Sample records for obtained simulation results

  1. Optimization of the parameters for obtaining zirconia-alumina coatings, made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    The K-Sommerfeld values (K) and the melting percentage (% F) obtained by numerical simulation using the Jets et Poudres software were used to find the projection parameters of zirconia-alumina coatings by thermal spraying flame, in order to obtain coatings with good morphological and structural properties to be used as thermal insulation. The experimental results show the relationship between the Sommerfeld parameter and the porosity of the zirconia-alumina coatings. It is found that the lowest porosity is obtained when the K-Sommerfeld value is close to 45 with an oxidant flame, on the contrary, when superoxidant flames are used K values are close 52, which improve wear resistance.

  2. DKIST Adaptive Optics System: Simulation Results

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Schmidt, Dirk

    2016-05-01

    The 4 m class Daniel K. Inouye Solar Telescope (DKIST), currently under construction, will be equipped with an ultra high order solar adaptive optics (AO) system. The requirements and capabilities of such a solar AO system are beyond those of any other solar AO system currently in operation. We must rely on solar AO simulations to estimate and quantify its performance.We present performance estimation results of the DKIST AO system obtained with a new solar AO simulation tool. This simulation tool is a flexible and fast end-to-end solar AO simulator which produces accurate solar AO simulations while taking advantage of current multi-core computer technology. It relies on full imaging simulations of the extended field Shack-Hartmann wavefront sensor (WFS), which directly includes important secondary effects such as field dependent distortions and varying contrast of the WFS sub-aperture images.

  3. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  4. Analysis of the impact of simulation model simplifications on the quality of low-energy buildings simulation results

    NASA Astrophysics Data System (ADS)

    Klimczak, Marcin; Bojarski, Jacek; Ziembicki, Piotr; Kęskiewicz, Piotr

    2017-11-01

    The requirements concerning energy performance of buildings and their internal installations, particularly HVAC systems, have been growing continuously in Poland and all over the world. The existing, traditional calculation methods following from the static heat exchange model are frequently not sufficient for a reasonable heating design of a building. Both in Poland and elsewhere in the world, methods and software are employed which allow a detailed simulation of the heating and moisture conditions in a building, and also an analysis of the performance of HVAC systems within a building. However, these systems are usually difficult in use and complex. In addition, the development of a simulation model that is sufficiently adequate to the real building requires considerable time involvement of a designer, is time-consuming and laborious. A simplification of the simulation model of a building renders it possible to reduce the costs of computer simulations. The paper analyses in detail the effect of introducing a number of different variants of the simulation model developed in Design Builder on the quality of final results obtained. The objective of this analysis is to find simplifications which allow obtaining simulation results which have an acceptable level of deviations from the detailed model, thus facilitating a quick energy performance analysis of a given building.

  5. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less

  6. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  7. Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toullelan, Gwénaël; Raillon, Raphaële; Chatillon, Sylvain

    The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.

  8. Long-range speckle imaging theory, simulation, and brassboard results

    NASA Astrophysics Data System (ADS)

    Riker, Jim F.; Tyler, Glenn A.; Vaughn, Jeff L.

    2017-09-01

    In the SPIE 2016 Unconventional Imaging session, the authors laid out a breakthrough new theory for active array imaging that exploits the speckle return to generate a high-resolution picture of the target. Since then, we have pursued that theory even in long-range (<1000-km) engagement scenarios and shown how we can obtain that high-resolution image of the target using only a few illuminators, or by using many illuminators. There is a trade of illuminators versus receivers, but many combinations provide the same synthetic aperture resolution. We will discuss that trade, along with the corresponding radiometric and speckle-imaging Signal-to-Noise Ratios (SNR) for geometries that can fit on relatively small aircraft, such as an Unmanned Aerial Vehicle (UAV). Furthermore, we have simulated the performance of the technique, and we have created a laboratory version of the approach that is able to obtain high-resolution speckle imagery. The principal results presented in this paper are the Signal to Noise Ratios (SNR) for both the radiometric and the speckle imaging portions of the problem, and the simulated results obtained for representative arrays.

  9. Comparison between simulations and lab results on the ASSIST test-bench

    NASA Astrophysics Data System (ADS)

    Le Louarn, Miska; Madec, Pierre-Yves; Kolb, Johann; Paufique, Jerome; Oberti, Sylvain; La Penna, Paolo; Arsenault, Robin

    2016-07-01

    We present the latest comparison results between laboratory tests carried out on the ASSIST test bench and Octopus end-to end simulations. We simulated, as closely to the lab conditions as possible, the different AOF modes (Maintenance and commissioning mode (SCAO), GRAAL (GLAO in the near IR), Galacsi Wide Field mode (GLAO in the visible) and Galacsi narrow field mode (LTAO in the visible)). We then compared the simulation results to the ones obtained on the lab bench. Several aspects were investigated, like number of corrected modes, turbulence wind speeds, LGS photon flux etc. The agreement between simulations and lab is remarkably good for all investigated parameters, giving great confidence in both simulation tool and performance of the AO system in the lab.

  10. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    NASA Astrophysics Data System (ADS)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  11. Fast Plasma Instrument for MMS: Simulation Results

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.

    2008-01-01

    Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the

  12. A method for data handling numerical results in parallel OpenFOAM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Alin; Muntean, Sebastian

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  13. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  14. Earth resources mission performance studies. Volume 2: Simulation results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Simulations were made at three month intervals to investigate the EOS mission performance over the four seasons of the year. The basic objectives of the study were: (1) to evaluate the ability of an EOS type system to meet a representative set of specific collection requirements, and (2) to understand the capabilities and limitations of the EOS that influence the system's ability to satisfy certain collection objectives. Although the results were obtained from a consideration of a two sensor EOS system, the analysis can be applied to any remote sensing system having similar optical and operational characteristics. While the category related results are applicable only to the specified requirement configuration, the results relating to general capability and limitations of the sensors can be applied in extrapolating to other U.S. based EOS collection requirements. The TRW general purpose mission simulator and analytic techniques discussed in this report can be applied to a wide range of collection and planning problems of earth orbiting imaging systems.

  15. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  16. Simulation of uranium and plutonium oxides compounds obtained in plasma

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  17. Reliable results from stochastic simulation models

    Treesearch

    Donald L., Jr. Gochenour; Leonard R. Johnson

    1973-01-01

    Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...

  18. Numerical simulation of granular flows : comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.

    2003-04-01

    Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.

  19. Summarizing Simulation Results using Causally-relevant States

    PubMed Central

    Parikh, Nidhi; Marathe, Madhav; Swarup, Samarth

    2016-01-01

    As increasingly large-scale multiagent simulations are being implemented, new methods are becoming necessary to make sense of the results of these simulations. Even concisely summarizing the results of a given simulation run is a challenge. Here we pose this as the problem of simulation summarization: how to extract the causally-relevant descriptions of the trajectories of the agents in the simulation. We present a simple algorithm to compress agent trajectories through state space by identifying the state transitions which are relevant to determining the distribution of outcomes at the end of the simulation. We present a toy-example to illustrate the working of the algorithm, and then apply it to a complex simulation of a major disaster in an urban area. PMID:28042620

  20. SARDA HITL Simulations: System Performance Results

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam

    2012-01-01

    This presentation gives an overview of the 2012 SARDA human-in-the-loop simulation, and presents a summary of system performance results from the simulation, including delay, throughput and fuel consumption

  1. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  2. UAS in the NAS - Analysis Results and Recommendations for Integration of CNPC and ATC Communications Simulation Report

    NASA Technical Reports Server (NTRS)

    Kubat, Gregory

    2016-01-01

    This report addresses a deliverable to the UAS-in-the-NAS project for recommendations for integration of CNPC and ATC communications based on analysis results from modeled radio system and NAS-wide UA communication architecture simulations. For each recommendation, a brief explanation of the rationale for its consideration is provided with any supporting results obtained or observed in our simulation activity.

  3. [Numerical simulation of the effect of virtual stent release pose on the expansion results].

    PubMed

    Li, Jing; Peng, Kun; Cui, Xinyang; Fu, Wenyu; Qiao, Aike

    2018-04-01

    The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.

  4. Aircraft flight simulation of spacelab experiment using an implanted telemetry system to obtain cardiovascular data from the monkey

    NASA Technical Reports Server (NTRS)

    Mccutcheon, E. P.; Miranda, R.; Fryer, T. B.; Hodges, G.; Newson, B. D.; Pace, N.

    1977-01-01

    The utility of a multichannel implantable telemetry system for obtaining cardiovascular data was tested in a monkey with a CV-990 aircraft flight simulation of a space flight experiment. Valuable data were obtained to aid planning and execution of flight experiments using chronically instrumented animals.

  5. Suppression tuning of distortion-product otoacoustic emissions: Results from cochlear mechanics simulation

    PubMed Central

    Liu, Yi-Wen; Neely, Stephen T.

    2013-01-01

    This paper presents the results of simulating the acoustic suppression of distortion-product otoacoustic emissions (DPOAEs) from a computer model of cochlear mechanics. A tone suppressor was introduced, causing the DPOAE level to decrease, and the decrement was plotted against an increasing suppressor level. Suppression threshold was estimated from the resulting suppression growth functions (SGFs), and suppression tuning curves (STCs) were obtained by plotting the suppression threshold as a function of suppressor frequency. Results show that the slope of SGFs is generally higher for low-frequency suppressors than high-frequency suppressors, resembling those obtained from normal hearing human ears. By comparing responses of normal (100%) vs reduced (50%) outer-hair-cell sensitivities, the model predicts that the tip-to-tail difference of the STCs correlates well with that of intra-cochlear iso-displacement tuning curves. The correlation is poorer, however, between the sharpness of the STCs and that of the intra-cochlear tuning curves. These results agree qualitatively with what was recently reported from normal-hearing and hearing-impaired human subjects, and examination of intra-cochlear model responses can provide the needed insight regarding the interpretation of DPOAE STCs obtained in individual ears. PMID:23363112

  6. International benchmarking of longitudinal train dynamics simulators: results

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Spiryagin, Maksym; Cole, Colin; Chang, Chongyi; Guo, Gang; Sakalo, Alexey; Wei, Wei; Zhao, Xubao; Burgelman, Nico; Wiersma, Pier; Chollet, Hugues; Sebes, Michel; Shamdani, Amir; Melzi, Stefano; Cheli, Federico; di Gialleonardo, Egidio; Bosso, Nicola; Zampieri, Nicolò; Luo, Shihui; Wu, Honghua; Kaza, Guy-Léon

    2018-03-01

    This paper presents the results of the International Benchmarking of Longitudinal Train Dynamics Simulators which involved participation of nine simulators (TABLDSS, UM, CRE-LTS, TDEAS, PoliTo, TsDyn, CARS, BODYSIM and VOCO) from six countries. Longitudinal train dynamics results and computing time of four simulation cases are presented and compared. The results show that all simulators had basic agreement in simulations of locomotive forces, resistance forces and track gradients. The major differences among different simulators lie in the draft gear models. TABLDSS, UM, CRE-LTS, TDEAS, TsDyn and CARS had general agreement in terms of the in-train forces; minor differences exist as reflections of draft gear model variations. In-train force oscillations were observed in VOCO due to the introduction of wheel-rail contact. In-train force instabilities were sometimes observed in PoliTo and BODYSIM due to the velocity controlled transitional characteristics which could have generated unreasonable transitional stiffness. Regarding computing time per train operational second, the following list is in order of increasing computing speed: VOCO, TsDyn, PoliTO, CARS, BODYSIM, UM, TDEAS, CRE-LTS and TABLDSS (fastest); all simulators except VOCO, TsDyn and PoliTo achieved faster speeds than real-time simulations. Similarly, regarding computing time per integration step, the computing speeds in order are: CRE-LTS, VOCO, CARS, TsDyn, UM, TABLDSS and TDEAS (fastest).

  7. Cassini radar : system concept and simulation results

    NASA Astrophysics Data System (ADS)

    Melacci, P. T.; Orosei, R.; Picardi, G.; Seu, R.

    1998-10-01

    The Cassini mission is an international venture, involving NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI), for the investigation of the Saturn system and, in particular, Titan. The Cassini radar will be able to see through Titan's thick, optically opaque atmosphere, allowing us to better understand the composition and the morphology of its surface, but the interpretation of the results, due to the complex interplay of many different factors determining the radar echo, will not be possible without an extensive modellization of the radar system functioning and of the surface reflectivity. In this paper, a simulator of the multimode Cassini radar will be described, after a brief review of our current knowledge of Titan and a discussion of the contribution of the Cassini radar in answering to currently open questions. Finally, the results of the simulator will be discussed. The simulator has been implemented on a RISC 6000 computer by considering only the active modes of operation, that is altimeter and synthetic aperture radar. In the instrument simulation, strict reference has been made to the present planned sequence of observations and to the radar settings, including burst and single pulse duration, pulse bandwidth, pulse repetition frequency and all other parameters which may be changed, and possibly optimized, according to the operative mode. The observed surfaces are simulated by a facet model, allowing the generation of surfaces with Gaussian or non-Gaussian roughness statistic, together with the possibility of assigning to the surface an average behaviour which can represent, for instance, a flat surface or a crater. The results of the simulation will be discussed, in order to check the analytical evaluations of the models of the average received echoes and of the attainable performances. In conclusion, the simulation results should allow the validation of the theoretical evaluations of the capabilities of microwave instruments, when

  8. Influence of photon energy cuts on PET Monte Carlo simulation results.

    PubMed

    Mitev, Krasimir; Gerganov, Georgi; Kirov, Assen S; Schmidtlein, C Ross; Madzhunkov, Yordan; Kawrakow, Iwan

    2012-07-01

    The purpose of this work is to study the influence of photon energy cuts on the results of positron emission tomography (PET) Monte Carlo (MC) simulations. MC simulations of PET scans of a box phantom and the NEMA image quality phantom are performed for 32 photon energy cut values in the interval 0.3-350 keV using a well-validated numerical model of a PET scanner. The simulations are performed with two MC codes, egs_pet and GEANT4 Application for Tomographic Emission (GATE). The effect of photon energy cuts on the recorded number of singles, primary, scattered, random, and total coincidences as well as on the simulation time and noise-equivalent count rate is evaluated by comparing the results for higher cuts to those for 1 keV cut. To evaluate the effect of cuts on the quality of reconstructed images, MC generated sinograms of PET scans of the NEMA image quality phantom are reconstructed with iterative statistical reconstruction. The effects of photon cuts on the contrast recovery coefficients and on the comparison of images by means of commonly used similarity measures are studied. For the scanner investigated in this study, which uses bismuth germanate crystals, the transport of Bi X(K) rays must be simulated in order to obtain unbiased estimates for the number of singles, true, scattered, and random coincidences as well as for an unbiased estimate of the noise-equivalent count rate. Photon energy cuts higher than 170 keV lead to absorption of Compton scattered photons and strongly increase the number of recorded coincidences of all types and the noise-equivalent count rate. The effect of photon cuts on the reconstructed images and the similarity measures used for their comparison is statistically significant for very high cuts (e.g., 350 keV). The simulation time decreases slowly with the increase of the photon cut. The simulation of the transport of characteristic x rays plays an important role, if an accurate modeling of a PET scanner system is to be achieved

  9. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study

    PubMed Central

    Tosteson, Anna NA; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-01-01

    Objective To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology. Design Simulation study. Setting 12 different strategies for acquiring independent second opinions. Participants Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus. Main outcome measures Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists’ clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice. Results Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for

  10. Comparison of Anaerobic Susceptibility Results Obtained by Different Methods

    PubMed Central

    Rosenblatt, J. E.; Murray, P. R.; Sonnenwirth, A. C.; Joyce, J. L.

    1979-01-01

    Susceptibility tests using 7 antimicrobial agents (carbenicillin, chloramphenicol, clindamycin, penicillin, cephalothin, metronidazole, and tetracycline) were run against 35 anaerobes including Bacteroides fragilis (17), other gram-negative bacilli (7), clostridia (5), peptococci (4), and eubacteria (2). Results in triplicate obtained by the microbroth dilution method and the aerobic modification of the broth disk method were compared with those obtained with an agar dilution method using Wilkins-Chalgren agar. Media used in the microbroth dilution method included Wilkins-Chalgren broth, brain heart infusion broth, brucella broth, tryptic soy broth, thioglycolate broth, and Schaedler's broth. A result differing by more than one dilution from the Wilkins-Chalgren agar result was considered a discrepancy, and when there was a change in susceptibility status this was termed a significant discrepancy. The microbroth dilution method using Wilkins-Chalgren broth and thioglycolate broth produced the fewest total discrepancies (22 and 24, respectively), and Wilkins-Chalgren broth, thioglycolate, and Schaedler's broth had the fewest significant discrepancies (6, 5, and 5, respectively). With the broth disk method, there were 15 significant discrepancies, although half of these were with tetracycline, which was the antimicrobial agent associated with the highest number of significant discrepancies (33), considering all of the test methods and media. PMID:464560

  11. Relative solvation free energies calculated using an ab initio QM/MM-based free energy perturbation method: dependence of results on simulation length.

    PubMed

    Reddy, M Rami; Erion, Mark D

    2009-12-01

    Molecular dynamics (MD) simulations in conjunction with thermodynamic perturbation approach was used to calculate relative solvation free energies of five pairs of small molecules, namely; (1) methanol to ethane, (2) acetone to acetamide, (3) phenol to benzene, (4) 1,1,1 trichloroethane to ethane, and (5) phenylalanine to isoleucine. Two studies were performed to evaluate the dependence of the convergence of these calculations on MD simulation length and starting configuration. In the first study, each transformation started from the same well-equilibrated configuration and the simulation length was varied from 230 to 2,540 ps. The results indicated that for transformations involving small structural changes, a simulation length of 860 ps is sufficient to obtain satisfactory convergence. In contrast, transformations involving relatively large structural changes, such as phenylalanine to isoleucine, require a significantly longer simulation length (>2,540 ps) to obtain satisfactory convergence. In the second study, the transformation was completed starting from three different configurations and using in each case 860 ps of MD simulation. The results from this study suggest that performing one long simulation may be better than averaging results from three different simulations using a shorter simulation length and three different starting configurations.

  12. Detached Eddy Simulation Results for a Space Launch System Configuration at Liftoff Conditions and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Ghaffari, Farhad

    2015-01-01

    Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.

  13. Conversion of NIMROD simulation results for graphical analysis using VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  14. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Geissler, Phillip L.

    2018-06-01

    Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.

  15. Direct Numerical Simulation of Liquid Nozzle Spray with Comparison to Shadowgraphy and X-Ray Computed Tomography Experimental Results

    NASA Astrophysics Data System (ADS)

    van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis

    2014-11-01

    In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.

  16. Method for obtaining aerodynamic data on hypersonic configurations with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Hartill, W. R.

    1977-01-01

    A hypersonic wind tunnel test method for obtaining credible aerodynamic data on a complete hypersonic vehicle (generic X-24c) with scramjet exhaust flow simulation is described. The general problems of simulating the scramjet exhaust as well as accounting for scramjet inlet flow and vehicle forces are analyzed, and candidate test methods are described and compared. The method selected as most useful makes use of a thrust-minus-drag flow-through balance with a completely metric model. Inlet flow is diverted by a fairing. The incremental effect of the fairing is determined in the testing of two reference models. The net thrust of the scramjet module is an input to be determined in large-scale module tests with scramjet combustion. Force accounting is described, and examples of force component levels are predicted. Compatibility of the test method with candidate wind tunnel facilities is described, and a preliminary model mechanical arrangement drawing is presented. The balance design and performance requirements are described in a detailed specification. Calibration procedures, model instrumentation, and a test plan for the model are outlined.

  17. Presenting simulation results in a nested loop plot.

    PubMed

    Rücker, Gerta; Schwarzer, Guido

    2014-12-12

    Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.

  18. A comparison of results from two simulators used for studies of astronaut maneuvering units. [with application to Skylab program

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Cannaday, R. L.

    1973-01-01

    A comparison of the results from a fixed-base, six-degree-of -freedom simulator and a moving-base, three-degree-of-freedom simulator was made for a close-in, EVA-type maneuvering task in which visual cues of a target spacecraft were used for guidance. The maneuvering unit (the foot-controlled maneuvering unit of Skylab Experiment T020) employed an on-off acceleration command control system operated entirely by the feet. Maneuvers by two test subjects were made for the fixed-base simulator in six and three degrees of freedom and for the moving-base simulator in uncontrolled and controlled, EVA-type visual cue conditions. Comparisons of pilot ratings and 13 different quantitative parameters from the two simulators are made. Different results were obtained from the two simulators, and the effects of limited degrees of freedom and uncontrolled visual cues are discussed.

  19. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  1. Improving the result of forcasting using reservoir and surface network simulation

    NASA Astrophysics Data System (ADS)

    Hendri, R. S.; Winarta, J.

    2018-01-01

    This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.

  2. NREL: News - Solar Decathlon Design Presentation and Simulation Results

    Science.gov Websites

    Announced Design Presentation and Simulation Results Announced Monday, September 30, 2002 took first place in the Design Presentation and Simulation Contest at the Solar Village on the National Tech in third. Design Presentation and Simulation is one of ten contests in the Solar Decathlon, which

  3. Sensitivity Analysis of Different Shapes of a Plastic Optical Fiber-Based Immunosensor for Escherichia coli: Simulation and Experimental Results.

    PubMed

    Rodrigues, Domingos M C; Lopes, Rafaela N; Franco, Marcos A R; Werneck, Marcelo M; Allil, Regina C S B

    2017-12-19

    Conventional pathogen detection methods require trained personnel, specialized laboratories and can take days to provide a result. Thus, portable biosensors with rapid detection response are vital for the current needs for in-loco quality assays. In this work the authors analyze the characteristics of an immunosensor based on the evanescent field in plastic optical fibers with macro curvature by comparing experimental with simulated results. The work studies different shapes of evanescent-wave based fiber optic sensors, adopting a computational modeling to evaluate the probes with the best sensitivity. The simulation showed that for a U-Shaped sensor, the best results can be achieved with a sensor of 980 µm diameter by 5.0 mm in curvature for refractive index sensing, whereas the meander-shaped sensor with 250 μm in diameter with radius of curvature of 1.5 mm, showed better sensitivity for either bacteria and refractive index (RI) sensing. Then, an immunosensor was developed, firstly to measure refractive index and after that, functionalized to detect Escherichia coli . Based on the results with the simulation, we conducted studies with a real sensor for RI measurements and for Escherichia coli detection aiming to establish the best diameter and curvature radius in order to obtain an optimized sensor. On comparing the experimental results with predictions made from the modelling, good agreements were obtained. The simulations performed allowed the evaluation of new geometric configurations of biosensors that can be easily constructed and that promise improved sensitivity.

  4. LENS: μLENS Simulations, Analysis, and Results

    NASA Astrophysics Data System (ADS)

    Rasco, Charles

    2013-04-01

    Simulations of the Low-Energy Neutrino Spectrometer prototype, μLENS, have been performed in order to benchmark the first measurements of the μLENS detector at the Kimballton Underground Research Facility (KURF). μLENS is a 6x6x6 celled scintillation lattice filled with Linear Alkylbenzene based scintillator. We have performed simulations of μLENS using the GEANT4 toolkit. We have measured various radioactive sources, LEDs, and environmental background radiation measurements at KURF using up to 96 PMTs with a simplified data acquisition system of QDCs and TDCs. In this talk we will demonstrate our understanding of the light propagation and we will compare simulation results with measurements of the μLENS detector of various radioactive sources, LEDs, and the environmental background radiation.

  5. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  6. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.

    2003-01-01

    The goal of the NASA Aviation Safety Program (AvSP) is to develop and demonstrate technologies that contribute to a reduction in the aviation fatal accident rate by a factor of 5 by the year 2007 and by a factor of 10 by the year 2022. Integrated safety analysis of day-to-day operations and risks within those operations will provide an understanding of the Aviation Safety Program portfolio. Safety benefits analyses are currently being conducted. Preliminary results for the Synthetic Vision Systems (SVS) and Weather Accident Prevention (WxAP) projects of the AvSP have been completed by the Logistics Management Institute under a contract with the NASA Glenn Research Center. These analyses include both a reliability analysis and a computer simulation model. The integrated safety analysis method comprises two principal components: a reliability model and a simulation model. In the reliability model, the results indicate how different technologies and systems will perform in normal, degraded, and failed modes of operation. In the simulation, an operational scenario is modeled. The primary purpose of the SVS project is to improve safety by providing visual-flightlike situation awareness during instrument conditions. The current analyses are an estimate of the benefits of SVS in avoiding controlled flight into terrain. The scenario modeled has an aircraft flying directly toward a terrain feature. When the flight crew determines that the aircraft is headed toward an obstruction, the aircraft executes a level turn at speed. The simulation is ended when the aircraft completes the turn.

  7. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  8. The VIIRS ocean data simulator enhancements and results

    NASA Astrophysics Data System (ADS)

    Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-10-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  9. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  10. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    PubMed

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-06-22

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results

    DOT National Transportation Integrated Search

    1973-07-01

    Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...

  12. [Initial results with the Munich knee simulator].

    PubMed

    Frey, M; Riener, R; Burgkart, R; Pröll, T

    2002-01-01

    In orthopaedics more than 50 different clinical knee joint evaluation tests exist that have to be trained in orthopaedic education. Often it is not possible to obtain sufficient practical training in a clinical environment. The training can be improved by Virtual Reality technology. In the frame of the Munich Knee Joint Simulation project an artificial leg with anatomical properties is attached by a force-torque sensor to an industrial robot. The recorded forces and torques are the input for a simple biomechanical model of the human knee joint. The robot is controlled in such way that the user gets the feeling he moves a real leg. The leg is embedded in a realistic environment with a couch and a patient on it.

  13. First results of coupled IPS/NIMROD/GENRAY simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.

    2010-11-01

    The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.

  14. Medical Simulation Practices 2010 Survey Results

    NASA Technical Reports Server (NTRS)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  15. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    NASA Astrophysics Data System (ADS)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  16. How do rigid-lid assumption affect LES simulation results at high Reynolds flows?

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration

    2017-11-01

    This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.

  17. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study.

    PubMed

    Elmore, Joann G; Tosteson, Anna Na; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-06-22

     To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology.  Simulation study.  12 different strategies for acquiring independent second opinions.  Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus.  Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists' clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice.  Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for cases with initial interpretations of atypia, DCIS, or invasive

  18. Reconstructing the ideal results of a perturbed analog quantum simulator

    NASA Astrophysics Data System (ADS)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  19. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DoSSiER: Database of scientific simulation and experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  1. DoSSiER: Database of scientific simulation and experimental results

    DOE PAGES

    Wenzel, Hans; Yarba, Julia; Genser, Krzystof; ...

    2016-08-01

    The Geant4, GeantV and GENIE collaborations regularly perform validation and regression tests for simulation results. DoSSiER (Database of Scientific Simulation and Experimental Results) is being developed as a central repository to store the simulation results as well as the experimental data used for validation. DoSSiER can be easily accessed via a web application. In addition, a web service allows for programmatic access to the repository to extract records in json or xml exchange formats. In this paper, we describe the functionality and the current status of various components of DoSSiER as well as the technology choices we made.

  2. Comparison of contact conditions obtained by direct simulation with statistical analysis for normally distributed isotropic surfaces

    NASA Astrophysics Data System (ADS)

    Uchidate, M.

    2018-09-01

    In this study, with the aim of establishing a systematic knowledge on the impact of summit extraction methods and stochastic model selection in rough contact analysis, the contact area ratio (A r /A a ) obtained by statistical contact models with different summit extraction methods was compared with a direct simulation using the boundary element method (BEM). Fifty areal topography datasets with different autocorrelation functions in terms of the power index and correlation length were used for investigation. The non-causal 2D auto-regressive model which can generate datasets with specified parameters was employed in this research. Three summit extraction methods, Nayak’s theory, 8-point analysis and watershed segmentation, were examined. With regard to the stochastic model, Bhushan’s model and BGT (Bush-Gibson-Thomas) model were applied. The values of A r /A a from the stochastic models tended to be smaller than BEM. The discrepancy between the Bhushan’s model with the 8-point analysis and BEM was slightly smaller than Nayak’s theory. The results with the watershed segmentation was similar to those with the 8-point analysis. The impact of the Wolf pruning on the discrepancy between the stochastic analysis and BEM was not very clear. In case of the BGT model which employs surface gradients, good quantitative agreement against BEM was obtained when the Nayak’s bandwidth parameter was large.

  3. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  4. Panchromatic spectral energy distributions of simulated galaxies: results at redshift z = 0

    NASA Astrophysics Data System (ADS)

    Goz, David; Monaco, Pierluigi; Granato, Gian Luigi; Murante, Giuseppe; Domínguez-Tenreiro, Rosa; Obreja, Aura; Annunziatella, Marianna; Tescari, Edoardo

    2017-08-01

    We present predictions of spectral energy distributions (SEDs), from the UV to the FIR, of simulated galaxies at z = 0. These were obtained by post-processing the results of an N-body+hydro simulation of a cosmological box of side 25 Mpc, which uses the Multi-Phase Particle Integrator (MUPPI) for star formation and stellar feedback, with the grasil-3d radiative transfer code that includes reprocessing of UV light by dust. Physical properties of our sample of ˜500 galaxies resemble observed ones, though with some tension at small and large stellar masses. Comparing predicted SEDs of simulated galaxies with different samples of local galaxies, we find that these resemble observed ones, when normalized at 3.6 μm. A comparison with the Herschel Reference Survey shows that the average SEDs of galaxies, divided in bins of star formation rate (SFR), are reproduced in shape and absolute normalization to within a factor of ˜2, while average SEDs of galaxies divided in bins of stellar mass show tensions that are an effect of the difference of simulated and observed galaxies in the stellar mass-SFR plane. We use our sample to investigate the correlation of IR luminosity in Spitzer and Herschel bands with several galaxy properties. SFR is the quantity that best correlates with IR light up to 160 μm, while at longer wavelengths better correlations are found with molecular mass and, at 500 μm, with dust mass. However, using the position of the FIR peak as a proxy for cold dust temperature, we assess that heating of cold dust is mostly determined by SFR, with stellar mass giving only a minor contribution. We finally show how our sample of simulated galaxies can be used as a guide to understand the physical properties and selection biases of observed samples.

  5. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  6. Numerical natural rubber curing simulation, obtaining a controlled gradient of the state of cure in a thick-section part

    NASA Astrophysics Data System (ADS)

    El Labban, A.; Mousseau, P.; Bailleul, J. L.; Deterre, R.

    2007-04-01

    Although numerical simulation has proved to be a useful tool to predict the rubber vulcanization process, few applications in the process control have been reported. Because the end-use rubber properties depend on the state of cure distribution in the parts thickness, the prediction of the optimal distribution remains a challenge for the rubber industry. The analysis of the vulcanization process requires the determination of the thermal behavior of the material and the cure kinetics. A nonisothermal vulcanization model with nonisothermal induction time is used in this numerical study. Numerical results are obtained for natural rubber (NR) thick-section part curing. A controlled gradient of the state of cure in the part thickness is obtained by a curing process that consists not only in mold heating phase, but also a forced convection mold cooling phase in order to stop the vulcanization process and to control the vulcanization distribution. The mold design that allows this control is described. In the heating phase, the state of cure is mainly controlled by the chemical kinetics (the induction time), but in the cooling phase, it is the heat diffusion that controls the state of cure distribution. A comparison among different cooling conditions is shown and a good state of cure gradient control is obtained.

  7. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  8. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  9. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  10. Numerical simulations of catastrophic disruption: Recent results

    NASA Technical Reports Server (NTRS)

    Benz, W.; Asphaug, E.; Ryan, E. V.

    1994-01-01

    Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.

  11. Modelled air pollution levels versus EC air quality legislation - results from high resolution simulation.

    PubMed

    Chervenkov, Hristo

    2013-12-01

    An appropriate method for evaluating the air quality of a certain area is to contrast the actual air pollution levels to the critical ones, prescribed in the legislative standards. The application of numerical simulation models for assessing the real air quality status is allowed by the legislation of the European Community (EC). This approach is preferable, especially when the area of interest is relatively big and/or the network of measurement stations is sparse, and the available observational data are scarce, respectively. Such method is very efficient for similar assessment studies due to continuous spatio-temporal coverage of the obtained results. In the study the values of the concentration of the harmful substances sulphur dioxide, (SO2), nitrogen dioxide (NO2), particulate matter - coarse (PM10) and fine (PM2.5) fraction, ozone (O3), carbon monoxide (CO) and ammonia (NH3) in the surface layer obtained from modelling simulations with resolution 10 km on hourly bases are taken to calculate the necessary statistical quantities which are used for comparison with the corresponding critical levels, prescribed in the EC directives. For part of them (PM2.5, CO and NH3) this is done for first time with such resolution. The computational grid covers Bulgaria entirely and some surrounding territories and the calculations are made for every year in the period 1991-2000. The averaged over the whole time slice results can be treated as representative for the air quality situation of the last decade of the former century.

  12. Comparison of simulation and experimental results for a model aqueous tert-butanol solution

    NASA Astrophysics Data System (ADS)

    Overduin, S. D.; Patey, G. N.

    2017-07-01

    Molecular dynamics simulations are used to investigate the behavior of aqueous tert-butanol (TBA) solutions for a range of temperatures, using the CHARMM generalized force field (CGenFF) to model TBA and the TIP4P/2005 or TIP4P-Ew water model. Simulation results for the density, isothermal compressibility, constant pressure heat capacity, and self-diffusion coefficients are in good accord with experimental measurements. Agreement with the experiment is particularly good at low TBA concentration, where experiments have revealed anomalies in a number of thermodynamic properties. Importantly, the CGenFF model does not exhibit liquid-liquid demixing at temperatures between 290 and 320 K (for systems of 32 000 molecules), in contrast with the situation for several other common TBA models [R. Gupta and G. N. Patey, J. Chem. Phys. 137, 034509 (2012)]. However, whereas real water and TBA are miscible at all temperatures where the liquid is stable, we observe some evidence of demixing at 340 K and above. To evaluate the structural properties at low concentrations, we compare with both neutron scattering and recent spectroscopic measurements. This reveals that while the CGenFF model is a definite improvement over other models that have been considered, the TBA molecules still exhibit a tendency to associate at low concentrations that is somewhat stronger than that indicated by experiments. Finally, we discuss the range and decay times of the long-range correlations, providing an indication of the system size and simulation times that are necessary in order to obtain reliable results for certain properties.

  13. Results of GEANT simulations and comparison with first experiments at DANCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reifarth, R.; Bredeweg, T. A.; Browne, J. C.

    2003-07-29

    This report describes intensive Monte Carlo simulations carried out to be compared with the results of the first run cycle with DANCE (Detector for Advanced Neutron Capture Experiments). The experimental results were gained during the commissioning phase 2002/2003 with only a part of the array. Based on the results of these simulations the most important items to be improved before the next experiments will be addressed.

  14. First results from simulations of supersymmetric lattices

    NASA Astrophysics Data System (ADS)

    Catterall, Simon

    2009-01-01

    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the Script Q = 4 theory in D = 0,2 dimensions and the Script Q = 16 theory in D = 0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of Script N = 4 super Yang-Mills may be achievable in the near future.

  15. Simulations Build Efficacy: Empirical Results from a Four-Week Congressional Simulation

    ERIC Educational Resources Information Center

    Mariani, Mack; Glenn, Brian J.

    2014-01-01

    This article describes a four-week congressional committee simulation implemented in upper level courses on Congress and the Legislative process at two liberal arts colleges. We find that the students participating in the simulation possessed high levels of political knowledge and confidence in their political skills prior to the simulation. An…

  16. Helicopter simulation validation using flight data

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.

    1982-01-01

    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.

  17. Obtaining patient test results from clinical laboratories: a survey of state law for pharmacists.

    PubMed

    Witry, Matthew J; Doucette, William R

    2009-01-01

    To identify states with laws that restrict to whom clinical laboratories may release copies of laboratory test results and to describe how these laws may affect pharmacists' ability to obtain patient laboratory test results. Researchers examined state statutes and administrative codes for all 50 states and the District of Columbia at the University of Iowa Law Library between June and July 2007. Researchers also consulted with lawyers, state Clinical Laboratory Improvement Amendments officers, and law librarians. Laws relating to the study objective were analyzed. 34 jurisdictions do not restrict the release of laboratory test results, while 17 states have laws that restrict to whom clinical laboratories can send copies of test results. In these states, pharmacists will have to use alternative sources, such as physician offices, to obtain test results. Pharmacists must consider state law before requesting copies of laboratory test results from clinical laboratories. This may be an issue that state pharmacy associations can address to increase pharmacist access to important patient information.

  18. Results of a joint NOAA/NASA sounder simulation study

    NASA Technical Reports Server (NTRS)

    Phillips, N.; Susskind, Joel; Mcmillin, L.

    1988-01-01

    This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.

  19. [Results of Simulation Studies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lattice Monte Carlo and off-lattice molecular dynamics simulations of h(sub 1)t(sub 4) and h(sub 4)t(sub l) (head/tail) amphiphile solutions have been performed as a function of surfactant concentration and temperature. The lattice and off-lattice systems exhibit quite different self-assembly behavior at equivalent thermodynamic conditions. We found that in the weakly aggregating regime (no preferred-size micelles), all models yield similar micelle size distributions at the same average aggregation number, albeit at different thermodynamic conditions (temperatures). In the strongly aggregating regime, this mapping between models (through temperature adjustment) fails, and the models exhibit qualitatively different micellization behavior. Incipient micellization in a model self-associating telechelic polymer solution results in a network with a transient elastic response that decays by a two-step relaxation: the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the solution manifests characteristics of a glass transition and entangled polymer network.

  20. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  1. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while

  2. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  3. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  4. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  5. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  6. Charge transfer in model peptides: obtaining Marcus parameters from molecular simulation.

    PubMed

    Heck, Alexander; Woiczikowski, P Benjamin; Kubař, Tomáš; Giese, Bernd; Elstner, Marcus; Steinbrecher, Thomas B

    2012-02-23

    Charge transfer within and between biomolecules remains a highly active field of biophysics. Due to the complexities of real systems, model compounds are a useful alternative to study the mechanistic fundamentals of charge transfer. In recent years, such model experiments have been underpinned by molecular simulation methods as well. In this work, we study electron hole transfer in helical model peptides by means of molecular dynamics simulations. A theoretical framework to extract Marcus parameters of charge transfer from simulations is presented. We find that the peptides form stable helical structures with sequence dependent small deviations from ideal PPII helices. We identify direct exposure of charged side chains to solvent as a cause of high reorganization energies, significantly larger than typical for electron transfer in proteins. This, together with small direct couplings, makes long-range superexchange electron transport in this system very slow. In good agreement with experiment, direct transfer between the terminal amino acid side chains can be dicounted in favor of a two-step hopping process if appropriate bridging groups exist. © 2012 American Chemical Society

  7. Migrating Shoals on Ebb-tidal Deltas: Results from Numerical Simulations

    NASA Astrophysics Data System (ADS)

    van der Vegt, M.; Ridderinkhof, W.; De Swart, H. E.; Hoekstra, P.

    2016-02-01

    Many ebb-tidal deltas show repetitive patterns of channel- shoal generation, migration and attachment of shoals to the downdrift barrier coast. For the Wadden Sea coast along the Dutch, German en Danish coastline the typical time scale of shoal attachment ranges from several to hundred years. There is a weak correlation between the tidal prism and the typical time scale of shoal attachment. The main aim of this research is to clarify the physical processes that result in the formation of shoals on ebb-tidal deltas and to study what determines their propagation speed. To this end numerical simulations were performed in Delft3D. Starting from an idealized geometry with a sloping bed on the shelf sea and a flat bed in the back barrier basin, the model was spun up until an approximate morphodynamic steady state was realized. The model was forced with tides and constant wave forcing based on the yearly average conditions along the Dutch Wadden coast. The resulting ebb-tidal delta is called the equilibrium delta. Next, two types of scenarios were run. First, the equilibrium delta was breached by creating a channel and adding the removed sand volume to the downdrift shoal. Second, the wave climate was made more realistic by adding storms and subsequently its effect on the equilibrium delta was simulated. Based on the model results we conclude the following. First, the model is able to realistically simulate the migration of shoals and the attachment to the downdrift barrier island. Second, larger waves result in faster propagation of the shoals. Third, simulations suggest that shoals only migrate when they are shallower than a critical maximum depth with respect to the wave height. These shallow shoals can be `man-made' or be generated during storms. When no storms were added to the wave climate and the bed was not artificially disturbed, no migrating shoals were simulated. During the presentation the underlying physical processes will be discussed in detail.

  8. Results obtained with a low cost software-based audiometer for hearing screening.

    PubMed

    Ferrari, Deborah Viviane; Lopez, Esteban Alejandro; Lopes, Andrea Cintra; Aiello, Camila Piccini; Jokura, Pricila Reis

    2013-07-01

     The implementation of hearing screening programs can be facilitated by reducing operating costs, including the cost of equipment. The Telessaúde (TS) audiometer is a low-cost, software-based, and easy-to-use piece of equipment for conducting audiometric screening.  To evaluate the TS audiometer for conducting audiometric screening.  A prospective randomized study was performed. Sixty subjects, divided into those who did not have (group A, n = 30) and those who had otologic complaints (group B, n = 30), underwent audiometric screening with conventional and TS audiometers in a randomized order. Pure tones at 25 dB HL were presented at frequencies of 500, 1000, 2000, and 4000 Hz. A "fail" result was considered when the individual failed to respond to at least one of the stimuli. Pure-tone audiometry was also performed on all participants. The concordance of the results of screening with both audiometers was evaluated. The sensitivity, specificity, and positive and negative predictive values of screening with the TS audiometer were calculated.  For group A, 100% of the ears tested passed the screening. For group B, "pass" results were obtained in 34.2% (TS) and 38.3% (conventional) of the ears tested. The agreement between procedures (TS vs. conventional) ranged from 93% to 98%. For group B, screening with the TS audiometer showed 95.5% sensitivity, 90.4% sensitivity, and positive and negative predictive values equal to 94.9% and 91.5%, respectively.  The results of the TS audiometer were similar to those obtained with the conventional audiometer, indicating that the TS audiometer can be used for audiometric screening.

  9. Electron-cloud updated simulation results for the PSR, and recent results for the SNS

    NASA Astrophysics Data System (ADS)

    Pivi, M.; Furman, M. A.

    2002-05-01

    Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.

  10. Experimental and simulational result multipactors in 112 MHz QWR injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, T.; Ben-Zvi, I.; Belomestnykh, S.

    2015-05-03

    The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were installed and tested for the first time. During this experiment, we observed several multipacting barriers at different gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.8 MV gun voltage under pulsedmore » mode after several round of conditioning processes.« less

  11. An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950-2010 period

    NASA Astrophysics Data System (ADS)

    Perdigão, João; Salgado, Rui; Magarreiro, Clarisse; Soares, Pedro M. M.; Costa, Maria João; Dasari, Hari Prasad

    2017-12-01

    The mesoscale Weather Research and Forecasting (WRF) Model is used over the Iberian Peninsula to generate 60 years (1950-2010) of climate data, at 5 km resolution, in order to evaluate and characterize the incident shortwave downward radiation at the surface (SW ↓), in present climate. The simulated values of SW ↓ in the period 2000-2009 were compared with data measured in Spanish and Portuguese meteorological stations before and a statistical BIAS correction was applied using data from Clouds and the Earth's Radiant Energy System (CERES), on board four different satellites. The spatial and temporal comparison between WRF results and observations show a good agreement for the analyzed period, although the model overestimates observations. This overestimation has a mean normalized bias of about 7% after BIAS correction (or 17% for original WRF output). Additionally, the present simulation was confronted against another previously validated WRF simulation performed with different resolution and set of parametrizations, showing comparable results. WRF adequately reproduces the observational features of SW ↓ with correlation coefficients above 0.8 in annual and seasonal basis. 60 years of simulated SW ↓ over the Iberian Peninsula were produced, which showed annual mean values that range from 130 W/m2, in the northern regions, to a maximum of around 230 W/m2 in the southeast of the Iberian Peninsula (IP). SW ↓ over IP shows a positive gradient from north to south and from west to east, with local effects influenced by topography and distance to the coast. The analysis of the simulated cloud fraction indicates that clear sky days are found in > 30% of the period at the southern area of IP, particularly in the Algarve (Portugal) and Andalusia (Spain), and this value increases significantly in the summer season for values above 80%.

  12. Educating anesthesia residents to obtain and document informed consent for epidural labor analgesia: does simulation play a role?

    PubMed

    Antoniou, A; Marmai, K; Qasem, F; Cherry, R; Jones, P M; Singh, S

    2018-05-01

    Informed consent is required before placing an epidural. At our hospital, teaching of residents about this is done informally at the bedside. This study aimed to assess the ability of anesthesia residents to acquire and retain knowledge required when seeking informed consent for epidural labor analgesia. It assessed how well this knowledge was translated to clinical ability, by assessing the verbal consent process during an interaction with a standardized patient. Twenty anesthesia residents were randomized to a 'didactic group' or a 'simulation group'. Each resident was presented with a written scenario and asked to document the informed consent process, as they normally would do (pre-test). The didactic group then had a presentation about informed consent, while the simulation group members interviewed a simulated patient, the scenarios focusing on different aspects of consent. All residents then read a scenario and documented their informed consent process (post-test). Six weeks later all residents interviewed a standardized patient in labor and documented the consent from this interaction (six-week test). There was no significant difference in the baseline performance of the two groups. Both groups showed significant improvement in their written consent documentation at the immediate time point, the improvement in the didactic group being greater. The didactic group performed better at both the immediate time point and the six-week time point. In this small study, a didactic teaching method proved better than simulation-based teaching in helping residents to gain knowledge needed to obtain informed consent for epidural labor analgesia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simulation results of corkscrew motion in DARHT-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, K. D.; Ekdahl, C. A.; Chen, Y. J.

    2003-01-01

    DARHT-II, the second axis of the Dual-Axis Radiographic Hydrodynamics Test Facility, is being commissioned. DARHT-II is a linear induction accelerator producing 2-microsecond electron beam pulses at 20 MeV and 2 kA. These 2-microsecond pulses will be chopped into four short pulses to produce time resolved x-ray images. Radiographic application requires the DARHT-II beam to have excellent beam quality, and it is important to study various beam effects that may cause quality degradation of a DARHT-II beam. One of the beam dynamic effects under study is 'corkscrew' motion. For corkscrew motion, the beam centroid is deflected off axis due to misalignmentsmore » of the solenoid magnets. The deflection depends on the beam energy variation, which is expected to vary by {+-}0.5% during the 'flat-top' part of a beam pulse. Such chromatic aberration will result in broadening of beam spot size. In this paper, we will report simulation results of our study of corkscrew motion in DARHT-II. Sensitivities of beam spot size to various accelerator parameters and the strategy for minimizing corkscrew motion will be described. Measured magnet misalignment is used in the simulation.« less

  14. Simulation of the Tsunami Resulting from the M 9.2 2004 Sumatra-Andaman Earthquake - Dynamic Rupture vs. Seismic Inversion Source Model

    NASA Astrophysics Data System (ADS)

    Vater, Stefan; Behrens, Jörn

    2017-04-01

    Simulations of historic tsunami events such as the 2004 Sumatra or the 2011 Tohoku event are usually initialized using earthquake sources resulting from inversion of seismic data. Also, other data from ocean buoys etc. is sometimes included in the derivation of the source model. The associated tsunami event can often be well simulated in this way, and the results show high correlation with measured data. However, it is unclear how the derived source model compares to the particular earthquake event. In this study we use the results from dynamic rupture simulations obtained with SeisSol, a software package based on an ADER-DG discretization solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. The tsunami model is based on a second-order Runge-Kutta discontinuous Galerkin (RKDG) scheme on triangular grids and features a robust wetting and drying scheme for the simulation of inundation events at the coast. Adaptive mesh refinement enables the efficient computation of large domains, while at the same time it allows for high local resolution and geometric accuracy. The results are compared to measured data and results using earthquake sources based on inversion. With the approach of using the output of actual dynamic rupture simulations, we can estimate the influence of different earthquake parameters. Furthermore, the comparison to other source models enables a thorough comparison and validation of important tsunami parameters, such as the runup at the coast. This work is part of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, which aims at an improved understanding of the coupling between the earthquake and the generated tsunami event.

  15. Three-Dimensional Imaging in Rhinoplasty: A Comparison of the Simulated versus Actual Result.

    PubMed

    Persing, Sarah; Timberlake, Andrew; Madari, Sarika; Steinbacher, Derek

    2018-05-22

    Computer imaging has become increasingly popular for rhinoplasty. Three-dimensional (3D) analysis permits a more comprehensive view from multiple vantage points. However, the predictability and concordance between the simulated and actual result have not been morphometrically studied. The purpose of this study was to aesthetically and quantitatively compare the simulated to actual rhinoplasty result. A retrospective review of 3D images (VECTRA, Canfield) for rhinoplasty patients was performed. Images (preop, simulated, and actual) were randomized. A blinded panel of physicians rated the images (1 = poor, 5 = excellent). The image series considered "best" was also recorded. A quantitative assessment of nasolabial angle and tip projection was compared. Paired and two-sample t tests were performed for statistical analysis (P < 0.05 as significant). Forty patients were included. 67.5% of preoperative images were rated as poor (mean = 1.7). The simulation received a mean score of 2.9 (good in 60% of cases). 82.5% of actual cases were rated good to excellent (mean 3.4) (P < 0.001). Overall, the panel significantly preferred the actual postoperative result in 77.5% of cases compared to the simulation in 22.5% of cases (P < 0.001). The actual nasal tip was more projected compared to the simulations for both males and females. There was no significant difference in nasal tip rotation between simulated and postoperative groups. 3D simulation is a powerful communication and planning tool in rhinoplasty. In this study, the actual result was deemed more aesthetic than the simulated image. Surgeon experience is important to translate the plan and achieve favorable postoperative results. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  17. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  18. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  19. Initial Data Analysis Results for ATD-2 ISAS HITL Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    To evaluate the operational procedures and information requirements for the core functional capabilities of the ATD-2 project, such as tactical surface metering tool, APREQ-CFR procedure, and data element exchanges between ramp and tower, human-in-the-loop (HITL) simulations were performed in March, 2017. This presentation shows the initial data analysis results from the HITL simulations. With respect to the different runway configurations and metering values in tactical surface scheduler, various airport performance metrics were analyzed and compared. These metrics include gate holding time, taxi-out in time, runway throughput, queue size and wait time in queue, and TMI flight compliance. In addition to the metering value, other factors affecting the airport performance in the HITL simulation, including run duration, runway changes, and TMI constraints, are also discussed.

  20. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations

  1. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    PubMed Central

    Myers, Risa B.; Herskovic, Jorge R.

    2011-01-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDW) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a clinical data warehouse containing synthetic patient data. We present a synthetic clinical data warehouse (CDW), and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our

  2. Results of intravehicular manned cargo-transfer studies in simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Beasley, G. P.; Yenni, K. R.; Eisele, D. F.

    1972-01-01

    A parametric investigation was conducted in a water immersion simulator to determine the effect of package mass, moment of inertia, and size on the ability of man to transfer cargo in simulated weightlessness. Results from this study indicate that packages with masses of at least 744 kg and moments of inertia of at least 386 kg-m2 can be manually handled and transferred satisfactorily under intravehicular conditions using either one- or two-rail motion aids. Data leading to the conclusions and discussions of test procedures and equipment are presented.

  3. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  4. Comparison of results obtained with various sensors used to measure fluctuating quantities in jets.

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Massier, P. F.; Cuffel, R. F.

    1973-01-01

    An experimental investigation has been conducted to compare the results obtained with six different instruments that sense fluctuating quantities in free jets. These sensors are typical of those that have recently been used by various investigators who are engaged in experimental studies of jet noise. Intensity distributions and two-point correlations with space separation and time delay were obtained. The static pressure, density, and velocity fluctuations are well correlated over the entire cross section of the jet and the cross-correlations persist for several jet diameters along the flow direction. The eddies appear to be flattened in the flow direction by a ratio of 0.4.

  5. Results of wind simulations in the mesosphere using precision C-band radars and the inflatable falling sphere technique

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Northam, E. T.; Michel, W. R.

    1985-01-01

    The inflatable sphere technique represents a relatively inexpensive approach for obtaining density and wind data between 30 and 90 km. The procedure in its current form is adequate for operational rocket network type application. However, detailed information is lost because of oversmoothing. The present study had the objective to determine whether more detailed wind profiles could be obtained using the inflatable falling sphere and Hirobin. Hirobin is the name for the sphere reduction program used at NASA Wallops Island, VA. In connection with the aim of the study, information had to be obtained regarding the precision of the radar used to track the sphere. For this purpose, data from three C-band radars, each with a different tracking precision, were simulated. On the basis of the results of the investigation, it is concluded that, given a radar with a known precision and a perfectly performing sphere, the Hirobin filters can be adjusted to provide small-scale wind information to about 70 km.

  6. Results from flight and simulator studies of a Mach 3 cruise longitudinal autopilot

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Smith, J. W.

    1978-01-01

    At Mach numbers of approximately 3.0 and altitudes greater than 21,300 meters, the original altitude and Mach hold modes of the YF-12 autopilot produced aircraft excursions that were erratic or divergent, or both. Flight data analysis and simulator studies showed that the sensitivity of the static pressure port to angle of attack had a detrimental effect on the performance of the altitude and Mach hold modes. Good altitude hold performance was obtained when a high passed pitch rate feedback was added to compensate for angle of attack sensitivity and the altitude error and integral altitude gains were reduced. Good Mach hold performance was obtained when the angle of attack sensitivity was removed; however, the ride qualities remained poor.

  7. Simulation loop between cad systems, GEANT-4 and GeoModel: Implementation and results

    NASA Astrophysics Data System (ADS)

    Sharmazanashvili, A.; Tsutskiridze, Niko

    2016-09-01

    Compare analysis of simulation and as-built geometry descriptions of detector is important field of study for data_vs_Monte-Carlo discrepancies. Shapes consistency and detalization is not important while adequateness of volumes and weights of detector components are essential for tracking. There are 2 main reasons of faults of geometry descriptions in simulation: (1) Difference between simulated and as-built geometry descriptions; (2) Internal inaccuracies of geometry transformations added by simulation software infrastructure itself. Georgian Engineering team developed hub on the base of CATIA platform and several tools enabling to read in CATIA different descriptions used by simulation packages, like XML->CATIA; VP1->CATIA; Geo-Model->CATIA; Geant4->CATIA. As a result it becomes possible to compare different descriptions with each other using the full power of CATIA and investigate both classes of reasons of faults of geometry descriptions. Paper represents results of case studies of ATLAS Coils and End-Cap toroid structures.

  8. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study

    PubMed Central

    Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-01-01

    Objective  The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential.  Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions  A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134

  9. A comparison among observations and earthquake simulator results for the allcal2 California fault model

    USGS Publications Warehouse

    Tullis, Terry. E.; Richards-Dinger, Keith B.; Barall, Michael; Dieterich, James H.; Field, Edward H.; Heien, Eric M.; Kellogg, Louise; Pollitz, Fred F.; Rundle, John B.; Sachs, Michael K.; Turcotte, Donald L.; Ward, Steven N.; Yikilmaz, M. Burak

    2012-01-01

    In order to understand earthquake hazards we would ideally have a statistical description of earthquakes for tens of thousands of years. Unfortunately the ∼100‐year instrumental, several 100‐year historical, and few 1000‐year paleoseismological records are woefully inadequate to provide a statistically significant record. Physics‐based earthquake simulators can generate arbitrarily long histories of earthquakes; thus they can provide a statistically meaningful history of simulated earthquakes. The question is, how realistic are these simulated histories? This purpose of this paper is to begin to answer that question. We compare the results between different simulators and with information that is known from the limited instrumental, historic, and paleoseismological data.As expected, the results from all the simulators show that the observational record is too short to properly represent the system behavior; therefore, although tests of the simulators against the limited observations are necessary, they are not a sufficient test of the simulators’ realism. The simulators appear to pass this necessary test. In addition, the physics‐based simulators show similar behavior even though there are large differences in the methodology. This suggests that they represent realistic behavior. Different assumptions concerning the constitutive properties of the faults do result in enhanced capabilities of some simulators. However, it appears that the similar behavior of the different simulators may result from the fault‐system geometry, slip rates, and assumed strength drops, along with the shared physics of stress transfer.This paper describes the results of running four earthquake simulators that are described elsewhere in this issue of Seismological Research Letters. The simulators ALLCAL (Ward, 2012), VIRTCAL (Sachs et al., 2012), RSQSim (Richards‐Dinger and Dieterich, 2012), and ViscoSim (Pollitz, 2012) were run on our most recent all‐California fault

  10. Boundary pint corrections for variable radius plots - simulation results

    Treesearch

    Margaret Penner; Sam Otukol

    2000-01-01

    The boundary plot problem is encountered when a forest inventory plot includes two or more forest conditions. Depending on the correction method used, the resulting estimates can be biased. The various correction alternatives are reviewed. No correction, area correction, half sweep, and toss-back methods are evaluated using simulation on an actual data set. Based on...

  11. Improving the trust in results of numerical simulations and scientific data analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation andmore » scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary

  12. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  13. Comparison of the analytical and simulation results of the equilibrium beam profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. J.; Zhu Shaoping; Cao, L. H.

    2007-10-15

    The evolution of high current electron beams in dense plasmas has been investigated by using two-dimensional particle-in-cell (PIC) simulations with immobile ions. It is shown that electron beams are split into many filaments at the beginning due to the Weibel instability, and then different filamentation beams attract each other and coalesce. The profile of the filaments can be described by formulas. Hammer et al. [Phys. Fluids 13, 1831 (1970)] developed a self-consistent relativistic electron beam model that allows the propagation of relativistic electron fluxes in excess of the Alfven-Lawson critical-current limit for a fully neutralized beam. The equilibrium solution hasmore » been observed in the simulation results, but the electron distribution function assumed by Hammer et al. is different from the simulation results.« less

  14. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  15. Using Riemannian geometry to obtain new results on Dikin and Karmarkar methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.; Joao, X.; Piaui, T.

    1994-12-31

    We are motivated by a 1990 Karmarkar paper on Riemannian geometry and Interior Point Methods. In this talk we show 3 results. (1) Karmarkar direction can be derived from the Dikin one. This is obtained by constructing a certain Z(x) representation of the null space of the unitary simplex (e, x) = 1; then the projective direction is the image under Z(x) of the affine-scaling one, when it is restricted to that simplex. (2) Second order information on Dikin and Karmarkar methods. We establish computable Hessians for each of the metrics corresponding to both directions, thus permitting the generation ofmore » {open_quotes}second order{close_quotes} methods. (3) Dikin and Karmarkar geodesic descent methods. For those directions, we make computable the theoretical Luenberger geodesic descent method, since we are able to explicit very accurate expressions of the corresponding geodesics. Convergence results are given.« less

  16. A comparison of the startle effects resulting from exposure to two levels of simulated sonic booms.

    DOT National Transportation Integrated Search

    1973-12-01

    Subjects were exposed indoors to simulated sonic booms having outside overpressures of 50 and 150 N/sq m. Rise times were held constant at 5.5 msecs. In addition to the outside measurements, inside measures of dBlin and dBA were also obtained. Subjec...

  17. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    NASA Astrophysics Data System (ADS)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  18. How sleep problems contribute to simulator sickness: Preliminary results from a realistic driving scenario.

    PubMed

    Altena, Ellemarije; Daviaux, Yannick; Sanz-Arigita, Ernesto; Bonhomme, Emilien; de Sevin, Étienne; Micoulaud-Franchi, Jean-Arthur; Bioulac, Stéphanie; Philip, Pierre

    2018-04-17

    Virtual reality and simulation tools enable us to assess daytime functioning in environments that simulate real life as close as possible. Simulator sickness, however, poses a problem in the application of these tools, and has been related to pre-existing health problems. How sleep problems contribute to simulator sickness has not yet been investigated. In the current study, 20 female chronic insomnia patients and 32 female age-matched controls drove in a driving simulator covering realistic city, country and highway scenes. Fifty percent of the insomnia patients as opposed to 12.5% of controls reported excessive simulator sickness leading to experiment withdrawal. In the remaining participants, patients with insomnia showed overall increased levels of oculomotor symptoms even before driving, while nausea symptoms further increased after driving. These results, as well as the realistic simulation paradigm developed, give more insight on how vestibular and oculomotor functions as well as interoceptive functions are affected in insomnia. Importantly, our results have direct implications for both the actual driving experience and the wider context of deploying simulation techniques to mimic real life functioning, in particular in those professions often exposed to sleep problems. © 2018 European Sleep Research Society.

  19. Toward robust estimation of the components of forest population change: simulation results

    Treesearch

    Francis A. Roesch

    2014-01-01

    This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...

  20. Near-Infrared Scintillation of Liquid Argon: Recent Results Obtained with the NIR Facility at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, C. O.; Rubinov, P.; Tilly, E.

    After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,

  1. The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results

    NASA Astrophysics Data System (ADS)

    Pawlik, Andreas H.; Rahmati, Alireza; Schaye, Joop; Jeon, Myoungwon; Dalla Vecchia, Claudio

    2017-04-01

    We introduce a new suite of radiation-hydrodynamical simulations of galaxy formation and reionization called Aurora. The Aurora simulations make use of a spatially adaptive radiative transfer technique that lets us accurately capture the small-scale structure in the gas at the resolution of the hydrodynamics, in cosmological volumes. In addition to ionizing radiation, Aurora includes galactic winds driven by star formation and the enrichment of the universe with metals synthesized in the stars. Our reference simulation uses 2 × 5123 dark matter and gas particles in a box of size 25 h-1 comoving Mpc with a force softening scale of at most 0.28 h-1 kpc. It is accompanied by simulations in larger and smaller boxes and at higher and lower resolution, employing up to 2 × 10243 particles, to investigate numerical convergence. All simulations are calibrated to yield simulated star formation rate functions in close agreement with observational constraints at redshift z = 7 and to achieve reionization at z ≈ 8.3, which is consistent with the observed optical depth to reionization. We focus on the design and calibration of the simulations and present some first results. The median stellar metallicities of low-mass galaxies at z = 6 are consistent with the metallicities of dwarf galaxies in the Local Group, which are believed to have formed most of their stars at high redshifts. After reionization, the mean photoionization rate decreases systematically with increasing resolution. This coincides with a systematic increase in the abundance of neutral hydrogen absorbers in the intergalactic medium.

  2. Planck 2015 results: XII. Full focal plane simulations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    In this paper, we present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 10 4 mission realizations reduced to about 10 6 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Finally, generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms,more » FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.« less

  3. Results of Investigative Tests of Gas Turbine Engine Compressor Blades Obtained by Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Kozhina, T. D.; Kurochkin, A. V.

    2016-04-01

    The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.

  4. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  5. Free Energy Landscape of Protein-Protein Encounter Resulting from Brownian Dynamics Simulations of Barnase:Barstar.

    PubMed

    Spaar, Alexander; Helms, Volkhard

    2005-07-01

    Over the past years Brownian dynamics (BD) simulations have been proven to be a suitable tool for the analysis of protein-protein association. The computed rates and relative trends for protein mutants and different ionic strength are generally in good agreement with experimental results, e.g. see ref 1. By design, BD simulations correspond to an intensive sampling over energetically favorable states, rather than to a systematic sampling over all possible states which is feasible only at rather low resolution. On the example of barnase and barstar, a well characterized model system of electrostatically steered diffusional encounter, we report here the computation of the 6-dimensional free energy landscape for the encounter process of two proteins by a novel, careful analysis of the trajectories from BD simulations. The aim of these studies was the clarification of the encounter state. Along the trajectories, the individual positions and orientations of one protein (relative to the other) are recorded and stored in so-called occupancy maps. Since the number of simulated trajectories is sufficiently high, these occupancy maps can be interpreted as a probability distribution which allows the calculation of the entropy landscape by the use of a locally defined entropy function. Additionally, the configuration dependent electrostatic and desolvation energies are recorded in separate maps. The free energy landscape of protein-protein encounter is finally obtained by summing the energy and entropy contributions. In the free energy profile along the reaction path, which is defined as the path along the minima in the free energy landscape, a minimum shows up suggesting this to be used as the definition of the encounter state. This minimum describes a state of reduced diffusion velocity where the electrostatic attraction is compensated by the repulsion due to the unfavorable desolvation of the charged residues and the entropy loss due to the increasing restriction of the

  6. Computer simulation of liquid metals

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2013-12-01

    Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.

  7. Near-field diffraction from amplitude diffraction gratings: theory, simulation and results

    NASA Astrophysics Data System (ADS)

    Abedin, Kazi Monowar; Rahman, S. M. Mujibur

    2017-08-01

    We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.

  8. Legionella in water samples: how can you interpret the results obtained by quantitative PCR?

    PubMed

    Ditommaso, Savina; Ricciardi, Elisa; Giacomuzzi, Monica; Arauco Rivera, Susan R; Zotti, Carla M

    2015-02-01

    Evaluation of the potential risk associated with Legionella has traditionally been determined from culture-based methods. Quantitative polymerase chain reaction (qPCR) is an alternative tool that offers rapid, sensitive and specific detection of Legionella in environmental water samples. In this study we compare the results obtained by conventional qPCR (iQ-Check™ Quanti Legionella spp.; Bio-Rad) and by culture method on artificial samples prepared in Page's saline by addiction of Legionella pneumophila serogroup 1 (ATCC 33152) and we analyse the selective quantification of viable Legionella cells by the qPCR-PMA method. The amount of Legionella DNA (GU) determined by qPCR was 28-fold higher than the load detected by culture (CFU). Applying the qPCR combined with PMA treatment we obtained a reduction of 98.5% of the qPCR signal from dead cells. We observed a dissimilarity in the ability of PMA to suppress the PCR signal in samples with different amounts of bacteria: the effective elimination of detection signals by PMA depended on the concentration of GU and increasing amounts of cells resulted in higher values of reduction. Using the results from this study we created an algorithm to facilitate the interpretation of viable cell level estimation with qPCR-PMA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Simulation studies for the evaluation of health information technologies: experiences and results.

    PubMed

    Ammenwerth, Elske; Hackl, Werner O; Binzer, Kristine; Christoffersen, Tue E H; Jensen, Sanne; Lawton, Kitta; Skjoet, Peter; Nohr, Christian

    It is essential for new health information technologies (IT) to undergo rigorous evaluations to ensure they are effective and safe for use in real-world situations. However, evaluation of new health IT is challenging, as field studies are often not feasible when the technology being evaluated is not sufficiently mature. Laboratory-based evaluations have also been shown to have insufficient external validity. Simulation studies seem to be a way to bridge this gap. The aim of this study was to evaluate, using a simulation methodology, the impact of a new prototype of an electronic medication management system on the appropriateness of prescriptions and drug-related activities, including laboratory test ordering or medication changes. This article presents the results of a controlled simulation study with 50 simulation runs, including ten doctors and five simulation patients, and discusses experiences and lessons learnt while conducting the study. Although the new electronic medication management system showed tendencies to improve medication safety when compared with the standard system, this tendency was not significant. Altogether, five distinct situations were identified where the new medication management system did help to improve medication safety. This simulation study provided a good compromise between internal validity and external validity. However, several challenges need to be addressed when undertaking simulation evaluations including: preparation of adequate test cases; training of participants before using unfamiliar applications; consideration of time, effort and costs of conducting the simulation; technical maturity of the evaluated system; and allowing adequate preparation of simulation scenarios and simulation setting. Simulation studies are an interesting but time-consuming approach, which can be used to evaluate newly developed health IT systems, particularly those systems that are not yet sufficiently mature to undergo field evaluation studies.

  10. Thermal airborne multispectral aster simulator and its preliminary results

    NASA Astrophysics Data System (ADS)

    Mills, F.; Kannari, Y.; Watanabe, H.; Sano, M.; Chang, S. H.

    1994-03-01

    An Airborne ASTER Simulator (AAS) is being developed for the Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research (GER) Corporation. The first test flights of the AAS were over Cuprite, Nevada; Long Valley, California; and Death Valley, California, in December 1991. Preliminary laboratory tests at NASA's Stennis Space Center (SSC) were completed in April 1992. The results of the these tests indicate the AAS can discriminate between silicate and non-silicate rocks. The improvements planned for the next two years may give a spectral Full-Width at Half-Maximum (FWHM) of 0.3 μm and NEΔT of 0.2 - 0.5°K. The AAS has the potential to become a good tool for airborne TIR research and can be used for simulations of future satellite-borne TIR sensors. Flight tests over Cuprite, Nevada, and Castaic Lake, California, are planned for October-December 1992.

  11. MOCCA code for star cluster simulation: comparison with optical observations using COCOA

    NASA Astrophysics Data System (ADS)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2016-02-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.

  12. Conducting Simulation Studies in the R Programming Environment.

    PubMed

    Hallgren, Kevin A

    2013-10-12

    Simulation studies allow researchers to answer specific questions about data analysis, statistical power, and best-practices for obtaining accurate results in empirical research. Despite the benefits that simulation research can provide, many researchers are unfamiliar with available tools for conducting their own simulation studies. The use of simulation studies need not be restricted to researchers with advanced skills in statistics and computer programming, and such methods can be implemented by researchers with a variety of abilities and interests. The present paper provides an introduction to methods used for running simulation studies using the R statistical programming environment and is written for individuals with minimal experience running simulation studies or using R. The paper describes the rationale and benefits of using simulations and introduces R functions relevant for many simulation studies. Three examples illustrate different applications for simulation studies, including (a) the use of simulations to answer a novel question about statistical analysis, (b) the use of simulations to estimate statistical power, and (c) the use of simulations to obtain confidence intervals of parameter estimates through bootstrapping. Results and fully annotated syntax from these examples are provided.

  13. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    PubMed

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  14. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  15. From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    1996-03-01

    This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.

  16. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results

    PubMed Central

    Tonyushkina, Ksenia; Nichols, James H.

    2009-01-01

    , anemia, hypotension, and other disease states. This article reviews the challenges involved in obtaining accurate glucose meter results. PMID:20144348

  17. HEBS and Binary 1-sinc masks simulations, HCIT experiments and results

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Bala K.; Hoppe, Dan; Wilson, Dan; Echternach, Pierre; Trauger, John; Halverson, Peter; Niessner, Al; Shi, Fang; Lowman, Andrew

    2005-01-01

    Based on preliminary experiments and results with a binary 1-sinc mask in the HCIT early in August 2004, we planned for a detailed experiment to compare the performance of HEBS and Binary masks under nearly identical conditions in the HCIT. This report details the design and fabrication of the masks, simulated predictions, and experimental results.

  18. Results of computer calculations for a simulated distribution of kidney cells

    NASA Technical Reports Server (NTRS)

    Micale, F. J.

    1985-01-01

    The results of computer calculations for a simulated distribution of kidney cells are given. The calculations were made for different values of electroosmotic flow, U sub o, and the ratio of sample diameter to channel diameter, R.

  19. Analysis procedures and subjective flight results of a simulator validation and cue fidelity experiment

    NASA Technical Reports Server (NTRS)

    Carr, Peter C.; Mckissick, Burnell T.

    1988-01-01

    A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.

  20. Marvel-ous Dwarfs: Results from Four Heroically Large Simulated Volumes of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Munshi, Ferah; Brooks, Alyson; Weisz, Daniel; Bellovary, Jillian; Christensen, Charlotte

    2018-01-01

    We present results from high resolution, fully cosmological simulations of cosmic sheets that contain many dwarf galaxies. Together, they create the largest collection of simulated dwarf galaxies to date, with z=0 stellar masses comparable to the LMC or smaller. In total, we have simulated almost 100 luminous dwarf galaxies, forming a sample of simulated dwarfs which span a wide range of physical (stellar and halo mass) and evolutionary properties (merger history). We show how they can be calibrated against a wealth of observations of nearby galaxies including star formation histories, HI masses and kinematics, as well as stellar metallicities. We present preliminary results answering the following key questions: What is the slope of the stellar mass function at extremely low masses? Do halos with HI and no stars exist? What is the scatter in the stellar to halo mass relationship as a function of dwarf mass? What drives the scatter? With this large suite, we are beginning to statistically characterize dwarf galaxies and identify the types and numbers of outliers to expect.

  1. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  2. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  3. Results from a limited area mesoscale numerical simulation for 10 April 1979

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Results are presented from a nine-hour limited area fine mesh (35-km) mesoscale model simulation initialized with SESAME-AVE I radiosonde data for Apr. 10, 1979 at 2100 GMT. Emphasis is on the diagnosis of mesoscale structure in the mass and precipitation fields. Along the Texas/Oklahoma border, independent of the short wave, convective precipitation formed several hours into the simulation and was organized into a narrow band suggestive of the observed April 10 squall line.

  4. Simulation of salt production process

    NASA Astrophysics Data System (ADS)

    Muraveva, E. A.

    2017-10-01

    In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.

  5. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  6. Novel approach for beacon formation through simulated turbulence: initial lab-test results

    NASA Astrophysics Data System (ADS)

    Khizhnyak, A.; Markov, V.; Tomov, I.; Wu, F.

    2010-02-01

    In this paper we report the results of the analysis and experimental modeling of the target-in-the-loop (TIL) approach that is used to form a localized beacon for a laser beam propagating through turbulent atmosphere. The analogy between the TIL system and the laser cavity has been used here to simulate the process shaping the laser beacon on a remote image-resolved target with rough surface. The TIL breadboard was integrated and used for laboratory modeling of the proposed approach. This breadboard allowed to simulate the TIL arrangement with a rough-surface target and laser beam propagation through the turbulent atmospheric layer. Here we present the initial results of the performed studies.

  7. Airglow during ionospheric modifications by the sura facility radiation. experimental results obtained in 2010

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Klimenko, V. V.; Shindin, A. V.; Nasyrov, I. A.; Sergeev, E. N.; A. Yashnov, V.; A. Pogorelko, N.

    2012-06-01

    We present the results of studying the structure and dynamics of the HF-heated volume above the Sura facility obtained in 2010 by measurements of ionospheric airglow in the red (λ = 630 nm) and green (λ = 557.7 nm) lines of atomic oxygen. Vertical sounding of the ionosphere (followed by modeling of the pump-wave propagation) and measurements of stimulated electromagnetic emission were used for additional diagnostics of ionospheric parameters and the processes occurring in the heated volume.

  8. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  9. High frequency dynamic engine simulation. [TF-30 engine

    NASA Technical Reports Server (NTRS)

    Schuerman, J. A.; Fischer, K. E.; Mclaughlin, P. W.

    1977-01-01

    A digital computer simulation of a mixed flow, twin spool turbofan engine was assembled to evaluate and improve the dynamic characteristics of the engine simulation to disturbance frequencies of at least 100 Hz. One dimensional forms of the dynamic mass, momentum and energy equations were used to model the engine. A TF30 engine was simulated so that dynamic characteristics could be evaluated against results obtained from testing of the TF30 engine at the NASA Lewis Research Center. Dynamic characteristics of the engine simulation were improved by modifying the compression system model. Modifications to the compression system model were established by investigating the influence of size and number of finite dynamic elements. Based on the results of this program, high frequency engine simulations using finite dynamic elements can be assembled so that the engine dynamic configuration is optimum with respect to dynamic characteristics and computer execution time. Resizing of the compression systems finite elements improved the dynamic characteristics of the engine simulation but showed that additional refinements are required to obtain close agreement simulation and actual engine dynamic characteristics.

  10. Studies and simulations of the DigiCipher system

    NASA Technical Reports Server (NTRS)

    Sayood, K.; Chen, Y. C.; Kipp, G.

    1993-01-01

    During this period the development of simulators for the various high definition television (HDTV) systems proposed to the FCC was continued. The FCC has indicated that it wants the various proposers to collaborate on a single system. Based on all available information this system will look very much like the advanced digital television (ADTV) system with major contributions only from the DigiCipher system. The results of our simulations of the DigiCipher system are described. This simulator was tested using test sequences from the MPEG committee. The results are extrapolated to HDTV video sequences. Once again, some caveats are in order. The sequences used for testing the simulator and generating the results are those used for testing the MPEG algorithm. The sequences are of much lower resolution than the HDTV sequences would be, and therefore the extrapolations are not totally accurate. One would expect to get significantly higher compression in terms of bits per pixel with sequences that are of higher resolution. However, the simulator itself is a valid one, and should HDTV sequences become available, they could be used directly with the simulator. A brief overview of the DigiCipher system is given. Some coding results obtained using the simulator are looked at. These results are compared to those obtained using the ADTV system. These results are evaluated in the context of the CCSDS specifications and make some suggestions as to how the DigiCipher system could be implemented in the NASA network. Simulations such as the ones reported can be biased depending on the particular source sequence used. In order to get more complete information about the system one needs to obtain a reasonable set of models which mirror the various kinds of sources encountered during video coding. A set of models which can be used to effectively model the various possible scenarios is provided. As this is somewhat tangential to the other work reported, the results are included as an

  11. Introduction to study and simulation of low rate video coding schemes

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During this period, the development of simulators for the various HDTV systems proposed to the FCC were developed. These simulators will be tested using test sequences from the MPEG committee. The results will be extrapolated to HDTV video sequences. Currently, the simulator for the compression aspects of the Advanced Digital Television (ADTV) was completed. Other HDTV proposals are at various stages of development. A brief overview of the ADTV system is given. Some coding results obtained using the simulator are discussed. These results are compared to those obtained using the CCITT H.261 standard. These results in the context of the CCSDS specifications are evaluated and some suggestions as to how the ADTV system could be implemented in the NASA network are made.

  12. Results of a Flight Simulation Software Methods Survey

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    A ten-page questionnaire was mailed to members of the AIAA Flight Simulation Technical Committee in the spring of 1994. The survey inquired about various aspects of developing and maintaining flight simulation software, as well as a few questions dealing with characterization of each facility. As of this report, 19 completed surveys (out of 74 sent out) have been received. This paper summarizes those responses.

  13. Plasma Drifts in the Intermediate Magnetosphere: Simulation Results

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Zhang, B.

    2016-12-01

    One of the outstanding questions about the inner magnetosphere dynamics is how the ring current is populated. It is not clear how much is due to a general injection over longer time and spatial scales and how much due to more bursty events. One of the major uncertainties is the behavior of the plasma in the intermediate magnetosphere: the region where the magnetosphere changes from being tail-like to one where the dipole field dominates. This is also the region where physically the plasma behavior changes from MHD-like in the tail to one dominated by particle drifts in the inner magnetosphere. No of the current simulation models self-consistently handle the region where drifts are important but not dominant. We have recently developed a version of the multi-fluid LFM code that can self-consistently handle this situation. The drifts are modeled in a fashion similar to the Rice Convection Model in that a number of energy "channels" are explicitly simulated. However, the method is not limited to the "slow flow" region and both diamagnetic and inertial drifts are included. We present results from a number of idealized cases of the global magnetosphere interacting with a southward turning of the IMF. We discuss the relative importance of general convection and bursty flows to the transport of particles and energy across this region.

  14. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  15. Comparison of simulator fidelity model predictions with in-simulator evaluation data

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.

    1983-01-01

    A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.

  16. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  17. Generalized simulation technique for turbojet engine system analysis

    NASA Technical Reports Server (NTRS)

    Seldner, K.; Mihaloew, J. R.; Blaha, R. J.

    1972-01-01

    A nonlinear analog simulation of a turbojet engine was developed. The purpose of the study was to establish simulation techniques applicable to propulsion system dynamics and controls research. A schematic model was derived from a physical description of a J85-13 turbojet engine. Basic conservation equations were applied to each component along with their individual performance characteristics to derive a mathematical representation. The simulation was mechanized on an analog computer. The simulation was verified in both steady-state and dynamic modes by comparing analytical results with experimental data obtained from tests performed at the Lewis Research Center with a J85-13 engine. In addition, comparison was also made with performance data obtained from the engine manufacturer. The comparisons established the validity of the simulation technique.

  18. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli

    2017-11-01

    In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.

  19. Quench simulation results for a 12-T twin-aperture dipole magnet

    NASA Astrophysics Data System (ADS)

    Cheng, Da; Salmi, Tiina; Xu, Qingjin; Peng, Quanling; Wang, Chengtao; Wang, Yingzhe; Kong, Ershuai; Zhang, Kai

    2018-06-01

    A 12-T twin-aperture subscale dipole magnet is being developed for SPPC pre-study at the Institute of High Energy Physics (IHEP). The magnet is comprised of 6 double-pancake coils which include 2 Nb3Sn coils and 4 NbTi coils. As the stored energy of the magnet is 0.452 MJ and the operation margin is only about 20% at 4.2 K, a quick and effective quench protection system is necessary during the test of this high field magnet. For the design of the quench protection system, attention was not only paid to the hotspot temperature and terminal voltage, but also the temperature gradient during the quench process due to the poor mechanical characteristics of the Nb3Sn cables. With the adiabatic analysis, numerical simulation and the finite element simulation, an optimized protection method is adopted, which contains a dump resistor and quench heaters. In this paper, the results of adiabatic analysis and quench simulation, such as current decay, hot-spot temperature and terminal voltage are presented in details.

  20. Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.; Long, Kurtis R.

    2005-01-01

    Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.

  1. Mechanics of Nanostructured Porous Silica Aerogel Resulting from Molecular Dynamics Simulations.

    PubMed

    Patil, Sandeep P; Rege, Ameya; Sagardas; Itskov, Mikhail; Markert, Bernd

    2017-06-08

    Silica aerogels are nanostructured, highly porous solids which have, compared to other soft materials, special mechanical properties, such as extremely low densities. In the present work, the mechanical properties of silica aerogels have been studied with molecular dynamics (MD) simulations. The aerogel model of 192 000 atoms was created with different densities by direct expansion of β-cristobalite and subjected to series of thermal treatments. Because of the high number of atoms and improved modeling procedure, the proposed model was more stable and showed significant improvement in the smoothness of the resulting stress-strain curves in comparison to previous models. Resulting Poisson's ratio values for silica aerogels lie between 0.18 and 0.21. The elasticity moduli display a power law dependence on the density, with the exponent estimated to be 3.25 ± 0.1. These results are in excellent agreement with reported experimental as well as computational values. Two different deformation scenarios have been discussed. Under tension, the low-density aerogels were more ductile while the denser ones behaved rather brittle. In the compression simulations of low-density aerogels, deformation occurred without significant increase in stress. However, for high densities, atoms offer a higher resistance to the deformation, resulting in a more stiff response and an early densification. The relationship between different mechanical parameters has been found in the cyclic loading simulations of silica aerogels with different densities. The residual strain grows linearly with the applied strain (≥0.16) and can be approximated by a phenomenological relation ϵ p = 1.09ϵ max - 0.12. The dissipation energy also varies with the compressive strain according to a power law with an exponent of 2.31 ± 0.07. Moreover, the tangent modulus under cyclic loading varies exponentially with the compressive strain. The results of the study pave the way toward multiscale modeling of silica

  2. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  3. Comparisons of NIF convergent ablation simulations with radiograph data.

    PubMed

    Olson, R E; Hicks, D G; Meezan, N B; Koch, J A; Landen, O L

    2012-10-01

    A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF.

  4. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    USGS Publications Warehouse

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  5. Geometry and Simulation Results for a Gas Turbine Representative of the Energy Efficient Engine (EEE)

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Beach, Tim; Turner, Mark; Hendricks, Eric S.

    2015-01-01

    This paper describes the geometry and simulation results of a gas-turbine engine based on the original EEE engine developed in the 1980s. While the EEE engine was never in production, the technology developed during the program underpins many of the current generation of gas turbine engines. This geometry is being explored as a potential multi-stage turbomachinery test case that may be used to develop technology for virtual full-engine simulation. Simulation results were used to test the validity of each component geometry representation. Results are compared to a zero-dimensional engine model developed from experimental data. The geometry is captured in a series of Initial Graphical Exchange Specification (IGES) files and is available on a supplemental DVD to this report.

  6. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  7. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  8. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, N. V.; Kakurin, A. M.

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEARmore » code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.« less

  9. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  10. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  11. Integrated corridor management analysis, modeling, and simulation results for the test corridor.

    DOT National Transportation Integrated Search

    2008-06-01

    This report documents the Integrated Corridor Management (ICM) Analysis Modeling and Simulation (AMS) tools and strategies used on a Test Corridor, presents results and lessons-learned, and documents the relative capability of AMS to support benefit-...

  12. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.

  13. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  14. Analysis Of Direct Numerical Simulation Results Of Adverse Pressure Gradient Boundary Layer Through Anisotropy Invariant Mapping And Comparison With The Rans Simulations

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse Gul; Nural, Ozan Ekin; Ertunc, Ozgur

    2017-11-01

    Purpose of this study is to analyze the direct numerical simulation data of a turbulent boundary layer subjected to strong adverse pressure gradient through anisotropy invariant mapping. RANS simulation using the ``Elliptic Blending Model'' of Manceau and Hanjolic (2002) is also conducted for the same flow case with commercial software Star-CCM+ and comparison of the results with DNS data is done. RANS simulation captures the general trends in the velocity field but, significant deviations are found when skin friction coefficients are compared. Anisotropy invariant map of Lumley and Newman (1977) and barycentric map of Banerjee et al. (2007) are used for the analysis. Invariant mapping of the DNS data has yielded that at locations away from the wall, flow is close to one component turbulence state. In the vicinity of the wall, turbulence is at two component limit which is one border of the barycentric map and as the flow evolves along the streamwise direction, it approaches to two component turbulence state. Additionally, at the locations away from the wall, turbulence approaches to two component limit. Furthermore, analysis of the invariants of the RANS simulations shows dissimilar results. In RANS simulations invariants do not approach to any of the limit states unlike the DNS.

  15. The Simulation Realization of Pavement Roughness in the Time Domain

    NASA Astrophysics Data System (ADS)

    XU, H. L.; He, L.; An, D.

    2017-10-01

    As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.

  16. Projection parameters for zirconia-alumina-ceria coatings made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    A numerical simulation was performed with the software Jets et Poudres, the results let choose the parameters to deposit zirconia-alumina-ceria coatings of different composition on substrates of red clay, by thermal spraying with the oxyacetylene flame to obtain homogeneous coatings with good adhesion to the substrate. The effect of the projection distance (7, 10 and 12cm) between the substrate and the torch, the fusion percentage of particles and the K-Sommerfeld number was determined. This number is dimensionless and is affected by the projection distance and by the chemical composition of the particles. For a projection distance of 9cm, the fusion percentage of the particles varies between 83.8% and 100%, and the K-Sommerfeld number between 47.3 and 50 for the different compounds. This makes possible to obtain uniform coatings with good wettability, therefore, good adhesion to the substrate, while for the distance of 7cm the fusion percentage varies between 22% and 38%, due to the short time of the particles in the flame which causes low adhesion, when the projection distance is 12cm the particles do not have sufficient kinetic energy to reach the substrate and therefore the coating is not deposited.

  17. Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.

    2004-01-01

    A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.

  18. Monte Carlo simulation of aorta autofluorescence

    NASA Astrophysics Data System (ADS)

    Kuznetsova, A. A.; Pushkareva, A. E.

    2016-08-01

    Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.

  19. How to obtain accurate resist simulations in very low-k1 era?

    NASA Astrophysics Data System (ADS)

    Chiou, Tsann-Bim; Park, Chan-Ha; Choi, Jae-Seung; Min, Young-Hong; Hansen, Steve; Tseng, Shih-En; Chen, Alek C.; Yim, Donggyu

    2006-03-01

    A procedure for calibrating a resist model iteratively adjusts appropriate parameters until the simulations of the model match the experimental data. The tunable parameters may include the shape of the illuminator, the geometry and transmittance/phase of the mask, light source and scanner-related parameters that affect imaging quality, resist process control and most importantly the physical/chemical factors in the resist model. The resist model can be accurately calibrated by measuring critical dimensions (CD) of a focus-exposure matrix (FEM) and the technique has been demonstrated to be very successful in predicting lithographic performance. However, resist model calibration is more challenging in the low k1 (<0.3) regime because numerous uncertainties, such as mask and resist CD metrology errors, are becoming too large to be ignored. This study demonstrates a resist model calibration procedure for a 0.29 k1 process using a 6% halftone mask containing 2D brickwall patterns. The influence of different scanning electron microscopes (SEM) and their wafer metrology signal analysis algorithms on the accuracy of the resist model is evaluated. As an example of the metrology issue of the resist pattern, the treatment of a sidewall angle is demonstrated for the resist line ends where the contrast is relatively low. Additionally, the mask optical proximity correction (OPC) and corner rounding are considered in the calibration procedure that is based on captured SEM images. Accordingly, the average root-mean-square (RMS) error, which is the difference between simulated and experimental CDs, can be improved by considering the metrological issues. Moreover, a weighting method and a measured CD tolerance are proposed to handle the different CD variations of the various edge points of the wafer resist pattern. After the weighting method is implemented and the CD selection criteria applied, the RMS error can be further suppressed. Therefore, the resist CD and process window can

  20. Human factors simulation in construction management education

    NASA Astrophysics Data System (ADS)

    Jaeger, M.; Adair, D.

    2010-06-01

    Successful construction management depends primarily on the representatives of the involved construction project parties. In addition to effective application of construction management tools and concepts, human factors impact significantly on the processes of any construction management endeavour. How can human factors in construction management be taught effectively? Although simulations are applied in construction management education, they have not incorporated human factors sufficiently. The focus on human factors as part of the simulation of construction management situations increases students' learning effectiveness within a cross-cultural teaching setting. This paper shows the development of discrete-event human factors in construction management simulation. A description of the source code is given. Learning effectiveness in a cross-cultural education setting was analysed by evaluating data obtained through student questionnaire surveys. The mean score obtained by the students using the simulator was 32% better than those not exposed to the simulator. The spread of results was noticeably greater for the students not exposed to the simulator. The human factors simulation provides an effective means to teach students the complexities and dynamics of interpersonal relationships in construction management.

  1. Soil nitrogen balance under wastewater management: Field measurements and simulation results

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vocasek, F.; Ma, Liwang; KC, A.

    2009-01-01

    The use of treated wastewater for irrigation of crops could result in high nitrate-nitrogen (NO3-N) concentrations in the vadose zone and ground water. The goal of this 2-yr field-monitoring study in the deep silty clay loam soils south of Dodge City, Kansas, was to assess how and under what circumstances N from the secondary-treated, wastewater-irrigated corn reached the deep (20-45 m) water table of the underlying High Plains aquifer and what could be done to minimize this problem. We collected 15.2-m-deep soil cores for characterization of physical and chemical properties; installed neutron probe access tubes to measure soil-water content and suction lysimeters to sample soil water periodically; sampled monitoring, irrigation, and domestic wells in the area; and obtained climatic, crop, irrigation, and N application rate records for two wastewater-irrigated study sites. These data and additional information were used to run the Root Zone Water Quality Model to identify key parameters and processes that influence N losses in the study area. We demonstrated that NO3-N transport processes result in significant accumulations of N in the vadose zone and that NO3-N in the underlying ground water is increasing with time. Root Zone Water Quality Model simulations for two wastewater-irrigated study sites indicated that reducing levels of corn N fertilization by more than half to 170 kg ha-1 substantially increases N-use efficiency and achieves near-maximum crop yield. Combining such measures with a crop rotation that includes alfalfa should further reduce the accumulation and downward movement of NO3-N in the soil profile. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. From Simulation to Real Robots with Predictable Results: Methods and Examples

    NASA Astrophysics Data System (ADS)

    Balakirsky, S.; Carpin, S.; Dimitoglou, G.; Balaguer, B.

    From a theoretical perspective, one may easily argue (as we will in this chapter) that simulation accelerates the algorithm development cycle. However, in practice many in the robotics development community share the sentiment that “Simulation is doomed to succeed” (Brooks, R., Matarić, M., Robot Learning, Kluwer Academic Press, Hingham, MA, 1993, p. 209). This comes in large part from the fact that many simulation systems are brittle; they do a fair-to-good job of simulating the expected, and fail to simulate the unexpected. It is the authors' belief that a simulation system is only as good as its models, and that deficiencies in these models lead to the majority of these failures. This chapter will attempt to address these deficiencies by presenting a systematic methodology with examples for the development of both simulated mobility models and sensor models for use with one of today's leading simulation engines. Techniques for using simulation for algorithm development leading to real-robot implementation will be presented, as well as opportunities for involvement in international robotics competitions based on these techniques.

  3. Simulation of size-exclusion chromatography distribution coefficients of comb-shaped molecules in spherical pores comparison of simulation and experiment.

    PubMed

    Radke, Wolfgang

    2004-03-05

    Simulations of the distribution coefficients of linear polymers and regular combs with various spacings between the arms have been performed. The distribution coefficients were plotted as a function of the number of segments in order to compare the size exclusion chromatography (SEC)-elution behavior of combs relative to linear molecules. By comparing the simulated SEC-calibration curves it is possible to predict the elution behavior of comb-shaped polymers relative to linear ones. In order to compare the results obtained by computer simulations with experimental data, a variety of comb-shaped polymers varying in side chain length, spacing between the side chains and molecular weights of the backbone were analyzed by SEC with light-scattering detection. It was found that the computer simulations could predict the molecular weights of linear molecules having the same retention volume with an accuracy of about 10%, i.e. the error in the molecular weight obtained by calculating the molecular weight of the comb-polymer based on a calibration curve constructed using linear standards and the results of the computer simulations are of the same magnitude as the experimental error of absolute molecular weight determination.

  4. SEIR model simulation for Hepatitis B

    NASA Astrophysics Data System (ADS)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  5. New high-definition thickness data obtained at tropical glaciers: preliminary results from Antisana volcano (Ecuador) using GPR prospection

    NASA Astrophysics Data System (ADS)

    Zapata, Camilo; Andrade, Daniel; Córdova, Jorge; Maisincho, Luis; Carvajal, Juan; Calispa, Marlon; Villacís, Marcos

    2014-05-01

    The study of tropical glaciers has been a significant contribution to the understanding of glacier dynamics and climate change. Much of the data and results have been obtained by analyzing plan-view images obtained by air- and space-borne sensors, as well as depth data obtained by diverse methodologies at selected points on the glacier surface. However, the measurement of glacier thicknesses has remained an elusive task in tropical glaciers, often located in rough terrains where the application of geophysical surveys (i.e. seismic surveys) requires logistics sometimes hardly justified by the amount of obtained data. In the case of Ecuador, however, where most glaciers have developed on active volcanoes and represent sources/reservoirs of fresh water, the precise knowledge of such information is fundamental for scientific research but also in order to better assess key aspects for the society. The relatively recent but fast development of the GPR technology has helped to obtain new highdefinition thickness data at Antisana volcano that will be used to: 1) better understand the dynamics and fate of tropical glaciers; 2) better estimate the amount of fresh water stored in the glaciers; 3) better assess the hazards associated with the sudden widespread melting of glaciers during volcanic eruptions. The measurements have been obtained at glaciers 12 and 15 of Antisana volcano, with the help of a commercial GPR equipped with a 25 MHz antenna. A total of 30 transects have been obtained, covering a distance of more than 3 km, from the glacier ablation zone, located at ~ 4600 masl, up to the level of 5200 masl. The preliminary results show a positive correlation between altitude and glacier thickness, with maximum and minimum calculated values reaching up to 80 m, and down to 15 m, respectively. The experience gained at Antisana volcano will be used to prepare a more widespread GPR survey in the glaciers of Cotopaxi volcano, whose implications in terms of volcanic hazards

  6. Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study

    PubMed Central

    McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.

    2015-01-01

    Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939

  7. Experimental evidence for a new single-event upset (SEU) mode in a CMOS SRAM obtained from model verification

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Lo, R. Y.

    1987-01-01

    Modeling of SEU has been done in a CMOS static RAM containing 1-micron-channel-length transistors fabricated from a p-well epilayer process using both circuit-simulation and numerical-simulation techniques. The modeling results have been experimentally verified with the aid of heavy-ion beams obtained from a three-stage tandem van de Graaff accelerator. Experimental evidence for a novel SEU mode in an ON n-channel device is presented.

  8. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  9. Comparative hybrid and digital simulation studies of the behaviour of a wind generator equipped with a static frequency converter

    NASA Astrophysics Data System (ADS)

    Dube, B.; Lefebvre, S.; Perocheau, A.; Nakra, H. L.

    1988-01-01

    This paper describes the comparative results obtained from digital and hybrid simulation studies on a variable speed wind generator interconnected to the utility grid. The wind generator is a vertical-axis Darrieus type coupled to a synchronous machine by a gear-box; the synchronous machine is connected to the AC utility grid through a static frequency converter. Digital simulation results have been obtained using CSMP software; these results are compared with those obtained from a real-time hybrid simulator that in turn uses a part of the IREQ HVDC simulator. The agreement between hybrid and digital simulation results is generally good. The results demonstrate that the digital simulation reproduces the dynamic behavior of the system in a satisfactory manner and thus constitutes a valid tool for the design of the control systems of the wind generator.

  10. Relationship Between Optimal Gain and Coherence Zone in Flight Simulation

    NASA Technical Reports Server (NTRS)

    Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.

    2011-01-01

    In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.

  11. Mercury's plasma belt: hybrid simulations results compared to in-situ measurements

    NASA Astrophysics Data System (ADS)

    Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.

    2012-12-01

    The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.

  12. Hydrodynamic Simulations of Protoplanetary Disks with GIZMO

    NASA Astrophysics Data System (ADS)

    Rice, Malena; Laughlin, Greg

    2018-01-01

    Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.

  13. Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.

  14. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  15. On simulations of rarefied vapor flows with condensation

    NASA Astrophysics Data System (ADS)

    Bykov, Nikolay; Gorbachev, Yuriy; Fyodorov, Stanislav

    2018-05-01

    Results of the direct simulation Monte Carlo of 1D spherical and 2D axisymmetric expansions into vacuum of condens-ing water vapor are presented. Two models based on the kinetic approach and the size-corrected classical nucleation theory are employed for simulations. The difference in obtained results is discussed and advantages of the kinetic approach in comparison with the modified classical theory are demonstrated. The impact of clusterization on flow parameters is observed when volume fraction of clusters in the expansion region exceeds 5%. Comparison of the simulation data with the experimental results demonstrates good agreement.

  16. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  17. Geodetic results from ISAGEX data. [for obtaining center of mass coordinates for geodetic camera sites

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Walls, D. M.

    1974-01-01

    Laser and camera data taken during the International Satellite Geodesy Experiment (ISAGEX) were used in dynamical solutions to obtain center-of-mass coordinates for the Astro-Soviet camera sites at Helwan, Egypt, and Oulan Bator, Mongolia, as well as the East European camera sites at Potsdam, German Democratic Republic, and Ondrejov, Czechoslovakia. The results are accurate to about 20m in each coordinate. The orbit of PEOLE (i=15) was also determined from ISAGEX data. Mean Kepler elements suitable for geodynamic investigations are presented.

  18. Acceleration techniques for dependability simulation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Barnette, James David

    1995-01-01

    As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.

  19. Comparing simulation of plasma turbulence with experiment. II. Gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Dorland, William

    2002-12-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyrokinetic simulations with the GS2 code. This is a continuation of previous work with gyrofluid simulations [D. W. Ross et al., Phys. Plasmas 9, 177 (2002)], and the same L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] is studied. The simulated turbulence is dominated by ion temperature gradient (ITG) modes, corrected by trapped-electron, passing-electron and impurity effects. The energy fluxes obtained in the gyrokinetic simulations are comparable to, even somewhat higher than, those of the earlier work, and the simulated ion thermal transport, corrected for E×B flow shear, exceeds the experimental value by more than a factor of 2. The simulation also overestimates the density fluctuation level. Varying the local temperature gradient shows a stiff response in the flux and an apparent up-shift from the linear mode threshold [A. M. Dimits et al., Phys. Plasmas 7, 969 (2000)]. This effect is insufficient, within the estimated error, to bring the results into conformity with the experiment.

  20. A new look on anomalous thermal gradient values obtained in South Portugal

    NASA Astrophysics Data System (ADS)

    Duque, M. R.; Malico, I.

    2012-04-01

    A NEW LOOK ON THE ANOMALOUS THERMAL GRADIENT VALUES OBTAINED IN SOUTH PORTUGAL Duque, M. R. and Malico, I. M. Physics Department, University of Évora, Rua Romão Ramalho, 59,7000-671, Évora, Portugal It is well known that soil temperatures can be altered by water circulation. In this paper, we study numerically this effect by simulating some aquifers occurring in South Portugal. At this location, the thermal gradient values obtained in boreholes with depths less than 200 m, range between 22 and 30 °C km-1. However, there, it is easy to find places where temperatures are around 30 °C, at depths of 100 m. The obtained thermal gradient values show an increase one day after raining and a decrease during the dry season. Additionally, the curve of temperature as function of depth showed no hot water inlet in the hole. The region studied shows a smooth topography due to intensive erosion, but it was affected by alpine and hercinian orogenies. As a result, a high topography in depth, with folds and wrinkles is present. The space between adjacent folds is now filled by small sedimentary basins. Aquifers existing in this region can reach considerable depths and return to depths near the surface, but hot springs in the area are scarce. Water temperature rises in depth, and when the speed is high enough high temperatures near the surface, due to water circulation, can be found. The ability of the fluid to flow through the system depends on topography relief, rock permeability and basal heat flow. In this study, the steady-state fluid flow and heat transfer by conduction and advection are modeled. Fractures in the medium are simulated by an equivalent porous medium saturated with liquid. Thermal conductivity values for the water and the rocks can vary in space .Porosities used have high values in the region of the aquifer, low values in the lower region of the model and intermediate values in the upper regions. The results obtained show that temperature anomaly values

  1. Effect of monthly areal rainfall uncertainty on streamflow simulation

    NASA Astrophysics Data System (ADS)

    Ndiritu, J. G.; Mkhize, N.

    2017-08-01

    Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic

  2. Modified social force model based on information transmission toward crowd evacuation simulation

    NASA Astrophysics Data System (ADS)

    Han, Yanbin; Liu, Hong

    2017-03-01

    In this paper, the information transmission mechanism is introduced into the social force model to simulate pedestrian behavior in an emergency, especially when most pedestrians are unfamiliar with the evacuation environment. This modified model includes a collision avoidance strategy and an information transmission model that considers information loss. The former is used to avoid collision among pedestrians in a simulation, whereas the latter mainly describes how pedestrians obtain and choose directions appropriate to them. Simulation results show that pedestrians can obtain the correct moving direction through information transmission mechanism and that the modified model can simulate actual pedestrian behavior during an emergency evacuation. Moreover, we have drawn four conclusions to improve evacuation based on the simulation results; and these conclusions greatly contribute in optimizing a number of efficient emergency evacuation schemes for large public places.

  3. Three-Dimensional Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Durisen, Richard H.; Nordlund, Åke; Lord, Jesse

    2007-08-01

    Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithm's ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Mejía and Boley et al. and the algorithm employed by Cai et al. pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective α~10-2. In addition, transport is dominated by low-order modes.

  4. Nanofiltration Results: Membrane Removal of Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from Simulated Geothermal Brines

    DOE Data Explorer

    Jay Renew

    2016-02-06

    Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).

  5. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    NASA Technical Reports Server (NTRS)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  6. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  7. Main results and experience obtained on Mir space station and experiment program for Russian segment of ISS.

    PubMed

    Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M

    2003-07-01

    This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.

  8. Ion velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.

  9. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  10. Simulation Applications at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Inouye, M.

    1984-01-01

    Aeronautical applications of simulation technology at Ames Research Center are described. The largest wind tunnel in the world is used to determine the flow field and aerodynamic characteristics of various aircraft, helicopter, and missile configurations. Large computers are used to obtain similar results through numerical solutions of the governing equations. Capabilities are illustrated by computer simulations of turbulence, aileron buzz, and an exhaust jet. Flight simulators are used to assess the handling qualities of advanced aircraft, particularly during takeoff and landing.

  11. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  12. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Shen, Ping; Jin, Na

    In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.

  13. Dynamic load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1972-01-01

    Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.

  14. Defining the Simulation Technician Role: Results of a Survey-Based Study.

    PubMed

    Bailey, Rachel; Taylor, Regina G; FitzGerald, Michael R; Kerrey, Benjamin T; LeMaster, Thomas; Geis, Gary L

    2015-10-01

    In health care simulation, simulation technicians perform multiple tasks to support various educational offerings. Technician responsibilities and the tasks that accompany them seem to vary between centers. The objectives were to identify the range and frequency of tasks that technicians perform and to determine if there is a correspondence between what technicians do and what they feel their responsibilities should be. We hypothesized that there is a core set of responsibilities and tasks for the technician position regardless of background, experience, and type of simulation center. We conducted a prospective, survey-based study of individuals currently functioning in a simulation technician role in a simulation center. This survey was designed internally and piloted within 3 academic simulation centers. Potential respondents were identified through a national mailing list, and the survey was distributed electronically during a 3-week period. A survey request was sent to 280 potential participants, 136 (49%) responded, and 73 met inclusion criteria. Five core tasks were identified as follows: equipment setup and breakdown, programming scenarios into software, operation of software during simulation, audiovisual support for courses, and on-site simulator maintenance. Independent of background before they were hired, technicians felt unprepared for their role once taking the position. Formal training was identified as a need; however, the majority of technicians felt experience over time was the main contributor toward developing knowledge and skills within their role. This study represents a first step in defining the technician role within simulation-based education and supports the need for the development of a formal job description to allow recruitment, development, and certification.

  15. Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, John K.

    1991-01-01

    Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.

  16. 25 CFR 162.539 - Must I obtain a WEEL before obtaining a WSR lease?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.539 Must I obtain a WEEL before obtaining... direct result of energy resource information gathered from a WEEL activity, obtaining a WEEL is not a...

  17. 25 CFR 162.539 - Must I obtain a WEEL before obtaining a WSR lease?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.539 Must I obtain a WEEL before obtaining... direct result of energy resource information gathered from a WEEL activity, obtaining a WEEL is not a...

  18. AESS: Accelerated Exact Stochastic Simulation

    NASA Astrophysics Data System (ADS)

    Jenkins, David D.; Peterson, Gregory D.

    2011-12-01

    The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution

  19. First results from the IllustrisTNG simulations: the galaxy colour bimodality

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Pillepich, Annalisa; Springel, Volker; Weinberger, Rainer; Hernquist, Lars; Pakmor, Rüdiger; Genel, Shy; Torrey, Paul; Vogelsberger, Mark; Kauffmann, Guinevere; Marinacci, Federico; Naiman, Jill

    2018-03-01

    We introduce the first two simulations of the IllustrisTNG project, a next generation of cosmological magnetohydrodynamical simulations, focusing on the optical colours of galaxies. We explore TNG100, a rerun of the original Illustris box, and TNG300, which includes 2 × 25003 resolution elements in a volume 20 times larger. Here, we present first results on the galaxy colour bimodality at low redshift. Accounting for the attenuation of stellar light by dust, we compare the simulated (g - r) colours of 109 < M⋆/M⊙ < 1012.5 galaxies to the observed distribution from the Sloan Digital Sky Survey. We find a striking improvement with respect to the original Illustris simulation, as well as excellent quantitative agreement with the observations, with a sharp transition in median colour from blue to red at a characteristic M⋆ ˜ 1010.5 M⊙. Investigating the build-up of the colour-mass plane and the formation of the red sequence, we demonstrate that the primary driver of galaxy colour transition is supermassive black hole feedback in its low accretion state. Across the entire population the median colour transition time-scale Δtgreen is ˜1.6 Gyr, a value which drops for increasingly massive galaxies. We find signatures of the physical process of quenching: at fixed stellar mass, redder galaxies have lower star formation rates, gas fractions, and gas metallicities; their stellar populations are also older and their large-scale interstellar magnetic fields weaker than in bluer galaxies. Finally, we measure the amount of stellar mass growth on the red sequence. Galaxies with M⋆ > 1011 M⊙ which redden at z < 1 accumulate on average ˜25 per cent of their final z = 0 mass post-reddening; at the same time, ˜18 per cent of such massive galaxies acquire half or more of their final stellar mass while on the red sequence.

  20. Computer simulation of space charge

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Chung, W. K.; Mak, S. S.

    1991-05-01

    Using the particle-mesh (PM) method, a one-dimensional simulation of the well-known Langmuir-Child's law is performed on an INTEL 80386-based personal computer system. The program is coded in turbo basic (trademark of Borland International, Inc.). The numerical results obtained were in excellent agreement with theoretical predictions and the computational time required is quite modest. This simulation exercise demonstrates that some simple computer simulation using particles may be implemented successfully on PC's that are available today, and hopefully this will provide the necessary incentives for newcomers to the field who wish to acquire a flavor of the elementary aspects of the practice.

  1. Reliability of regional climate simulations

    NASA Astrophysics Data System (ADS)

    Ahrens, W.; Block, A.; Böhm, U.; Hauffe, D.; Keuler, K.; Kücken, M.; Nocke, Th.

    2003-04-01

    Quantification of uncertainty becomes more and more a key issue for assessing the trustability of future climate scenarios. In addition to the mean conditions, climate impact modelers focus in particular on extremes. Before generating such scenarios using e.g. dynamic regional climate models, a careful validation of present-day simulations should be performed to determine the range of errors for the quantities of interest under recent conditions as a raw estimate of their uncertainty in the future. Often, multiple aspects shall be covered together, and the required simulation accuracy depends on the user's demand. In our approach, a massive parallel regional climate model shall be used on the one hand to generate "long-term" high-resolution climate scenarios for several decades, and on the other hand to provide very high-resolution ensemble simulations of future dry spells or heavy rainfall events. To diagnosis the model's performance for present-day simulations, we have recently developed and tested a first version of a validation and visualization chain for this model. It is, however, applicable in a much more general sense and could be used as a common test bed for any regional climate model aiming at this type of simulations. Depending on the user's interest, integrated quality measures can be derived for near-surface parameters using multivariate techniques and multidimensional distance measures in a first step. At this point, advanced visualization techniques have been developed and included to allow for visual data mining and to qualitatively identify dominating aspects and regularities. Univariate techniques that are especially designed to assess climatic aspects in terms of statistical properties can then be used to quantitatively diagnose the error contributions of the individual used parameters. Finally, a comprehensive in-depth diagnosis tool allows to investigate, why the model produces the obtained near-surface results to answer the question if the

  2. Simulation of fault performance of a diesel engine driven brushless alternator through PSPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, S.S.Y.; Ananthakrishnan, P.; Hangari, V.U.

    1995-12-31

    Analysis of the fault performance of a brushless alternator with damper windings in the main alternator has been handled ab initio as a total modeling and simulation problem through proper application of Park`s equivalent circuit approach individually to the main exciter alternator units of the brushless alternator and the same has been implemented through PSPICE. The accuracy of the parameters used in the modeling and results obtained through PSPICE implementation are then evaluated for a specific 125 kVA brushless alternator in two stages as followed: first, by comparison of the predicted fault performance obtained from simulation of the 125 kVAmore » main alternator alone treated as a conventional alternator with the results obtained through the use of closed form analytical expressions available in the literature for fault currents and torques in such conventional alternators. Secondly, by comparison of some of the simulation results with those obtained experimentally on the brushless alternator itself. To enable proper calculation of derating factors to be used in the design of such brushless alternators, simulation results then include harmonic analysis of the steady state fault currents and torques. Throughout these studies, the brushless alternator is treated to be on no load at the instant of occurrence of fault.« less

  3. Numerical Simulation of Sintering Process in Ceramic Powder Injection Moulded Components

    NASA Astrophysics Data System (ADS)

    Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.

    2007-05-01

    A phenomenological model based on viscoplastic constitutive law is presented to describe the sintering process of ceramic components obtained by powder injection moulding. The parameters entering in the model are identified through sintering experiments in dilatometer with the proposed optimization method. The finite element simulations are carried out to predict the density variations and dimensional changes of the components during sintering. A simulation example on the sintering process of hip implant in alumina has been conducted. The simulation results have been compared with the experimental ones. A good agreement is obtained.

  4. Direct Numerical Simulation of Complex Turbulence

    NASA Astrophysics Data System (ADS)

    Hsieh, Alan

    Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were conducted. The data base obtained from these DNS simulations were used to investigate the turbulence generation cycle for simple and complex turbulence. For turbulent channel flow, three theoretical models concerning the formation and evolution of sublayer streaks, three-dimensional hairpin vortices and propagating plane waves were validated using visualizations from the present DNS data. The principal orthogonal decomposition (POD) method was used to verify the existence of the propagating plane waves; a new extension of the POD method was derived to demonstrate these plane waves in a spatial channel model. The analyses of coherent structures was extended to complex turbulence and used to determine the proper computational box size for a minimal flow unit (MFU) at Rob < 0.5. Proper realization of Taylor-Gortler vortices in the highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU turbulence statistics, which required a minimum spanwise domain length Lz = pi. A dependence of MFU accuracy on Reynolds number was also discovered and MFU models required a larger domain to accurately approximate higher-Reynolds number flows. In addition, the results obtained from the DNS simulations were utilized to evaluate several turbulence closure models for momentum and thermal transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heatflux distributions obtained from two explicit algebraic heat flux models consistently displayed increasing disagreement with DNS data with increasing rotation rate. Results

  5. Modelling and simulation of a heat exchanger

    NASA Technical Reports Server (NTRS)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  6. Stochastic simulation of nucleation in binary alloys

    NASA Astrophysics Data System (ADS)

    L’vov, P. E.; Svetukhin, V. V.

    2018-06-01

    In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.

  7. Influence of land use on rainfall simulation results in the Souss basin, Morocco

    NASA Astrophysics Data System (ADS)

    Peter, Klaus Daniel; Ries, Johannes B.; Hssaine, Ali Ait

    2013-04-01

    Situated between the High and Anti-Atlas, the Souss basin is characterized by a dynamic land use change. It is one of the fastest growing agricultural regions of Morocco. Traditional mixed agriculture is replaced by extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market. For the implementation of the land use change and further expansion of the plantations into marginal land which was former unsuitable for agriculture, land levelling by heavy machinery is used to plane the fields and close the widespread gullies. These gully systems are cutting deep between the plantations and other arable land. Their development started already over 400 years ago with the introduction of sugar production. Heavy rainfall events lead to further strong soil and gully erosion in this with 200 mm mean annual precipitation normally arid region. Gullies are cutting into the arable land or are re-excavating their old stream courses. On the test sites around the city of Taroudant, a total of 122 rainfall simulations were conducted to analyze the susceptibility of soils to surface runoff and soil erosion under different land use. A small portable nozzle rainfall simulator is used for the rainfall simulation experiments, quantifying runoff and erosion rates on micro-plots with a size of 0.28 m2. A motor pump boosts the water regulated by a flow metre into the commercial full cone nozzle at a height of 2 m. The rainfall intensity is maintained at about 40 mm h-1 for each of the 30 min lasting experiments. Ten categories of land use are classified for different stages of levelling, fallow land, cultivation and rangeland. Results show that mean runoff coefficients and mean sediment loads are significantly higher (1.4 and 3.5 times respectively) on levelled study sites compared to undisturbed sites. However, the runoff coefficients of all land use types are relatively equal and reach high median coefficients from 39 to 56 %. Only the

  8. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  9. Mass imbalances in EPANET water-quality simulations

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  10. SEIR model simulation for Hepatitis B

    NASA Astrophysics Data System (ADS)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.

  11. JT9D performance deterioration results from a simulated aerodynamic load test

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Stromberg, W. J.

    1981-01-01

    The results of testing to identify the effects of simulated aerodynamic flight loads on JT9D engine performance are presented. The test results were also used to refine previous analytical studies on the impact of aerodynamic flight loads on performance losses. To accomplish these objectives, a JT9D-7AH engine was assembled with average production clearances and new seals as well as extensive instrumentation to monitor engine performance, case temperatures, and blade tip clearance changes. A special loading device was designed and constructed to permit application of known moments and shear forces to the engine by the use of cables placed around the flight inlet. The test was conducted in the Pratt & Whitney Aircraft X-Ray Test Facility to permit the use of X-ray techniques in conjunction with laser blade tip proximity probes to monitor important engine clearance changes. Upon completion of the test program, the test engine was disassembled, and the condition of gas path parts and final clearances were documented. The test results indicate that the engine lost 1.1 percent in thrust specific fuel consumption (TSFC), as measured under sea level static conditions, due to increased operating clearances caused by simulated flight loads. This compares with 0.9 percent predicted by the analytical model and previous study efforts.

  12. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  13. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-06-01

    In Titan’s atmosphere, a complex organic chemistry occurs between its main constituents, N2 and CH4, and leads to the production of larger molecules and solid aerosols.Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed on the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s atmospheric chemistry at Titan-like temperature (200K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to monitor the first and intermediate steps of the chemistry as well as specific chemical pathways when adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan[1].We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of

  14. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-10-01

    Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus

  15. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Izhar, Abu Bakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2014-08-01

    In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.

  16. Convergence of sampling in protein simulations

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2002-03-01

    With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.

  17. A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.

    PubMed

    Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott

    2016-03-16

    OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.

  18. Improved failure prediction in forming simulations through pre-strain mapping

    NASA Astrophysics Data System (ADS)

    Upadhya, Siddharth; Staupendahl, Daniel; Heuse, Martin; Tekkaya, A. Erman

    2018-05-01

    The sensitivity of sheared edges of advanced high strength steel (AHSS) sheets to cracking during subsequent forming operations and the difficulty to predict this failure with any degree of accuracy using conventionally used FLC based failure criteria is a major problem plaguing the manufacturing industry. A possible method that allows for an accurate prediction of edge cracks is the simulation of the shearing operation and carryover of this model into a subsequent forming simulation. But even with an efficient combination of a solid element shearing operation and a shell element forming simulation, the need for a fine mesh, and the resulting high computation time makes this approach not viable from an industry point of view. The crack sensitivity of sheared edges is due to work hardening in the shear-affected zone (SAZ). A method to predict plastic strains induced by the shearing process is to measure the hardness after shearing and calculate the ultimate tensile strength as well as the flow stress. In combination with the flow curve, the relevant strain data can be obtained. To eliminate the time-intensive shearing simulation necessary to obtain the strain data in the SAZ, a new pre-strain mapping approach is proposed. The pre-strains to be mapped are, hereby, determined from hardness values obtained in the proximity of the sheared edge. To investigate the performance of this approach the ISO/TS 16630 hole expansion test was simulated with shell elements for different materials, whereby the pre-strains were mapped onto the edge of the hole. The hole expansion ratios obtained from such pre-strain mapped simulations are in close agreement with the experimental results. Furthermore, the simulations can be carried out with no increase in computation time, making this an interesting and viable solution for predicting edge failure due to shearing.

  19. Exploring Space Physics Concepts Using Simulation Results

    NASA Astrophysics Data System (ADS)

    Gross, N. A.

    2008-05-01

    The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.

  20. Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America

    NASA Astrophysics Data System (ADS)

    Ojeda, GermáN. Y.; Whitman, Dean

    2002-11-01

    The effective elastic thickness (Te) of the lithosphere is a parameter that describes the flexural strength of a plate. A method routinely used to quantify this parameter is to calculate the coherence between the two-dimensional gravity and topography spectra. Prior to spectra calculation, data grids must be "windowed" in order to avoid edge effects. We investigated the sensitivity of Te estimates obtained via the coherence method to mirroring, Hanning and multitaper windowing techniques on synthetic data as well as on data from northern South America. These analyses suggest that the choice of windowing technique plays an important role in Te estimates and may result in discrepancies of several kilometers depending on the selected windowing method. Te results from mirrored grids tend to be greater than those from Hanning smoothed or multitapered grids. Results obtained from mirrored grids are likely to be over-estimates. This effect may be due to artificial long wavelengths introduced into the data at the time of mirroring. Coherence estimates obtained from three subareas in northern South America indicate that the average effective elastic thickness is in the range of 29-30 km, according to Hanning and multitaper windowed data. Lateral variations across the study area could not be unequivocally determined from this study. We suggest that the resolution of the coherence method does not permit evaluation of small (i.e., ˜5 km), local Te variations. However, the efficiency and robustness of the coherence method in rendering continent-scale estimates of elastic thickness has been confirmed.

  1. Direct simulations of chemically reacting turbulent mixing layers

    NASA Technical Reports Server (NTRS)

    Riley, J. J.; Metcalfe, R. W.

    1984-01-01

    The report presents the results of direct numerical simulations of chemically reacting turbulent mixing layers. The work consists of two parts: (1) the development and testing of a spectral numerical computer code that treats the diffusion reaction equations; and (2) the simulation of a series of cases of chemical reactions occurring on mixing layers. The reaction considered is a binary, irreversible reaction with no heat release. The reacting species are nonpremixed. The results of the numerical tests indicate that the high accuracy of the spectral methods observed for rigid body rotation are also obtained when diffusion, reaction, and more complex flows are considered. In the simulations, the effects of vortex rollup and smaller scale turbulence on the overall reaction rates are investigated. The simulation results are found to be in approximate agreement with similarity theory. Comparisons of simulation results with certain modeling hypotheses indicate limitations in these hypotheses. The nondimensional product thickness computed from the simulations is compared with laboratory values and is found to be in reasonable agreement, especially since there are no adjustable constants in the method.

  2. Power estimation using simulations for air pollution time-series studies

    PubMed Central

    2012-01-01

    Background Estimation of power to assess associations of interest can be challenging for time-series studies of the acute health effects of air pollution because there are two dimensions of sample size (time-series length and daily outcome counts), and because these studies often use generalized linear models to control for complex patterns of covariation between pollutants and time trends, meteorology and possibly other pollutants. In general, statistical software packages for power estimation rely on simplifying assumptions that may not adequately capture this complexity. Here we examine the impact of various factors affecting power using simulations, with comparison of power estimates obtained from simulations with those obtained using statistical software. Methods Power was estimated for various analyses within a time-series study of air pollution and emergency department visits using simulations for specified scenarios. Mean daily emergency department visit counts, model parameter value estimates and daily values for air pollution and meteorological variables from actual data (8/1/98 to 7/31/99 in Atlanta) were used to generate simulated daily outcome counts with specified temporal associations with air pollutants and randomly generated error based on a Poisson distribution. Power was estimated by conducting analyses of the association between simulated daily outcome counts and air pollution in 2000 data sets for each scenario. Power estimates from simulations and statistical software (G*Power and PASS) were compared. Results In the simulation results, increasing time-series length and average daily outcome counts both increased power to a similar extent. Our results also illustrate the low power that can result from using outcomes with low daily counts or short time series, and the reduction in power that can accompany use of multipollutant models. Power estimates obtained using standard statistical software were very similar to those from the simulations

  3. Parallelizing Timed Petri Net simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1993-01-01

    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included.

  4. Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin

    2010-03-01

    The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic

  5. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  6. The Planetary Accretion Shock. I. Framework for Radiation-hydrodynamical Simulations and First Results

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Klahr, Hubert; Kuiper, Rolf; Mordasini, Christoph

    2017-02-01

    The key aspect determining the postformation luminosity of gas giants has long been considered to be the energetics of the accretion shock at the surface of the planet. We use one-dimensional radiation-hydrodynamical simulations to study the radiative loss efficiency and to obtain postshock temperatures and pressures and thus entropies. The efficiency is defined as the fraction of the total incoming energy flux that escapes the system (roughly the Hill sphere), taking into account the energy recycling that occurs ahead of the shock in a radiative precursor. We focus in this paper on a constant equation of state (EOS) to isolate the shock physics but use constant and tabulated opacities. While robust quantitative results will have to await a self-consistent treatment including hydrogen dissociation and ionization, the results presented here show the correct qualitative behavior and can be understood from semianalytical calculations. The shock is found to be isothermal and supercritical for a range of conditions relevant to the core accretion formation scenario (CA), with Mach numbers { M }≳ 3. Across the shock, the entropy decreases significantly by a few times {k}{{B}}/{{baryon}}. While nearly 100% of the incoming kinetic energy is converted to radiation locally, the efficiencies are found to be as low as roughly 40%, implying that a significant fraction of the total accretion energy is brought into the planet. However, for realistic parameter combinations in the CA scenario, we find that a nonzero fraction of the luminosity always escapes the Hill sphere. This luminosity could explain, at least in part, recent observations in the young LkCa 15 and HD 100546 systems.

  7. Ssip-a processor interconnection simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navaux, P.; Weber, R.; Prezzi, J.

    1982-01-01

    Recent growing interest in multiple processor architectures has given rise to the study of procesor-memory interconnections for the determination of better architectures. This paper concerns the development of the SSIP-sistema simulador de interconexao de processadores (processor interconnection simulating system) which allows the evaluation of different interconnection structures comparing its performance in order to provide parameters which would help the designer to define an architcture. A wide spectrum of systems may be evaluated, and their behaviour observed due to the features incorporated into the simulator program. The system modelling and the simulator program implementation are described. Some results that can bemore » obtained are shown, along with the discussion of their usefulness. 12 references.« less

  8. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  9. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  10. Determination of component volumes of lipid bilayers from simulations.

    PubMed Central

    Petrache, H I; Feller, S E; Nagle, J F

    1997-01-01

    An efficient method for extracting volumetric data from simulations is developed. The method is illustrated using a recent atomic-level molecular dynamics simulation of L alpha phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer. Results from this simulation are obtained for the volumes of water (VW), lipid (V1), chain methylenes (V2), chain terminal methyls (V3), and lipid headgroups (VH), including separate volumes for carboxyl (Vcoo), glyceryl (Vgl), phosphoryl (VPO4), and choline (Vchol) groups. The method assumes only that each group has the same average volume regardless of its location in the bilayer, and this assumption is then tested with the current simulation. The volumes obtained agree well with the values VW and VL that have been obtained directly from experiment, as well as with the volumes VH, V2, and V3 that require certain assumptions in addition to the experimental data. This method should help to support and refine some assumptions that are necessary when interpreting experimental data. Images FIGURE 4 PMID:9129826

  11. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  12. Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnier, J-N.; Chevalier, J-M.; Dubroca, B.

    One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less

  13. Selected-node stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Duso, Lorenzo; Zechner, Christoph

    2018-04-01

    Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.

  14. Cardiovascular simulator improvement: pressure versus volume loop assessment.

    PubMed

    Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar

    2011-05-01

    This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Laboratory test results for an airborne ASTER simulator

    NASA Astrophysics Data System (ADS)

    Ezaka, Teruya; Kannari, Yoshiaki; Mills, Franklin P.; Watanabe, Hiroshi; Sano, Masaharu; Chang, Sheng-Huei

    1993-08-01

    An airborne ASTER simulator (AAS) is being developed by the Geophysical Environmental Research Corporation (GER) to study land surface temperature and emittance in the thermal infrared. Laboratory tests in October 1992 at NASA's Stennis Space Center (SSC) measured the AAS's spectral, approximate NEdT, and approximate spatial response characteristics. The spectral FWHM for most channels is smaller than 0.3 micrometers ; the NEdT for most TIR channels is better than 0.4 K; and the nominal IFOV is 5 mrad. Flight data was collected over Cuprite and Goldfield, Nevada and near Valencia, California in November 1992. The silicified and opalized zones at Cuprite could be discriminated using decorrelation-stretch images. AAS decorrelation-stretch images agree, qualitatively, with data from NASA's thermal infrared mapping spectrometer (TIMS). These results indicate the AAS may be a good tool for remote sensing studies of geological materials. Lower noise detector arrays and linear variable (optical) filters for the TIR channels will be tested in flights over Cuprite, Nevada later this year. These and other improvements may reduce the NEdT and improve the signal-to-noise ratio.

  16. Research on an expert system for database operation of simulation-emulation math models. Volume 1, Phase 1: Results

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Beale, G. O.; Schaffer, J. D.; Hsieh, B. J.; Padalkar, S.; Rodriguez-Moscoso, J. J.

    1985-01-01

    The results of the first phase of Research on an Expert System for Database Operation of Simulation/Emulation Math Models, is described. Techniques from artificial intelligence (AI) were to bear on task domains of interest to NASA Marshall Space Flight Center. One such domain is simulation of spacecraft attitude control systems. Two related software systems were developed to and delivered to NASA. One was a generic simulation model for spacecraft attitude control, written in FORTRAN. The second was an expert system which understands the usage of a class of spacecraft attitude control simulation software and can assist the user in running the software. This NASA Expert Simulation System (NESS), written in LISP, contains general knowledge about digital simulation, specific knowledge about the simulation software, and self knowledge.

  17. Numerical Simulations of Close and Contact Binary Systems Having Bipolytropic Equation of State

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Motl, Patrick M.; Marcello, Dominic; Frank, Juhan

    2017-01-01

    I present the results of the numerical simulations of the mass transfer in close and contact binary systems with both stars having a bipolytropic (composite polytropic) equation of state. The initial binary systems are obtained by a modifying Hachisu’s self-consistent field technique. Both the stars have fully resolved cores with a molecular weight jump at the core-envelope interface. The initial properties of these simulations are chosen such that they satisfy the mass-radius relation, composition and period of a late W-type contact binary system. The simulations are carried out using two different Eulerian hydrocodes, Flow-ER with a fixed cylindrical grid, and Octo-tiger with an AMR capable cartesian grid. The detailed comparison of the simulations suggests an agreement between the results obtained from the two codes at different resolutions. The set of simulations can be treated as a benchmark, enabling us to reliably simulate mass transfer and merger scenarios of binary systems involving bipolytropic components.

  18. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less

  19. Simulations and experiments on RITA-2 at PSI

    NASA Astrophysics Data System (ADS)

    Klausen, S. N.; Lefmann, K.; McMorrow, D. F.; Altorfer, F.; Janssen, S.; Lüthy, M.

    The cold-neutron triple-axis spectrometer RITA-2 designed and built at Riso National Laboratory was installed at the neutron source SINQ at Paul Scherrer Institute in April/May 2001. In connection with the installation of RITA-2, computer simulations were performed using the neutron ray-tracing package McStas. The simulation results are compared to real experimental results obtained with a powder sample. Especially, the flux at the sample position and the resolution function of the spectrometer are investigated.

  20. Water vapour condensation in a partly closed structure. Comparison between results obtained with an inside wet or dry bottom wall

    NASA Astrophysics Data System (ADS)

    Batina, Jean; Peyrous, René

    2018-04-01

    We are interested in the determination of the more significant parameters acting on the water vapour condensation in a partly closed structure, submitted to external constraints (temperature and humidity), in view to recover the generated droplets as an additional source of potable water. External temperature variations, by inducing temperature differences between outside and inside of the structure, lead to convective movements and thermal variations inside this structure. Through an orifice, these movements permit a renewing of the humid inner air and can lead to the condensation of the water vapour initially contained in the inner air volume and/or on the walls. With the above hypotheses, and by using a numerical simulation [1] based on the ambient air characteristics and a finite volumes method, it appears that condensed water quantities are mainly depending on the boundary conditions imposed. These conditions are: 1) dimensions of the structure; 2) external temperature and relative hygrometry; 3) the phase φ (T/RH) linking thermal and hydrometric conditions; 4) the air renewing and its hygrometry for each phase; and 5) for each case, the fact that the inside bottom wall can be wet or dry. The resulting condensed water vapour quantities obtained, for the width section, point out clearly that they are very depending on this phase φ (T/RH) which appears as the more significant parameter and can be modified by the presence or not of a thin layer of water vapour on the inside bottom wall. Condensation phenomenon could be increased if φ could be optimized.

  1. Simulation results of automatic restructurable flight control system concepts

    NASA Technical Reports Server (NTRS)

    Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Ostroff, A.

    1986-01-01

    The restructurable flight control system (RFCS) described by Weiss et al. (1986) is reviewed, and several results of an extensive six degrees of freedom nonlinear simulation of several aspects of this system are reported. It is concluded that the nontraditional use of standard control surfaces in a nominal feedback control system to spread control authority among many redundant control elements provides a significant amount of fault tolerance without any use of restructuring techniques. The use of new feedback gains alone following a failure can provide significantly improved recovery as long as the control elements remain within their travel limits and as long as uncertainty about the failure identity is properly handled. The use of the feed-forward trim solution in conjunction with redesigned feedback gains allows recovery to take place even when significant control saturation occurs.

  2. High Fidelity BWR Fuel Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Su Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fractionmore » and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.« less

  3. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  4. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  5. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    PubMed

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  6. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  7. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  8. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  9. MoSeS: Modelling and Simulation for e-Social Science.

    PubMed

    Townend, Paul; Xu, Jie; Birkin, Mark; Turner, Andy; Wu, Belinda

    2009-07-13

    MoSeS (Modelling and Simulation for e-Social Science) is a research node of the National Centre for e-Social Science. MoSeS uses e-Science techniques to execute an events-driven model that simulates discrete demographic processes; this allows us to project the UK population 25 years into the future. This paper describes the architecture, simulation methodology and latest results obtained by MoSeS.

  10. The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application

    NASA Astrophysics Data System (ADS)

    Prasetyo, H.; Budiana, EP; Tjahjana, DDDP; Hadi, S.

    2018-02-01

    The design of Horizontal Axis Water Turbine in pico hydro power plants involves many parameters. To simplify that, usually using computer simulation is applied. This research performs simulation process variation on turbine blade number, turbine blade curvature angle, turbine bucket angle and blocking system tilt angle. Those four variations were combined in order to obtain the best design of turbine. The study used Flow Simulation Solidworks application, and obtain data on turbine speed, pressure, force, and torque. However, this research focused on turbine torque value. The best design of turbine was obtained in the turbine with 6 blades, blade curvature angle of 65° and bucket angle of 10°, and blocking system tilt angle of 40°. In the best turbine, the produced torque value was 8.464 Nm.

  11. Integrating Satellite Image Identification and River Routing Simulation into the Groundwater Simulation of Chou-Shui Basin

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Yang, S.; Chen, Y.; Chang, L.; Chiang, C.; Huang, C.; Chen, J.

    2012-12-01

    Many groundwater simulation models have been developed for Chou-Shui River alluvial fan which is one of the most important groundwater areas in Taiwan. However, the exchange quantity between Chou-Shui River, the major river in this area, and the groundwater system itself is seldom studied. In this study, the exchange is evaluated using a river package (RIV) in the groundwater simulation model, MODFLOW 2000. Several critical parameters and variables used in RIV such as wet area and river level for each cell below the Chou-Shui River are respectively determined by satellite image identification and HEC-RAS simulation. The monthly average of river levels obtained from four stations include Chang-Yun Bridge, Xi-Bin Bridge, Chi-Chiang Bridge and Si-Jou Bridge during 2008 and the river cross-section measured on December 2007 are used in the construction of HEC-RAS model. Four FORMOSAT multispectral satellite images respectively obtained on January 2008, April 2008, July 2008, and November 2008 are used to identify the wet area of Chou-Shui River during different seasons. Integrating the simulation level provided by HEC-RAS and the identification result are used as the assignment of RIV. First, based on the simulation results of HEC-RAS, the water level differences between flooding period and draught period are 1.4 (m) and 2.0 (m) for Xi-Bin Bridge station (downstream) and Chang-Yun Bridge station (upstream) respectively. Second, based on the identified results, the wet areas for four seasons are 24, 24, 40 and 12 (km2) respectively. The variation range of areas in 2008 is huge that the area for winter is just 30% of the area for summer. Third, based on the simulation of MODFLOW 2000 and RIV, the exchange between the river and the groundwater system is 414 million cubic meters which contains 526 for recharge to river and 112 for discharging from river during 2008. The total recharge includes river exchange and recharge from non-river area is 2023 million cubic meters. The

  12. Numerical simulation of a self-propelled copepod during escape

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef

    2008-11-01

    Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.

  13. Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation.

    PubMed

    Sevillano, David; Calvo, Almudena; Giménez, María-José; Alou, Luis; Aguilar, Lorenzo; Valero, Eva; Carcas, Antonio; Prieto, José

    2004-12-01

    To investigate the bactericidal activity against Streptococcus pneumoniae of simulated amoxicillin serum concentrations obtained in humans after 2000/125 mg sustained-release (SR) and 875/125 mg co-amoxiclav administered twice and three times a day, respectively. An in vitro computerized pharmacodynamic simulation was carried out and colony counts were determined over 24 h. Ten strains non-susceptible to amoxicillin (four of them exhibiting an MIC of 4 mg/L, five strains with an MIC of 8 mg/L and one strain with an MIC of 16 mg/L) were used. With amoxicillin 2000 mg, an initial inoculum reduction >99.99% was obtained for strains with an MIC of 4 mg/L, > or =99% for strains with an MIC of 8 mg/L and 70.6% for the strain with an MIC of 16 mg/L at 24 h sampling time. At this sampling time, no reduction of initial inocula was obtained with amoxicillin 875 mg/8 h for two of the four strains with an MIC of 4 mg/L, three of the five strains with an MIC of 8 mg/L or for the strain with an MIC of 16 mg/L. The new co-amoxiclav 2000/125 mg SR formulation appears to offer advantages versus previous formulations with respect to bactericidal activity against current amoxicillin non-susceptible strains.

  14. Power estimation using simulations for air pollution time-series studies.

    PubMed

    Winquist, Andrea; Klein, Mitchel; Tolbert, Paige; Sarnat, Stefanie Ebelt

    2012-09-20

    Estimation of power to assess associations of interest can be challenging for time-series studies of the acute health effects of air pollution because there are two dimensions of sample size (time-series length and daily outcome counts), and because these studies often use generalized linear models to control for complex patterns of covariation between pollutants and time trends, meteorology and possibly other pollutants. In general, statistical software packages for power estimation rely on simplifying assumptions that may not adequately capture this complexity. Here we examine the impact of various factors affecting power using simulations, with comparison of power estimates obtained from simulations with those obtained using statistical software. Power was estimated for various analyses within a time-series study of air pollution and emergency department visits using simulations for specified scenarios. Mean daily emergency department visit counts, model parameter value estimates and daily values for air pollution and meteorological variables from actual data (8/1/98 to 7/31/99 in Atlanta) were used to generate simulated daily outcome counts with specified temporal associations with air pollutants and randomly generated error based on a Poisson distribution. Power was estimated by conducting analyses of the association between simulated daily outcome counts and air pollution in 2000 data sets for each scenario. Power estimates from simulations and statistical software (G*Power and PASS) were compared. In the simulation results, increasing time-series length and average daily outcome counts both increased power to a similar extent. Our results also illustrate the low power that can result from using outcomes with low daily counts or short time series, and the reduction in power that can accompany use of multipollutant models. Power estimates obtained using standard statistical software were very similar to those from the simulations when properly implemented

  15. Caution: Precision Error in Blade Alignment Results in Faulty Unsteady CFD Simulation

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2012-11-01

    Turbomachinery components experience unsteady loads at several frequencies. The rotor frequency corresponds to the time for one rotor blade to rotate between two stator vanes, and is normally dominant for rotor torque oscillations. The guide vane frequency corresponds to the time for two rotor blades to pass by one guide vane. The machine frequency corresponds to the machine RPM. Oscillations at the machine frequency are always present due to minor blade misalignments and imperfections resulting from manufacturing defects. However, machine frequency oscillations should not be present in CFD simulations if the mesh is free of both blade misalignment and surface imperfections. The flow through a Francis hydroturbine was modeled with unsteady Reynolds-Averaged Navier-Stokes (URANS) CFD simulations and a dynamic rotating grid. Spectral analysis of the unsteady torque on the rotor blades revealed a large component at the machine frequency. Close examination showed that one blade was displaced by 0 .0001° due to round-off errors during mesh generation. A second mesh without blade misalignment was then created. Subsequently, large machine frequency oscillations were not observed for this mesh. These results highlight the effect of minor geometry imperfections on CFD solutions. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  16. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  17. Three-dimensional simulation of triode-type MIG for 1 MW, 120 GHz gyrotron for ECRH applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Narendra; Kumar, Anil; Sinha, A. K.

    2012-01-01

    In this paper, the three-dimensional simulation of triode-type magnetron injection gun (MIG) for 120 GHz, 1 MW gyrotron is presented. The operating voltages of the modulating anode and the accelerating anode are 57 kV and 80 kV respectively. The high order TE 22,6 mode is selected as the operating mode and the electron beam is launched at the first radial maxima for the fundamental beam-mode operation. The initial design is obtained by using the in-house developed code MIGSYN. The numerical simulation is performed by using the commercially available code CST-Particle Studio (PS). The simulated results of MIG obtained by using CST-PS are validated with other simulation codes EGUN and TRAK, respectively. The results on the design output parameters obtained by using these three codes are found to be in close agreement.

  18. Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

    NASA Astrophysics Data System (ADS)

    Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-06-01

    We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.

  19. A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Lyu, L. H.; Chao, J. K.; Chen, M. Q.; Tsai, W. H.

    2009-12-01

    Contact discontinuity (CD) is the simplest solution that can be obtained from the magnetohydrodynamics (MHD) Rankine-Hugoniot jump conditions. Due to the limitations of the previous kinetic simulation models, the stability of the CD has become a controversial issue in the past 10 years. The stability of the CD is reexamined analytically and numerically. Our theoretical analysis shows that the electron temperature profile and the ion temperature profile must be out of phase across the CD if the CD structure is to be stable in the electron time scale and with zero electron heat flux on either side of the CD. Both a newly developed fourth-order implicit electrostatic Vlasov simulation code and an electromagnetic finite-size particle code are used to examine the stability and the electrostatic nature of the CD structure. Our theoretical prediction is verified by both simulations. Our results of Vlasov simulation also indicate that a simulation with initial electron temperature profile and ion temperature profile varying in phase across the CD will undergo very transient changes in the electron time scale but will relax into a quasi-steady CD structure within a few ion plasma oscillation periods if a real ion-electron mass ratio is used in the simulation and if the boundary conditions allow nonzero heat flux to be presented at the boundaries of the simulation box. The simulation results of this study indicate that the Vlasov simulation is a powerful tool to study nonlinear phenomena with nonperiodic boundary conditions and with nonzero heat flux at the boundaries of the simulation box.

  20. Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained.

    PubMed

    Barber, Chris; Cayley, Alex; Hanser, Thierry; Harding, Alex; Heghes, Crina; Vessey, Jonathan D; Werner, Stephane; Weiner, Sandy K; Wichard, Joerg; Giddings, Amanda; Glowienke, Susanne; Parenty, Alexis; Brigo, Alessandro; Spirkl, Hans-Peter; Amberg, Alexander; Kemper, Ray; Greene, Nigel

    2016-04-01

    The relative wealth of bacterial mutagenicity data available in the public literature means that in silico quantitative/qualitative structure activity relationship (QSAR) systems can readily be built for this endpoint. A good means of evaluating the performance of such systems is to use private unpublished data sets, which generally represent a more distinct chemical space than publicly available test sets and, as a result, provide a greater challenge to the model. However, raw performance metrics should not be the only factor considered when judging this type of software since expert interpretation of the results obtained may allow for further improvements in predictivity. Enough information should be provided by a QSAR to allow the user to make general, scientifically-based arguments in order to assess and overrule predictions when necessary. With all this in mind, we sought to validate the performance of the statistics-based in vitro bacterial mutagenicity prediction system Sarah Nexus (version 1.1) against private test data sets supplied by nine different pharmaceutical companies. The results of these evaluations were then analysed in order to identify findings presented by the model which would be useful for the user to take into consideration when interpreting the results and making their final decision about the mutagenic potential of a given compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The effect of thermal and ultrasonic treatment on amino acid composition, radical scavenging and reducing potential of hydrolysates obtained from simulated gastrointestinal digestion of cowpea proteins.

    PubMed

    Quansah, Joycelyn K; Udenigwe, Chibuike C; Saalia, Firibu K; Yada, Rickey Y

    2013-03-01

    The effect of thermal and ultrasonic treatment of cowpea proteins (CP) on amino acid composition, radical scavenging and reducing potential of hydrolysates (CPH) obtained from in vitro simulated gastrointestinal digestion of CP was evaluated. Hydrolysis of native and treated CP with gastrointestinal pepsin and pancreatin yielded CPH that displayed antioxidant activities based on oxygen radical scavenging capacity (ORAC), ferric reducing antioxidant power (FRAP) and superoxide radical scavenging activity (SRSA). CPH derived from the treated CP yielded higher ORAC values than CPH from untreated proteins. However, lower significant FRAP and SRSA values were observed for these samples compared to untreated CPH (p < 0.05). Amino acid analysis indicated that CP processing decreased total sulphur-containing amino acids in the hydrolysates, particularly cysteine. The amount of cysteine appeared to be positively related to FRAP and SRSA values of CPH samples, but not ORAC. The results indicated that thermal and ultrasonic processing of CP can reduce the radical scavenging and reducing potential of the enzymatic hydrolysates possibly due to the decreased amounts of cysteine. Since the hydrolysates were generated with gastrointestinal enzymes, it is possible that the resulting compounds are produced to exert some health functions during normal consumption of cowpea.

  2. Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

    NASA Astrophysics Data System (ADS)

    Arias, S.; Montlaur, A.

    2018-03-01

    In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

  3. Simulation of existing gas-fuelled conventional steam power plant using Cycle Tempo

    NASA Astrophysics Data System (ADS)

    Jamel, M. S.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Simulation of a 200 MW gas-fuelled conventional steam power plant located in Basra, Iraq was carried out. The thermodynamic performance of the considered power plant is estimated by a system simulation. A flow-sheet computer program, "Cycle-Tempo" is used for the study. The plant components and piping systems were considered and described in detail. The simulation results were verified against data gathered from the log sheet obtained from the station during its operation hours and good results were obtained. Operational factors like the stack exhaust temperature and excess air percentage were studied and discussed, as were environmental factors, such as ambient air temperature and water inlet temperature. In addition, detailed exergy losses were illustrated and describe the temperature profiles for the main plant components. The results prompted many suggestions for improvement of the plant performance.

  4. Simulation of minimally invasive vascular interventions for training purposes.

    PubMed

    Alderliesten, Tanja; Konings, Maurits K; Niessen, Wiro J

    2004-01-01

    To master the skills required to perform minimally invasive vascular interventions, proper training is essential. A computer simulation environment has been developed to provide such training. The simulation is based on an algorithm specifically developed to simulate the motion of a guide wire--the main instrument used during these interventions--in the human vasculature. In this paper, the design and model of the computer simulation environment is described and first results obtained with phantom and patient data are presented. To simulate minimally invasive vascular interventions, a discrete representation of a guide wire is used which allows modeling of guide wires with different physical properties. An algorithm for simulating the propagation of a guide wire within a vascular system, on the basis of the principle of minimization of energy, has been developed. Both longitudinal translation and rotation are incorporated as possibilities for manipulating the guide wire. The simulation is based on quasi-static mechanics. Two types of energy are introduced: internal energy related to the bending of the guide wire, and external energy resulting from the elastic deformation of the vessel wall. A series of experiments were performed on phantom and patient data. Simulation results are qualitatively compared with 3D rotational angiography data. The results indicate plausible behavior of the simulation.

  5. The relative ease of obtaining a dermatologic appointment in Boston: how methods drive results.

    PubMed

    Weingold, David Howard; Lack, Michael Dweight; Yanowitz, Karen Leslie

    2009-06-01

    Recent reports have indicated long wait times for dermatologic appointments even for changing moles. Our objective was to determine the wait time for a person willing to make multiple calls and accept an appointment from any dermatologist at any satellite location for a changing mole from a dermatologist who advertised in a Boston, MA, telephone book. We telephoned each practice listed in a Boston, MA, telephone book. Patients making one call to each dermatologic practice on average obtained an appointment in 18 days. Patients calling two practices were offered an appointment on average in 7 days. Patients calling 3 practices were also offered an appointment in 1 week. We only telephoned practices listed in a Boston, MA, telephone book and we only surveyed one urban area. These results suggest that a reasonable concerned patient who was willing to make multiple calls to different providers in Boston, MA, can be seen in a timely fashion.

  6. Low-cost autonomous orbit control about Mars: Initial simulation results

    NASA Astrophysics Data System (ADS)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work

  7. [Simulation and Design of Infant Incubator Assembly Line].

    PubMed

    Ke, Huqi; Hu, Xiaoyong; Ge, Xia; Hu, Yanhai; Chen, Zaihong

    2015-11-01

    According to current assembly situation of infant incubator in company A, basic industrial engineering means such as time study was used to analyze the actual products assembly production and an assembly line was designed. The assembly line was modeled and simulated with software Flexsim. The problem of the assembly line was found by comparing simulation result and actual data, then through optimization to obtain high efficiency assembly line.

  8. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing.

    PubMed

    Koprowski, Robert

    2014-07-04

    Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the

  9. The Simulation of a Jumbo Jet Transport Aircraft. Volume 2: Modeling Data

    NASA Technical Reports Server (NTRS)

    Hanke, C. R.; Nordwall, D. R.

    1970-01-01

    The manned simulation of a large transport aircraft is described. Aircraft and systems data necessary to implement the mathematical model described in Volume I and a discussion of how these data are used in model are presented. The results of the real-time computations in the NASA Ames Research Center Flight Simulator for Advanced Aircraft are shown and compared to flight test data and to the results obtained in a training simulator known to be satisfactory.

  10. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver

    NASA Astrophysics Data System (ADS)

    Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab

    2017-03-01

    This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.

  11. Convolutional coding results for the MVM '73 X-band telemetry experiment

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1978-01-01

    Results of simulation of several short-constraint-length convolutional codes using a noisy symbol stream obtained via the turnaround ranging channels of the MVM'73 spacecraft are presented. First operational use of this coding technique is on the Voyager mission. The relative performance of these codes in this environment is as previously predicted from computer-based simulations.

  12. Saturn gravity results obtained from Pioneer 11 tracking data and earth-based Saturn satellite data

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Lau, E. L.; Biller, E. D.; Anderson, J. D.

    1981-01-01

    Improved gravity coefficients for Saturn, its satellites and rings are calculated on the basis of a combination of Pioneer 11 spacecraft Doppler tracking data and earth-based determinations of Saturn natural satellite apse and node rates. Solutions are first obtained separately from the coherent Doppler tracking data obtained for the interval from August 20 to September 4, surrounding the time of closest approach, with the effects of solar plasma on radio signal propagation taken into account, and from secular rates for Mimas, Enceladus, Tethys, Dione, Rhea and Titan determined from astrometric data by Kozai (1957, 1976) and Garcia (1972). Combination of the data by the use of the Pioneer solution and corresponding unadjusted covariance matrix as a priori information for a secular rate analysis results in values for the total ring mass of essentially zero at a standard error level of 1.7 x 10 to the -6th Saturn masses, a ratio of solar mass to that of the Saturn system of 3498.09 + or - 0.22, masses of Rhea, Titan and Iapetus of 4.0 + or - 0.9, 238.8 + or - 3, and 3.4 + or - 1.3 x 10 to the -6th Saturn masses, respectively, and second and fourth zonal harmonics of 16,479 + or - 18 and -937 + or - 38, respectively. The harmonic coefficients are noted to be important as boundary conditions in the modeling of the Saturn interior.

  13. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  14. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  15. Comparing Results of SPH/N-body Impact Simulations Using Both Solid and Rubble-pile Target Asteroids

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Bottke, W. F.; Enke, B. L.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2006-09-01

    We have been investigating the properties of satellites and the morphology of size-frequency distributions (SFDs) resulting from a suite of 160 SPH/N-body simulations of impacts into 100-km diameter parent asteroids (Durda et al. 2004, Icarus 170, 243-257; Durda et al. 2006, Icarus, in press). These simulations have produced many valuable insights into the outcomes of cratering and disruptive impacts but were limited to monolithic basalt targets. As a natural consequence of collisional evolution, however, many asteroids have undergone a series of battering impacts that likely have left their interiors substantially fractured, if not completely rubblized. In light of this, we have re-mapped the matrix of simulations using rubble-pile target objects. We constructed the rubble-pile targets by filling the interior of the 100-km diameter spherical shell (the target envelope) with randomly sized solid spheres in mutual contact. We then assigned full damage (which reduces tensile and shear stresses to zero) to SPH particles in the contacts between the components; the remaining volume is void space. The internal spherical components have a power-law distribution of sizes simulating fragments of a pre-shattered parent object. First-look analysis of the rubble-pile results indicate some general similarities to the simulations with the monolithic targets (e.g., similar trends in the number of small, gravitationally bound satellite systems as a function of impact conditions) and some significant differences (e.g., size of largest remnants and smaller debris affecting size frequency distributions of resulting families). We will report details of a more thorough analysis and the implications for collisional models of the main asteroid belt. This work is supported by the National Science Foundation, grant number AST0407045.

  16. Thin films structural properties: results of the full-atomistic supercomputer simulation

    NASA Astrophysics Data System (ADS)

    Grigoriev, F. V.; Sulimov, V. B.; Tikhonravov, A. V.

    2017-12-01

    The previously developed full-atomistic approach to the thin film growth simulation is applied for the investigation of the dependence of silicon dioxide films properties on deposition conditions. It is shown that the surface roughness and porosity are essentially reduced with the growth of energy of deposited silicon atoms. The growth of energy from 0.1 eV to 10 eV results in the increase of the film density for 0.2 - 0.4 g/cm3 and of the refractive index for 0.04-0.08. The compressive stress in films structures is observed for all deposition conditions. Absolute values of the stress tensor components increase with the growth of e energy of deposited atoms. The increase of the substrate temperature results in smoothing of the density profiles of the deposited films.

  17. Computer Simulation Results for the Two-Point Probability Function of Composite Media

    NASA Astrophysics Data System (ADS)

    Smith, P.; Torquato, S.

    1988-05-01

    Computer simulation results are reported for the two-point matrix probability function S2 of two-phase random media composed of disks distributed with an arbitrary degree of impenetrability λ. The novel technique employed to sample S2( r) (which gives the probability of finding the endpoints of a line segment of length r in the matrix) is very accurate and has a fast execution time. Results for the limiting cases λ = 0 (fully penetrable disks) and λ = 1 (hard disks), respectively, compare very favorably with theoretical predictions made by Torquato and Beasley and by Torquato and Lado. Results are also reported for several values of λ. that lie between these two extremes: cases which heretofore have not been examined.

  18. Implementation and simulation of a cone dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Wang, Huaming; Zhu, Jianying

    2008-11-01

    The purpose is to investigate the performance of cone dielectric elastomer actuator (DEA) by experiment and FEM simulation. Two working equilibrium positions of cone DEA, which correspond to its initial displacement and displacement output with voltage off and on respectively, are determined through the analysis on its working principle. Experiments show that analytical results accord with experimental ones, and work output in a workcycle is hereby calculated. Actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Also, FEM simulation is used to obtain the movement of cone DEA in advance. Simulation results agree well with experimental ones and prove the feasibility of simulation. Also, causes for small difference between them in displacement output are analyzed.

  19. Simulation optimization of the cathode deposit growth in a coaxial electrolyzer-refiner

    NASA Astrophysics Data System (ADS)

    Smirnov, G. B.; Fokin, A. A.; Markina, S. E.; Vakhitov, A. I.

    2015-08-01

    The results of simulation of the cathode deposit growth in a coaxial electrolyzer-refiner are presented. The sizes of the initial cathode matrix are optimized. The data obtained by simulation and full-scale tests of the precipitation of platinum from a salt melt are compared.

  20. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of

  1. Measurement results obtained from air quality monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracowmore » area could be more intelligible.« less

  2. Properties of Syntactic Foam for Simulation of Mechanical Insults.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Neal Benson; Haulenbeek, Kimberly K.; Spletzer, Matthew A.

    Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.

  3. VHDL-AMS modelling and simulation of a planar electrostatic micromotor

    NASA Astrophysics Data System (ADS)

    Endemaño, A.; Fourniols, J. Y.; Camon, H.; Marchese, A.; Muratet, S.; Bony, F.; Dunnigan, M.; Desmulliez, M. P. Y.; Overton, G.

    2003-09-01

    System level simulation results of a planar electrostatic micromotor, based on analytical models of the static and dynamic torque behaviours, are presented. A planar variable capacitance (VC) electrostatic micromotor designed, fabricated and tested at LAAS (Toulouse) in 1995 is simulated using the high level language VHDL-AMS (VHSIC (very high speed integrated circuits) hardware description language-analog mixed signal). The analytical torque model is obtained by first calculating the overlaps and capacitances between different electrodes based on a conformal mapping transformation. Capacitance values in the order of 10-16 F and torque values in the order of 10-11 N m have been calculated in agreement with previous measurements and simulations from this type of motor. A dynamic model has been developed for the motor by calculating the inertia coefficient and estimating the friction-coefficient-based values calculated previously for other similar devices. Starting voltage results obtained from experimental measurement are in good agreement with our proposed simulation model. Simulation results of starting voltage values, step response, switching response and continuous operation of the micromotor, based on the dynamic model of the torque, are also presented. Four VHDL-AMS blocks were created, validated and simulated for power supply, excitation control, micromotor torque creation and micromotor dynamics. These blocks can be considered as the initial phase towards the creation of intellectual property (IP) blocks for microsystems in general and electrostatic micromotors in particular.

  4. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  5. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  6. Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive

    DTIC Science & Technology

    2009-06-01

    time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast

  7. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2015-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  8. Investigation of Asymmetric Thrust Detection with Demonstration in a Real-Time Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy K.; Rinehart, Aidan W.; Sowers, T. Shane; Simon, Donald L.

    2016-01-01

    The purpose of this effort is to develop, demonstrate, and evaluate three asymmetric thrust detection approaches to aid in the reduction of asymmetric thrust-induced aviation accidents. This paper presents the results from that effort and their evaluation in simulation studies, including those from a real-time flight simulation testbed. Asymmetric thrust is recognized as a contributing factor in several Propulsion System Malfunction plus Inappropriate Crew Response (PSM+ICR) aviation accidents. As an improvement over the state-of-the-art, providing annunciation of asymmetric thrust to alert the crew may hold safety benefits. For this, the reliable detection and confirmation of asymmetric thrust conditions is required. For this work, three asymmetric thrust detection methods are presented along with their results obtained through simulation studies. Representative asymmetric thrust conditions are modeled in simulation based on failure scenarios similar to those reported in aviation incident and accident descriptions. These simulated asymmetric thrust scenarios, combined with actual aircraft operational flight data, are then used to conduct a sensitivity study regarding the detection capabilities of the three methods. Additional evaluation results are presented based on pilot-in-the-loop simulation studies conducted in the NASA Glenn Research Center (GRC) flight simulation testbed. Data obtained from this flight simulation facility are used to further evaluate the effectiveness and accuracy of the asymmetric thrust detection approaches. Generally, the asymmetric thrust conditions are correctly detected and confirmed.

  9. Monte Carlo Simulation Using HyperCard and Lotus 1-2-3.

    ERIC Educational Resources Information Center

    Oulman, Charles S.; Lee, Motoko Y.

    Monte Carlo simulation is a computer modeling procedure for mimicking observations on a random variable. A random number generator is used in generating the outcome for the events that are being modeled. The simulation can be used to obtain results that otherwise require extensive testing or complicated computations. This paper describes how Monte…

  10. Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations

    NASA Astrophysics Data System (ADS)

    Šebek, Ondřej; Trávníček, Pavel M.; Walker, Raymond J.; Hellinger, Petr

    2016-08-01

    We present analysis of global three-dimensional hybrid simulations of Io's interaction with Jovian magnetospheric plasma. We apply a single-species model with simplified neutral-plasma chemistry and downscale Io in order to resolve the ion kinetic scales. We consider charge exchange, electron impact ionization, and photoionization by using variable rates of these processes to investigate their impact. Our results are in a good qualitative agreement with the in situ magnetic field measurements for five Galileo flybys around Io. The hybrid model describes ion kinetics self-consistently. This allows us to assess the distribution of temperature anisotropies around Io and thereby determine the possible triggering mechanism for waves observed near Io. We compare simulated dynamic spectra of magnetic fluctuations with in situ observations made by Galileo. Our results are consistent with both the spatial distribution and local amplitude of magnetic fluctuations found in the observations. Cyclotron waves, triggered probably by the growth of ion cyclotron instability, are observed mainly downstream of Io and on the flanks in regions farther from Io where the ion pickup rate is relatively low. Growth of the ion cyclotron instability is governed mainly by the charge exchange rate.

  11. Obtaining short-fiber orientation model parameters using non-lubricated squeeze flow

    NASA Astrophysics Data System (ADS)

    Lambert, Gregory; Wapperom, Peter; Baird, Donald

    2017-12-01

    Accurate models of fiber orientation dynamics during the processing of polymer-fiber composites are needed for the design work behind important automobile parts. All of the existing models utilize empirical parameters, but a standard method for obtaining them independent of processing does not exist. This study considers non-lubricated squeeze flow through a rectangular channel as a solution. A two-dimensional finite element method simulation of the kinematics and fiber orientation evolution along the centerline of a sample is developed as a first step toward a fully three-dimensional simulation. The model is used to fit to orientation data in a short-fiber-reinforced polymer composite after squeezing. Fiber orientation model parameters obtained in this study do not agree well with those obtained for the same material during startup of simple shear. This is attributed to the vastly different rates at which fibers orient during shearing and extensional flows. A stress model is also used to try to fit to experimental closure force data. Although the model can be tuned to the correct magnitude of the closure force, it does not fully recreate the transient behavior, which is attributed to the lack of any consideration for fiber-fiber interactions.

  12. Challenges and solutions for realistic room simulation

    NASA Astrophysics Data System (ADS)

    Begault, Durand R.

    2002-05-01

    Virtual room acoustic simulation (auralization) techniques have traditionally focused on answering questions related to speech intelligibility or musical quality, typically in large volumetric spaces. More recently, auralization techniques have been found to be important for the externalization of headphone-reproduced virtual acoustic images. Although externalization can be accomplished using a minimal simulation, data indicate that realistic auralizations need to be responsive to head motion cues for accurate localization. Computational demands increase when providing for the simulation of coupled spaces, small rooms lacking meaningful reverberant decays, or reflective surfaces in outdoor environments. Auditory threshold data for both early reflections and late reverberant energy levels indicate that much of the information captured in acoustical measurements is inaudible, minimizing the intensive computational requirements of real-time auralization systems. Results are presented for early reflection thresholds as a function of azimuth angle, arrival time, and sound-source type, and reverberation thresholds as a function of reverberation time and level within 250-Hz-2-kHz octave bands. Good agreement is found between data obtained in virtual room simulations and those obtained in real rooms, allowing a strategy for minimizing computational requirements of real-time auralization systems.

  13. Nonlinear relaxation algorithms for circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, R.A.

    Circuit simulation is an important Computer-Aided Design (CAD) tool in the design of Integrated Circuits (IC). However, the standard techniques used in programs such as SPICE result in very long computer-run times when applied to large problems. In order to reduce the overall run time, a number of new approaches to circuit simulation were developed and are described. These methods are based on nonlinear relaxation techniques and exploit the relative inactivity of large circuits. Simple waveform-processing techniques are described to determine the maximum possible speed improvement that can be obtained by exploiting this property of large circuits. Three simulation algorithmsmore » are described, two of which are based on the Iterated Timing Analysis (ITA) method and a third based on the Waveform-Relaxation Newton (WRN) method. New programs that incorporate these techniques were developed and used to simulate a variety of industrial circuits. The results from these simulations are provided. The techniques are shown to be much faster than the standard approach. In addition, a number of parallel aspects of these algorithms are described, and a general space-time model of parallel-task scheduling is developed.« less

  14. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  15. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  16. Simulation of Propagation of Compartment Fire on Building Facades

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.; Stoica, D.; Anghel, I.

    2018-06-01

    The façade fire simulation of buildings is carried out with Pyrosim numerical fire modeling program, following the implementation of a fire scenario in this simulation program. The scenario that was implemented in the Pyrosim program by researchers from the INCERC Fire Safety Research and Testing Laboratory complied with the requirements of BS 8414. The results obtained following the run of the computational program led to the visual validation of effluents at different time points from the beginning of the thermal load burning, as well as the validation in terms of recorded temperatures. It is considered that the results obtained are reasonable, the test being fully validated from the point of view of the implementation of the fire scenario, of the correct development of the effluents and of the temperature values [1].

  17. Liquid Oxygen/Liquid Methane Test Results of the RS-18 Lunar Ascent Engine at Simulated Altitude Conditions at NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Melcher, John C., IV; Allred, Jennifer K.

    2009-01-01

    Tests were conducted with the RS-18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA's Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to 122,000 ft (37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. LO2 flow ranged from 5.9 - 9.5 lbm/sec (2.7 - 4.3 kg/sec), and LCH4 flow varied from 3.0 - 4.4 lbm/sec (1.4 - 2.0 kg/sec) during the RS-18 hot-fire test series. Propellant flow rate was measured using a coriolis mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup due to two-phase flow effects. Subsequent cold-flow testing demonstrated that the propellant manifolds must be adequately flushed in order for the coriolis flow meters to give accurate data. The coriolis flow meters were later shown to provide accurate steady-state data, but the turbine flow meter data should be used in transient phases of operation. Thrust was measured using three load cells in parallel, which also provides the capability to calculate thrust vector alignment. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes. All of these objectives were

  18. Finite element simulation and Experimental verification of Incremental Sheet metal Forming

    NASA Astrophysics Data System (ADS)

    Kaushik Yanamundra, Krishna; Karthikeyan, R., Dr.; Naranje, Vishal, Dr

    2018-04-01

    Incremental sheet metal forming is now a proven manufacturing technique that can be employed to obtain application specific, customized, symmetric or asymmetric shapes that are required by automobile or biomedical industries for specific purposes like car body parts, dental implants or knee implants. Finite element simulation of metal forming process is being performed successfully using explicit dynamics analysis of commercial FE software. The simulation is mainly useful in optimization of the process as well design of the final product. This paper focuses on simulating the incremental sheet metal forming process in ABAQUS, and validating the results using experimental methods. The shapes generated for testing are of trapezoid, dome and elliptical shapes whose G codes are written and fed into the CNC milling machine with an attached forming tool with a hemispherical bottom. The same pre-generated coordinates are used to simulate a similar machining conditions in ABAQUS and the tool forces, stresses and strains in the workpiece while machining are obtained as the output data. The forces experimentally were recorded using a dynamometer. The experimental and simulated results were then compared and thus conclusions were drawn.

  19. Results of the Sea Ice Model Intercomparison Project: Evaluation of sea ice rheology schemes for use in climate simulations

    NASA Astrophysics Data System (ADS)

    Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.

    2000-05-01

    A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.

  20. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    NASA Astrophysics Data System (ADS)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  1. Mass imbalances in EPANET water-quality simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less

  2. Simulation of RBS spectra with known 3D sample surface roughness

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Siegel, Jakub; Hnatowicz, Vladimir; Macková, Anna; Švorčík, Václav

    2017-09-01

    The Rutherford Backscattering Spectrometry (RBS) is a technique for elemental depth profiling with a nanometer depth resolution. Possible surface roughness of analysed samples can deteriorate the RBS spectra and makes their interpretation more difficult and ambiguous. This work describes the simulation of RBS spectra which takes into account real 3D morphology of the sample surface obtained by AFM method. The RBS spectrum is calculated as a sum of the many particular spectra obtained for randomly chosen particle trajectories over sample 3D landscape. The spectra, simulated for different ion beam incidence angles, are compared to the experimental ones measured with 2.0 MeV 4He+ ions. The main aim of this work is to obtain more definite information on how a particular surface morphology and measuring geometry affects the RBS spectra and derived elemental depth profiles. A reasonable agreement between the measured and simulated spectra was found and the results indicate that the AFM data on the sample surface can be used for the simulation of RBS spectra.

  3. A fast and robust TOUGH2 module to simulate geological CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Shabani, Babak; Vilcáez, Javier

    2018-02-01

    A new TOUGH2 module to simulate geological CO2 storage (GCS) in saline aquifers is developed based on the widely employed ECO2N module of TOUGH2. The newly developed TOUGH2 module uses a new non-iterative fugacity-activity thermodynamic model to obtain the partitioning of CO2 and H2O between the aqueous and gas phases. Simple but robust thermophysical correlations are used to obtain density, viscosity, and enthalpy of the gas phase. The implementation and accuracy of the employed thermophysical correlations are verified by comparisons against the national institute of standards and technology (NIST) online thermophysical database. To assess the computation accuracy and efficiency, simulation results obtained with the new TOUGH2 module for a one-dimensional non-isothermal radial and a three-dimensional isothermal system are compared against the simulation results obtained with the ECO2N module. Treating salt mass fraction in the aqueous phase as a constant, along with the inclusion of a non-iterative fugacity-activity thermodynamic model, and simple thermophysical correlations, resulted in simulations much faster than simulations with ECO2N module, without losing numerical accuracy. Both modules yield virtually identical results. Additional field-scale simulations of CO2 injection into an actual non-isothermal and heterogeneous geological formation confirmed that the new module is much faster than the ECO2N module in simulating complex field-scale conditions. Owing to its capability to handle CO2-CH4-H2S-N2 gas mixtures and its compatibility with TOUGHREACT, this new TOUGH2 module offers the possibility of developing a fast and robust TOUGHREACT module to predict the fate of CO2 in GCS sites under biotic conditions where CO2, CH4, H2S, and N2 gases can be formed.

  4. Science Results from a Mars Drilling Simulation (Río Tinto, Spain) and Ground Truth for Remote Science Observations

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Rosalba; Stoker, Carol R.

    2008-10-01

    Science results from a field-simulated lander payload and post-mission laboratory investigations provided "ground truth" to interpret remote science observations made as part of the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling mission simulation. The experiment was successful in detecting evidence for life, habitability, and preservation potential of organics in a relevant astrobiological analogue of Mars. Science results. Borehole 7 was drilled near the Río Tinto headwaters at Peña de Hierro (Spain) in the upper oxidized remnant of an acid rock drainage system. Analysis of 29 cores (215 cm of core was recovered from 606 cm penetrated depth) revealed a matrix of goethite- (42-94%) and hematite-rich (47-87%) rocks with pockets of phyllosilicates (47-74%) and fine- to coarse-grained loose material. Post-mission X-ray diffraction (XRD) analysis confirmed the range of hematite:goethite mixtures that were visually recognizable (˜1:1, ˜1:2, and ˜1:3 mixtures displayed a yellowish-red color whereas 3:1 mixtures displayed a dark reddish-brown color). Organic carbon was poorly preserved in hematite/goethite-rich materials (Corg <0.05 wt %) beneath the biologically active organic-rich soil horizon (Corg ˜3-11 wt %) in contrast to the phyllosilicate-rich zones (Corg ˜0.23 wt %). Ground truth vs. remote science analysis. Laboratory-based analytical results were compared to the analyses obtained by a Remote Science Team (RST) using a blind protocol. Ferric iron phases, lithostratigraphy, and inferred geologic history were correctly identified by the RST with the exception of phyllosilicate-rich materials that were misinterpreted as weathered igneous rock. Adenosine 5‧-triphosphate (ATP) luminometry, a tool available to the RST, revealed ATP amounts above background noise, i.e., 278-876 Relative Luminosity Units (RLUs) in only 6 cores, whereas organic carbon was detected in all cores. Our manned vs. remote observations based on automated

  5. Science results from a Mars drilling simulation (Río Tinto, Spain) and ground truth for remote science observations.

    PubMed

    Bonaccorsi, Rosalba; Stoker, Carol R

    2008-10-01

    Science results from a field-simulated lander payload and post-mission laboratory investigations provided "ground truth" to interpret remote science observations made as part of the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling mission simulation. The experiment was successful in detecting evidence for life, habitability, and preservation potential of organics in a relevant astrobiological analogue of Mars. SCIENCE RESULTS: Borehole 7 was drilled near the Río Tinto headwaters at Peña de Hierro (Spain) in the upper oxidized remnant of an acid rock drainage system. Analysis of 29 cores (215 cm of core was recovered from 606 cm penetrated depth) revealed a matrix of goethite- (42-94%) and hematite-rich (47-87%) rocks with pockets of phyllosilicates (47-74%) and fine- to coarse-grained loose material. Post-mission X-ray diffraction (XRD) analysis confirmed the range of hematite:goethite mixtures that were visually recognizable (approximately 1:1, approximately 1:2, and approximately 1:3 mixtures displayed a yellowish-red color whereas 3:1 mixtures displayed a dark reddish-brown color). Organic carbon was poorly preserved in hematite/goethite-rich materials (C(org) <0.05 wt %) beneath the biologically active organic-rich soil horizon (C(org) approximately 3-11 wt %) in contrast to the phyllosilicate-rich zones (C(org) approximately 0.23 wt %). GROUND TRUTH VS. REMOTE SCIENCE ANALYSIS: Laboratory-based analytical results were compared to the analyses obtained by a Remote Science Team (RST) using a blind protocol. Ferric iron phases, lithostratigraphy, and inferred geologic history were correctly identified by the RST with the exception of phyllosilicate-rich materials that were misinterpreted as weathered igneous rock. Adenosine 5'-triphosphate (ATP) luminometry, a tool available to the RST, revealed ATP amounts above background noise, i.e., 278-876 Relative Luminosity Units (RLUs) in only 6 cores, whereas organic carbon was detected in all

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing engine and control simulation results

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A hybrid-computer simulation of the over the wing turbofan engine was constructed to develop the dynamic design of the control. This engine and control system includes a full authority digital electronic control using compressor stator reset to achieve fast thrust response and a modified Kalman filter to correct for sensor failures. Fast thrust response for powered-lift operations and accurate, fast responding, steady state control of the engine is provided. Simulation results for throttle bursts from 62 to 100 percent takeoff thrust predict that the engine will accelerate from 62 to 95 percent takeoff thrust in one second.

  7. Quantum dynamical simulations of local field enhancement in metal nanoparticles.

    PubMed

    Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G

    2013-03-27

    Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.

  8. Simulated building energy demand biases resulting from the use of representative weather stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, tomore » capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  9. Large eddy simulation of forest canopy flow for wildland fire modeling

    Treesearch

    Eric Mueller; William Mell; Albert Simeoni

    2014-01-01

    Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual aspects must be isolated and tested rigorously to ensure meaningful results. As wind is a...

  10. Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary

    PubMed Central

    Yang, Shengfeng; Chen, Youping

    2015-01-01

    In this paper, we present the development of a concurrent atomistic–continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic–continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress–strain responses, the GB–crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB–crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation. PMID:25792957

  11. Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary.

    PubMed

    Yang, Shengfeng; Chen, Youping

    2015-03-08

    In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.

  12. CFD simulation of liquid-liquid dispersions in a stirred tank bioreactor

    NASA Astrophysics Data System (ADS)

    Gelves, R.

    2013-10-01

    In this paper simulations were developed in order to allow the examinations of drop sizes in liquid-liquid dispersions (oil-water) in a stirred tank bioreactor using CFD simulations (Computational Fluid Dynamics). The effects of turbulence, rotating flow, drop breakage were simulated by using the k-e, MRF (Multiple Reference Frame) and PBM (Population Balance Model), respectively. The numerical results from different operational conditions are compared with experimental data obtained from an endoscope technique and good agreement is achieved. Motivated by these simulated and experimental results CFD simulations are qualified as a very promising tool for predicting hydrodynamics and drop sizes especially useful for liquid-liquid applications which are characterized by the challenging problem of emulsion stability due to undesired drop sizes.

  13. Jurassic Diabase from Leesburg, VA: A Proposed Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.; Lowman, P. D.; Nagihara, Seiichi; Milam, M. B.; Nakamura, Yosio

    2008-01-01

    A study of future lunar seismology and heat flow is being carried out as part of the NASA Lunar Sortie Science Program. This study will include new lunar drilling techniques, using a regolith simulant, for emplacement of instruments. Previous lunar simulants, such as JSC-1 and MLS-1, were not available when the study began, so a local simulant source was required. Diabase from a quarry at Leeseburg, Virginia, was obtained from the Luck Stone Corporation. We report here initial results of a petrographic examination of this rock, GSC-1 henceforth.

  14. Jurassic Diabase from Leesburg, VA: A Proposed Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Lowman, P. D.; Nagihara, Seiichi; Milam, M. B.; Nakamura, Yosio

    2008-01-01

    A study of future lunar seismology and heat flow is being carried out as part of the NASA Lunar Sortie Science Program [1].This study will include new lunar drilling techniques, using a regolith simulant, for emplacement of instruments. Previous lunar simulants, such as JSC-I and MLS-l, were not available when the study began, so a local simulant source was required. Diabase from a quarry at Leesburg, Virginia, was obtained from the Luck Stone Corporation. We report here initial results of a petrographic examination of this rock, GSC-1 henceforth.

  15. Features of the accretion in the EX Hydrae system: Results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.

    2017-07-01

    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  16. Operation Regime Analysis of Conduction Cooled Cavities through Multi-Physics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, R.; Kanareykin, A.; Kephart, R. D.

    Euclid Techlabs in collaboration with Fermilab IARC (Batavia, IL) is developing industrial superconducting 10MeV electron linac [1, 2]. Cryocoolers are to be used for cooling instead of liquid helium bath to simplify the linac infrastructure [3]. The cavity linked to commercially available cryo-cooler cold head [4, 5] through highly conductive aluminium (AL) strips. However, this solution raises a problem of contact thermal resistance. This paper shows some results of Comsol multyphysics simulations of the cavity cooling by AL strips. Some insight was obtained on the acceptable range of contact resistance. Operation regimes were obtained at different accelerating gradients and cavitymore » temperatures. The results of simula-tion are presented and discussed.« less

  17. The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results

    NASA Technical Reports Server (NTRS)

    Chambers, A.; Vykukal, H. C.

    1974-01-01

    A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry.

  18. Predicting Flory-Huggins χ from Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlin; Gomez, Enrique D.; Milner, Scott T.

    2017-07-01

    We introduce a method, based on a novel thermodynamic integration scheme, to extract the Flory-Huggins χ parameter as small as 10-3k T for polymer blends from molecular dynamics (MD) simulations. We obtain χ for the archetypical coarse-grained model of nonpolar polymer blends: flexible bead-spring chains with different Lennard-Jones interactions between A and B monomers. Using these χ values and a lattice version of self-consistent field theory (SCFT), we predict the shape of planar interfaces for phase-separated binary blends. Our SCFT results agree with MD simulations, validating both the predicted χ values and our thermodynamic integration method. Combined with atomistic simulations, our method can be applied to predict χ for new polymers from their chemical structures.

  19. DSMC Simulations of Blunt Body Flows for Mars Entries: Mars Pathfinder and Mars Microprobe Capsules

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Wilmoth, Richard G.; Price, Joseph M.

    1997-01-01

    The hypersonic transitional flow aerodynamics of the Mars Pathfinder and Mars Microprobe capsules are simulated with the direct simulation Monte Carlo method. Calculations of axial, normal, and static pitching coefficients were obtained over an angle of attack range comparable to actual flight requirements. Comparisons are made with modified Newtonian and free-molecular-flow calculations. Aerothermal results were also obtained for zero incidence entry conditions.

  20. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  1. A quantum algorithm for obtaining the lowest eigenstate of a Hamiltonian assisted with an ancillary qubit system

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok

    2015-01-01

    We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.

  2. Impact of a statistical bias correction on the projected simulated hydrological changes obtained from three GCMs and two hydrology models

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio

    2010-05-01

    Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.

  3. The Results of a Simulator Study to Determine the Effects on Pilot Performance of Two Different Motion Cueing Algorithms and Various Delays, Compensated and Uncompensated

    NASA Technical Reports Server (NTRS)

    Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.

    2003-01-01

    A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.

  4. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  5. New simulation and measurement results on gateable DEPFET devices

    NASA Astrophysics Data System (ADS)

    Bähr, Alexander; Aschauer, Stefan; Hermenau, Katrin; Herrmann, Sven; Lechner, Peter H.; Lutz, Gerhard; Majewski, Petra; Miessner, Danilo; Porro, Matteo; Richter, Rainer H.; Schaller, Gerhard; Sandow, Christian; Schnecke, Martina; Schopper, Florian; Stefanescu, Alexander; Strüder, Lothar; Treis, Johannes

    2012-07-01

    To improve the signal to noise level, devices for optical and x-ray astronomy use techniques to suppress background events. Well known examples are e.g. shutters or frame-store Charge Coupled Devices (CCDs). Based on the DEpleted P-channel Field Effect Transistor (DEPFET) principle a so-called Gatebale DEPFET detector can be built. Those devices combine the DEPFET principle with a fast built-in electronic shutter usable for optical and x-ray applications. The DEPFET itself is the basic cell of an active pixel sensor build on a fully depleted bulk. It combines internal amplification, readout on demand, analog storage of the signal charge and a low readout noise with full sensitivity over the whole bulk thickness. A Gatebale DEPFET has all these benefits and obviates the need for an external shutter. Two concepts of Gatebale DEPFET layouts providing a built-in shutter will be introduced. Furthermore proof of principle measurements for both concepts are presented. Using recently produced prototypes a shielding of the collection anode up to 1 • 10-4 was achieved. Predicted by simulations, an optimized geometry should result in values of 1 • 10-5 and better. With the switching electronic currently in use a timing evaluation of the shutter opening and closing resulted in rise and fall times of 100ns.

  6. Multipacting simulation and test results of BNL 704 MHz SRF gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab,more » and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.« less

  7. Evaluation of stratospheric temperature simulation results by the global GRAPES model

    NASA Astrophysics Data System (ADS)

    Liu, Ningwei; Wang, Yangfeng; Ma, Xiaogang; Zhang, Yunhai

    2017-12-01

    Global final analysis (FNL) products and the general circulation spectral model (ECHAM) were used to evaluate the simulation of stratospheric temperature by the global assimilation and prediction system (GRAPES). Through a series of comparisons, it was shown that the temperature variations at 50 hPa simulated by GRAPES were significantly elevated in the southern hemisphere, whereas simulations by ECHAM and FNL varied little over time. The regional warming predicted by GRAPES seemed to be too distinct and uncontrolled to be reasonable. The temperature difference between GRAPES and FNL (GRAPES minus FNL) was small at the start time on the global scale. Over time, the positive values became larger in more locations, especially in parts of the southern hemisphere, where the warming predicted by GRAPES was dominant, with a maximal value larger than 24 K. To determine the reasons for the stratospheric warming, we considered the model initial conditions and ozone data to be possible factors; however, a comparison and sensitivity test indicated that the errors produced by GRAPES were not significantly related to either factor. Further research focusing on the impact of factors such as vapor, heating rate, and the temperature tendency on GRAPES simulations will be conducted.

  8. Application of dynamic Monte Carlo technique in proton beam radiotherapy using Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Guan, Fada

    Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.

  9. Solar Potential Analysis and Integration of the Time-Dependent Simulation Results for Semantic 3d City Models Using Dynamizers

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Willenborg, B.; Sindram, M.; Kolbe, T. H.

    2017-10-01

    Semantic 3D city models play an important role in solving complex real-world problems and are being adopted by many cities around the world. A wide range of application and simulation scenarios directly benefit from the adoption of international standards such as CityGML. However, most of the simulations involve properties, whose values vary with respect to time, and the current generation semantic 3D city models do not support time-dependent properties explicitly. In this paper, the details of solar potential simulations are provided operating on the CityGML standard, assessing and estimating solar energy production for the roofs and facades of the 3D building objects in different ways. Furthermore, the paper demonstrates how the time-dependent simulation results are better-represented inline within 3D city models utilizing the so-called Dynamizer concept. This concept not only allows representing the simulation results in standardized ways, but also delivers a method to enhance static city models by such dynamic property values making the city models truly dynamic. The dynamizer concept has been implemented as an Application Domain Extension of the CityGML standard within the OGC Future City Pilot Phase 1. The results are given in this paper.

  10. Geometric integrator for simulations in the canonical ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx; Sanders, David P., E-mail: dpsanders@ciencias.unam.mx; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2016-08-28

    We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservationmore » of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.« less

  11. Effect of Small Numbers of Test Results on Accuracy of Hoek-Brown Strength Parameter Estimations: A Statistical Simulation Study

    NASA Astrophysics Data System (ADS)

    Bozorgzadeh, Nezam; Yanagimura, Yoko; Harrison, John P.

    2017-12-01

    The Hoek-Brown empirical strength criterion for intact rock is widely used as the basis for estimating the strength of rock masses. Estimations of the intact rock H-B parameters, namely the empirical constant m and the uniaxial compressive strength σc, are commonly obtained by fitting the criterion to triaxial strength data sets of small sample size. This paper investigates how such small sample sizes affect the uncertainty associated with the H-B parameter estimations. We use Monte Carlo (MC) simulation to generate data sets of different sizes and different combinations of H-B parameters, and then investigate the uncertainty in H-B parameters estimated from these limited data sets. We show that the uncertainties depend not only on the level of variability but also on the particular combination of parameters being investigated. As particular combinations of H-B parameters can informally be considered to represent specific rock types, we discuss that as the minimum number of required samples depends on rock type it should correspond to some acceptable level of uncertainty in the estimations. Also, a comparison of the results from our analysis with actual rock strength data shows that the probability of obtaining reliable strength parameter estimations using small samples may be very low. We further discuss the impact of this on ongoing implementation of reliability-based design protocols and conclude with suggestions for improvements in this respect.

  12. Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    NASA Technical Reports Server (NTRS)

    Landis, Kenneth H.; Glusman, Steven I.

    1985-01-01

    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.

  13. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

  14. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  15. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  16. Paternity tests in Mexico: Results obtained in 3005 cases.

    PubMed

    García-Aceves, M E; Romero Rentería, O; Díaz-Navarro, X X; Rangel-Villalobos, H

    2018-04-01

    National and international reports regarding the paternity testing activity scarcely include information from Mexico and other Latin American countries. Therefore, we report different results from the analysis of 3005 paternity cases analyzed during a period of five years in a Mexican paternity testing laboratory. Motherless tests were the most frequent (77.27%), followed by trio cases (20.70%); the remaining 2.04% included different cases of kinship reconstruction. The paternity exclusion rate was 29.58%, higher but into the range reported by the American Association of Blood Banks (average 24.12%). We detected 65 mutations, most of them involving one-step (93.8% and the remaining were two-step mutations (6.2%) thus, we were able to estimate the paternal mutation rate for 17 different STR loci: 0.0018 (95% CI 0.0005-0.0047). Five triallelic patterns and 12 suspected null alleles were detected during this period; however, re-amplification of these samples with a different Human Identification (HID) kit confirmed the homozygous genotypes, which suggests that most of these exclusions actually are one-step mutations. HID kits with ≥20 STRs detected more exclusions, diminishing the rate of inconclusive results with isolated exclusions (<3 loci), and leading to higher paternity indexes (PI). However, the Powerplex 21 kit (20 STRs) and Powerplex Fusion kit (22 STRs) offered similar PI (p = 0.379) and average number of exclusions (PE) (p = 0.339) when a daughter was involved in motherless tests. In brief, besides to report forensic parameters from paternity tests in Mexico, results describe improvements to solve motherless paternity tests using HID kits with ≥20 STRs instead of one including 15 STRs. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  18. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.

  19. Multiscale Analysis of Rapidly Rotating Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Orvedahl, R.; Calkins, M. A.; Featherstone, N. A.

    2017-12-01

    The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek=ν /Ω L2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.

  20. Multiscale Analysis of Rapidly Rotating Dynamo Simulations

    NASA Astrophysics Data System (ADS)

    Orvedahl, Ryan; Calkins, Michael; Featherstone, Nicholas

    2017-11-01

    The magnetic field of the planets and stars are generated by dynamo action in their electrically conducting fluid interiors. Numerical models of this process solve the fundamental equations of magnetohydrodynamics driven by convection in a rotating spherical shell. Rotation plays an important role in modifying the resulting convective flows and the self-generated magnetic field. We present results of simulating rapidly rotating systems that are unstable to dynamo action. We use the pseudo-spectral code Rayleigh to generate a suite of direct numerical simulations. Each simulation uses the Boussinesq approximation and is characterized by an Ekman number (Ek = ν / ΩL2) of 10-5. We vary the degree of convective forcing to obtain a range of convective Rossby numbers. The resulting flows and magnetic structures are analyzed using a Reynolds decomposition. We determine the relative importance of each term in the scale-separated governing equations and estimate the relevant spatial scales responsible for generating the mean magnetic field.

  1. Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Granberg, F.; Nordlund, K.

    2017-10-01

    In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.

  2. Coupling of a structural analysis and flow simulation for short-fiber-reinforced polymers: property prediction and transfer of results

    NASA Astrophysics Data System (ADS)

    Kröner, C.; Altenbach, H.; Naumenko, K.

    2009-05-01

    The aim of this paper is to discuss the basic theories of interfaces able to transfer the results of an injection molding analyis of fiber-reinforced polymers, performed by using the commercial computer code Moldflow, to the structural analysis program ABAQUS. The elastic constants of the materials, such as Young's modulus, shear modulus, and Poisson's ratio, which depend on both the fiber content and the degree of fiber orientation, were calculated not by the usual method of "orientation averaging," but with the help of linear functions fitted to experimental data. The calculation and transfer of all needed data, such as material properties, geometry, directions of anisotropy, and so on, is performed by an interface developed. The interface is suit able for midplane elements in Moldflow. It calculates and transfers to ABAQUS all data necessary for the use of shell elements. In addition, a method is described how a nonlinear orthotropic behavior can be modeled starting from the generalized Hooke's law. It is also shown how such a model can be implemented in ABAQUS by means of a material subroutine. The results obtained according to this subroutine are compared with those based on an orthotropic, linear, elastic simulation.

  3. A simulation exercise of a cavity-type solar receiver using the HEAP program

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program has been developed at JPL to support the advanced studies of solar receivers in high concentration solar-thermal-electric power plants. This work presents briefly the program methodology, input data required, expected output results, capabilities and limitations. The program was used to simulate an existing 5 kwt experimental receiver of a cavity type. The receiver is located at the focus of a paraboloid dish and is connected to a Stirling engine. Both steady state and transient performance simulation were given. Details about the receiver modeling were also presented to illustrate the procedure followed. Simulated temperature patterns were found in good agreement with test data obtained by high temperature thermocouples. The simulated receiver performance was extrapolated to various operating conditions not attained experimentally. The results of the parameterization study were fitted to a general performance expression to determine the receiver characteristic constraints. The latter were used to optimize the receiver operating conditions to obtain the highest overall conversion efficiency.

  4. Statistical downscaling of GCM simulations to streamflow using relevance vector machine

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Mujumdar, P. P.

    2008-01-01

    General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.

  5. Simulated building energy demand biases resulting from the use of representative weather stations

    DOE PAGES

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; ...

    2017-11-06

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  6. Simulated building energy demand biases resulting from the use of representative weather stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. Here, we quantify the potential reduction in temperature and load biases from using an increasing number of weather stations over the western U.S. Our novel approach is based on deriving temperature and load time series using incrementally more weather stations, ranging frommore » 8 to roughly 150, to evaluate the ability to capture weather patterns across different seasons. Using 8 stations across the western U.S., one from each IECC climate zone, results in an average absolute summertime temperature bias of ~4.0 °C with respect to a high-resolution gridded dataset. The mean absolute bias drops to ~1.5 °C using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.5%. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20–40% bias of peak building loads during both summer and winter, a significant error for capacity expansion planners who may use these types of simulations. Using weather stations close to population centers reduces both mean and peak load biases. Our approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.« less

  7. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  8. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  9. Obtaining soil hydraulic parameters from data assimilation under different climatic/soil conditions

    USDA-ARS?s Scientific Manuscript database

    Obtaining reliable soil hydraulic properties is essential to correctly simulating soil water content (SWC), which is a key component of countless applications such as agricultural management, soil remediation, aquifer protection, etc. Soil hydraulic properties can be measured in the laboratory; howe...

  10. Feasibility and accuracy of molecular testing in specimens obtained with small biopsy forceps: comparison with the results of surgical specimens.

    PubMed

    Oki, Masahide; Yatabe, Yasushi; Saka, Hideo; Kitagawa, Chiyoe; Kogure, Yoshihito; Ichihara, Shu; Moritani, Suzuko

    2015-01-01

    During bronchoscopy, small biopsy forceps are increasingly used for the diagnosis of peripheral pulmonary lesions. However, it is unclear whether the formalin-fixed paraffin-embedded specimens sampled with the small biopsy forceps are suitable for the determination of genotypes which become indispensable for the management decision regarding patients with non-small cell lung cancer. The aim of this study was to evaluate the feasibility and accuracy of molecular testing in the specimens obtained with 1.5-mm small biopsy forceps. We examined specimens in 91 patients, who were enrolled in our previous 3 studies on the usefulness of thin bronchoscopes and given a diagnosis of non-small cell lung cancer by bronchoscopy with the 1.5-mm biopsy forceps, and then underwent surgical resection. An experienced pathologist examined paraffin-embedded specimens obtained by bronchoscopic biopsy or surgical resection in a blind fashion on epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements and KRAS mutations. Twenty-five (27%), 2 (2%) and 5 (5%) patients had an EGFR mutation, ALK rearrangement and KRAS mutation, respectively, based on the results in surgical specimens. EGFR, ALK and KRAS testing with bronchoscopic specimens was feasible in 82 (90%), 86 (95%) and 83 (91%) patients, respectively. If molecular testing was feasible, the accuracy of EGFR, ALK and KRAS testing with bronchoscopic specimens for the results with surgical specimens was 98, 100 and 98%, respectively. The results of molecular testing in the formalin-fixed paraffin-embedded specimens obtained with the small forceps, in which the genotype could be evaluated, correlated well with those in surgically resected specimens.

  11. GRODY - GAMMA RAY OBSERVATORY DYNAMICS SIMULATOR IN ADA

    NASA Technical Reports Server (NTRS)

    Stark, M.

    1994-01-01

    Analysts use a dynamics simulator to test the attitude control system algorithms used by a satellite. The simulator must simulate the hardware, dynamics, and environment of the particular spacecraft and provide user services which enable the analyst to conduct experiments. Researchers at Goddard's Flight Dynamics Division developed GRODY alongside GROSS (GSC-13147), a FORTRAN simulator which performs the same functions, in a case study to assess the feasibility and effectiveness of the Ada programming language for flight dynamics software development. They used popular object-oriented design techniques to link the simulator's design with its function. GRODY is designed for analysts familiar with spacecraft attitude analysis. The program supports maneuver planning as well as analytical testing and evaluation of the attitude determination and control system used on board the Gamma Ray Observatory (GRO) satellite. GRODY simulates the GRO on-board computer and Control Processor Electronics. The analyst/user sets up and controls the simulation. GRODY allows the analyst to check and update parameter values and ground commands, obtain simulation status displays, interrupt the simulation, analyze previous runs, and obtain printed output of simulation runs. The video terminal screen display allows visibility of command sequences, full-screen display and modification of parameters using input fields, and verification of all input data. Data input available for modification includes alignment and performance parameters for all attitude hardware, simulation control parameters which determine simulation scheduling and simulator output, initial conditions, and on-board computer commands. GRODY generates eight types of output: simulation results data set, analysis report, parameter report, simulation report, status display, plots, diagnostic output (which helps the user trace any problems that have occurred during a simulation), and a permanent log of all runs and errors. The

  12. Validation of a Monte Carlo simulation of the Inveon PET scanner using GATE

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Zhang, Houjin; Bian, Zhaoying; Ma, Jianhua; Feng, Qiangjin; Chen, Wufan

    2016-08-01

    The purpose of this study is to validate the application of GATE (Geant4 Application for Tomographic Emission) Monte Carlo simulation toolkit in order to model the performance characteristics of Siemens Inveon small animal PET system. The simulation results were validated against experimental/published data in accordance with the NEMA NU-4 2008 protocol for standardized evaluation of spatial resolution, sensitivity, scatter fraction (SF) and noise equivalent counting rate (NECR) of a preclinical PET system. An agreement of less than 18% was obtained between the radial, tangential and axial spatial resolutions of the simulated and experimental results. The simulated peak NECR of mouse-size phantom agreed with the experimental result, while for the rat-size phantom simulated value was higher than experimental result. The simulated and experimental SFs of mouse- and rat- size phantom both reached an agreement of less than 2%. It has been shown the feasibility of our GATE model to accurately simulate, within certain limits, all major performance characteristics of Inveon PET system.

  13. Measurement with microscopic MRI and simulation of flow in different aneurysm models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin

    2015-10-15

    Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment

  14. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    NASA Technical Reports Server (NTRS)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  15. A Large number of fast cosmological simulations

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Kazin, E.; Blake, C.

    2014-01-01

    Mock galaxy catalogs are essential tools to analyze large-scale structure data. Many independent realizations of mock catalogs are necessary to evaluate the uncertainties in the measurements. We perform 3600 cosmological simulations for the WiggleZ Dark Energy Survey to obtain the new improved Baron Acoustic Oscillation (BAO) cosmic distance measurements using the density field "reconstruction" technique. We use 1296^3 particles in a periodic box of 600/h Mpc on a side, which is the minimum requirement from the survey volume and observed galaxies. In order to perform such large number of simulations, we developed a parallel code using the COmoving Lagrangian Acceleration (COLA) method, which can simulate cosmological large-scale structure reasonably well with only 10 time steps. Our simulation is more than 100 times faster than conventional N-body simulations; one COLA simulation takes only 15 minutes with 216 computing cores. We have completed the 3600 simulations with a reasonable computation time of 200k core hours. We also present the results of the revised WiggleZ BAO distance measurement, which are significantly improved by the reconstruction technique.

  16. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  17. First results obtained within the European 'LAMA' programme (Large Active Mirrors in Aluminium)

    NASA Astrophysics Data System (ADS)

    Rozelot, J.-P.

    1993-11-01

    To investigate the feasibility of large size aluminum mirrors, studies have been undertaken in cooperation with European Southern Observatory (ESO), in the framework of a European program. The first phase, which is just now ended, addressed the following items: (1) tests to select the best aluminum alloy, (2) aluminum welding, homogeneity and stability, (3) aluminum high-precision machining, (4) nickel coating, (5) polishing of the nickel layer, (6) active optics. Furthermore, tests have been conducted to demonstrate that the quality of the mirrors is not altered at various temperatures and after a large number of aluminizing and cleaning cycles (corresponding to about 50 years' life). The mirror shape (whose specifications are fully compliant with those of the Very Large Telescope (VLT), as the program is conducted in cooperation with ESO) was computed under several causes of deformations: evidencing gravity as the predominant effect, and very low distortions as the high thermal conductivity limits the thermal transverse gradient to 0.025 C. Results show that it is quite possible to obtain high optical quality mirrors, mainly due to recent progress both in metallurgical processes (high precision machining -7 microns rms-) and active optics, that permit to correct residual aberrations of the surface. Such an alternative to classical glass mirrors will presently stand as a safe, economical solution that saves manufacturing time, for monolithic or segmented mirrors for innovative telescopes (e.g., lunar interferometric network).

  18. 2-dimensional simulations of electrically asymmetric capacitively coupled RF-discharges

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Schulze, Julian; Schuengel, Edmund; Czarnetzki, Uwe

    2011-10-01

    Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we succeeded in simulating electrically asymmetric discharges with a 2-dimensional simulation. Capactively coupled RF-discharges are widely used for surface treatment like the deposition of thin films. For industrial applications, the independent control of the ion flux to and the mean energy of the electrons impinging on the surfaces is desired. Experiments and 1D3v-PIC/MCC-simulations have shown that this independent control is possible by applying a fundamental frequency and its second harmonic to the powered electrode. This way, even in geometrically symmetric discharges, as they are often used in industrial reactors, a discharge asymmetry can be induced electrically, hence the name Electrical Asymmetry Effect (EAE). We performed 2D-simulations of electrically asymmetric discharges using HPEM by the group of Mark Kushner, a simulation tool suitable for simulating industrial reactors. First results are presented and compared to previously obtained experimental and simulation data. The comparison shows that for the first time, we

  19. Technique to Obtain a Predictable Aesthetic Result through Appropriate Placement of the Prosthesis/Soft Tissue Junction in the Edentulous Patient with a Gingival Smile.

    PubMed

    Demurashvili, Georgy; Davarpanah, Keyvan; Szmukler-Moncler, Serge; Davarpanah, Mithridade; Raux, Didier; Capelle-Ouadah, Nedjoua; Rajzbaum, Philippe

    2015-10-01

    Treating the edentulous patient with a gingival smile requires securing the prosthesis/soft tissue junction (PSTJ) under the upper lip. To present a simple method that helps achieve a predictable aesthetic result when alveoplasty of the anterior maxilla is needed to place implants apical to the presurgical position of the alveolar ridge. The maximum smile line of the patient is recorded and carved on a thin silicone bite impression as a soft tissue landmark. During the three-dimensional radiographic examination, the patient wears the silicone guide loaded with radiopaque markers. The NobelClinician® software is then used to bring the hard and soft tissue landmarks together in a single reading. Using the software, a line is drawn 5 mm apical to the smile line; it dictates the position of the crestal ridge to be reached following the alveoplasty. Subsequently, the simulated implant position and the simulated residual bone height following alveoplasty can be simultaneously evaluated on each transverse section. An alveoplasty of the anterior maxilla was performed as simulated on the software, and implants were placed accordingly. The PSTJ was always under the upper lip, even during maximum smile events. The aesthetic result was, therefore, fully satisfactory. This simple method permits the placement of the PSTJ under the upper lip with a predictable outcome; it ensures a reliable aesthetic result for the edentulous patient with a gingival smile. © 2013 Wiley Periodicals, Inc.

  20. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.

    PubMed

    Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  1. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    DOE PAGES

    Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less

  2. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  3. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.

    PubMed

    Allnér, Olof; Foloppe, Nicolas; Nilsson, Lennart

    2015-01-22

    Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the

  4. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  5. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  6. Multi-Grid detector for neutron spectroscopy: results obtained on time-of-flight spectrometer CNCS

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, M.; Bebb, R.; Berry, K.; Birch, J.; Bryś, T.; Buffet, J.-C.; Clergeau, J.-F.; Deen, P. P.; Ehlers, G.; van Esch, P.; Everett, S. M.; Guerard, B.; Hall-Wilton, R.; Herwig, K.; Hultman, L.; Höglund, C.; Iruretagoiena, I.; Issa, F.; Jensen, J.; Khaplanov, A.; Kirstein, O.; Lopez Higuera, I.; Piscitelli, F.; Robinson, L.; Schmidt, S.; Stefanescu, I.

    2017-04-01

    The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side-by-side comparison to the performance of 3He detectors on an operational instrument. The demonstrator has an active area of 0.2 m2. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since then, collecting neutron scattering data in parallel to the He-3 detectors of CNCS. In this paper, we present a comprehensive analysis of this data, in particular on instrument energy resolution, rate capability, background and relative efficiency. Stability, gamma-ray and fast neutron sensitivity have also been investigated. The effect of scattering in the detector components has been measured and provides input to comparison for Monte Carlo simulations. All data is presented in comparison to that measured by the 3He detectors simultaneously, showing that all features recorded by one detector are also recorded by the other. The energy resolution matches closely. We find that the Multi-Grid is able to match the data collected by 3He, and see an indication of a considerable advantage in the count rate capability. Based on these results, we are confident that the Multi-Grid detector will be capable of producing high quality scientific data on chopper spectrometers utilising the unprecedented neutron flux of the ESS.

  7. Comparison of calculation and simulation of evacuation in real buildings

    NASA Astrophysics Data System (ADS)

    Szénay, Martin; Lopušniak, Martin

    2018-03-01

    Each building must meet requirements for safe evacuation in order to prevent casualties. Therefore methods for evaluation of evacuation are used when designing buildings. In the paper, calculation methods were tested on three real buildings. The testing used methods of evacuation time calculation pursuant to Slovak standards and evacuation time calculation using the buildingExodus simulation software. If calculation methods have been suitably selected taking into account the nature of evacuation and at the same time if correct values of parameters were entered, we will be able to obtain almost identical times of evacuation in comparison with real results obtained from simulation. The difference can range from 1% to 27%.

  8. Simulation of blast action on civil structures using ANSYS Autodyn

    NASA Astrophysics Data System (ADS)

    Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.

    2016-10-01

    The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.

  9. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  10. Predictive simulation of guide-wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  11. WEST-3 wind turbine simulator development. Volume 2: Verification

    NASA Technical Reports Server (NTRS)

    Sridhar, S.

    1985-01-01

    The details of a study to validate WEST-3, a new time wind turbine simulator developed by Paragib Pacific Inc., are presented in this report. For the validation, the MOD-0 wind turbine was simulated on WEST-3. The simulation results were compared with those obtained from previous MOD-0 simulations, and with test data measured during MOD-0 operations. The study was successful in achieving the major objective of proving that WEST-3 yields results which can be used to support a wind turbine development process. The blade bending moments, peak and cyclic, from the WEST-3 simulation correlated reasonably well with the available MOD-0 data. The simulation was also able to predict the resonance phenomena observed during MOD-0 operations. Also presented in the report is a description and solution of a serious numerical instability problem encountered during the study. The problem was caused by the coupling of the rotor and the power train models. The results of the study indicate that some parts of the existing WEST-3 simulation model may have to be refined for future work; specifically, the aerodynamics and procedure used to couple the rotor model with the tower and the power train models.

  12. Measurement with microscopic MRI and simulation of flow in different aneurysm models.

    PubMed

    Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter

    2015-10-01

    The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise

  13. Simulation of car collision with an impact block

    NASA Astrophysics Data System (ADS)

    Kostek, R.; Aleksandrowicz, P.

    2017-10-01

    This article presents the experimental results of crash test of Fiat Cinquecento performed by Allgemeiner Deutscher Automobil-Club (ADAC) and the simulation results obtained with program called V-SIM for default settings. At the next stage a wheel was blocked and the parameters of contact between the vehicle and the barrier were changed for better results matching. The following contact parameters were identified: stiffness at compression phase, stiffness at restitution phase, the coefficients of restitution and friction. The changes lead to various post-impact positions, which shows sensitivity of the results to contact parameters. V-SIM is commonly used by expert witnesses who tend to use default settings, therefore the companies offering simulation programs should identify those parameters with due diligence.

  14. Analysis of short pulse laser altimetry data obtained over horizontal path

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Tsai, B. M.; Gardner, C. S.

    1983-01-01

    Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter.

  15. Stochastic locality and master-field simulations of very large lattices

    NASA Astrophysics Data System (ADS)

    Lüscher, Martin

    2018-03-01

    In lattice QCD and other field theories with a mass gap, the field variables in distant regions of a physically large lattice are only weakly correlated. Accurate stochastic estimates of the expectation values of local observables may therefore be obtained from a single representative field. Such master-field simulations potentially allow very large lattices to be simulated, but require various conceptual and technical issues to be addressed. In this talk, an introduction to the subject is provided and some encouraging results of master-field simulations of the SU(3) gauge theory are reported.

  16. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2017-05-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  17. Classical Molecular Dynamics Simulation of Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie

    2015-10-10

    Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a varietymore » of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.« less

  18. Additional road markings as an indication of speed limits: results of a field experiment and a driving simulator study.

    PubMed

    Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom

    2010-05-01

    Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Standardization of a fluconazole bioassay and correlation of results with those obtained by high-pressure liquid chromatography.

    PubMed Central

    Rex, J H; Hanson, L H; Amantea, M A; Stevens, D A; Bennett, J E

    1991-01-01

    An improved bioassay for fluconazole was developed. This assay is sensitive in the clinically relevant range (2 to 40 micrograms/ml) and analyzes plasma, serum, and cerebrospinal fluid specimens; bioassay results correlate with results obtained by high-pressure liquid chromatography (HPLC). Bioassay and HPLC analyses of spiked plasma, serum, and cerebrospinal fluid samples (run as unknowns) gave good agreement with expected values. Analysis of specimens from patients gave equivalent results by both HPLC and bioassay. HPLC had a lower within-run coefficient of variation (less than 2.5% for HPLC versus less than 11% for bioassay) and a lower between-run coefficient of variation (less than 5% versus less than 12% for bioassay) and was more sensitive (lower limit of detection, 0.1 micrograms/ml [versus 2 micrograms/ml for bioassay]). The bioassay is, however, sufficiently accurate and sensitive for clinical specimens, and its relative simplicity, low sample volume requirement, and low equipment cost should make it the technique of choice for analysis of routine clinical specimens. PMID:1854166

  20. Initial results from the LAPD wave-particle experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Tao, X.; Albert, J. M.; Thorne, R. M.; Gekelman, W. N.; Pribyl, P.; Van Compernolle, B.

    2011-12-01

    We present the initial results obtained from a unique experiment-theory project. This project is designed to study the detailed nature of the wave-particle interactions between energetic electrons and whistler-mode waves. Using the Large-Plasma device at UCLA, whistler mode waves are injected into one end of the machine and a beam of energetic electrons is injected at the opposite ends. When the first-order resonance condition is met, the electron beam is scattered, which is measured with a novel energy-pitch-angle analyzer. To support the experiment, a flexible test-particle code is constructed which is able to quantify the scattering of charged particles in response to any distribution of waves, in an arbitrary field geometry. The results of the experiment are discussed and placed into the context of space physics and specifically the upcoming Radiation Belt Storm Probes mission.

  1. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  2. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  3. Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices.

    PubMed

    Hall, Benjamin A; Halim, Khairul Bariyyah Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2014-05-13

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analyzed via coarse grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations, we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of a family of helix sequences. We illustrate this software via analyses of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analyses of these ensembles of simulations, we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application, we use CGMD simulations to examine the self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase and analyze the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers a proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins.

  4. Long-range temporal correlations in the Kardar-Parisi-Zhang growth: numerical simulations

    NASA Astrophysics Data System (ADS)

    Song, Tianshu; Xia, Hui

    2016-11-01

    To analyze long-range temporal correlations in surface growth, we study numerically the (1  +  1)-dimensional Kardar-Parisi-Zhang (KPZ) equation driven by temporally correlated noise, and obtain the scaling exponents based on two different numerical methods. Our simulations show that the numerical results are in good agreement with the dynamic renormalization group (DRG) predictions, and are also consistent with the simulation results of the ballistic deposition (BD) model.

  5. Simulations of Jetted Relativistic Blastwaves in Astrophysics

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay; Fragile, P. Chris; Anninos, Peter; Jauregui, Jeff

    2006-10-01

    We present relativistic hydrodynamic simulations of jetted blastwaves using the Cosmos++ astrophysics code. We post-process these simulations by integrating the radiative transfer equation thru a observer's space-time slices of the data, assuming relativistic self-absorbed synchrotron emission, to derive detailed multi-frequency lightcurves for the jet as viewed at arbitrary inclination angle. In particular, we simulate the asymmetric outflow resulting from the giant flare of December 27, 2004 from SGR 1806-20 and obtain excellent agreement with the data. We find that the asymmetric radio nebula that was observed to expand over the months following the flare cannot be explained by a simple ballistic ejection of material during the flare, but requires angular dependence of the energy injection with respect to the jet axis. In addition, we present simulations of jetted blastwaves of the relativistic afterglows resulting from gamma-ray bursts. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. Preliminary analysis of one year long space climate simulation

    NASA Astrophysics Data System (ADS)

    Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.

    2013-12-01

    One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.

  7. Large eddy simulation of turbulent cavitating flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, A.; Mahesh, K.

    2015-12-01

    Large Eddy Simulation is employed to study two turbulent cavitating flows: over a cylinder and a wedge. A homogeneous mixture model is used to treat the mixture of water and water vapor as a compressible fluid. The governing equations are solved using a novel predictor- corrector method. The subgrid terms are modeled using the Dynamic Smagorinsky model. Cavitating flow over a cylinder at Reynolds number (Re) = 3900 and cavitation number (σ) = 1.0 is simulated and the wake characteristics are compared to the single phase results at the same Reynolds number. It is observed that cavitation suppresses turbulence in the near wake and delays three dimensional breakdown of the vortices. Next, cavitating flow over a wedge at Re = 200, 000 and σ = 2.0 is presented. The mean void fraction profiles obtained are compared to experiment and good agreement is obtained. Cavity auto-oscillation is observed, where the sheet cavity breaks up into a cloud cavity periodically. The results suggest LES as an attractive approach for predicting turbulent cavitating flows.

  8. Implementation of quantum game theory simulations using Python

    NASA Astrophysics Data System (ADS)

    Madrid S., A.

    2013-05-01

    This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.

  9. Results of a simulator test comparing two display concepts for piloted flight-path-angle control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.

  10. SUBWATERSHEDS OF THE UPPER SAN PEDRO BASIN WITH PERCENT DIFFERENCE BETWEEN RESULTS FROM TWO SWAT SIMULATIONS

    EPA Science Inventory

    Subwatersheds of the Upper San Pedro basin with percent difference between results from two SWAT simulations run through AGWA: one using the 1973 NALC landcover for model parameterization, and the other using the 1997 NALC landcover.

  11. Simulation of General Physics laboratory exercise

    NASA Astrophysics Data System (ADS)

    Aceituno, P.; Hernández-Aceituno, J.; Hernández-Cabrera, A.

    2015-01-01

    Laboratory exercises are an important part of general Physics teaching, both during the last years of high school and the first year of college education. Due to the need to acquire enough laboratory equipment for all the students, and the widespread access to computers rooms in teaching, we propose the development of computer simulated laboratory exercises. A representative exercise in general Physics is the calculation of the gravity acceleration value, through the free fall motion of a metal ball. Using a model of the real exercise, we have developed an interactive system which allows students to alter the starting height of the ball to obtain different fall times. The simulation was programmed in ActionScript 3, so that it can be freely executed in any operative system; to ensure the accuracy of the calculations, all the input parameters of the simulations were modelled using digital measurement units, and to allow a statistical management of the resulting data, measurement errors are simulated through limited randomization.

  12. Computer Simulation of Microwave Devices

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The accurate simulation of cold-test results including dispersion, on-axis beam interaction impedance, and attenuation of a helix traveling-wave tube (TWT) slow-wave circuit using the three-dimensional code MAFIA (Maxwell's Equations Solved by the Finite Integration Algorithm) was demonstrated for the first time. Obtaining these results is a critical step in the design of TWT's. A well-established procedure to acquire these parameters is to actually build and test a model or a scale model of the circuit. However, this procedure is time-consuming and expensive, and it limits freedom to examine new variations to the basic circuit. These limitations make the need for computational methods crucial since they can lower costs, reduce tube development time, and lessen limitations on novel designs. Computer simulation has been used to accurately obtain cold-test parameters for several slow-wave circuits. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. A new computer modeling technique developed at the NASA Lewis Research Center overcomes these difficulties. The MAFIA three-dimensional mesh for a C-band helix slow-wave circuit is shown.

  13. Acceleration of discrete stochastic biochemical simulation using GPGPU.

    PubMed

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.

  14. Acceleration of discrete stochastic biochemical simulation using GPGPU

    PubMed Central

    Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira

    2015-01-01

    For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936

  15. Design and Analysis of Windmill Simulation and Pole by Solidwork Program

    NASA Astrophysics Data System (ADS)

    Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.

    2018-03-01

    The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.

  16. A Sidekick for Membrane Simulations: Automated Ensemble Molecular Dynamics Simulations of Transmembrane Helices

    PubMed Central

    Hall, Benjamin A; Halim, Khairul Abd; Buyan, Amanda; Emmanouil, Beatrice; Sansom, Mark S P

    2016-01-01

    The interactions of transmembrane (TM) α-helices with the phospholipid membrane and with one another are central to understanding the structure and stability of integral membrane proteins. These interactions may be analysed via coarse-grained molecular dynamics (CGMD) simulations. To obtain statistically meaningful analysis of TM helix interactions, large (N ca. 100) ensembles of CGMD simulations are needed. To facilitate the running and analysis of such ensembles of simulations we have developed Sidekick, an automated pipeline software for performing high throughput CGMD simulations of α-helical peptides in lipid bilayer membranes. Through an end-to-end approach, which takes as input a helix sequence and outputs analytical metrics derived from CGMD simulations, we are able to predict the orientation and likelihood of insertion into a lipid bilayer of a given helix of family of helix sequences. We illustrate this software via analysis of insertion into a membrane of short hydrophobic TM helices containing a single cationic arginine residue positioned at different positions along the length of the helix. From analysis of these ensembles of simulations we estimate apparent energy barriers to insertion which are comparable to experimentally determined values. In a second application we use CGMD simulations to examine self-assembly of dimers of TM helices from the ErbB1 receptor tyrosine kinase, and analyse the numbers of simulation repeats necessary to obtain convergence of simple descriptors of the mode of packing of the two helices within a dimer. Our approach offers proof-of-principle platform for the further employment of automation in large ensemble CGMD simulations of membrane proteins. PMID:26580541

  17. Simulation of a G-tolerance curve using the pulsatile cardiovascular model

    NASA Technical Reports Server (NTRS)

    Solomon, M.; Srinivasan, R.

    1985-01-01

    A computer simulation study, performed to assess the ability of the cardiovascular model to reproduce the G tolerance curve (G level versus tolerance time) is reported. A composite strength duration curve derived from experimental data obtained in human centrifugation studies was used for comparison. The effects of abolishing automomic control and of blood volume loss on G tolerance were also simulated. The results provide additional validation of the model. The need for the presence of autonomic reflexes even at low levels of G is pointed out. The low margin of safety with a loss of blood volume indicated by the simulation results underscores the necessity for protective measures during Shuttle reentry.

  18. Operational NDT simulator, towards human factors integration in simulated probability of detection

    NASA Astrophysics Data System (ADS)

    Rodat, Damien; Guibert, Frank; Dominguez, Nicolas; Calmon, Pierre

    2017-02-01

    In the aeronautic industry, the performance demonstration of Non-Destructive Testing (NDT) procedures relies on Probability Of Detection (POD) analyses. This statistical approach measures the ability of the procedure to detect a flaw with regard to one of its characteristic dimensions. The inspection chain is evaluated as a whole, including equipment configuration, probe effciency but also operator manipulations. Traditionally, a POD study requires an expensive campaign during which several operators apply the procedure on a large set of representative samples. Recently, new perspectives for the POD estimation have been introduced using NDT simulation to generate data. However, these approaches do not offer straightforward solutions to take the operator into account. The simulation of human factors, including cognitive aspects, often raises questions. To address these diffculties, we propose a concept of operational NDT simulator [1]. This work presents the first steps in the implementation of such simulator for ultrasound phased array inspection of composite parts containing Flat Bottom Holes (FBHs). The final system will look like a classical ultrasound testing equipment with a single exception: the displayed signals will be synthesized. Our hardware (ultrasound acquisition card, 3D position tracker) and software (position analysis, inspection scenario, synchronization, simulations) environments are developed as a bench to test the meta-modeling techniques able to provide fast-simulated realistic ultra-sound signals. The results presented here are obtained by on-the-fly merging of real and simulated signals. They confirm the feasibility of our approach: the replacement of real signals by purely simulated ones has been unnoticed by operators. We believe this simulator is a great prospect for POD evaluation including human factors, and may also find applications for training or procedure set-up.

  19. Simulation of periodically focused, adiabatic thermal beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Akylas, T. R.; Barton, T. J.

    2012-12-21

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [K.R. Samokhvalova, J. Zhou and C. Chen, Phys. Plasma 14, 103102 (2007); J. Zhou, K.R. Samokhvalova and C. Chen, Phys. Plasma 15, 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope, the conservations of the rms thermal emittances, the adiabatic equation of state, and the Debye length are verified in the simulations. Furthermore, the adiabatic thermal beam ismore » found be stable in the parameter regime where the simulations are performed.« less

  20. Finite element simulation of crack depth measurements in concrete using diffuse ultrasound

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Kim, Jin-Yeon; Jacobs, Laurence J.

    2012-05-01

    This research simulates the measurements of crack depth in concrete using diffuse ultrasound. The finite element method is employed to simulate the ultrasonic diffusion process around cracks with different geometrical shapes, with the goal of gaining physical insight into the data obtained from experimental measurements. The commercial finite element software Ansys is used to implement the two-dimensional concrete model. The model is validated with an analytical solution and experimental results. It is found from the simulation results that preliminary knowledge of the crack geometry is required to interpret the energy evolution curves from measurements and to correctly determine the crack depth.

  1. A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Davidson, John B.; Schmidt, David K.

    1987-01-01

    The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot.

  2. Study on the CFD simulation of refrigerated container

    NASA Astrophysics Data System (ADS)

    Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin

    2017-10-01

    The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.

  3. Generalized math model for simulation of high-altitude balloon systems

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.

    1985-01-01

    Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.

  4. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  5. Learning Performance with Interactive Simulations in Medical Education: Lessons Learned from Results of Learning Complex Physiological Models with the HAEMOdynamics SIMulator

    ERIC Educational Resources Information Center

    Holzinger, Andreas; Kickmeier-Rust, Michael D.; Wassertheurer, Sigi; Hessinger, Michael

    2009-01-01

    Objective: Since simulations are often accepted uncritically, with excessive emphasis being placed on technological sophistication at the expense of underlying psychological and educational theories, we evaluated the learning performance of simulation software, in order to gain insight into the proper use of simulations for application in medical…

  6. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  7. A transient simulation approach to obtaining capacitance-voltage characteristics of GaN MOS capacitors with deep-level traps

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu

    2018-04-01

    In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.

  8. Controlled cooling technology for bar and rod mills -- Computer simulation and operational results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauk, P.J.; Kruse, M.; Plociennik, U.

    The Controlled Cooling Technology (CCT) developed by SMS to simulate the rolling process and automatic control of the water cooling sections is presented. The Controlled Rolling and Cooling Technology (CRCT) model is a key part of the CCT system. It is used to simulate temperature management for the rolling stock on the computer before the actual rolling process takes place. This makes it possible to dispense with extensive rolling tests in the early stages of project planning and to greatly reduce the extent of such tests prior to the start of commercial production in a rolling mill. The CRCT modelmore » has been in use at Von Moos Stahl Ag for three years. It demonstrates that, by targeted improvement of the set-up values in both the technology and the plant, it is possible to improve microstructure quality and achieve better geometrical parameters in the rolled products. Also, the results gained with the CCT system in practical operation at the Kia Steel Bar Mill, Kunsan, Korea, are presented.« less

  9. Implementing fluid dynamics obtained from GeoPET in reactive transport models

    NASA Astrophysics Data System (ADS)

    Lippmann-Pipke, Johanna; Eichelbaum, Sebastian; Kulenkampff, Johannes

    2016-04-01

    Flow and transport simulations in geomaterials are commonly conducted on high-resolution tomograms (μCT) of the pore structure or stochastic models that are calibrated with measured integral quantities, like break through curves (BTC). Yet, there existed virtually no method for experimental verification of the simulated velocity distribution results. Positron emission tomography (PET) has unrivaled sensitivity and robustness for non-destructive, quantitative, spatio-temporal measurement of tracer concentrations in body tissue. In the past decade, we empowered PET for its applicability in opaque/geological media - GeoPET (Kulenkampff et al.; Kulenkampff et al., 2008; Zakhnini et al., 2013) and have developed detailed correction schemes to bring the images into sharp focus. Thereby it is the appropriate method for experimental verification and calibration of computer simulations of pore-scale transport by means of the observed propagation of a tracer pulse, c_PET(x,y,z,t). In parallel, we aimed at deriving velocity and porosity distributions directly from our concentration time series of fluid flow processes in geomaterials. This would allow us to directly benefit from lab scale observations and to parameterize respective numerical transport models. For this we have developed a robust spatiotemporal (3D+t) parameter extraction algorithm. Here, we will present its functionality, and demonstrate the use of obtained velocity distributions in finite element simulations of reactive transport processes on drill core scale. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, in press. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008. Zakhnini, A., Kulenkampff, J., Sauerzapf, S

  10. A Deep Extragalactic Survey with the ART-XC Telescope of the Spectrum-RG Observatory: Simulations and Expected Results

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Filippova, E. V.; Burenin, R. A.; Sazonov, S. Yu.; Pavlinsky, M. N.; Tkachenko, A. Yu.; Lapshov, I. Yu.; Shtykovskiy, A. E.; Krivonos, R. A.

    2018-02-01

    To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum-Röntgen-Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5-11 and 8-24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that "arrived" from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10-14 erg s-1 cm-2 (5-11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.

  11. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring themore » resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.« less

  12. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  13. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  14. International normalized ratio (INR) testing in Europe: between-laboratory comparability of test results obtained by Quick and Owren reagents.

    PubMed

    Meijer, Piet; Kynde, Karin; van den Besselaar, Antonius M H P; Van Blerk, Marjan; Woods, Timothy A L

    2018-04-12

    This study was designed to obtain an overview of the analytical quality of the prothrombin time, reported as international normalized ratio (INR) and to assess the variation of INR results between European laboratories, the difference between Quick-type and Owren-type methods and the effect of using local INR calibration or not. In addition, we assessed the variation in INR results obtained for a single donation in comparison with a pool of several plasmas. A set of four different lyophilized plasma samples were distributed via national EQA organizations to participating laboratories for INR measurement. Between-laboratory variation was lower in the Owren group than in the Quick group (on average: 6.7% vs. 8.1%, respectively). Differences in the mean INR value between the Owren and Quick group were relatively small (<0.20 INR). Between-laboratory variation was lower after local INR calibration (CV: 6.7% vs. 8.6%). For laboratories performing local calibration, the between-laboratory variation was quite similar for the Owren and Quick group (on average: 6.5% and 6.7%, respectively). Clinically significant differences in INR results (difference in INR>0.5) were observed between different reagents. No systematic significant differences in the between-laboratory variation for a single-plasma sample and a pooled plasma sample were observed. The comparability for laboratories using local calibration of their thromboplastin reagent is better than for laboratories not performing local calibration. Implementing local calibration is strongly recommended for the measurement of INR.

  15. A comparison between general circulation model simulations using two sea surface temperature datasets for January 1979

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki; Mechoso, Carlos; Halpern, David

    1994-01-01

    Simulations with the UCLA atmospheric general circulation model (AGCM) using two different global sea surface temperature (SST) datasets for January 1979 are compared. One of these datasets is based on Comprehensive Ocean-Atmosphere Data Set (COADS) (SSTs) at locations where there are ship reports, and climatology elsewhere; the other is derived from measurements by instruments onboard NOAA satellites. In the former dataset (COADS SST), data are concentrated along shipping routes in the Northern Hemisphere; in the latter dataset High Resolution Infrared Sounder (HIRS SST), data cover the global domain. Ensembles of five 30-day mean fields are obtained from integrations performed in the perpetual-January mode. The results are presented as anomalies, that is, departures of each ensemble mean from that produced in a control simulation with climatological SSTs. Large differences are found between the anomalies obtained using COADS and HIRS SSTs, even in the Northern Hemisphere where the datasets are most similar to each other. The internal variability of the circulation in the control simulation and the simulated atmospheric response to anomalous forcings appear to be linked in that the pattern of geopotential height anomalies obtained using COADS SSTs resembles the first empirical orthogonal function (EOF 1) in the control simulation. The corresponding pattern obtained using HIRS SSTs is substantially different and somewhat resembles EOF 2 in the sector from central North America to central Asia. To gain insight into the reasons for these results, three additional simulations are carried out with SST anomalies confined to regions where COADS SSTs are substantially warmer than HIRS SSTs. The regions correspond to warm pools in the northwest and northeast Pacific, and the northwest Atlantic. These warm pools tend to produce positive geopotential height anomalies in the northeastern part of the corresponding oceans. Both warm pools in the Pacific produce large

  16. Changing Characteristics of convective storms: Results from a continental-scale convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.

    2016-12-01

    Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.

  17. Scaled boundary finite element simulation and modeling of the mechanical behavior of cracked nanographene sheets

    NASA Astrophysics Data System (ADS)

    Honarmand, M.; Moradi, M.

    2018-06-01

    In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.

  18. Simulated Driving Assessment (SDA) for teen drivers: results from a validation study.

    PubMed

    McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K

    2015-06-01

    Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardised assessments of teen driving skills exist. The purpose of this study is to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. The SDA's 35 min simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16-17 years, provisional license ≤90 days) and 17 experienced adults (age 25-50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor (DEI Score) reviewed videos of SDA performance. The SDA demonstrated construct validity: (1) teens had a higher Error Score than adults (30 vs. 13, p=0.02); (2) For each additional error committed, the RR of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI 1.05 to 1.10, p<0.01). The SDA-demonstrated criterion validity: Error Score was correlated with DEI Score (r=-0.66, p<0.001). This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.

    PubMed

    Pang, Wei; Coghill, George M

    2015-05-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. The National Center for Collaboration in Medical Modeling and Simulation

    DTIC Science & Technology

    2005-05-01

    universities) to determine the best development strategies . The M~dical Modeling and Simulation Database (MMSD) has been created. The MMSD consists of two web... learner to obtain experience and skill prior to interacting with patients in vivo. The increasing focus on issues of patient safety, health care costs...additional option when considering how to best to maximize their educational resources. While the results of this study suggest that VR simulators are useful

  1. A hybrid algorithm for parallel molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mangiardi, Chris M.; Meyer, R.

    2017-10-01

    This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.

  2. Protein free energy landscapes from long equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Piana-Agostinetti, Stefano

    Many computational techniques based on molecular dynamics (MD) simulation can be used to generate data to aid in the construction of protein free energy landscapes with atomistic detail. Unbiased, long, equilibrium MD simulations--although computationally very expensive--are particularly appealing, as they can provide direct kinetic and thermodynamic information on the transitions between the states that populate a protein free energy surface. It can be challenging to know how to analyze and interpret even results generated by this direct technique, however. I will discuss approaches we have employed, using equilibrium MD simulation data, to obtain descriptions of the free energy landscapes of proteins ranging in size from tens to thousands of amino acids.

  3. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  4. A Simulation Study Comparing Procedures for Assessing Individual Educational Growth. Report No. 182.

    ERIC Educational Resources Information Center

    Richards, James M., Jr.

    A computer simulation procedure was developed to reproduce the overall pattern of results obtained in the Educational Testing Service Growth Study. Then simulated data for seven sets of 10,000 to 15,000 cases were analyzed, and findings compared on the basis of correlations between estimated and true growth scores. Findings showed that growth was…

  5. Does teaching of documentation of shoulder dystocia delivery through simulation result in improved documentation in real life?

    PubMed

    Comeau, Robyn; Craig, Catherine

    2014-03-01

    Documentation of deliveries complicated by shoulder dystocia is a valuable communication skill necessary for residents to attain during residency training. Our objective was to determine whether the teaching of documentation of shoulder dystocia in a simulation environment would translate to improved documentation of the event in an actual clinical situation. We conducted a cohort study involving obstetrics and gynaecology residents in years 2 to 5 between November 2010 and December 2012. Each resident participated in a shoulder dystocia simulation teaching session and was asked to write a delivery note immediately afterwards. They were given feedback regarding their performance of the delivery and their documentation of the events. Following this, dictated records of shoulder dystocia deliveries immediately before and after the simulation session were identified through the Meditech system. An itemized checklist was used to assess the quality of residents' dictated documentation before and after the simulation session. All eligible residents (18) enrolled in the study, and 17 met the inclusion criteria. For 10 residents (59%) documentation of a delivery with shoulder dystocia was present before and after the simulation session, for five residents (29%) it was only present before the session, and for two residents (18%) it was only present after the session. When residents were assessed as a group, there were no differences in the proportion of residents recording items on the checklist before and after the simulation session (P > 0.05 for all). Similarly, analysis of the performance of the10 residents who had dictated documentation both before and after the session showed no differences in the number of elements recorded on dictations done before and after the simulation session (P > 0.05 for all). The teaching of shoulder dystocia documentation through simulation did not result in a measurable improvement in the quality of documentation of shoulder dystocia in

  6. Simulation study of interactions of Space Shuttle-generated electron beams with ambient plasmas

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1992-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-1936. The objective of this report is to conduct large scale simulations of electron beams injected into space. The topics covered include the following: (1) simulation of radial expansion of an injected electron beam; (2) simulations of the active injections of electron beams; (3) parameter study of electron beam injection into an ionospheric plasma; and (4) magnetosheath-ionospheric plasma interactions in the cusp.

  7. 1030/1090 MHz Interference Simulator Technical Description and Initial Results

    DOT National Transportation Integrated Search

    2001-04-27

    The 1030/1090 MHz Interference Simulator has been under development since March 1999, and currently replicates the interference production and operation of the existing surveillance systems and several proposed new Mode S applications. Efforts are on...

  8. Realistic Solar Surface Convection Simulations

    NASA Technical Reports Server (NTRS)

    Stein, Robert F.; Nordlund, Ake

    2000-01-01

    We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.

  9. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  10. Simulation and experimental measurement of radon activity using a multichannel silicon-based radiation detector.

    PubMed

    Ozdemir, F B; Selcuk, A B; Ozkorucuklu, S; Alpat, A B; Ozdemir, T; Ӧzek, N

    2018-05-01

    In this study, high-precision radiation detector (HIPRAD), a new-generation semiconductor microstrip detector, was used for detecting radon (Rn-222) activity. The aim of this study was to detect radon (Rn-222) activity experimentally by measuring the energy of particles in this detector. Count-ADC channel, eta-charge, and dose-response values were experimentally obtained using HIPRAD. The radon simulation in the radiation detector was theoretically performed using the Geant4 software package. The obtained radioactive decay, energy generation, energy values, and efficiency values of the simulation were plotted using the root program. The new-generation radiation detector proved to have 95% reliability according to the obtained dose-response graphs. The experimental and simulation results were found to be compatible with each other and with the radon decays and literature studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  12. Efficient approach to obtain free energy gradient using QM/MM MD simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asada, Toshio; Koseki, Shiro; The Research Institute for Molecular Electronic Devices

    2015-12-31

    The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means ofmore » FEG and the nudged elastic band (NEB) method.« less

  13. Motion of dust particles in nonuniform magnetic field and applicability of smoothed particle hydrodynamics simulation

    NASA Astrophysics Data System (ADS)

    Saitou, Y.

    2018-01-01

    An SPH (Smoothed Particle Hydrodynamics) simulation code is developed to reproduce our findings on behavior of dust particles, which were obtained in our previous experiments (Phys. Plasmas, 23, 013709 (2016) and Abst. 18th Intern. Cong. Plasma Phys. (Kaohsiung, 2016)). Usually, in an SPH simulation, a smoothed particle is interpreted as a discretized fluid element. Here we regard the particles as dust particles because it is known that behavior of dust particles in complex plasmas can be described using fluid dynamics equations in many cases. Various rotation velocities that are difficult to achieve in the experiment are given to particles at boundaries in the newly developed simulation and motion of particles is investigated. Preliminary results obtained by the simulation are shown.

  14. Exit probability of the one-dimensional q-voter model: Analytical results and simulations for large networks

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2014-05-01

    We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.

  15. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2018-06-01

    Here, we present the latest results on the gas and solid phase analyses in the Titan Haze Simulation (THS) experiment. The THS experiment, developed at NASA Ames’ COSmIC facility is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma.Gas phase: The residence time of the jet-accelerated gas in the active plasma region is less than 4 µs, which results in a truncated chemistry enabling us to control how far in the chain of reactions the chemistry is processing. By adding heavier molecules in the initial gas mixture, it is then possible to study the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways, as demonstrated by mass spectrometry and comparison to Cassini CAPS data [1]. A new model was recently developed to simulate the plasma chemistry in the THS. Calculated mass spectra produced by this model are in good agreement with the experimental THS mass spectra, confirming that the short residence time in the plasma cavity limits the growth of larger species [2].Solid phase: Scanning electron microscopy and infrared spectroscopy have been used to investigate the effect of the initial gas mixture on the morphology of the THS Titan aerosol analogs as well as on the level and nature of the nitrogen incorporation into these aerosols. A comparison to Cassini VIMS observational data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols [3]. In addition, a new optical constant facility has been developed at NASA Ames that allows us to determine the complex refractive indices of THS Titan aerosol analogs from NIR to FIR (0.76-222 cm-1). The facility and preliminary results

  16. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  17. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  18. Structural materials from lunar simulants through thermal liquefaction

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, Kirsten

    1992-01-01

    Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on the moon. Bending and compressive properties of resulting composites are obtained from laboratory tests and evaluated with respect to the use of three different types and fibers.

  19. Simulation of a large size inductively coupled plasma generator and comparison with experimental data

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Yu, Yuanyuan

    2018-01-01

    A two-dimensional axisymmetric inductively coupled plasma (ICP) model with its implementation in the COMSOL (Multi-physics simulation software) platform is described. Specifically, a large size ICP generator filled with argon is simulated in this study. Distributions of the number density and temperature of electrons are obtained for various input power and pressure settings and compared. In addition, the electron trajectory distribution is obtained in simulation. Finally, using experimental data, the results from simulations are compared to assess the veracity of the two-dimensional fluid model. The purpose of this comparison is to validate the veracity of the simulation model. An approximate agreement was found (variation tendency is the same). The main reasons for the numerical magnitude discrepancies are the assumption of a Maxwellian distribution and a Druyvesteyn distribution for the electron energy and the lack of cross sections of collision frequencies and reaction rates for argon plasma.

  20. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    PubMed

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  1. GRMHD and GRPIC Simulations

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Watson, M.; Fuerst, S.; Wu, K.; Hardee, P.; Fishman, G. J.

    2007-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous code. The simulation results show the jet formations from a geometrically thin accretion disk near a nonrotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field configuration including issues for future research. A General Relativistic Particle-in-Cell Code (GRPIC) has been developed using the Kerr-Schild metric. The code includes kinetic effects, and is in accordance with GRMHD code. Since the gravitational force acting on particles is extreme near black holes, there are some difficulties in numerically describing these processes. The preliminary code consists of an accretion disk and free-falling corona. Results indicate that particles are ejected from the black hole. These results are consistent with other GRMHD simulations. The GRPIC simulation results will be presented, along with some remarks and future improvements. The emission is calculated from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by GRMHD simulations considering thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as

  2. Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.

  3. Test Results From a Simulated High-Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  4. Test Results from a Simulated High Voltage Lunar Power Transmission Line

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2008-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  5. DES Y1 Results: Validating Cosmological Parameter Estimation Using Simulated Dark Energy Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCrann, N.; et al.

    We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in themore » $$\\Omega_m-\\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\\sigma_8(\\Omega_m/0.3)^{0.5}$$ and $$\\Omega_m$$ are smaller than the DES Y1 $$1-\\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. As cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.« less

  6. Power partial-discard strategy to obtain improved performance for simulated moving bed chromatography.

    PubMed

    Chung, Ji-Woo; Kim, Kyung-Min; Yoon, Tae-Ung; Kim, Seung-Ik; Jung, Tae-Sung; Han, Sang-Sup; Bae, Youn-Sang

    2017-12-22

    A novel power partial-discard (PPD) strategy was developed as a variant of the partial-discard (PD) operation to further improve the separation performance of the simulated moving bed (SMB) process. The PPD operation varied the flow rates of discard streams by introducing a new variable, the discard amount (DA) as well as varying the reported variable, discard length (DL), while the conventional PD used fixed discard flow rates. The PPD operations showed significantly improved purities in spite of losses in recoveries. Remarkably, the PPD operation could provide more enhanced purity for a given recovery or more enhanced recovery for a given purity than the PD operation. The two variables, DA and DL, in the PPD operation played a key role in achieving the desired purity and recovery. The PPD operations will be useful for attaining high-purity products with reasonable recoveries. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mechanical and optical behavior of a tunable liquid lens using a variable cross section membrane: modeling results

    NASA Astrophysics Data System (ADS)

    Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio

    2016-03-01

    A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.

  8. Analysis of Site Effect in the Izmit Basin of Turkey by Wave Propagation Simulation Using the Spectral Element Method: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Firtana Elcomert, K.; Kocaoglu, A. H.

    2013-12-01

    Sedimentary basins generally cause significant ground motion amplification during an earthquake. Along with the resonance controlled by the impedance contrast between the sedimentary cover and bedrock, surface waves generated within the basin make the waveforms more complex and longer in duration. When a dense network of weak and/or strong motion sensors is available, site effect or more specifically sedimentary basin amplification can be directly estimated experimentally provided that significant earthquakes occur during the period of study. Alternatively, site effect can be investigated through simulation of ground motion. The objective of this study is to investigate the 2-D and/or 3-D site effect in the Izmit Basin located in the eastern Marmara region of Turkey, using the currently available bedrock topography and shear-wave velocity data. The Izmit Basin was formed in Plio-Quaternary period and is known to be controlled by the northern branch of the North Anatolian Fault Zone. A thorough analysis of seismic hazard is important since the city of Izmit and its metropolitan area is located in this region. This work presents some of the preliminary results obtained from 2-D and 3-D seismic wave propagation simulations using the spectral element method, which is based on high order polynomial approximation of the weak formulation of the wave equation. In this study, the numerical simulations were carried out with SPECFEM2D/3D program. Comparison of seismograms recorded on the top of sedimentary layer with those recorded on the bedrock show more complex waveforms with higher amplitudes on seismograms recorded at the free surface. Furthermore, modeling clearly reveals that observed seismograms include surface waves whose excitation is clearly related with the basin geometry.

  9. Technology for Transient Simulation of Vibration during Combustion Process in Rocket Thruster

    NASA Astrophysics Data System (ADS)

    Zubanov, V. M.; Stepanov, D. V.; Shabliy, L. S.

    2018-01-01

    The article describes the technology for simulation of transient combustion processes in the rocket thruster for determination of vibration frequency occurs during combustion. The engine operates on gaseous propellant: oxygen and hydrogen. Combustion simulation was performed using the ANSYS CFX software. Three reaction mechanisms for the stationary mode were considered and described in detail. The way for obtaining quick CFD-results with intermediate combustion components using an EDM model was found. The way to generate the Flamelet library with CFX-RIF was described. A technique for modeling transient combustion processes in the rocket thruster was proposed based on the Flamelet library. A cyclic irregularity of the temperature field like vortex core precession was detected in the chamber. Frequency of flame precession was obtained with the proposed simulation technique.

  10. The LANDSAT system operated in Brazil by CNPq/INPE - results obtained in the area of mapping and future perspectives

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Barbosa, M. N.

    1981-01-01

    The LANDSAT system, operated in the country by CNPg/INPE since 1973, systematically acquires, produces, and distributes both multispectral and panchromatic images obtained through remote sensing satellites to thousands of researchers and technicians involved in the natural resources survey. To cooperate in the solution of national problems, CNPq/INPE is developing efforts in the area of manipulation of those images with the objective of making them useful as planimetric bases for the simple revision of already published maps or for its utilization as basic material in regions not yet reliability mapped. The results obtained from performed tests are presented and the existing limitations are discussed. The new system purchased to handle data from the next series of LANDSAT as well as from MAPSAT and SPOT which will be in operation within the 80's decade, and are designed not only for natural resources survey but also for the solution of cartographic problems.

  11. Simulations of 6-DOF Motion with a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    Coupled 6-DOF/CFD trajectory predictions using an automated Cartesian method are demonstrated by simulating a GBU-32/JDAM store separating from an F-18C aircraft. Numerical simulations are performed at two Mach numbers near the sonic speed, and compared with flight-test telemetry and photographic-derived data. Simulation results obtained with a sequential-static series of flow solutions are contrasted with results using a time-dependent flow solver. Both numerical methods show good agreement with the flight-test data through the first half of the simulations. The sequential-static and time-dependent methods diverge over the last half of the trajectory prediction. after the store produces peak angular rates. A cost comparison for the Cartesian method is included, in terms of absolute cost and relative to computing uncoupled 6-DOF trajectories. A detailed description of the 6-DOF method, as well as a verification of its accuracy, is provided in an appendix.

  12. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  13. Towards information-optimal simulation of partial differential equations.

    PubMed

    Leike, Reimar H; Enßlin, Torsten A

    2018-03-01

    Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.

  14. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  15. Advances and issues from the simulation of planetary magnetospheres with recent supercomputer systems

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2016-12-01

    Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we

  16. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  17. Simulation of fundamental atomization mechanisms in fuel sprays

    NASA Technical Reports Server (NTRS)

    Childs, Robert, E.; Mansour, Nagi N.

    1988-01-01

    Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.

  18. Face aging effect simulation model based on multilayer representation and shearlet transform

    NASA Astrophysics Data System (ADS)

    Li, Yuancheng; Li, Yan

    2017-09-01

    In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.

  19. The characteristics simulation of FMCW laser backscattering signals

    NASA Astrophysics Data System (ADS)

    Liu, Bohu; Song, Chengtian; Duan, Yabo

    2018-04-01

    A Monte Carlo simulation model of FMCW laser transmission in a smoke interference environment was established in this paper. The aerosol extinction coefficient and scattering coefficient changed dynamically in the simulation according to the smoke concentration variation, aerosol particle distributions and photon spatial positions. The simulation results showed that the smoke backscattering interference produced a number of amplitude peaks in the beat signal spectrum; the SNR of target echo signal to smoke interference was related to the transmitted laser wavelength and the aerosol particle size distribution; a better SNR could be obtained when the laser wavelength was in the range of 560-1660 nm. The characteristics of FMCW laser backscattering signals generated by simulation are consistent with the theoretical analysis. Therefore, this study was greatly helpful for improving the ability of identifying target and anti-interference in the further research.

  20. SU-E-T-101: Determination and Comparison of Correction Factors Obtained for TLDs in Small Field Lung Heterogenous Phantom Using Acuros XB and EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, R; Lee, J; Harianto, F

    Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less

  1. Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system

    NASA Astrophysics Data System (ADS)

    Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory

    2016-11-01

    Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.

  2. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE PAGES

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.; ...

    2018-06-20

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  3. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesick, K. E.; Feldman, W. C.; Coupland, D. D. S.

    Galactic cosmic rays undergo complex nuclear interactions with nuclei within planetary bodies that have little to no atmosphere. Radiation transport simulations are a key tool used in understanding the neutron and gamma-ray albedo coming from these interactions and tracing these signals back to geochemical composition of the target. In this paper, we study the validity of the code Geant4 for simulating such interactions by comparing simulation results to data from the Apollo 17 Lunar Neutron Probe Experiment. Different assumptions regarding the physics are explored to demonstrate how these impact the Geant4 simulation results. In general, all of the Geant4 resultsmore » over-predict the data, however, certain physics lists perform better than others. Finally, in addition, we show that results from the radiation transport code MCNP6 are similar to those obtained using Geant4.« less

  4. Numerical simulation of turbulent gas flames in tubes.

    PubMed

    Salzano, E; Marra, F S; Russo, G; Lee, J H S

    2002-12-02

    Computational fluid dynamics (CFD) is an emerging technique to predict possible consequences of gas explosion and it is often considered a powerful and accurate tool to obtain detailed results. However, systematic analyses of the reliability of this approach to real-scale industrial configurations are still needed. Furthermore, few experimental data are available for comparison and validation. In this work, a set of well documented experimental data related to the flame acceleration obtained within obstacle-filled tubes filled with flammable gas-air mixtures, has been simulated. In these experiments, terminal steady flame speeds corresponding to different propagation regimes were observed, thus, allowing a clear and prompt characterisation of the numerical results with respect to numerical parameters, as grid definition, geometrical parameters, as blockage ratio and to mixture parameters, as mixture reactivity. The CFD code AutoReagas was used for the simulations. Numerical predictions were compared with available experimental data and some insights into the code accuracy were determined. Computational results are satisfactory for the relatively slower turbulent deflagration regimes and became fair when choking regime is observed, whereas transition to quasi-detonation or Chapman-Jogouet (CJ) were never predicted.

  5. Magnetized Mini-Disk Simulations about Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Noble, Scott; Bowen, Dennis B.; d'Ascoli, Stephane; Mewes, Vassilios; Campanelli, Manuela; Krolik, Julian

    2018-01-01

    Accretion disks around supermassive binary black holes offer a rare opportunity to probe the strong-field limit of dynamical gravity by using the ambient matter as a lighthouse. Accurate simulations of these systems using a variety of configurations will be critical to interpreting future observations of them. We have performed the first 3-d general relativistic magnetohydrodynamic simulations of mini-disks about a pair of equal mass black holes in the inspiral regime of their orbit. In this talk, we will present our latest results of 3-d general relativistic magnetohydrodynamic supercomputer simulations of accreting binary black holes during the post-Newtonian inspiral phase of their evolution. The goal of our work is to explore whether these systems provide a unique means to identify and characterize them with electromagnetic observations. We will provide a brief summary of the known electromagnetic signatures, in particular spectra and images obtained from post-process ray-tracing calculations of our simulation data. We will also provide a context for our results and describe our future avenues of exploration.

  6. Monte Carlo simulation of PET/MR scanner and assessment of motion correction strategies

    NASA Astrophysics Data System (ADS)

    Işın, A.; Uzun Ozsahin, D.; Dutta, J.; Haddani, S.; El-Fakhri, G.

    2017-03-01

    Positron Emission Tomography is widely used in three dimensional imaging of metabolic body function and in tumor detection. Important research efforts are made to improve this imaging modality and powerful simulators such as GATE are used to test and develop methods for this purpose. PET requires acquisition time in the order of few minutes. Therefore, because of the natural patient movements such as respiration, the image quality can be adversely affected which drives scientists to develop motion compensation methods to improve the image quality. The goal of this study is to evaluate various image reconstructions methods with GATE simulation of a PET acquisition of the torso area. Obtained results show the need to compensate natural respiratory movements in order to obtain an image with similar quality as the reference image. Improvements are still possible in the applied motion field's extraction algorithms. Finally a statistical analysis should confirm the obtained results.

  7. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  8. Pressure of the hot gas in simulations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Fabjan, D.; Borgani, S.; Murante, G.; Rasia, E.; Biffi, V.; Truong, N.; Ragone-Figueroa, C.; Granato, G. L.; Dolag, K.; Pierpaoli, E.; Beck, A. M.; Steinborn, Lisa K.; Gaspari, M.

    2017-06-01

    We analyse the radial pressure profiles, the intracluster medium (ICM) clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the treepm-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, active galactic nucleus (AGN) and/or stellar feedback. Our results are analysed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observations. Simulated cool-core (CC) and non-cool-core (NCC) clusters also show a good match with real data. We obtain in all cases a small (if any) redshift evolution of the pressure profiles of massive clusters, at least back to z = 1. We find that the clumpiness of gas density and pressure increases with the distance from the cluster centre and with the dynamical activity. The inclusion of AGN feedback in our simulations generates values for the gas clumping (√{C}_{ρ }˜ 1.2 at R200) in good agreement with recent observational estimates. The simulated YSZ-M scaling relations are in good accordance with several observed samples, especially for massive clusters. As for the scatter of these relations, we obtain a clear dependence on the cluster dynamical state, whereas this distinction is not so evident when looking at the subsamples of CC and NCC clusters.

  9. Numerical simulations of the NREL S826 airfoil

    NASA Astrophysics Data System (ADS)

    Sagmo, KF; Bartl, J.; Sætran, L.

    2016-09-01

    2D and 3D steady state simulations were done using the commercial CFD package Star-CCM+ with three different RANS turbulence models. Lift and drag coefficients were simulated at different angles of attack for the NREL S826 airfoil at a Reynolds number of 100 000, and compared to experimental data obtained at NTNU and at DTU. The Spalart-Allmaras and the Realizable k-epsilon turbulence models reproduced experimental results for lift well in the 2D simulations. The 3D simulations with the Realizable two-layer k-epsilon model predicted essentially the same lift coefficients as the 2D Spalart-Allmaras simulations. A comparison between 2D and 3D simulations with the Realizable k-epsilon model showed a significantly lower prediction in drag by the 2D simulations. From the conducted 3D simulations surface pressure predictions along the wing span were presented, along with volumetric renderings of vorticity. Both showed a high degree of span wise flow variation when going into the stall region, and predicted a flow field resembling that of stall cells for angles of attack above peak lift.

  10. Simulating immersed particle collisions: the Devil's in the details

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  11. Results of in vivo measurements of strontium-90 body-burden in Urals residents: analyses of data obtained 2006-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E. I.; Bougrov, N. G.; Krivoshchapov, Victor A.

    2012-06-01

    A part of the Urals territory was contaminated with 90Sr and 137Cs in the 1950s as a result of accidents at the "Mayak" Production Association. The paper describes the analysis of in vivo 90Sr measurements in Urals residents. The measurements were performed with the use of whole-body-counter SICH-9.1M in 2006-2012. Totally 5840 measurements for 4876 persons were performed from 2006 to 2012; maximal measured value was 24 kBq. Earlier, similar measurements were performed with SICH-9.1 (1974-1997). Comparison of the results obtained with SICH-9.1 and SICH-9.1M has shown a good agreement of the two data sets.

  12. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    PubMed

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  13. Low Cost Simulator for Heart Surgery Training

    PubMed Central

    Silva, Roberto Rocha e; Lourenção, Artur; Goncharov, Maxim; Jatene, Fabio B.

    2016-01-01

    Objective Introduce the low-cost and easy to purchase simulator without biological material so that any institution may promote extensive cardiovascular surgery training both in a hospital setting and at home without large budgets. Methods A transparent plastic box is placed in a wooden frame, which is held by the edges using elastic bands, with the bottom turned upwards, where an oval opening is made, "simulating" a thoracotomy. For basic exercises in the aorta, the model presented by our service in the 2015 Brazilian Congress of Cardiovascular Surgery: a silicone ice tray, where one can train to make aortic purse-string suture, aortotomy, aortorrhaphy and proximal and distal anastomoses. Simulators for the training of valve replacement and valvoplasty, atrial septal defect repair and aortic diseases were added. These simulators are based on sewage pipes obtained in construction material stores and the silicone trays and ethyl vinyl acetate tissue were obtained in utility stores, all of them at a very low cost. Results The models were manufactured using inert materials easily found in regular stores and do not present contamination risk. They may be used in any environment and maybe stored without any difficulties. This training enabled young surgeons to familiarize and train different surgical techniques, including procedures for aortic diseases. In a subjective assessment, these surgeons reported that the training period led to improved surgical techniques in the surgical field. Conclusion The model described in this protocol is effective and low-cost when compared to existing simulators, enabling a large array of cardiovascular surgery training. PMID:28076623

  14. Numerical simulation of hemorrhage in human injury

    NASA Astrophysics Data System (ADS)

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  15. Virtual geotechnical laboratory experiments using a simulator

    NASA Astrophysics Data System (ADS)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  16. Local turbulence simulations for the multiphase ISM

    NASA Astrophysics Data System (ADS)

    Kissmann, R.; Kleimann, J.; Fichtner, H.; Grauer, R.

    2008-12-01

    In this paper, we show results of numerical simulations for the turbulence in the interstellar medium (ISM). These results were obtained using a Riemann solver-free numerical scheme for high-Mach number hyperbolic equations. Here, we especially concentrate on the physical properties of the ISM. That is, we do not present turbulence simulations trimmed to be applicable to the ISM. The simulations are rather based on physical estimates for the relevant parameters of the interstellar gas. Applying our code to simulate the turbulent plasma motion within a typical interstellar molecular cloud, we investigate the influence of different equations of state (isothermal and adiabatic) on the statistical properties of the resulting turbulent structures. We find slightly different density power spectra and dispersion maps, while both cases yield qualitatively similar dissipative structures, and exhibit a departure from the classical Kolmogorov case towards a scaling described by the She-Leveque model. Solving the full energy equation with realistic heating/cooling terms appropriate for the diffuse interstellar gas (DIG), we are able to reproduce a realistic two-phase distribution of cold and warm plasma. When extracting maps of polarized intensity from our simulation data, we find encouraging similarity to actual observations. Finally, we compare the actual magnetic field strength of our simulations to its value inferred from the rotation measure. We find these to be systematically different by a factor of about 1.15, thus highlighting the often-underestimated influence of varying line-of-sight particle densities on the magnetic field strength derived from observed rotation measures.

  17. Effects of post exposure bake temperature and exposure time on SU-8 nanopattern obtained by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Yasui, Manabu; Kazawa, Elito; Kaneko, Satoru; Takahashi, Ryo; Kurouchi, Masahito; Ozawa, Takeshi; Arai, Masahiro

    2014-11-01

    SU-8 is a photoresist imaged using UV rays. However, we investigated the characteristics of an SU-8 nanopattern obtained by electron beam lithography (EBL). In particular, we studied the relationship between post-exposure bake (PEB) temperature and exposure time on an SU-8 nanopattern with a focus on phase transition temperature. SU-8 residue was formed by increasing both PEB temperature and exposure time. To prevent the formation of this, Monte Carlo simulation was performed; the results of such simulation showed that decreasing the thickness of SU-8 can reduce the amount of residue from the SU-8 nanopattern. We confirmed that decreasing the thickness of SU-8 can also prevent the formation of residue from the SU-8 nanopattern with EBL.

  18. A diagnostic technique used to obtain cross range radiation centers from antenna patterns

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; Burnside, W. D.

    1988-01-01

    A diagnostic technique to obtain cross range radiation centers based on antenna radiation patterns is presented. This method is similar to the synthetic aperture processing of scattered fields in the radar application. Coherent processing of the radiated fields is used to determine the various radiation centers associated with the far-zone pattern of an antenna for a given radiation direction. This technique can be used to identify an unexpected radiation center that creates an undesired effect in a pattern; on the other hand, it can improve a numerical simulation of the pattern by identifying other significant mechanisms. Cross range results for two 8' reflector antennas are presented to illustrate as well as validate that technique.

  19. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  20. Draft Genome Sequences of Six Mycobacterium immunogenum, Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...