriad galaxies back to the begirning of time. Several hundred, never-before-seen, galaxies are visible in this view of the universe, called Hubble Deep Field (HDF). Besides the classical spiral and elliptical shaped galaxies, there is a bewildering variety of other galaxy shapes and colors that are important clues to understanding the evolution of the universe. Some of the galaxies may have formed less than one-billion years after the Big Bang. The image was assembled from many separate exposures with the Wide Field/Planetary Camera 2 (WF/PC2), for ten consecutive days between December 18, 1995 and December 28, 1995. This true-color view was assembled from separate images taken with blue, red, and infrared light. By combining these separate images into a single color picture, astronomers will be able to infer, at least statistically, the distance, age, and composition of galaxies in the field. Blue objects contain young stars and/or are relatively close, while redder objects contain older stellar populations and/or are farther away.

  18. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-05-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Read more: www.nasa.gov/feature/hubble-observes-one-of-a-kind-star-n... Credits: NASA/Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Hubble Finds a Lenticular Galaxy Standing Out in the Crowd

    NASA Image and Video Library

    2017-12-08

    A lone source shines out brightly from the dark expanse of deep space, glowing softly against a picturesque backdrop of distant stars and colorful galaxies. Captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), this scene shows PGC 83677, a lenticular galaxy — a galaxy type that sits between the more familiar elliptical and spiral varieties. It reveals both the relatively calm outskirts and intriguing core of PGC 83677. Here, studies have uncovered signs of a monstrous black hole that is spewing out high-energy X-rays and ultraviolet light. Credit: NASA/ESA/Hubble; acknowledgements: Judy Schmidt (Geckzilla) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's Hubble Takes Close-up Portrait of Jupiter

    NASA Image and Video Library

    2017-12-08

    On April 3, 2017, as Jupiter made its nearest approach to Earth in a year, NASA’s Hubble Space Telescope viewed the solar system’s largest planet in all of its up-close glory. At a distance of 415 million miles (668 million kilometers) from Earth, Jupiter offered spectacular views of its colorful, roiling atmosphere, the legendary Great Red Spot, and it smaller companion at farther southern latitudes dubbed “Red Spot Jr.” Read more: go.nasa.gov/2o7tOhH Photo details: This dazzling Hubble Space Telescope photo of #Jupiter was taken when it was comparatively close to Earth, at a distance of 415 million miles. Hubble reveals the intricate, detailed beauty of Jupiter's clouds as arranged into bands of different latitudes, known as tropical regions. These bands are produced by air flowing in different directions at various latitudes. Lighter colored areas, called zones, are high-pressure where the atmosphere rises. Darker low-pressure regions where air falls are called belts. The planet's trademark, the Great Red Spot, is a long-lived storm roughly the diameter of Earth. Much smaller storms appear as white or brown-colored ovals. Such storms can last as little as a few hours or stretch on for centuries. Credit: NASA, ESA, and A. Simon (NASA Goddard) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram