Sample records for obtaining fuel efficient

  1. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  2. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  3. Materials Approach to Fuel Efficient Tires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Votruba-Drzal, Peter; Kornish, Brian

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutylmore » rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.« less

  4. Modeling Fuel Efficiency: MPG or GPHM?

    ERIC Educational Resources Information Center

    Bartkovich, Kevin G.

    2013-01-01

    The standard for measuring fuel efficiency in the U.S. has been miles per gallon (mpg). However, the Environmental Protection Agency's (EPA) switch in rating fuel efficiency from miles per gallon to gallons per hundred miles with the 2013 model-year cars leads to interesting and relevant mathematics with real-world connections. By modeling…

  5. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    DTIC Science & Technology

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  6. Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports

    DOT National Transportation Integrated Search

    1982-09-01

    This report assesses and compares increased automobile fuel efficiency and synthetic fuels production with respect to their potential to reduce conventional oil consumption, and their costs and impacts. Conservation and fuel switching as a means of r...

  7. Future long-range transports - Prospects for improved fuel efficiency

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.

    1975-01-01

    A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.

  8. Future long-range transports: Prospects for improved fuel efficiency

    NASA Technical Reports Server (NTRS)

    Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.

    1975-01-01

    A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.

  9. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  10. Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel

    NASA Astrophysics Data System (ADS)

    Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.

    2017-11-01

    The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.

  11. 48 CFR 908.1170 - Leasing of fuel-efficient vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Leasing of fuel-efficient vehicles. 908.1170 Section 908.1170 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Leasing of Motor Vehicles 908.1170 Leasing of fuel-efficient vehicles. (a) All...

  12. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Science.gov Websites

    in EcoCAR 2 CompetitionA> College Students Engineer Efficient Vehicles in EcoCAR 2 Competition to someone by E-mail Share Alternative Fuels Data Center: College Students Engineer Efficient Vehicles in EcoCAR 2 Competition on Facebook Tweet about Alternative Fuels Data Center: College Students Engineer

  13. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes? (a) Written request for a research and development exemption. Any person may receive an exemption...

  14. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes? (a) Written request for a research and development exemption. Any person may receive an exemption...

  15. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes? (a) Written request for a research and development exemption. Any person may receive an exemption...

  16. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes... obtaining an exemption for diesel fuel or ECA marine fuel used for research, development or testing purposes? (a) Written request for a research and development exemption. Any person may receive an exemption...

  17. Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems

    NASA Astrophysics Data System (ADS)

    Francesconi, Javier A.; Mussati, Miguel C.; Mato, Roberto O.; Aguirre, Pio A.

    The aim of this work is to investigate the energy integration and to determine the maximum efficiency of an ethanol processor for hydrogen production and fuel cell operation. Ethanol, which can be produced from renewable feedstocks or agriculture residues, is an attractive option as feed to a fuel processor. The fuel processor investigated is based on steam reforming, followed by high- and low-temperature shift reactors and preferential oxidation, which are coupled to a polymeric fuel cell. Applying simulation techniques and using thermodynamic models the performance of the complete system has been evaluated for a variety of operating conditions and possible reforming reactions pathways. These models involve mass and energy balances, chemical equilibrium and feasible heat transfer conditions (Δ T min). The main operating variables were determined for those conditions. The endothermic nature of the reformer has a significant effect on the overall system efficiency. The highest energy consumption is demanded by the reforming reactor, the evaporator and re-heater operations. To obtain an efficient integration, the heat exchanged between the reformer outgoing streams of higher thermal level (reforming and combustion gases) and the feed stream should be maximized. Another process variable that affects the process efficiency is the water-to-fuel ratio fed to the reformer. Large amounts of water involve large heat exchangers and the associated heat losses. A net electric efficiency around 35% was calculated based on the ethanol HHV. The responsibilities for the remaining 65% are: dissipation as heat in the PEMFC cooling system (38%), energy in the flue gases (10%) and irreversibilities in compression and expansion of gases. In addition, it has been possible to determine the self-sufficient limit conditions, and to analyze the effect on the net efficiency of the input temperatures of the clean-up system reactors, combustion preheating, expander unit and crude ethanol as

  18. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who must comply with... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must comply...

  19. Fuel efficient stoves for the poorest two billion

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  20. Enterprise Analysis of Strategic Airlift to Obtain Competitive Advantage Through Fuel Efficiency

    DTIC Science & Technology

    2014-09-18

    Single Dimension Value Function SFC Specific Fuel Consumption TRANSCAP Transportation System Capability TSP Travelling Salesman Problem VFT...the value posed by limiting intermediate nodes and en route stops. According to Flood (1955), the Travelling Salesman Problem (TSP) was first...B. (1954). The Problem of Routing Aircraft, a Mathematical Solution. (No. P-561). RAND CORP SANTA MONICA CALIF. Flood, M. M. (1956). The Traveling

  1. Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.

    2010-01-01

    This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.

  2. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    PubMed

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  3. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    PubMed Central

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  4. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less

  5. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text

    Science.gov Websites

    Version) | News | NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance (Text Version) NREL's combustion to the evolution of how fuels interact with engine and vehicle design. This is a text version of

  6. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... with motor vehicle fuel efficiency requirements? (a) Executive agencies operating domestic fleets must comply with motor vehicle fuel efficiency requirements for such fleets. (b) This subpart does not apply...

  7. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    NASA Technical Reports Server (NTRS)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  8. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE PAGES

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  9. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kejia; Chen, Yuche

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  10. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management,more » energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.« less

  11. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  12. Round Trip Energy Efficiency of NASA Glenn Regenerative Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher P.; Chang, Bei-jiann; Johnson, Donald W.; Bents, David J.; Scullin, Vincent J.; Jakupca, Ian J.; Scullin, Vincent J.; Jakupca, Ian J.

    2006-01-01

    NASA Glenn Research Center (GRC) has recently demonstrated a Polymer Electrolyte Membrane (PEM) based hydrogen/oxygen regenerative fuel cell system (RFCS) that operated for a charge/discharge cycle with round trip efficiency (RTE) greater than 50 percent. The regenerative fuel cell system (RFCS) demonstrated closed loop energy storage over a pressure range of 90 to 190 psig. In charge mode, a constant electrical power profile of 7.1 kWe was absorbed by the RFCS and stored as pressurized hydrogen and oxygen gas. In discharge mode, the system delivered 3 to 4 kWe of electrical power along with product water. Fuel cell and electrolyzer power profiles and polarization performance are documented in this paper. Individual cell performance and the variation of cell voltages within the electrochemical stacks are also reported. Fuel cell efficiency, electrolyzer efficiency, and the system RTE were calculated from the test data and are included below.

  13. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach.

    PubMed

    Grey, Charlotte N B; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina; Poortinga, Wouter

    2017-08-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes.

  14. Cold homes, fuel poverty and energy efficiency improvements: A longitudinal focus group approach

    PubMed Central

    Grey, Charlotte N. B.; Schmieder-Gaite, Tina; Jiang, Shiyu; Nascimento, Christina

    2017-01-01

    Cold homes and fuel poverty have been identified as factors in health and social inequalities that could be alleviated through energy efficiency interventions. Research on fuel poverty and the health impacts of affordable warmth initiatives have to date primarily been conducted using quantitative and statistical methods, limiting the way how fuel poverty is understood. This study took a longitudinal focus group approach that allowed exploration of lived experiences of fuel poverty before and after an energy efficiency intervention. Focus group discussions were held with residents from three low-income communities before (n = 28) and after (n = 22) they received energy efficiency measures funded through a government-led scheme. The results show that improving the energy efficiency of homes at risk of fuel poverty has a profound impact on wellbeing and quality of life, financial stress, thermal comfort, social interactions and indoor space use. However, the process of receiving the intervention was experienced by some as stressful. There is a need for better community engagement and communication to improve the benefits delivered by fuel poverty programmes, as well as further qualitative exploration to better understand the wider impacts of fuel poverty and policy-led intervention schemes. PMID:28890663

  15. A concept for a fuel efficient flight planning aid for general aviation

    NASA Technical Reports Server (NTRS)

    Collins, B. P.; Haines, A. L.; Wales, C. J.

    1982-01-01

    A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints.

  16. NREL Fuels and Engines R&D Revs Up Vehicle Efficiency, Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    NREL bridges fuels and engines R&D to maximize vehicle efficiency and performance. The lab’s fuels and engines research covers the full spectrum of innovation—from fuel chemistry, conversion, and combustion to the evaluation of how fuels interact with engine and vehicle design. This innovative approach has the potential to positively impact our economy, national energy security, and air quality.

  17. Integrated indicator to evaluate vehicle performance across: Safety, fuel efficiency and green domains.

    PubMed

    Torrao, G; Fontes, T; Coelho, M; Rouphail, N

    2016-07-01

    In general, car manufacturers face trade-offs between safety, efficiency and environmental performance when choosing between mass, length, engine power, and fuel efficiency. Moreover, the information available to the consumers makes difficult to assess all these components at once, especially when aiming to compare vehicles across different categories and/or to compare vehicles in the same category but across different model years. The main objective of this research was to develop an integrated tool able to assess vehicle's performance simultaneously for safety and environmental domains, leading to the research output of a Safety, Fuel Efficiency and Green Emissions (SEG) indicator able to evaluate and rank vehicle's performance across those three domains. For this purpose, crash data was gathered in Porto (Portugal) for the period 2006-2010 (N=1374). The crash database was analyzed and crash severity prediction models were developed using advanced logistic regression models. Following, the methodology for the SEG indicator was established combining the vehicle's safety and the environmental evaluation into an integrated analysis. The obtained results for the SEG indicator do not show any trade-off between vehicle's safety, fuel consumption and emissions. The best performance was achieved for newer gasoline passenger vehicles (<5year) with a smaller engine size (<1400cm(3)). According to the SEG indicator, a vehicle with these characteristics can be recommended for a safety-conscious profile user, as well as for a user more interested in fuel economy and/or in green performance. On the other hand, for larger engine size vehicles (>2000cm(3)) the combined score for safety user profile was in average more satisfactory than for vehicles in the smaller engine size group (<1400cm(3)), which suggests that in general, larger vehicles may offer extra protection. The achieved results demonstrate that the developed SEG integrated methodology can be a helpful tool for

  18. Efficiency of a solid polymer fuel cell operating on ethanol

    NASA Astrophysics Data System (ADS)

    Ioannides, Theophilos; Neophytides, Stylianos

    The efficiency of a solid polymer fuel cell (SPFC) system operating on ethanol fuel has been analyzed as a function of operating parameters focusing on vehicle and stationary applications. Two types of ethanol processors — employing either steam reforming or partial oxidation (POX) steps — have been considered and their performance has been investigated by thermodynamic analysis. SPFC operation has been analyzed by an available parametric model. It has been found that dilute ethanol-water mixtures (˜55% v/v EtOH) are the most suitable for stationary applications with a steam reformer (SR)-SPFC system. Regarding vehicle applications, pure ethanol (˜95% v/v EtOH) appears to be the best fuel with a POX-SPFC system. Efficiencies in the case of an ideal ethanol processor can be of the order of 60% under low load conditions and 30-35% at peak power, while efficiencies with an actual processor are 80-85% of the above values.

  19. Plasmolysis for efficient CO2 -to-fuel conversion

    NASA Astrophysics Data System (ADS)

    van Rooij, Gerard

    2015-09-01

    The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrational modes. It is therefore a promising option for creating artificial solar fuels from CO2as raw material using (intermittently available) sustainable energy surpluses, which can easily be deployed within the present infrastructure for conventional fossil fuels. In this presentation, a common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures and conversion degrees, respectively. The results are interpreted on basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favourable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry still to dominate the initial experiments. Novel reactor approaches are proposed to tailor the plasma dynamics to achieve the non-equilibrium in which vibrational excitation is dominant. In collaboration with Dirk van den Bekerom, Niek den Harder, Teofil Minea, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands; Gield Berden, Institute for Molecules and Materials, FELIX facility, Radboud University, Nijmegen, Netherlands; Richard Engeln, Applied Physics, Plasma en Materials Processing, Eindhoven University of Technology; and Waldo Bongers, Martijn Graswinckel, Erwin Zoethout, Richard van de Sanden, Dutch Institute For Fundamental Energy Research, Eindhoven, Netherlands.

  20. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    PubMed Central

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470

  1. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells.

    PubMed

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-28

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  2. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  3. Efficiency of using solid wood fuels in maple syrup evaporators

    Treesearch

    Lawrence D. Garrett

    1981-01-01

    A study of commercial, wood-fired evaporators revealed that normal expected thermal efficiencies are between 35 and 50 percent. The moisture content and quality of wood fuels used and the design and method of firing the evaporator are critical in determining evaporator efficiency and the economic implications of using wood.

  4. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    A new U.S. Department of Energy (DOE) initiative is accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) is designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, nine national laboratories, and numerous industry and academic partners to more rapidly identify commercially viable solutions. This multi-year project will provide industry with the scientific underpinnings required tomore » move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions.« less

  5. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  6. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  7. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake

  8. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  9. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  10. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4

  11. The Influence of Fuel Properties on Combustion Efficiency and the Partitioning of Pyrogenic Carbon

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Baker, S. P.; Lincoln, E.; Richardson, M.

    2016-12-01

    The partitioning of volatized pyrogenic carbon into CO2, CO, CH4, non-methane organic carbon, and particulate organic carbon (POC) and elemental carbon (PEC) depends on the combustion characteristics of biomass fires which are influenced by the moisture content, structure and arrangement of the fuels. Flaming combustion is characterized by efficient conversion of volatized carbon into CO2. In contrast, smoldering is less efficient and produces incomplete combustion products like CH4 and carbonaceous particles. This paper presents a laboratory study that has examined the relationship between the partitioning of volatized pyrogenic carbon and specific fuel properties. The study focused on fuel beds composed of simple fuel particles — ponderosa pine needles. Ponderosa pine was selected because it contains a common wildland fuel component, conifer needles, which can be easily arranged into fuel beds of variable structure (bulk density and depth) and moisture contents that are both representative of natural conditions and are easily replicated. Modified combustion efficiency (MCE, ΔCO2/[ΔCO2+ ΔCO]) and emission factors (EF) for CO2, CO, CH4, POC, and PEC were measured over a range of needle moisture content and fuel bed bulk density and depth representative of naturally occurring fuel beds. We found that, as expected, MCE decreases as the fuel bed bulk density increases and emissions of CO, CH4, PM2.5, and POC increased. However, fuel bed depth did not appear to have an effect on how effect on MCE or emission factors. Surprisingly, a consistent relationship between the needle moisture content and emissions was not identified. At the high bulk densities, moisture content had a strong influence on MCE which explained variability in EFCH4. However, moisture content appeared to have an influence EFPOC and EFPEC that was independent of MCE. These findings may have significant implications since many models of biomass burning assume that litter fuels, such as ponderosa

  12. Impact of high efficiency vehicles on future fuel tax revenues in Utah.

    DOT National Transportation Integrated Search

    2015-05-01

    The Utah Department of Transportation Research Division has analyzed the potential impact of : high-efficiency motor vehicles on future State of Utah motor fuel tax revenues used to construct and maintain the : highway network. High-efficiency motor ...

  13. Efficiency measurement and uncertainty discussion of an electric engine powered by a ``self-breathing'' and ``self-humidified'' proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H2 high heating value (HHV), a tank-to-wheel integral efficiency of (18.2±0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5±1.3)% in complete dead-end operation mode.

  14. Efficiency measurement and uncertainty discussion of an electric engine powered by a "self-breathing" and "self-humidified" proton exchange membrane fuel cell.

    PubMed

    Schiavetti, Pierluigi; Del Prete, Zaccaria

    2007-08-01

    The efficiency of an automotive engine based on a "self-breathing" and "self-humidified" proton exchange membrane fuel cell stack (PEM FC) connected to a dc brushless electrical motor was measured under variable power load conditions. Experiments have been carried out on a small scale 150 W engine model. After determining the fuel cell static polarization curve and the time response to power steps, the system was driven to copy on the test bench a "standard urban load cycle" and its instantaneous efficiencies were measured at an acquisition rate of 5 Hz. The integral system efficiency over the entire urban load cycle, comprising the losses of the unavoidable auxiliary components of the engine, was then calculated. The fuel cell stack was operated mainly in "partial" dead-end mode, with a periodic anode flow channel purging, and one test was carried out in "pure" dead-end mode, with no anode channel purging. An uncertainty analysis of the efficiencies was carried out, taking into account either type A and type B evaluation methods, strengthening the discussion about the outcomes obtained for a system based on this novel simplified FC type. For our small scale engine we measured over the standard urban cycle, on the basis of the H(2) high heating value (HHV), a tank-to-wheel integral efficiency of (18.2+/-0.8)%, when the fuel cell was operated with periodic flow channel purging, and of (21.5+/-1.3)% in complete dead-end operation mode.

  15. Factors influencing efficient structure of fuel and energy complex

    NASA Astrophysics Data System (ADS)

    Sidorova, N. G.; Novikova, S. A.

    2017-10-01

    The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.

  16. Fuel Economy Regulations and Efficiency Technology Improvements in U.S. Cars Since 1975

    NASA Astrophysics Data System (ADS)

    MacKenzie, Donald Warren

    Light-duty vehicles account for 43% of petroleum consumption and 23% of greenhouse gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum consumption in the U.S., and are set to tighten substantially through 2025. In this dissertation, I address several interconnected questions on the technical, policy, and market aspects of fuel consumption reduction. I begin by quantifying historic improvements in fuel efficiency technologies since the 1970s. First. I develop a linear regression model of acceleration performance conditional on power, weight, powertrain, and body characteristics, showing that vehicles today accelerate 20-30% faster than vehicles with similar specifications in the 1970s. Second, I find that growing use of alternative materials and a switch to more weight-efficient vehicle architectures since 1975 have cut the weight of today's new cars by approximately 790 kg (46%). Integrating these results with model-level specification data, I estimate that the average fuel economy of new cars could have tripled from 1975-2009, if not for changes in performance, size, and features over this period. The pace of improvements was not uniform, averaging 5% annually from 1975-1990, but only 2% annually since then. I conclude that the 2025 standards can be met through improvements in efficiency technology, if we can return to 1980s rates of improvement, and growth in acceleration performance and feature content is curtailed. I next test the hypotheses that higher fuel prices and more stringent CAFE standards cause automotive firms to deploy efficiency technologies more rapidly. I find some evidence that higher fuel prices cause more rapid changes in technology, but little to no evidence that tighter CAFE standards increase rates of technology change. I conclude that standards alone, without continued high gasoline prices, may not drive technology improvements at rates needed to meet the 2025

  17. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  18. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    PubMed Central

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-01-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed. PMID:27502051

  19. Investigating the association between photosynthetic efficiency and generation of biophotoelectricity in autotrophic microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh

    2016-08-01

    Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.

  20. A new topology of fuel cell hybrid power source for efficient operation and high reliability

    NASA Astrophysics Data System (ADS)

    Bizon, Nicu

    2011-03-01

    This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.

  1. Market Analysis and Consumer Impacts Source Document. Part III. Consumer Behavior and Attitudes Toward Fuel Efficient Vehicles

    DOT National Transportation Integrated Search

    1980-12-01

    This source document on motor vehicle market analysis and consumer impacts consists of three parts. Part III consists of studies and reviews on: consumer awareness of fuel efficiency issues; consumer acceptance of fuel efficient vehicles; car size ch...

  2. Index of the Relative Importance of Fuel Efficiency (IFE) in the Motor Vehicle Market

    DOT National Transportation Integrated Search

    1981-10-01

    The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper su...

  3. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  4. Lean Gasoline System Development for Fuel Efficient Small Cars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stuart R.

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economymore » of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.« less

  5. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    PubMed

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of fuel cell system efficiency and degradation at development and during commercialization

    NASA Astrophysics Data System (ADS)

    Gemmen, R. S.; Johnson, C. D.

    Two primary parameters stand out for characterizing fuel cell system performance. The first and most important parameter is system efficiency. This parameter is relatively easy to define, and protocols for its assessment are already available. Another important parameter yet to be fully considered is system degradation. Degradation is important because customers desire to know how long their purchased fuel cell unit will last. The measure of degradation describes this performance factor by quantifying, for example, how the efficiency of the unit degrades over time. While both efficiency and degradation concepts are readily understood, the coupling between these two parameters must also be understood so that proper testing and evaluation of fuel cell systems is achieved. Tests not properly performed, and results not properly understood, may result in improper use of the evaluation data, producing improper R&D planning decisions and financial investments. This paper presents an analysis of system degradation, recommends an approach to its measurement, and shows how these two parameters are related and how one can be "traded-off" for the other.

  7. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Scott

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  8. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies.

    PubMed

    Duan, Yan-Xin; Meng, Fan-Lu; Liu, Kai-Hua; Yi, Sha-Sha; Li, Si-Jia; Yan, Jun-Min; Jiang, Qing

    2018-04-01

    Conversion of carbon dioxide (CO 2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO 2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C 2 H 6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO 2 based on amorphous metal catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energy Conversion Efficiency Potential for Forward-Deployed Generation Using Direct Carbon Fuel Cells

    DTIC Science & Technology

    2012-05-01

    fuel cells vs. DCFCs. PEMFC PAFC MCFC SOFC DCFC Electrolyte Polymer Phosphoric acid Molten car- bonate salt Ceramic Fused KNO3 Operating...air O2/air CO2/O2/air O2/air Humidified air Efficiency (Higher Heating Value [HHV]) 30–35% 40–50% 50–60% 45–55% 80% PEMFC : Proton Exchange... PEMFC proton-exchange membrane fuel cell SOFC solid oxide fuel cell SRI Statistical Research, Inc. TR technical report TRL technology readiness level

  10. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    PubMed

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  11. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    NASA Astrophysics Data System (ADS)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  12. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system

    PubMed Central

    Torella, Joseph P.; Gagliardi, Christopher J.; Chen, Janice S.; Bediako, D. Kwabena; Colón, Brendan; Way, Jeffery C.; Silver, Pamela A.; Nocera, Daniel G.

    2015-01-01

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations. PMID:25675518

  13. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    PubMed

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  14. Fuel Production from Seawater and Fuel Cells Using Seawater.

    PubMed

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.

    PubMed

    Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia

    2018-06-20

    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

  16. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    PubMed Central

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  17. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    DOE PAGES

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less

  18. Development of an Optimal Controller and Validation Test Stand for Fuel Efficient Engine Operation

    NASA Astrophysics Data System (ADS)

    Rehn, Jack G., III

    There are numerous motivations for improvements in automotive fuel efficiency. As concerns over the environment grow at a rate unmatched by hybrid and electric automotive technologies, the need for reductions in fuel consumed by current road vehicles has never been more present. Studies have shown that a major cause of poor fuel consumption in automobiles is improper driving behavior, which cannot be mitigated by purely technological means. The emergence of autonomous driving technologies has provided an opportunity to alleviate this inefficiency by removing the necessity of a driver. Before autonomous technology can be relied upon to reduce gasoline consumption on a large scale, robust programming strategies must be designed and tested. The goal of this thesis work was to design and deploy an autonomous control algorithm to navigate a four cylinder, gasoline combustion engine through a series of changing load profiles in a manner that prioritizes fuel efficiency. The experimental setup is analogous to a passenger vehicle driving over hilly terrain at highway speeds. The proposed approach accomplishes this using a model-predictive, real-time optimization algorithm that was calibrated to the engine. Performance of the optimal control algorithm was tested on the engine against contemporary cruise control. Results indicate that the "efficient'' strategy achieved one to two percent reductions in total fuel consumed for all load profiles tested. The consumption data gathered also suggests that further improvements could be realized on a different subject engine and using extended models and a slightly modified optimal control approach.

  19. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan

    2013-12-01

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.

  20. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  1. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What size motor vehicles... Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.50 What size motor vehicles may we obtain? (a...

  2. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  3. Improving a free air breathing proton exchange membrane fuel cell through the Maximum Efficiency Point Tracking method

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Mousli, Mohamed Islam Aniss; Kelouwani, Sousso; Agbossou, Kodjo; Hammoudi, Mhamed; Dubé, Yves

    2017-03-01

    This work investigates the design and validation of a fuel cell management system (FCMS) which can perform when the fuel cell is at water freezing temperature. This FCMS is based on a new tracking technique with intelligent prediction, which combined the Maximum Efficiency Point Tracking with variable perturbation-current step and the fuzzy logic technique (MEPT-FL). Unlike conventional fuel cell control systems, our proposed FCMS considers the cold-weather conditions, the reduction of fuel cell set-point oscillations. In addition, the FCMS is built to respond quickly and effectively to the variations of electric load. A temperature controller stage is designed in conjunction with the MEPT-FL in order to operate the FC at low-temperature values whilst tracking at the same time the maximum efficiency point. The simulation results have as well experimental validation suggest that propose approach is effective and can achieve an average efficiency improvement up to 8%. The MEPT-FL is validated using a Proton Exchange Membrane Fuel Cell (PEMFC) of 500 W.

  4. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    DOT National Transportation Integrated Search

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  5. Tanker Fuel Consolidation: Impact of Fuel Efficiency on ATO Resiliency

    DTIC Science & Technology

    2011-06-01

    states, “Unnecessary risk comes without a commensurate return in terms of real benefits or available opportunities…The most logical choices for... bingo fuel‟ and is not made available to receiver aircraft. Almost all tankers in the problem set had „extra‟ fuel remaining above bingo fuel after...transfer fuel above its bingo fuel, ensuring its ability to return to its departure airfield. The receiving tanker will only accept fuel up to a level of

  6. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false How do we obtain fuel for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY...

  7. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby S. Chapman; Amar Patil

    2007-06-30

    emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.« less

  8. Tanker Fuel Efficiency: Saving Through Receiver Fuel Planning

    DTIC Science & Technology

    2014-06-13

    engage your weapon.” General James Mattis , 2003 Conclusions The current planning and execution of air refueling missions are costing the DOD...fuel cells, and bio fuels are being explored by scientists and engineers working to reduce the United States’ dependency on foreign oil (Harmon

  9. 41 CFR 102-34.50 - What size motor vehicles may we obtain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What size motor vehicles may we obtain? 102-34.50 Section 102-34.50 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Moto...

  10. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  11. Fuel efficient traffic signal operation and evaluation: Garden Grove Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-02-01

    The procedures and results of a case study of fuel efficient traffic signal operation and evaluation in the City of Garden Grove, California are documented. Improved traffic signal timing was developed for a 70-intersection test network in Garden Grove using an optimization tool called the TRANSYT Version 8 computer program. Full-scale field testing of five alternative timing plans was conducted using two instrumented vehicles equipped to measure traffic performance characteristics and fuel consumption. The field tests indicated that significant improvements in traffic flow and fuel consumption result from the use of timing plans generated by the TRANSYT optimization model. Changingmore » from pre-existing to an optimized timing plan yields a networkwide 5 percent reduction in total travel time, more than 10 percent reduction in both the number of stops and stopped delay time, and 6 percent reduction in fuel consumption. Projections are made of the benefits and costs of implementing such a program at the 20,000 traffic signals in networks throughout the State of California.« less

  12. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  13. Potential of spark ignition engine for increased fuel efficiency. Final report, January-October 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr.; Cole, D.; Bolt, J.A.

    The objective of this study was to assess the potential of the spark ignition engine to deliver maximum fuel efficiency at 1981 Statutory Emission Standards in the 1983-1984 timeframe and beyond that to 1990. Based on the results of an extensive literature search, manufacturer's known product plans, and fuel economies of 1978 engines as a baseline, proposed methods of attaining fuel economy while complying with the future standards were ascertained. Methods of engine control optimization, engine design optimization as well as methods of varying engine parameters were considered. The potential improvements in fuel economy associated with these methods, singly andmore » in combination, were determined and are expressed as percentage changes of the fuel economy of the baseline engines. A summary of the principal conclusions are presented, followed by a description of the engine baseline reference, analysis and projection of fuel economy improvements, and a preliminary assessment of the impact of fuel economy benefits on manufacturing cost.« less

  14. Role of Engine and Driveline Lubricants in Fuel Efficiency - Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Jai G.; Fenske, George; Adkins, Mark

    A virtual workshop was held on May 10, 2017, to obtain input from stakeholders on the role that lubricants can contribute to improving the fuel economy of on-road vehicles – with a focus on legacy vehicles. A ThinkTank collaboration tool was used to facilitate collection and real-time analysis of input provided by the participants. Input was in the form of numeric responses on the amount of fuel economy gains that the respondents felt are possible for light duty (LD) and heavy duty (HD) vehicles, the sources of the gains, and the barriers that will need to be addressed to achievemore » the fuel economy (FE) gains.« less

  15. Development of a more efficient process for production of fuel ethanol from bamboo.

    PubMed

    Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2015-06-01

    A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.

  16. Pavement Smoothness and Fuel Efficiency: An Analysis of the Economic Dimensions of the Missouri Smooth Roads Initiative.

    DOT National Transportation Integrated Search

    2006-11-01

    Its widely accepted that smooth roads provide greater driver comfort and satisfaction, decreased vehicle maintenance costs, and better fuel economy. Now thanks to a recently completed study, the affect of pavement smoothness on fuel efficiency has...

  17. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Anand R.; Karali, Nihan; Sharpe, Ben

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO 2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data andmore » vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  18. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  19. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  20. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  1. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  2. 41 CFR 109-38.104 - Fuel efficient passenger automobiles and light trucks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... automobiles and light trucks. 109-38.104 Section 109-38.104 Public Contracts and Property Management Federal... Vehicles § 109-38.104 Fuel efficient passenger automobiles and light trucks. (a) [Reserved] (b) All requests to purchase passenger automobiles larger than class IA, IB, or II (small, subcompact, or compact...

  3. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  4. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  5. Pavement Smoothness and Fuel Efficiency: An Analysis of the Economic Dimensions of the Missouri Smooth Road Initiative.

    DOT National Transportation Integrated Search

    2006-12-18

    This study investigated the affect of pavement smoothness on fuel efficiency, specifically examining the miles per gallon in fuel savings for smooth versus rough pavement. The study found a 53% improvement in smoothness which resulted in over 2.4% im...

  6. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Erik

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  7. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  8. Comparative evaluation of rail and truck fuel efficiency on competitive corridors : final report

    DOT National Transportation Integrated Search

    2009-11-19

    This study provides a comparative evaluation of rail and truck fuel efficiency on corridors and services in which both modes compete. For the purposes of this study, competitive movements are defined as those of the same commodity having the same (or...

  9. Effects of miles per gallon feedback on fuel efficiency in gas-powered cars.

    DOT National Transportation Integrated Search

    2009-10-01

    This study tested the impact of continuous miles per gallon (MPG) feedback on driving : behavior and fuel efficiency in gas-powered cars. We compared an experimental condition, : where drivers received real-time MPG feedback and a tip sheet, to a con...

  10. Fuel Cell Power Plants Renewable and Waste Fuels

    DTIC Science & Technology

    2011-01-13

    of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than

  11. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  12. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    PubMed

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  13. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, Ronald

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were;more » Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009« less

  14. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  15. Feasible variants for intermediate storage of the spent fuel obtained at NPP Cernavoda, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, M.; Popescu, G.

    1993-12-31

    The 5 CANDU-PHW Reactors of 600 Standard type of Cernavoda Nuclear Power Plant are under construction and the first unit is expected to be commissioned in 1995, group 2 following after 2 years, and then groups 3, 4 and 5 one each year. In this study there are presented feasible variants for intermediate storage of spent fuel, obtained during 30 years of operation from the stations at Cernavoda. From the solutions applied worldwide, both dry and wet storage have been taken into account. In any of the two variants, a unique intermediate storage will be provided and the storage buildingmore » was proposed to be built in 4 different stages. As a first estimation, considering the fact that, by now Romania has only one nuclear plant of CANDU fuel type the dry variant seems to be the best.« less

  16. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis.

    PubMed

    Wang, Wei; Lv, Fan; Lei, Bo; Wan, Sheng; Luo, Mingchuan; Guo, Shaojun

    2016-12-01

    Developing new synthetic methods for the controlled synthesis of Pt-based or non-Pt nanocatalysts with low or no Pt loading to facilitate sluggish cathodic oxygen reduction reaction (ORR) and organics oxidation reactions is the key in the development of fuel-cell technology. Various nanoparticles (NPs), with a range of size, shape, composition, and structure, have shown good potential to catalyze the sluggish cathodic and anodic reactions. In contrast to NPs, one-dimensional (1D) nanomaterials such as nanowires (NWs), and nanotubes (NTs), exhibit additional advantages associated with their anisotropy, unique structure, and surface properties. The prominent characteristics of NWs and NTs include fewer lattice boundaries, a lower number of surface defect sites, and easier electron and mass transport for better electrocatalytic activity and lower vulnerability to dissolution, Ostwald ripening, and aggregation than Pt NPs for enhanced stability. An overview of recent advances in tuning 1D nanostructured Pt-based, Pd-based, or 1D metal-free nanomaterials as advanced electrocatalysts is provided here, for boosting fuel-cell reactions with high activity and stability, including the oxygen reduction reaction (ORR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). After highlighting the different strategies developed so far for the synthesis of Pt-based 1D nanomaterials with controlled size, shape, and composition, special emphasis is placed on the rational design of diverse NWs and NTs catalysts such as Pt-based NWs or NTs, non-Pt NTs, and carbon NTs with molecular engineering, etc. for enhancing the ORR, MOR, and EOR. Finally, some perspectives are highlighted on the development of more efficient fuel-cell electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors in accelerating the commercialization of fuel-cell technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  18. How energy efficient is your car?

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  19. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  20. Solid-fuel cook stoves: Fuel efficiency and emissions testing--Austin

    EPA Science Inventory

    The World Health Organization estimates that approximately 1.6 million people prematurely die each year due to exposure to air pollutants from burning solid fuels for residential cooking and heating (WHO, 2010). Residential solid-fuel use accounts for approximately 25 percent of ...

  1. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  2. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulosemore » (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.« less

  3. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    PubMed

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fuel Treatment Effects on Water Use Efficiency in Western Pine Forests Under Fire Suppression Evaluated Using Tree Ring Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Taylor, A. H.; Belmecheri, S.; Harris, L. B.

    2016-12-01

    We identified variation on water use efficiency interpreted from carbon 13 in tree ring cellulose in dense ponderosa pines forests in Washington and Arizona. Historically, these forests burned every decade until fires were suppressed beginning in the early twentieth century. The reduction in fire caused large increases in forest density and forest biomass and potential for intense fire. Forests with hazardous fuels are common in the western United States and these types of forests are treated with mechanical thinning and mechanical thinning and burning to reduce hazardous fuels and fire intensity. At each site we extracted tree ring samples from five trees in each treatment type and a control to identify the effects of fuel treatment of concentration of carbon 13 in tree ring cellulose. Water use efficiency as measured by carbon 13 increased after fuel treatments. Treatment effects were larger for the mechanical plus burn treatment than for the mechanical treatment in each study area compared to the control stands Our results suggest that fuel treatments reduce sensitivity of tree growth to climate and increase water use efficiency. Since tree ring carbon 13 is related to plant productivity, carbon 13 in tree rings can be used as a metric of change in ecosystem function for evaluating fuel treatments.

  5. Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels

    Science.gov Websites

    and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about

  6. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what hasmore » already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.« less

  7. Fuel Efficiency Improvement in Rail Freight Transportation

    DOT National Transportation Integrated Search

    1975-12-01

    Railroad diesel fuel conservation is becoming increasingly cost-effective. The price of diesel fuel has increased almost two and one-half times since the October 1973 Embargo. The estimated value of diesel fuel, if in short supply, is over 1 dollar a...

  8. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE PAGES

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  9. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  10. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  11. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  12. Case study on incentive mechanism of energy efficiency retrofit in coal-fueled power plant in China.

    PubMed

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO(2)e per annum. The internal rate of return (IRR) of the project is only -0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO(2), the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO(2) emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China.

  13. Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

    PubMed Central

    Yuan, Donghai; Guo, Xujing; Cao, Yuan; He, Liansheng; Wang, Jinggang; Xi, Beidou; Li, Junqi; Ma, Wenlin; Zhang, Mingshun

    2012-01-01

    An ordinary steam turbine retrofit project is selected as a case study; through the retrofit, the project activities will generate emission reductions within the power grid for about 92,463 tCO2e per annum. The internal rate of return (IRR) of the project is only −0.41% without the revenue of carbon credits, for example, CERs, which is much lower than the benchmark value of 8%. Only when the unit price of carbon credit reaches 125 CNY/tCO2, the IRR could reach the benchmark and an effective carbon tax needs to increase the price of carbon to 243 CNY/tce in order to make the project financially feasible. Design of incentive mechanism will help these low efficiency enterprises improve efficiency and reduce CO2 emissions, which can provide the power plants sufficient incentive to implement energy efficiency retrofit project in existing coal-fuel power generation-units, and we hope it will make a good demonstration for the other low efficiency coal-fueled power generation units in China. PMID:23365532

  14. Phase 2 fuel efficiency standards for medium- and heavy-duty engines and vehicles : draft EIS.

    DOT National Transportation Integrated Search

    2015-06-01

    This Draft Environmental Impact Statement (Draft EIS) analyzes the environmental impacts of fuel : efficiency standards and reasonable alternative standards for model years 2018 and beyond for medium- : and heavy- duty engines and vehicles that NHTSA...

  15. EXPERIMENTAL EVALUATION OF FUEL OIL ADDITIVES FOR REDUCING EMISSIONS AND INCREASING EFFICIENCY OF BOILERS

    EPA Science Inventory

    The report gives results of an evaluation of the effectiveness of combustion-type fuel oil additives to reduce emissions and increase efficiency in a 50-bhp (500 kw) commercial oil-fired packaged boiler. Most additive evaluation runs were made during continuous firing, constant-l...

  16. Energy efficiency of conventional, organic, and alternative cropping systems for food and fuel at a site in the U.S. Midwest.

    PubMed

    Gelfand, Ilya; Snapp, Sieglinde S; Robertson, G Philip

    2010-05-15

    The prospect of biofuel production on a large scale has focused attention on energy efficiencies associated with different agricultural systems and production goals. We used 17 years of detailed data on agricultural practices and yields to calculate an energy balance for different cropping systems under both food and fuel scenarios. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically based (organic) practices, and (5) continuous alfalfa (Medicago sativa). We compared energy balances under two scenarios: all harvestable biomass used for food versus all harvestable biomass used for biofuel production. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha(-1) y(-1) for the organic system to 7.1 GJ ha(-1) y(-1) for the conventional; the no-till system was also low at 4.9 GJ ha(-1) y(-1) and the low-chemical input system intermediate (5.2 GJ ha(-1) y(-1)). For each system, the average energy output for food was always greater than that for fuel. Overall energy efficiencies ranged from output:input ratios of 10 to 16 for conventional and no-till food production and from 7 to 11 for conventional and no-till fuel production, respectively. Alfalfa for fuel production had an efficiency similar to that of no-till grain production for fuel. Our analysis points to a more energetically efficient use of cropland for food than for fuel production and large differences in efficiencies attributable to management, which suggests multiple opportunities for improvement.

  17. Altitude Performance of Annular Combustor Type Turbojet Engine with JFC-2 Fuel /james W. Useller, James L. Harp, Jr. and Zelmar Barson

    NASA Technical Reports Server (NTRS)

    Useller, James W; Harp, James L JR; Barson, Zelmar

    1952-01-01

    An investigation was made comparing the performance of JFC-2 fuel and unleaded, clear gasoline in a 3000-pound-thrust turbojet engine. The JFC-2 fuel was a blend of percent diesel fuel and 25 percent aviation gasoline. Engine combustion efficiency was equal to that obtained with gasoline at rated engine speed and altitudes up to 35,000 feet, but at lower engine speeds or at higher altitudes the JFC-2 fuel gave lower combustion efficiency. No discernible difference was obtained in starting or low-speed combustiion blow-out characteristics of the two fuels. Turbine-discharge radial temperature profiles were nearly the same at altitudes up to 35,000 feet.

  18. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation.

    PubMed

    Liu, Wei; Gong, Yutao; Wu, Weibing; Yang, Weisheng; Liu, Congmin; Deng, Yulin; Chao, Zi-Sheng

    2018-06-19

    The utilization of biomass sugars has received great interesting recently. Herein, we present a highly efficient hybrid solar biomass fuel cell that utilizes thermal- and photocatalysis of solar irradiation and converts biomass sugars into electricity with high power output. The fuel cell uses polyoxometalates (POMs) as photocatalyst to decompose sugars and capture their electrons. The reduced POMs have strong visible and near-infrared light adsorption, which can significantly increase the temperature of the reaction system and largely promotes the thermal oxidation of sugars by the POM. In addition, the reduced POM functions as charge carrier that can release electrons at the anode in the fuel cell to generate electricity. The electron-transfer rates from glucose to POM under thermal and light-irradiation conditions were investigated in detail. The power outputs of this solar biomass fuel cell are investigated by using different types of sugars as fuels, with the highest power density reaching 45 mW cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    PubMed

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  20. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    NASA Astrophysics Data System (ADS)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  1. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  2. Alternative Fuels Data Center: Transportation System Efficiency

    Science.gov Websites

    energy use. Transportation planners and corporate decision makers can implement combinations of these corporate decision makers can help employees telework to conserve fuel. Maps & Data Average Annual Fuel

  3. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  4. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    NASA Astrophysics Data System (ADS)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  5. Design of a fuel-efficient guidance system for a STOL aircraft

    NASA Technical Reports Server (NTRS)

    Mclean, J. D.; Erzberger, H.

    1981-01-01

    In the predictive mode, the system synthesizes a horizontal path from an initial aircraft position and heading to a desired final position and heading and then synthesizes a fuel-efficient speed-altitude profile along the path. In the track mode, the synthesized trajectory is reconstructed and tracked automatically. An analytical basis for the design of the system is presented and a description of the airborne computer implementation is given. A detailed discussion of the software, which should be helpful to those who use the actual software developed for these tests, is also provided.

  6. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaokun; Li, Teng; Tang, Kan

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reactionmore » mechanism is discussed.« less

  7. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    NASA Astrophysics Data System (ADS)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: <1 mS cm-1) using a filter press-based MDC prototype without any energy supply (excluding peristaltic pump energy). This start-up protocol is not only optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.

  8. Theoretical Studies in Enhancing the Efficiency of Cathode and Anode Materials in PEMFC (Proton Exchange Membrane Fuel Cells)

    DTIC Science & Technology

    2011-03-04

    efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange

  9. The use of experimental design to find the operating maximum power point of PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria

    2015-03-10

    Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.

  10. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  11. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  12. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating.

    PubMed

    Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei

    2018-01-01

    The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a

  13. New, efficient and viable system for ethanol fuel utilization on combined electric/internal combustion engine vehicles

    NASA Astrophysics Data System (ADS)

    Sato, André G.; Silva, Gabriel C. D.; Paganin, Valdecir A.; Biancolli, Ana L. G.; Ticianelli, Edson A.

    2015-10-01

    Although ethanol can be directly employed as fuel on polymer-electrolyte fuel cells (PEMFC), its low oxidation kinetics in the anode and the crossover to the cathode lead to a substantial reduction of energy conversion efficiency. However, when fuel cell driven vehicles are considered, the system may include an on board steam reformer for converting ethanol into hydrogen, but the hydrogen produced contains carbon monoxide, which limits applications in PEMFCs. Here, we present a system consisting of an ethanol dehydrogenation catalytic reactor for producing hydrogen, which is supplied to a PEMFC to generate electricity for electric motors. A liquid by-product effluent from the reactor can be used as fuel for an integrated internal combustion engine, or catalytically recycled to extract more hydrogen molecules. Power densities comparable to those of a PEMFC operating with pure hydrogen are attained by using the hydrogen rich stream produced by the ethanol dehydrogenation reactor.

  14. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    NASA Technical Reports Server (NTRS)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  15. Wood-fired fuel cells in selected buildings

    NASA Astrophysics Data System (ADS)

    McIlveen-Wright, D. R.; McMullan, J. T.; Guiney, D. J.

    The positive attributes of fuel cells for high efficiency power generation at any scale and of biomass as a renewable energy source which is not intermittent, location-dependent or very difficult to store, suggest that a combined heat and power (CHP) system consisting of a fuel cell integrated with a wood gasifier (FCIWG) may offer a combination for delivering heat and electricity cleanly and efficiently. Phosphoric acid fuel cell (PAFC) systems, fuelled by natural gas, have already been used in a range of CHP applications in urban settings. Some of these applications are examined here using integrated biomass gasification/fuel cell systems in CHP configurations. Five building systems, which have different energy demand profiles, are assessed. These are a hospital, a hotel, a leisure centre, a multi-residential community and a university hall of residence. Heat and electricity use profiles for typical examples of these buildings were obtained and the FCIWG system was scaled to the power demand. The FCIWG system was modelled for two different types of fuel cell, the molten carbonate and the phosphoric acid. In each case an oxygen-fired gasification system is proposed, in order to eliminate the need for a methane reformer. Technical, environmental and economic analyses of each version were made, using the ECLIPSE process simulation package. Since fuel cell lifetimes are not yet precisely known, economics for a range of fuel cell lifetimes have been produced. The wood-fired PAFC system was found to have low electrical efficiency (13-16%), but much of the heat could be recovered, so that the overall efficiency was 64-67%, suitable where high heat/electricity values are required. The wood-fired molten carbonate fuel cell (MCFC) system was found to be quite efficient for electricity generation (24-27%), with an overall energy efficiency of 60-63%. The expected capital costs of both systems would currently make them uncompetitive for general use, but the specific features

  16. Selection Criteria for Sustainable Fuels for High-Efficiency Spark-Ignition Engines with Examination of their Storage Stability, Impact on Engine Knock, and Fine Particle Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L

    It is possible to significantly improve the efficiency of spark-ignition engines given fuels with improved autoignition, evaporative cooling, and particle emission properties. At the same time, a vast range of different fuel chemistries are accessible from biomass - leading to questions about how fuel chemistries outside the range available from petroleum and ethanol can impact engine operation. This presentation will briefly describe the factors leading to poor efficiency in current SI engines, and the technologies available for improving efficiency. Improved fuel properties that enable high efficiency engine designs to be pursued aggressively will be reviewed, including octane index and sensitivity.more » A screening process based on fuel properties was applied to a large set of proposed biomass-derived gasoline blendstocks, and the properties of the best blendstocks were evaluated. Some of these fuels exhibit poor stability towards oxidation in the liquid phase, and storage stability studies for alkyl furans and cyclopentanone will be presented in brief. The importance of fuel heat of vaporization for direct injection engines, along with new research on measurement of this parameter, will be presented including an SI engine study of the impact of heat of vaporization on octane index and engine knock. Fuel effects on fine particle emissions and how our understanding breaks down for oxygenates will be discussed. Engine combustion experiments, droplet evaporation simulations, and heat of vaporization measurements conducted to better understand how oxygenates affect particle emissions will be described. This research defines a process that can be used to evaluate fuels for other types of combustion such as diesel, gasoline compression ignition, or strategies with mixed modes.« less

  17. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  18. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    PubMed

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels.

  19. Integrated Fuel Cell/Coal Gasifier

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.

    1985-01-01

    Powerplant design with low-temperature coal gasifier coupled to highly-exothermic fuel cell for efficient production of dc power eliminates need for oxygen in gasifier and achieves high fuel efficiency with recycling of waste heat from fuel cell.

  20. Mechanosensing Potentials Gate Fuel Consumption in a Bipedal DNA Nanowalker

    NASA Astrophysics Data System (ADS)

    Tee, Shern Ren; Hu, Xinpeng; Loh, Iong Ying; Wang, Zhisong

    2018-03-01

    A bipedal DNA nanowalker was recently reported to convert chemical energy into directional motion autonomously and efficiently. To elucidate its chemomechanical coupling mechanisms, three-dimensional molecular modeling is used to obtain coarse-grained foot-track binding potentials of the DNA nanowalker via unbiased and biased sampling techniques (for the potentials' basin and high-energy edges, respectively). The binding state that is protected against fuel-induced dissociation responds asymmetrically to forward versus backward forces, unlike the unprotected state, demonstrating a mechanosensing capability to gate fuel binding. Despite complex DNA mechanics, the foot-track potential exhibits a surprisingly neat three-part profile, offering some general guidelines to rationally design efficient nanowalkers. Subsequent modeling of the bipedal walker attached to the track gives estimates of the free energy for each bipedal state, showing how the mechanosensing foot-track binding breaks the symmetry between the rear and front feet, enabling the rear foot to be selectively dissociated by fuel and generating efficient chemomechanical coupling.

  1. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  3. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  4. Efficiency improved turboprop. Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, W.S.

    1982-06-10

    Renewed attention has been focused on the efficiency of aircraft propulsion as the cost of fuel has risen. Studies conducted by NASA (1) to obtain fuel efficient aircraft have considered relatively highly-loaded turbo-prop systems. The disc loadings of these propellers are as much as four times higher than those on present turboprop aircraft. The higher disc loadings result in greater slipstream swirl and higher energy losses. Of primary importance is the radial distribution of the energy losses across the slipstream due to the tangential and axial velocities. This study presents the results of analysis defining the various sources of energymore » loss resulting from a swirling slipstream downstream of a propeller. Experimental data are presented demonstrating the presence of such losses and a propeller configuration discussed which offers improved propulsive performance when relatively highly-loaded propellers are employed.« less

  5. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    DTIC Science & Technology

    2014-09-01

    GTGs . These GTGs are used onboard Ticonderoga-class cruisers (from Bennett 2014). Approximately 95-120 GPH less fuel is burned when operating one... GTG vice two. ..........................22 Figure 9. This shows the optimum speed to minimize fuel consumption for USS Chosin (CG 65). The TFP line...FITREP fitness report FY fiscal year GPH gallons per hour GTG gas turbine generator hr hour JP5 jet propulsion fuel, type 5 kts knots kW kilowatt

  6. Improved Round Trip Efficiency for Regenerative Fuel Cell Systems

    DTIC Science & Technology

    2012-05-11

    advanced components that enable closed-loop, zero emission, low signature energy storage. The system utilizes proton exchange membrane ( PEM ) fuel cell ...regenerative fuel cell (RFC) systems based on proton exchange membrane ( PEM ) technology. An RFC consists of a fuel cell powerplant, an electrolysis...based on an air independent, hydrogen-oxygen, PEM RFC is feasible within the near term if development efforts proceed forward. Fuel Cell

  7. Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  8. Deployable Fuel Cell Power Generator - Multi-Fuel Processor

    DTIC Science & Technology

    2009-02-01

    and the system operating pressure, while the separation efficiency depends on the evaporator design. Desulfurizer – A flow-through gas -solid or gas ...meeting the Executive Order (EO) 13423 and the Energy Policy Act of 2005 to improve energy efficiency and reduce greenhouse gas emissions 3 percent...use available fuel such as natural gas (methane) or propane. The ability to reform multitude of fuels can accelerate the introduction of more

  9. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.

    PubMed

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-06-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.

  10. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    NASA Technical Reports Server (NTRS)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  11. 75 FR 67059 - Public Hearings for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and... for Medium- and Heavy-Duty Engines and Vehicles,'' which will be published in the near future in the... Medium- and Heavy-Duty Engines and Vehicles.'' These hearings also offer an opportunity for the public to...

  12. Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples

    NASA Astrophysics Data System (ADS)

    Tümkaya, Mehmet Ali; Dinçer, Furkan; Karaaslan, Muharrem; Sabah, Cumali

    2017-08-01

    A metamaterial-based sensor has been realized to distinguish authentic and inauthentic fuel samples in the microwave frequency regime. Unlike the many studies in literature on metamaterial-based sensor applications, this study focuses on a compact metamaterial-based sensor operating in the X-band frequency range. Firstly, electromagnetic properties of authentic and inauthentic fuel samples were obtained experimentally in a laboratory environment. Secondly, these experimental results were used to design and create a highly efficient metamaterial-based sensor with easy fabrication characteristics and simple design structure. The experimental results for the sensor were in good agreement with the numerical ones. The proposed sensor offers a more efficient design and can be used to detect fuel and multiple other liquids in various application fields from medical to military areas in several frequency regimes.

  13. High regression rate hybrid rocket fuel grains with helical port structures

    NASA Astrophysics Data System (ADS)

    Walker, Sean D.

    Hybrid rockets are popular in the aerospace industry due to their storage safety, simplicity, and controllability during rocket motor burn. However, they produce fuel regression rates typically 25% lower than solid fuel motors of the same thrust level. These lowered regression rates produce unacceptably high oxidizer-to-fuel (O/F) ratios that produce a potential for motor instability, nozzle erosion, and reduced motor duty cycles. To achieve O/F ratios that produce acceptable combustion characteristics, traditional cylindrical fuel ports are fabricated with very long length-to-diameter ratios to increase the total burning area. These high aspect ratios produce further reduced fuel regression rate and thrust levels, poor volumetric efficiency, and a potential for lateral structural loading issues during high thrust burns. In place of traditional cylindrical fuel ports, it is proposed that by researching the effects of centrifugal flow patterns introduced by embedded helical fuel port structures, a significant increase in fuel regression rates can be observed. The benefits of increasing volumetric efficiencies by lengthening the internal flow path will also be observed. The mechanisms of this increased fuel regression rate are driven by enhancing surface skin friction and reducing the effect of boundary layer "blowing" to enhance convective heat transfer to the fuel surface. Preliminary results using additive manufacturing to fabricate hybrid rocket fuel grains from acrylonitrile-butadiene-styrene (ABS) with embedded helical fuel port structures have been obtained, with burn-rate amplifications up to 3.0x than that of cylindrical fuel ports.

  14. Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC)

    NASA Astrophysics Data System (ADS)

    Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.

    2017-04-01

    A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.

  15. Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Anderson, G. Y.

    1980-01-01

    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio.

  16. Effect of Axially Staged Fuel Introduction on Performance of One-quarter Sector of Annular Turbojet Combustor

    NASA Technical Reports Server (NTRS)

    Zettle, Eugene V; Mark, Herman

    1953-01-01

    The design principle of injecting liquid fuel at more than one axial station in an annual turbojet combustor was investigated. Fuel was injected into the combustor as much as 5 inches downstream of the primary fuel injectors. Many fuel-injection configurations were examined and the performance results are presented for 11 configurations that best demonstrate the trends in performance obtained. The performance investigations were made at a constant combustor-inlet pressure of 15 inches of mercury absolute and at air flows up to 70 percent higher than values typical of current design practice. At these higher air flows, staging the fuel introduction improved the combustion efficiency considerably over that obtained in the combustor when no fuel staging was employed. At air flows currently encountered in turbojet engines, fuel staging was of minor value. Radial temperature distribution seemed relatively unaffected by the location of fuel-injection stations.

  17. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions

    PubMed Central

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-01-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559

  18. Petitions for Reconsideration of Phase 2 GHG Emissions and Fuel Efficiency Standards for Medium and Heavy Duty Vehicles

    EPA Pesticide Factsheets

    EPA has received petitions for reconsideration or reconsideration of the October 25, 2016 final rulemaking entitled Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles—Phase 2 Final Rule (81 FR 73,478)

  19. NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and

    Science.gov Websites

    Laboratory, we analyze the effects of fuel chemistry on ignition and the potential emissions impacts. Our lab research. It can be used to investigate fuel chemistry effects on current and near-term engine technology , independent control allows for deeper interrogation of fuel effects on future-generation engine strategies

  20. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells.

    PubMed

    Jablonska, Milena A; Rybarczyk, Maria K; Lieder, Marek

    2016-05-01

    Rapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method of saccharification of this lignocellulosic biomass (17%) turned out hydrothermal pretreatment followed by enzymatic hydrolysis. Electricity was produced using hydrolysate concentrations up to 150 mg/dm(3). The power density reached 54 mW/m(2), while CEs ranged from 60% to 10%, corresponding to the initial reducing sugar concentrations of 10-150 mg/dm(3). The COD degradation rates based on charge calculation increased from 0.445 g COD/m(2)/d for the hydrolysate obtained with the microwave treatment to 0.602 g COD/m(2)/d for the most efficient combination of hydrothermal treatment followed by enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    NASA Technical Reports Server (NTRS)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  2. The technological raw material heating furnaces operation efficiency improving issue

    NASA Astrophysics Data System (ADS)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  3. Ultrafast X-ray Imaging of Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  4. Electricity generation in microbial fuel cells using neutral red as an electronophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Zeikus, J.G.

    2000-04-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less

  5. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannone, Greg; Thomas, John F; Reale, Michael

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less

  6. Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft

    NASA Astrophysics Data System (ADS)

    McDonough, Kevin K.

    The dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed, modeling of fuel consumption through the use of a neural network, and the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. The fuel economy improvements with the proposed policies are quantified through simulations and vehicle experiments. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns that are referred to as time-varying cruise. Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. Motivated by these results, a simpler implementation strategy that is more appealing for practical implementation is also developed. This strategy relies on a finite state machine and state transition threshold optimization, and its benefits are quantified through model-based simulations and vehicle experiments. Several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. The use of linear discrete-time models is emphasized as they lead to fast computational procedures. Examples of

  7. Miniature Fuel Processors for Portable Fuel Cell Power Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holladay, Jamie D.; Jones, Evan O.; Palo, Daniel R.

    2003-06-02

    Miniature and micro-scale fuel processors are discussed. The enabling technologies for these devices are the novel catalysts and the micro-technology-based designs. The novel catalyst allows for methanol reforming at high gas hourly space velocities of 50,000 hr-1 or higher, while maintaining a carbon monoxide levels at 1% or less. The micro-technology-based designs enable the devices to be extremely compact and lightweight. The miniature fuel processors can nominally provide between 25-50 watts equivalent of hydrogen which is ample for soldier or personal portable power supplies. The integrated processors have a volume less than 50 cm3, a mass less than 150 grams,more » and thermal efficiencies of up to 83%. With reasonable assumptions on fuel cell efficiencies, anode gas and water management, parasitic power loss, etc., the energy density was estimated at 1700 Whr/kg. The miniature processors have been demonstrated with a carbon monoxide clean-up method and a fuel cell stack. The micro-scale fuel processors have been designed to provide up to 0.3 watt equivalent of power with efficiencies over 20%. They have a volume of less than 0.25 cm3 and a mass of less than 1 gram.« less

  8. Bidirectional converter for high-efficiency fuel cell powertrain

    NASA Astrophysics Data System (ADS)

    Fardoun, Abbas A.; Ismail, Esam H.; Sabzali, Ahmad J.; Al-Saffar, Mustafa A.

    2014-03-01

    In this paper, a new wide conversion ratio step-up and step-down converter is presented. The proposed converter is derived from the conventional Single Ended Primary Inductor Converter (SEPIC) topology and it is integrated with a capacitor-diode voltage multiplier, which offers a simple structure, reduced electromagnetic interference (EMI), and reduced semiconductors' voltage stresses. Other advantages include: continuous input and output current, extended step-up and step-down voltage conversion ratio without extreme low or high duty-cycle, simple control circuitry, and near-zero input and output ripple currents compared to other converter topologies. The low charging/discharging current ripple and wide gain features result in a longer life-span and lower cost of the energy storage battery system. In addition, the "near-zero" ripple capability improves the fuel cell durability. Theoretical analysis results obtained with the proposed structure are compared with other bi-direction converter topologies. Simulation and experimental results are presented to verify the performance of the proposed bi-directional converter.

  9. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  10. Enabling High Efficiency Ethanol Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less

  11. Experimental study of a fuel cell power train for road transport application

    NASA Astrophysics Data System (ADS)

    Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.

    The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.

  12. Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle

  13. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    DTIC Science & Technology

    2012-07-01

    enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of

  14. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  15. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  16. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. Amore » fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.« less

  17. Solid oxidized fuel cells seals leakage setup and testing

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.

    2004-01-01

    As the world s reserves of fossil fuels are depleted, the U.S. Government, as well as other countries and private industries, is researching solutions for obtaining power, answers that would be more efficient and environmentally friendly. For a long time engineers have been trying to obtain the benefits of clean electric power without heavy batteries or pollution-producing engines. While some of the inventions proved to be effective (i.e. solar panels or windmills) their applications are limited due to dependency on the energy source (i.e. sun or wind). Currently, as energy concerns increase, research is being carried out on the development of a Solid Oxide Fuel Cell (SOFC). The United States government is taking a proactive role in expanding the technology through the Solid State Energy Conversion Alliance (SECA) Program, which is coordinated by the Department of Energy. into an electrical energy. This occurs by the means of natural tendency of oxygen and hydrogen to chemically react. While controlling the process, it is possible to harvest the energy given off by the reaction. SOFCs use currently available fossil fuels and convert a variety of those fuels with very high efficiency (about 40% more efficient than modem thermal power plants). At the same time they are almost entirely nonpolluting and due to their size they can be placed in remote areas. The main fields where the application of the fuel cells appears to be the most useful for are stationary energy sources, transportation, and military applications. structure and materials must be resolved. All the components must be operational in harsh environments including temperatures reaching 800 C and cyclic thermal- mechanical loading. Under these conditions, the main concern is the requirement for hermetic seals to: (1) prevent mixing of the fuel and oxidant within the stack, (2) prevent parasitic leakage of the fuel from the stack, (3) prevent contamination of the anode by air leaking into the stack, (4

  18. Evaluation of Fuel Cell Operation and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark; Gemmen, Randall; Richards, George

    The concepts of area specific resistance (ASR) and degradation are developed for different fuel cell operating modes. The concepts of exergetic efficiency and entropy production were applied to ASR and degradation. It is shown that exergetic efficiency is a time-dependent function useful describing the thermal efficiency of a fuel cell and the change in thermal efficiency of a degrading fuel cell. Entropy production was evaluated for the cases of constant voltage operation and constant current operation of the fuel cell for a fuel cell undergoing ohmic degradation. It was discovered that the Gaussian hypergeometric function describes the cumulative entropy andmore » electrical work produced by fuel cells operating at constant voltage. The Gaussian hypergeometric function is found in many applications in modern physics. This paper builds from and is an extension of several papers recently published by the authors in the Journal of The Electrochemical Society (ECS), ECS Transactions, Journal of Power Sources, and the Journal of Fuel Cell Science and Technology.« less

  19. Fuel Efficiency Assessment with DEA

    DTIC Science & Technology

    2010-03-01

    weighted with regard to their relative importance. The weights are subjectively de - fined by subject experts, which makes the FEI vulnerable to...Energy Information Administration, Imports, Exports and Movements. The US government consumes only a small amount of fuel/energy of the US de - mand...it takes every measure to conserve energy and this is stated in their mission statement. Gen. Arthur J. Lichte stated AMC’s new five focus areas as

  20. Effects of fuel nozzle design on performance of an experimental annular combustor using natural gas fuel

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Schultz, D. F.

    1972-01-01

    Tests of various fuel nozzles were conducted with natural gas fuel in a full-annulus combustor. The nozzles were designed to provide either axial, angled, or radial fuel injection. Each fuel nozzle was evaluated by measuring combustion efficiency at relatively severe combustor operating conditions. Combustor blowout and altitude ignition tests were also used to evaluate nozzle designs. Results indicate that angled injection gave higher combustion efficiency, less tendency toward combustion instability, and altitude relight characteristics equal to or superior to those of the other fuel nozzles that were tested.

  1. Propellant vaporization as a criterion for rocket-engine design : experimental effect of fuel temperature on liquid-oxygen - heptane performance

    NASA Technical Reports Server (NTRS)

    Heidmann, M F

    1957-01-01

    Characteristic exhaust velocity of a 200-pound-thrust rocket engine was evaluated for fuel temperatures of -90 degrees, and 200 degrees f with a spray formed by two impinging heptane jets reacting in a highly atomized oxygen atmosphere. Tests covered a range of mixture ratios and chamber lengths. The characteristic exhaust-velocity efficiency increased 2 percent for a 290 degree f increase in fuel temperature. This increase in performance can be compared with that obtained by increasing chamber length by about 1/2 inch. The result agrees with the fuel-temperature effect predicted from an analysis based on droplet evaporation theory. Mixture ratio markedly affected characteristic exhaust velocity efficiency, but total flow rate and fuel temperature did not.

  2. New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, Earl; Topping, Chris; Morgan, Brad

    Hydrogen fuel cells are currently one of the more promising long term alternative energy options and out of the range of fuel cell technologies under development, proton exchange membranes [PEMs] have the advantage of being able to deliver high power density at relatively low operating temperatures. This is essential for systems such as fuel cell vehicles (FCV) and many stationary applications that undergoing frequent on/off cycling. One of the biggest challenges for PEM systems is the need to maintain a high level of hydration in the cell to enable efficient conduction of protons from the anode to the cathode. Inmore » addition to significant power loss, low humidity conditions lead to increased stress on the membranes which can result in both physical and chemical degradation. Therefore, an effective fuel cell humidifier can be critical for the efficient operation and durability of the system under high load and low humidity conditions. The most common types of water vapor transport (WVT) devices are based on water permeable membrane based separators. Successful membranes must effectively permeate water vapor while restricting crossover of air, and be robust to the temperature and humidity fluctuations experienced in fuel cell systems. DOE sponsored independent evaluations indicate that balance of plant components, including humidification devices, make up more than half of the cost of current automotive fuel cell systems. Despite its relatively widespread us in other applications, the current industry standard perfluorosulfonic acid based Nafion® remains expensive compared with non-perfluorinated polymer membranes. During Phase II of this project, we demonstrated the improved performance of our semi-fluorinated perfluorocyclobutyl polymer based membranes compared with the current industry standard perfluorosulfonic acid based Nafion®, at ~ 50% lower cost. Building on this work, highlights of our Phase IIB developments, in close collaboration with leading

  3. Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,

    Science.gov Websites

    Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center

  4. Using Polymer Electrolyte Membrane Fuel Cells in a Hybrid Surface Ship Propulsion Plant to Increase Fuel Efficiency

    DTIC Science & Technology

    2010-06-01

    cell ( PEMFC ), and the phosphoric acid fuel cell (PAFC). 2.3.1 Solid Oxide Fuel Cells (SOFC) The first type of fuel cell considered is the SOFC. This...durability issues for use within a given application. 2.3.2 Polymer Electrolyte Membrane Fuel Cells ( PEMFC ) The PEMFC operates by passing hydrogen that has...cells. Some advantages of PEMFC operating at such low temperatures is that the fuel cell doesn’t require as meticulous of a support system infrastructure

  5. Final Rule for Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles - Phase 2

    EPA Pesticide Factsheets

    Rule to finalize standards for medium- and heavy-duty vehicles that would improve fuel efficiency and cut carbon pollution to reduce the impacts of climate change, while bolstering energy security and spurring manufacturing innovation.

  6. Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet

    NASA Astrophysics Data System (ADS)

    Gong, Lunkun; Chen, Xiong; Yang, Haitao; Li, Weixuan; Zhou, Changsheng

    2017-10-01

    The flow field characteristics and the regression rate distribution of solid-fuel ramjet with three-hole diaphragm were investigated by numerical and experimental methods. The experimental data were obtained by burning high-density polyethylene using a connected-pipe facility to validate the numerical model and analyze the combustion efficiency of the solid-fuel ramjet. The three-dimensional code developed in the present study adopted three-order MUSCL and central difference schemes, AUSMPW + flux vector splitting method, and second-order moment turbulence-chemistry model, together with k-ω shear stress transport (SST) turbulence model. The solid fuel surface temperature was calculated with fluid-solid heat coupling method. The numerical results show that strong circumferential flow exists in the region upstream of the diaphragm. The diaphragm can enhance the regression rate of the solid fuel in the region downstream of the diaphragm significantly, which mainly results from the increase of turbulent viscosity. As the diaphragm port area decreases, the regression rate of the solid fuel downstream of the diaphragm increases. The diaphragm can result in more sufficient mixing between the incoming air and fuel pyrolysis gases, while inevitably producing some pressure loss. The experimental results indicate that the effect of the diaphragm on the combustion efficiency of hydrocarbon fuels is slightly negative. It is conjectured that the diaphragm may have some positive effects on the combustion efficiency of the solid fuel with metal particles.

  7. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  8. Implications of Fuel-Efficient Vehicles on Ride Quality and Passenger Acceptance : Workshop Proceedings, Woods Hole, Massachusetts, September 6-8, 1978

    DOT National Transportation Integrated Search

    1979-08-01

    Four workshops were conducted under the auspices of the Transportation Research Board. The topics of discussion included ride quality and passenger acceptance problems associated with enhanced fuel efficiency of automobiles (Group A) and aircraft (Gr...

  9. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  10. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia

    NASA Astrophysics Data System (ADS)

    Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo

    2018-04-01

    Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.

  11. Fuel-conservative engine technology

    NASA Technical Reports Server (NTRS)

    Dugan, J. F., Jr.; Mcaulay, J. E.; Reynolds, T. W.; Strack, W. C.

    1975-01-01

    Aircraft fuel consumption is discussed in terms of its efficient use, and the conversion of energy from sources other than petroleum. Topics discussed include: fuel from coal and oil shale, hydrogen deficiency of alternate sources, alternate fuels evaluation program, and future engines.

  12. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  13. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  14. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  15. Altitude Performance of AN-F-58 Fuels in British Rolls-Royce Nene Single Combustor

    NASA Technical Reports Server (NTRS)

    Cook, William P.; Koch, Richard G.

    1949-01-01

    An investigation was conducted with a single combustor from a British Rolls-Royce Nene turbojet engine to determine the altitude performance characteristics of AN-F-58 fuels. Three fuel blends conforming to AN-F-58 specifications were prepared in order to determine the influence of fuel boiling temperatures and aromatic content on combustion efficiencies and altitude operational limits. The performance of the three AN-F-58 fuels was compared in the range of altitudes from sea level to 65,000 feet, engine speeds from 40- to 100- percent normal rated, and flight Mach numbers of 0.0 and 0.6. Similar information was obtained for AN-F-32 fuel at a flight Mach number of 0.0

  16. Multi-stage fuel cell system method and apparatus

    DOEpatents

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  17. Efficient approach to obtain free energy gradient using QM/MM MD simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asada, Toshio; Koseki, Shiro; The Research Institute for Molecular Electronic Devices

    2015-12-31

    The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means ofmore » FEG and the nudged elastic band (NEB) method.« less

  18. Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore

    PubMed Central

    Park, Doo Hyun; Zeikus, J. Gregory

    2000-01-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202

  19. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  20. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE PAGES

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    2018-02-07

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  1. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  2. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions.

    PubMed

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.

  3. A microfluidic fuel cell with flow-through porous electrodes.

    PubMed

    Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David

    2008-03-26

    A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.

  4. ACFA 2020 - An FP7 project on active control of flexible fuel efficient aircraft configurations

    NASA Astrophysics Data System (ADS)

    Maier, R.

    2013-12-01

    This paper gives an overview about the project ACFA 2020 which is funded by the European Commission within the 7th framework program. The acronym ACFA 2020 stands for Active Control for Flexible Aircraft 2020. The project is dealing with the design of highly fuel efficient aircraft configurations and, in particular, on innovative active control concepts with the goal to reduce loads and structural weight. Major focus lays on blended wing body (BWB) aircraft. Blended wing body type aircraft configurations are seen as the most promising future concept to fulfill the so-called ACARE (Advisory Council for Aeronautics Research in Europe) vision 2020 goals in regards to reduce fuel consumption and external noise. The paper discusses in some detail the overall goals and how they are addressed in the workplan. Furthermore, the major achievements of the project are outlined and a short outlook on the remaining work is given.

  5. The influence of the types of marine fuel over the Energy Efficiency Operational Index

    NASA Astrophysics Data System (ADS)

    Acomi, Nicoleta; Acomi, Ovidiu

    2014-05-01

    One of the main concerns of our society is certainly the environment protection. The international efforts for maintaining the environment clean are various and this paper refers to the efforts in the maritime transport field. Marine pollution consists of the water pollution and also the air pollution. Regardless of the delay in recognizing the later type of pollution, it rapidly gains many organizations to argue on it. The first step was including a dedicated annex (Annex VI) in the International Convention for the Prevention of Pollution from Ships, in 1997, which seeks to minimize the airborne emissions from ships. In order to control and minimize the air pollution, the International Maritime Organization has also developed a series of measures for monitoring the emissions. These measures are grouped in three main directions: technical, operational and management related. The subject of our study is the concept of Energy Efficiency Operational Index (EEOI), developed to provide ship-owners with assistance in the process of establishing the emissions from ships in operation, and to suggest the methods for achieving their reduction. As a monitoring tool, EEOI represents the mass of CO2 emitted per unit of transport work. The actual CO2 emission from combustion of fuel on board a ship during each voyage is calculated by multiplying total fuel consumption for each type of fuel (e.g. diesel oil, gas oil, light fuel oil, heavy fuel oil, liquefied petroleum gas, liquefied natural gas) with the carbon to CO2 conversion factor for the fuel in question. The performed transport work is calculated by multiplying mass of cargo (tonnes, number of TEU/cars, or number of passengers) with the distance in nautical miles corresponding to the transport work done. Using the software developed by the author it will be emphasized the variation of the EEOI value for one vessel using different types of fuel for the voyage's legs (distance to discharge port, distance to loading port, the

  6. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  7. A Theoretical Solid Oxide Fuel Cell Model for System Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni; Xu, Ming

    2006-01-01

    As the aviation industry moves towards higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The Hybrid Solid Oxide Fuel Cell system combines the fuel cell with a microturbine to obtain up to 70 percent cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multi-discipline system, and design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and distribution system and the fuel cell and microturbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. A novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled, but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  8. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    NASA Astrophysics Data System (ADS)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  9. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  10. Fuel cells: principles, types, fuels, and applications.

    PubMed

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  11. Development of a Soldier-Portable Fuel Cell Power System, Part I: A Bread-Board Methanol Fuel Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.

    A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less

  12. High Efficiency, Clean Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with

  13. Center for Efficiency in Sustainable Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Martin

    sensor/actuator/controller modules to enhance energy capture and reduce aerodynamic loading and noise by way of virtual aerodynamic shaping. Accomplishments: Task I. Improved Energy Efficiency for Industrial Processes: We organized an energy management training session held on February 22, 2011, which was advertised through a regional manufacturing association to provide wide-ranging notification. Over two dozen companies were represented a the seminar, ranging from heavy manufacturing businesses with $5,000,000 per year energy expenses, to small, light manufacturing facilities. Task 2. Landfill Fuel Cell Power Generation Solid Oxide Fuel Cells (SOFCs) were constructed and evaluated as a means of obtaining electrical energy from landfill gas. Analysis of landfill gas. Attempts at collecting gas samples at the landfill and evaluating them on campus were still unsuccessful. Even a Teflon® sample bag would lose its H2S content. Evaluation of Gas Clean-up We consider this a confirmation of the CO2 effect on the solubility of H2S in water making much less sulfide available for the photocatalyst. It also means that another method should be employed to clean up landfill gas. Nonetheless, composition of impurities in landfill gas was reduced sufficiently to allow successful operation of the test fuel cell. Comparison to a PEM fuel cell system. If a PEMFC were to be operated with landfill gas as the fuel, the gas would have to be treated for sulfur removal, and then processed in a reformer large enough to drive the equilibrium far toward the products, so that negligible CO would flow into the fuel cell. Analysis of a fuel cell running on landfill gas. Using a Gow-Mac gas chromatograph with a thermal conductivity detector, unambiguous determination of CO can be made, at least as a primary constituent Task 3: Task 3 Plasma Controlled Turbine Blades Wind Turbine Selection. After carefully reviewing the various model available in the market the team selected the ARE 110 (2.5kW). The

  14. Influence of the Structure of a Solid-Fuel Mixture on the Thermal Efficiency of the Combustion Chamber of an Engine System

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Koznacheev, I. A.; Ermolaeva, E. M.

    2014-11-01

    On the basis of thermodynamic calculations, the features of the combustion of a solid-fuel mixture based on the glycidyl azide polymer were investigated, the thermal cycle of the combustion chamber of a model engine system was analyzed, and the efficiency of this chamber was determined for a wide range of pressures in it and different ratios between the components of the combustible mixture. It was established that, when the pressure in the combustion chamber of an engine system increases, two maxima arise successively on the dependence of the thermal efficiency of the chamber on the weight fractions of the components of the combustible mixture and that the first maximum shifts to the side of smaller concentrations of the glycidyl azide polymer with increase in the pressure in the chamber; the position of the second maximum is independent of this pressure, coincides with the minimum on the dependence of the rate of combustion of the mixture, and corresponds to the point of its structural phase transition at which the mole fractions of the carbon and oxygen atoms in the mixture are equal. The results obtained were interpreted on the basis of the Le-Chatelier principle.

  15. Fuel cell apparatus and method thereof

    DOEpatents

    Cooper, John F.; Krueger, Roger; Cherepy, Nerine

    2004-11-09

    Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.

  16. Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Das, Debanjan

    obtained information. The obtained values closely range from around 11 mA cm-2 - 16 mA cm -2 with reasonable repeatability and excellent accuracy. The potential advantages of EFM compared to traditional methods were realized and our primary aim at demonstrating this technique on a SOFC system are presented which can act as a starting point for future research efforts in this area. Finally, an approach based on in-situ State of Health tests by EIS was formulated and investigated to understand the most efficient fuel conditions for suitable long term operation of a solid oxide fuel cell stack under power generation conditions. The procedure helped to reflect the individual effects of three most important fuel characteristics CO/H2 volumetric ratio, S/C ratio and fuel utilization under the presence of a simulated alternative fuel at 0.4 A cm-2. Variation tests helped to identify corresponding electrochemical/chemical processes, narrow down the most optimum operating regimes considering practical behavior of simulated reformer-SOFC system arrangements. At the end, 8 different combinations of the optimized parameters were tested long term with the stack, and the most efficient blend was determined.

  17. Closed fuel cycle with increased fuel burn-up and economy applying of thorium resources

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Apse, V. A.

    2017-01-01

    The possible role of existing thorium reserves in the Russian Federation on engaging thorium in being currently closed (U-Pu)-fuel cycle of nuclear power of the country is considered. The application efficiency of thermonuclear neutron sources with thorium blanket for the economical use of existing thorium reserves is demonstrated. The aim of the work is to find solutions of such major tasks as the reduction of both front-end and back-end of nuclear fuel cycle and an enhancing its protection against the uncontrolled proliferation of fissile materials by means of the smallest changes in the fuel cycle. During implementation of the work we analyzed the results obtained earlier by the authors, brought new information on the number of thorium available in the Russian Federation and made further assessments. On the basis of proposal on the inclusion of hybrid reactors with Th-blanket into the future nuclear power for the production of light uranium fraction 232+233+234U, and 231Pa, we obtained the following results: 1. The fuel cycle will shift from fissile 235U to 233U which is more attractive for thermal power reactors. 2. The light uranium fraction is the most "protected" in the uranium component of fuel and mixed with regenerated uranium will in addition become a low enriched uranium fuel, that will weaken the problem of uncontrolled proliferation of fissile materials. 3. 231Pa doping into the fuel stabilizes its multiplying properties that will allow us to implement long-term fuel residence time and eventually to increase the export potential of all nuclear power technologies. 4. The thorium reserves being near city Krasnoufimsk (Russia) are large enough for operation of large-scale nuclear power of the Russian Federation of 70 GWe capacity during more than a quarter century under assumption that thorium is loaded into blankets of hybrid TNS only. The general conclusion: the inclusion of a small number of hybrid reactors with Th-blanket into the future nuclear

  18. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  19. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE PAGES

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; ...

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  20. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3},more » the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.« less

  1. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  2. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential (in MIXED)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  3. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  4. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  5. Hybrid cars now, fuel cell cars later.

    PubMed

    Demirdöven, Nurettin; Deutch, John

    2004-08-13

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  6. Hybrid Cars Now, Fuel Cell Cars Later

    NASA Astrophysics Data System (ADS)

    Demirdöven, Nurettin; Deutch, John

    2004-08-01

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  7. Alternative Fuels Data Center

    Science.gov Websites

    Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of

  8. Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids

    NASA Astrophysics Data System (ADS)

    Winkler, Timothy Michael

    Unmanned probes are the primary technologies used when exploring celestial bodies in our solar system. As these deep space exploration missions are becoming more and more complex, there is a need for advanced autonomous operation capabilities in order to meet mission objectives. These autonomous capabilities are required as ground-based guidance and navigation commands will not be able to be issued in real time due to the large distance from the Earth. For long-duration asteroid exploration missions, this also entails how to keep the spacecraft around or on the body in order for the mission to be successfully completed. Unlike with larger bodies such as planets, though, the dynamical environment around these smaller bodies can be difficult to characterize. The weak gravitational fields are not uniform due to irregular shapes and non-homogeneous mass distribution, especially when orbiting in close-proximity to the body. On top of that, small perturbation forces such as solar radiation pressure can be strong enough to destabilize an orbit around an asteroid. The best solution for keeping a spacecraft in orbit about a small body is to implement some form of control technique. With conventional propulsion thrusters, active control algorithms tend to have a higher than acceptable propellant requirements for long-duration asteroid exploration missions, which has led to much research being devoted to finding open-loop solutions to long-term stable orbits about small bodies. These solutions can prove to be highly sensitive to the orbit's initial conditions, making them potentially unreliable in the presence of orbit injection errors. This research investigates a fuel-efficient, active control scheme to safely control a spacecraft's orbit in close-proximity to an asteroid. First, three different gravitational models capable of simulating the non-homogeneous gravity fields of asteroids are presented: the polyhedron gravity shape model, a spherical harmonics expansion, and an

  9. Development of a soldier-portable fuel cell power system. Part I: A bread-board methanol fuel processor

    NASA Astrophysics Data System (ADS)

    Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.

    A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.

  10. Fireplaces and Fireplace Fuels.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  11. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.

    PubMed

    Zhao, Xuebing; Zhu, J Y

    2016-01-01

    A novel polyoxometalates (POMs) mediated direct biomass fuel cell (DBFC) was used in this study to directly convert lignin to electricity at low temperatures with high power output and Faradaic efficiency. When phosphomolybdic acid H3 PMo12 O40 (PMo12) was used as the electron and proton carrier in the anode solution with a carbon electrode, and O2 was directly used as the final electron acceptor under the catalysis of Pt, the peak power density reached 0.96 mW cm(-2), 560 times higher than that of phenol-fueled microbial fuel cells (MFCs). When the cathode reaction was catalyzed by PMo12, the power density could be greatly enhanced to 5 mW cm(-2). Continuous operation demonstrated that this novel fuel cell was promising as a stable electrochemical power source. Structure analysis of the lignin indicated that the hydroxyl group content was reduced whereas the carbonyl group content increased. Both condensation and depolymerization takes place during the PMo12 oxidation of lignin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  13. Energy efficiency : potential fuel savings generated by a national speed limit would be influenced by many other factors.

    DOT National Transportation Integrated Search

    2008-11-07

    "Congress expressed interest in obtaining information on using a national speed limit to reduce fuel consumption. In response to the request, we reviewed existing literature and consulted knowledgeable stakeholders on the following: (1) What is the r...

  14. Low-cost high-efficiency GDCI engines for low octane fuels

    DOEpatents

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  15. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels

    DTIC Science & Technology

    2011-01-01

    major types of fuel cells in practice are listed below: Polymer Electrolyte Membrane Fuel Cell ( PEMFC ) Alkaline Fuel cell (AFC) Phosphoric Acid...Material Operating Temperature (oC) Efficiency (%) PEMFC H2, Methanol, Formic Acid Hydrated Organic Polymer < 90 40-50 AFC Pure H2 Aqueous

  16. Design and analysis of a fuel-efficient single-engine, turboprop-powered, business airplane

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Everest, D. E., Jr.; Lovell, W. A.; Price, J. E.; Walkley, K. B.; Washburn, G. F.

    1981-01-01

    The speed, range, payload, and fuel efficiency of a general aviation airplane powered by one turboprop engine was determined and compared to a twin engine turboprop aircraft. An airplane configuration was developed which can carry six people for a noreserve range of 2,408 km at a cruise speed above 154 m/s, and a cruise altitude of about 9,144 m. The cruise speed is comparable to that of the fastest of the current twin turboprop powered airplanes. It is found that the airplane has a cruise specific range greater than all twin turboprop engine airplanes flying in its speed range and most twin piston engine airplanes flying at considerably slower cruise airspeeds.

  17. FY2016 Ceramic Fuels Development Annual Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcclellan, Kenneth James

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts.more » Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.« less

  18. NHTS brief : energy use and fuel efficiency

    DOT National Transportation Integrated Search

    2008-04-01

    A number of factors affect fuel consumption in the U.S., such as total driving population and annual vehicle miles of travel per driver. According the National Household Travel Survey (NHTS) data series, both of these have nearly doubled since 1969.

  19. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    PubMed

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m 2 and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  1. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  2. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    PubMed

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  3. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  4. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  5. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    PubMed

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  6. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  7. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Korneev, N. V.

    2017-05-01

    The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.

  8. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  9. Proposed Rule and Related Materials for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles

    EPA Pesticide Factsheets

    EPA and NHTSA, on behalf of the Department of Transportation, each proposed rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and increase fuel efficiency for onroad heavy-duty vehicles.

  10. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  11. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  12. The ways of SOFC systems efficiency increasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, A.K.; Timofeyeva, N.

    1996-04-01

    The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.

  13. A Theoretical Solid Oxide Fuel Cell Model for Systems Controls and Stability Design

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Brinson, Thomas; Credle, Sydni

    2008-01-01

    As the aviation industry moves toward higher efficiency electrical power generation, all electric aircraft, or zero emissions and more quiet aircraft, fuel cells are sought as the technology that can deliver on these high expectations. The hybrid solid oxide fuel cell system combines the fuel cell with a micro-turbine to obtain up to 70% cycle efficiency, and then distributes the electrical power to the loads via a power distribution system. The challenge is to understand the dynamics of this complex multidiscipline system and the design distributed controls that take the system through its operating conditions in a stable and safe manner while maintaining the system performance. This particular system is a power generation and a distribution system, and the fuel cell and micro-turbine model fidelity should be compatible with the dynamics of the power distribution system in order to allow proper stability and distributed controls design. The novelty in this paper is that, first, the case is made why a high fidelity fuel cell mode is needed for systems control and stability designs. Second, a novel modeling approach is proposed for the fuel cell that will allow the fuel cell and the power system to be integrated and designed for stability, distributed controls, and other interface specifications. This investigation shows that for the fuel cell, the voltage characteristic should be modeled but in addition, conservation equation dynamics, ion diffusion, charge transfer kinetics, and the electron flow inherent impedance should also be included.

  14. Nuclear fuel electrorefiner

    DOEpatents

    Ahluwalia, Rajesh K.; Hua, Thanh Q.

    2004-02-10

    The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

  15. Thermal protection performance of opposing jet generating with solid fuel

    NASA Astrophysics Data System (ADS)

    Shen, Binxian; Liu, Weiqiang

    2018-03-01

    A light and small gas supply device, which uses fuel gas generating with solid fuel as coolant gas, is introduced for opposing jet thermal protection in hypersonic vehicles. A numerical study on heat flux reduction in hypersonic flow with opposing jet is conducted to investigate the cooling efficiency of fuel gas. Flow field and cooling efficiency at different jet temperatures, as well as the effect of fuel gas, are determined. Detailed results show that shock stand-off distance changes with an increase in jet pressure ratio and remains constant with an increase in jet temperature. Cooling efficiency weakens with an increase in jet temperature and can be strengthened by enhancing jet pressure. Lastly, a remarkable heat flux reduction is observed with fuel gas injection with respect to no fuel gas injection when jet temperature reaches 900 K, thereby proving the positive cooling efficiency of fuel gas.

  16. Probabilistic analysis of the efficiency of the damping devices against nuclear fuel container falling

    NASA Astrophysics Data System (ADS)

    Králik, Juraj

    2017-07-01

    The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.

  17. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  18. Alternative Fuels Data Center

    Science.gov Websites

    (HEVs). FFVs are defined as automobiles or light trucks that operate on either gasoline or 85% ethanol (E85) fuel. Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or

  19. NREL Bridges Fuels and Engines R&D to Maximize Vehicle Efficiency and

    Science.gov Websites

    innovation-from fuel chemistry, conversion, and combustion to the evaluation of advanced fuels in actual -cylinder engine for advanced compression ignition fuels research will be installed and commissioned in the vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research

  20. [Fire behavior of Quercus mongolica leaf litter fuelbed under zero-slope and no-wind conditions. II. Analysis and modelling of fireline intensity, fuel consumption, and combustion efficiency].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2013-12-01

    Mongolian oak (Quercus mongolica) is an important constructive and accompanying species in mixed broadleaf-conifer forest in Northeast China, In this paper, a laboratory burning experiment was conducted under zero-slope and no-wind conditions to study the effects of fuel moisture content, loading, and thickness on the fireline intensity, fuel consumption, and combustion efficiency of the Mongolian oak leaf litter fuelbed. The fuel moisture content, loading, and thickness all had significant effects on the three fire behavior indices, and there existed interactions between these three affecting factors. Among the known models, the Byram model could be suitable for the prediction of local leaf litter fire intensity only after re-parameterization. The re-estimated alpha and beta parameters of the re-parameterized Byram model were 98.009 and 1.099, with an adjusted determination coefficient of 0.745, the rooted mean square error (RMSE) of 8.676 kW x m(-1), and the mean relative error (MRE) of 21%, respectively (R2 = 0.745). The re-estimated a and b by the burning efficiency method proposed by Albini were 0.069 and 0.169, and the re-estimated values were all higher than 93%, being mostly overestimated. The Consume model had a stronger suitability for the fuel. The R2 of the general linear models established for fireline intensity, fuel consumption, and burning efficiency was 0.82, 0.73 and 0.53, and the RMSE was 8.266 kW x m(-1) 0.081 kg x m(-2), and 0.203, respectively. In low intensity surface fires, the fine fuels could not be completely consumed, and thus, to consider the leaf litter and fine fuel in some forest ecosystems being completely consumed would overestimate the carbon release from forest fires.

  1. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm -3 could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm -3 d -1 , and stable electricity production over 13.7Wm -3 could be produced in a NB loading range of 1.2-14.7molm -3 d -1 . The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm -3 d -1 . The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells.

    PubMed

    Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina

    2015-12-01

    The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources.

  3. Alternative Fuels Data Center: Hydrogen Basics

    Science.gov Websites

    ; Incentives Hydrogen Basics Hydrogen (H2) is an alternative fuel that can be produced from diverse domestic for domestic production, its fast filling time, and the fuel cell's high efficiency. In fact, a fuel

  4. Alternative Fuels Data Center

    Science.gov Websites

    procedures to promote the cost-effective use of non-petroleum fuel vehicles and other fleet efficiency improvements. The policies must strive for the use of non-petroleum based fuels at least 90% of the time when

  5. Energy 101: Heavy Duty Vehicle Efficiency

    ScienceCinema

    None

    2018-06-06

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  6. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  7. Residential End Uses: Historical Efficiency Data and Incremental Installed Costs for Efficiency Upgrades

    EIA Publications

    2017-01-01

    The residential sector comprises equipment consuming various fuels and providing different end-use services. When replacing equipment, consumers may choose to purchase equipment that meets minimum federal equipment efficiency standards, or they may opt for higher-efficiency equipment, such as equipment that meets or exceeds ENERGY STAR® specifications. Consumers may also choose to purchase or retrofit different types of equipment, which may require additional costs (e.g., for ducts, exhaust vents, natural gas lines, or electrical connections) to install. The stock mix of equipment types, efficiency levels, and fuels consumed directly affects total residential sector energy consumption.

  8. CoMn2O4-supported functionalized carbon nanotube: efficient catalyst for oxygen reduction in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin

    2017-10-01

    Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.

  9. A techno-economic comparison of fuel processors utilizing diesel for solid oxide fuel cell auxiliary power units

    NASA Astrophysics Data System (ADS)

    Nehter, Pedro; Hansen, John Bøgild; Larsen, Peter Koch

    Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density. This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions. The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.

  10. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  12. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  13. Critical flow rate of anode fuel exhaust in a PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.

    A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.

  14. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  15. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to

  16. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyatt, Greg A.; Chick, Lawrence A.

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electricalmore » generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to

  17. Highly Selective Upgrading of Biomass-Derived Alcohol Mixtures for Jet/Diesel-Fuel Components.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Xicheng; Liu, Xiaoran; Mu, Xindong

    2016-12-20

    In light of the increasing concern about the energy and environmental problems caused by the combustion of petroleum-based fuels (e.g., jet and diesel fuels), the development of new procedures for their sustainable production from renewable biomass-derived platform compounds has attracted tremendous attention recently. Long-chain ketones/alcohols are promising fuel components owing to the fuel properties that closely resemble those of traditional fuels. The focus of this report is the production of long-chain ketones/alcohols by direct upgrading of biomass-derived short-chain alcohol mixtures (e.g., isopropanol-butanol-ethanol mixtures) in pure water. An efficient Pd catalyst system was developed for these highly selective transformations. Long-chain ketones/alcohols (C 8 -C 19 ), which can be used as precursors for renewable jet/diesel fuel, were obtained in good-to-high selectivity (>90 %) by using the developed Pd catalyst. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Alternative Fuels Data Center: Electricity

    Science.gov Websites

    efficiency. Using electricity to power vehicles can have significant energy security and emissions benefits . Icon of an information sign. Basics Find information about using electricity as a vehicle fuel Considerations Explore the benefits and considerations of using electricity as a vehicle fuel. Icon of a fueling

  19. Dual-fuel, dual-mode rocket engine

    NASA Technical Reports Server (NTRS)

    Martin, James A. (Inventor)

    1989-01-01

    The invention relates to a dual fuel, dual mode rocket engine designed to improve the performance of earth-to-orbit vehicles. For any vehicle that operates from the earth's surface to earth orbit, it is advantageous to use two different fuels during its ascent. A high density impulse fuel, such as kerosene, is most efficient during the first half of the trajectory. A high specific impulse fuel, such as hydrogen, is most efficient during the second half of the trajectory. The invention allows both fuels to be used with a single rocket engine. It does so by adding a minimum number of state-of-the-art components to baseline single made rocket engines, and is therefore relatively easy to develop for near term applications. The novelty of this invention resides in the mixing of fuels before exhaust nozzle cooling. This allows all of the engine fuel to cool the exhaust nozzle, and allows the ratio of fuels used throughout the flight depend solely on performance requirements, not cooling requirements.

  20. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  1. Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With

    Science.gov Websites

    . College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a police Propane in OhioA> MedCorp Fuels Emergency Vehicles With Propane in Ohio to someone by E-mail Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo

  2. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  3. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  4. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  5. Method for improving the fuel efficiency of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1985-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  6. Apparatus for improving the fuel efficiency of a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1983-01-01

    An energy recovery system is provided for an aircraft gas turbine engine of the type in which some of the pneumatic energy developed by the engine is made available to support systems such as an environmental control system. In one such energy recovery system, some of the pneumatic energy made available to but not utilized by the support system is utilized to heat the engine fuel immediately prior to the consumption of the fuel by the engine. Some of the recovered energy may also be utilized to heat the fuel in the fuel tanks. Provision is made for multiengine applications wherein energy recovered from one engine may be utilized by another one of the engines or systems associated therewith.

  7. Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application.

    PubMed

    Thorat, N D; Shinde, K P; Pawar, S H; Barick, K C; Betty, C A; Ningthoujam, R S

    2012-03-14

    La(0.7)Sr(0.3)MnO(3) (LSMO) nanoparticles have been prepared using glycine and polyvinyl alcohol (PVA) as fuels. Their crystal structure, particle morphology and compositions are characterized using X-ray diffraction, transmission electron microscopy, field-emission electron microscopy and energy dispersive analysis of X-ray. They show a pseudo-cubic perovskite structure. The spherical particle sizes of 30 and 20 nm have been obtained from samples prepared by glycine and PVA respectively. The field cooled (FC) and zero field cooled (ZFC) magnetizations have been recorded from 5 to 375 K at 500 Oe and superparamagnetic blocking temperatures (T(B)) of 75 and 30 K are obtained from samples prepared by glycine and PVA respectively. Particle size distribution is observed from dynamic light scattering measurements. Dispersion stability of the particles in water is studied by measuring the Zeta potential with varying the pH of the medium from 1 to 12. Under induction heating experiments, a hyperthermia temperature (42-43 °C) is achieved by both the samples (3-6 mg mL(-1)) at magnetic fields of 167-335 Oe and at a frequency of 267 kHz. The bio-compatibility of the LSMO nanoparticles is studied on the L929 and HeLa cell lines by MTT assay for up to 48 h. The present work reveals the importance of synthesis technique and fuel choice on structural, morphological, magnetic, hyperthermia and biocompatible properties of LSMO and predicts the suitability for biomedical applications.

  8. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    NASA Astrophysics Data System (ADS)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  9. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  10. 75 FR 11873 - Notice of Fuel Cell Pre-Solicitation Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Notice of Fuel Cell Pre... Cell Pre-Solicitation Workshop. SUMMARY: The Fuel Cell Technologies Program, under the DOE Office of Energy Efficiency and Renewable Energy, is inviting the fuel cell research community and other...

  11. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  12. Alternative Fuels Data Center: Widgets

    Science.gov Websites

    Efficiency and Renewable Energy Get Widget Code × Widget Code Select All Close Vehicle Cost Calculator Share a tool to calculate annual fuel cost and greenhouse gas emissions for alternative fuel and advanced technology vehicles. Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a

  13. The relationship between income and personal vehicle fuel efficiency and associated equity concerns for the fuel tax.

    DOT National Transportation Integrated Search

    2011-03-01

    The fuel tax, which is assessed on the physical amount of fuel purchased by the consumer, is the primary : means of funding roadway development at the state and national level. However, because it is assessed on a : gallon basis, drivers of vehicles ...

  14. Aircraft Geared Architecture Reduces Fuel Cost and Noise

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In an effort to increase fuel efficiency and reduce noise in commercial airplanes, NASA aeronautics teamed up with East Hartford, Connecticut-based Pratt & Whitney through a Space Act Agreement to help the company increase the efficiency of its turbofan engine. The company's new PurePower line of engines is 15 percent more fuel-efficient and up to 75 percent quieter than its competitors.

  15. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  16. Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation.

    PubMed

    Li, Kan; Xu, Yunlan; He, Yi; Yang, Chen; Wang, Yalin; Jia, Jinping

    2013-04-02

    A fuel cell that functioned as a photo fuel cell (PFC) when irradiated with UV light and as a dye self-photosensitization photo fuel cell (DSPFC) when irradiated with visible light was proposed and investigated in this study. The system included a BiOCl/Ti plate photoanode and a Pt cathode, and dye solutions were employed as fuel. Electricity was generated at the same time as the dyes were degraded. 26.2% and 24.4% Coulombic efficiency were obtained when 20 mL of 10 mg · L(-1) Rhodamine B solution was treated with UV for 2 h and visible light for 3 h, respectively. Irradiation with natural and artificial sunlight was also evaluated. UV and visible light could be utilized at the same time and the photogenerated current was observed. The mechanism of electricity generation in BiOCl/Ti PFC and DSPFC was studied through degradation of the colorless salicylic acid solution. Factors that affect the electricity generation and dye degradation performance, such as solution pH and cathode material, were also investigated and optimized.

  17. A natural-gas fuel processor for a residential fuel cell system

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  18. Study of the Performances of a Thermoelectric Generator Based on a Catalytic Meso-Scale H₂/C₃H₈ Fueled Combustor.

    PubMed

    Abedi, Hossein; Merotto, Laura; Fanciulli, Carlo; Donde, Roberto; De Luliis, Silvana; Passaretti, Francesca

    2017-03-01

    In this work the thermoelectric generator (TEG) based on catalytic combustion already developed in our lab has been further investigated and improved. The system made of two thermoelectric (TE) modules coupled with a catalytic combustor has been used in this work to obtain higher overall efficiency by adding hydrogen to the fuel mixture. Since implementation of hydrogen as a fuel has shown low and stable combustion temperature in literature, it is expected to achieve good overall efficiency of TEG. Moreover, hydrogen can be used to improve the system inducing self-ignition. Focus of the present work is the implementation of different mixture proportions, varying the amount of hydrogen, and the investigation of their effects on the overall efficiency. The overall TEG efficiency, has been evaluated by parallel characterization of thermoelectric modules and exhaust gases composition. The system performances have been characterized using different mixtures: the results indicate that addition of H₂ to the fuel contribute to increase the chemical and overall TEG efficiency respect to previous work, producing up to 5.92 W of electrical power. Finally, the effects of H₂ for on self-ignition conditions have been investigated finding the minimum H₂ amount for different gas flow rates.

  19. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  20. Fuel Injector Patternation Evaluation in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors, Using Nonintrusive Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  1. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  2. Engine performance with a hydrogenated safety fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.

  3. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  4. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of

  5. Development of a lightweight fuel cell vehicle

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  6. Yttria-stabilized zirconia solid oxide electrolyte fuel cells: Monolithic solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The monolithic solid oxide fuel cell (MSOFC) is currently under development for a variety of applications including coal-based power generation. The MSOFC is a design concept that places the thin components of a solid oxide fuel cell in lightweight, compact, corrugated structure, and so achieves high efficiency and excellent performance simultaneously with high power density. The MSOFC can be integrated with coal gasification plants and is expected to have high overall efficiency in the conversion of the chemical energy of coal to electrical energy. This report describes work aimed at: (1) assessing manufacturing costs for the MSOFC and system costs for a coal-based plant; (2) modifying electrodes and electrode/electrolyte interfaces to improve the electrochemical performance of the MSOFC; and (3) testing the performance of the MSOFC on hydrogen and simulated coal gas. Manufacturing costs for both the coflow and crossflow MSOFC's were assessed based on the fabrication flow charts developed by direct scaleup of tape calendering and other laboratory processes. Integrated coal-based MSOFC systems were investigated to determine capital costs and costs of electricity. Design criteria were established for a coal-fueled 200-Mw power plant. Four plant arrangements were evaluated, and plant performance was analyzed. Interfacial modification involved modification of electrodes and electrode/electrolyte interfaces to improve the MSOFC electrochemical performance. Work in the cathode and cathode/electrolyte interface was concentrated on modification of electrode porosity, electrode morphology, electrode material, and interfacial bonding. Modifications of the anode and anode/electrolyte interface included the use of additives and improvement of nickel distribution. Single cells have been tested for their electrochemical performance. Performance data were typically obtained with humidified H2 or simulated coal gas and air or oxygen.

  7. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  8. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  9. Obtaining alternative fuel from sweet sorghum in the conditions of the Republic of Tatarstan

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Nafikov, M. M.; Gilmanshin, I. R.; Nigmatzyanov, A. R.

    2017-09-01

    In the agro-industrial complex of the Russian Federation the main types of energy resources is the FCM (fuel-lubricating materials), electricity, coal and gas. Priority energy is determined depending on the orientation of the activity of the agricultural enterprise. In the cost of getting products one of the key factors is its energy intensity. Under the energy intensity means the amount of energy expended per unit of finished product. Domestic manufacturers lag behind on this indicator from their foreign colleagues. Greatly influenced by the climatic conditions of production, which affects the amount of energy expended annually becoming more expensive. In the article, the authors address a topical issue of renewable(alternative) fuels from sweet sorghum in the stems of which contains from 14 to 21 % sugar. In the Republic of Tatarstan tested and introduced varieties of sweet sorghum. On the basis of literary data and carried out their own research given a set of equipment and presents non-waste production chain of biodiesel and fuel pellets from stems of sweet sorghum.

  10. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.

  11. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Science.gov Websites

    or ZIP code or along a route in the United States. Loading alternative fueling station locator Fleet Rightsizing System Efficiency Locate Stations Search by Location Map a Route Laws & Incentives

  12. Recent developments in BWR fuel design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Noble, L.D.; Wood, J.E.

    1991-11-01

    Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less

  13. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    NASA Astrophysics Data System (ADS)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  14. Lowering the temperature of solid oxide fuel cells.

    PubMed

    Wachsman, Eric D; Lee, Kang Taek

    2011-11-18

    Fuel cells are uniquely capable of overcoming combustion efficiency limitations (e.g., the Carnot cycle). However, the linking of fuel cells (an energy conversion device) and hydrogen (an energy carrier) has emphasized investment in proton-exchange membrane fuel cells as part of a larger hydrogen economy and thus relegated fuel cells to a future technology. In contrast, solid oxide fuel cells are capable of operating on conventional fuels (as well as hydrogen) today. The main issue for solid oxide fuel cells is high operating temperature (about 800°C) and the resulting materials and cost limitations and operating complexities (e.g., thermal cycling). Recent solid oxide fuel cells results have demonstrated extremely high power densities of about 2 watts per square centimeter at 650°C along with flexible fueling, thus enabling higher efficiency within the current fuel infrastructure. Newly developed, high-conductivity electrolytes and nanostructured electrode designs provide a path for further performance improvement at much lower temperatures, down to ~350°C, thus providing opportunity to transform the way we convert and store energy.

  15. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE PAGES

    Chang, Yan; Szybist, James P.; Pihl, Josh A.; ...

    2017-12-19

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  16. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan; Szybist, James P.; Pihl, Josh A.

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  17. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  18. 75 FR 74151 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...EPA and NHTSA, on behalf of the Department of Transportation, are each proposing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and increase fuel efficiency for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's proposed fuel consumption standards and EPA's proposed carbon dioxide (CO2) emissions standards would be tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-Duty Pickup Trucks and Vans; and Vocational Vehicles, as well as gasoline and diesel heavy-duty engines. EPA's proposed hydrofluorocarbon emissions standards would apply to air conditioning systems in tractors, pickup trucks, and vans, and EPA's proposed nitrous oxide (N2O) and methane (CH4) emissions standards would apply to all heavy-duty engines, pickup trucks, and vans. EPA is also requesting comment on possible alternative CO2-equivalent approaches for model year 2012-14 light-duty vehicles. EPA's proposed greenhouse gas emission standards under the Clean Air Act would begin with model year 2014. NHTSA's proposed fuel consumption standards under the Energy Independence and Security Act of 2007 would be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers would not be regulated in this phase of the Heavy- Duty National Program, although there is a discussion of the possibility of future action for trailers.

  19. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  20. A self-sustained, complete and miniaturized methanol fuel processor for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen

    2015-08-01

    A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.

  1. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  2. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  3. Alternatives to the motor fuel tax : final report.

    DOT National Transportation Integrated Search

    2001-11-01

    The National Highway Cooperative Research Program (NCHRP) published its Report 377, Alternatives to Motor Fuel Taxes for Financing Surface Transportation Improvements, in 1995. Increased fuel efficiency and the use of alternative fuels were seen as p...

  4. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  5. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. Chapter 11. Fuel Economy: The Case for Market Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of watermore » heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would

  7. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process

    NASA Astrophysics Data System (ADS)

    Kawai, T.; Sakata, T.

    1980-07-01

    A photocatalytic process for the conversion of carbohydrates into hydrogen fuel is presented. The method involves the irradiation of sugar, starch or cellulose in the presence of water and a RuO2/TiO2/Pt catalyst, which has been found to lead to the generation of CO2 and H2 at efficiencies 100 times larger than those obtained with TiO2 alone, with no detectable amounts of other products. The reaction mechanism can be explained in terms of an electrochemical microcell, in which electron-hole pairs generated in TiO2 cause redox reactions at the surface. The process may thus be used in the conversion of solar energy stored in the form of carbohydrates by green plant photosynthesis into useful hydrogen fuels.

  9. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  10. History of fast reactor fuel development

    NASA Astrophysics Data System (ADS)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  11. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  12. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  13. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    PubMed

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  14. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  15. Comparison of alternate fuels for aircraft

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  16. 2009 Fuel Cell Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  17. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  18. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  19. Maritime Fuel Cell Generator Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have beenmore » used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.« less

  20. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  1. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  2. Solid oxide fuel cells fueled with reducible oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.; Fan, Liang Shih

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing themore » solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.« less

  3. Scientific bases of biomass processing into basic component of aviation fuel

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Lavrenov, V. A.; Lishchiner, I. I.; Malova, O. V.; Tarasov, A. L.; Zaichenko, V. M.

    2016-11-01

    A combination of feedstock pyrolysis and the cracking of the volatile pyrolysis products on the charcoal at 1000 °C allows to obtain a tarless synthesis gas which contains 90 vol% or more of carbon monoxide and hydrogen in approximately equal proportions. Basic component of aviation fuel was synthesized in a two-stage process from gas obtained by pyrolytic processing of biomass. Methanol and dimethyl ether can be efficiently produced in a two-layer loading of methanolic catalyst and γ-Al2O3. The total conversion of CO per pass was 38.2% using for the synthesis of oxygenates a synthesis gas with adverse ratio of H2/CO = 0.96. Conversion of CO to CH3OH was 15.3% and the conversion of CO to dimethyl ether was 20.9%. A high yield of basic component per oxygenates mass (44.6%) was obtained during conversion. The high selectivity of the synthesis process for liquid hydrocarbons was observed. An optimal recipe of aviation fuel B-92 based on a synthesized basic component was developed. The prototype of aviation fuel meets the requirements for B-92 when straight fractions of 50-100 °C (up to 35 wt%), isooctane (up to 10 wt%) and ethyl fluid (2.0 g/kg calculated as tetraethyl lead) is added to the basic component.

  4. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less

  5. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  6. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  7. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  8. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Permana, Sidik; Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132; Sekimoto, Hiroshi

    2010-12-23

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period hasmore » been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore

  9. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  10. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  11. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    PubMed

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  12. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies.

    PubMed

    Cheng, Shaoan; Jang, Je-Hun; Dempsey, Brian A; Logan, Bruce E

    2011-01-01

    Acid mine drainage (AMD) is an important contributor to surface water pollution due to the release of acid and metals. Fe(II) in AMD reacts with dissolved oxygen to produce iron oxide precipitates, resulting in further acidification, discoloration of stream beds, and sludge deposits in receiving waters. It has recently been shown that new fuel cell technologies, based on microbial fuel cells, can be used to treat AMD and generate electricity. Here we show that this approach can also be used as a technique to generate spherical nano-particles of iron oxide that, upon drying, are transformed to goethite (α-FeOOH). This approach therefore provides a relatively straightforward way to generate a product that has commercial value. Particle diameters ranged from 120 to 700 nm, with sizes that could be controlled by varying the conditions in the fuel cell, especially current density (0.04-0.12 mA/cm(2)), pH (4-7.5), and initial Fe(II) concentration (50-1000 mg/L). The most efficient production of goethite and power occurred with pH = 6.3 and Fe(II) concentrations above 200 mg/L. These results show that fuel cell technologies can not only be used for simultaneous AMD treatment and power generation, but that they can generate useful products such as iron oxide particles having sizes appropriate for used as pigments and other applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Configuring a fuel cell based residential combined heat and power system

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  14. Performance gains by using heated natural-gas fuel in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    A full-scale annular turbojet combustor was tested with natural gas fuel heated from ambient temperature to 800 K (980 F). In all tests, heating the fuel improved combustion efficiency. Two sets of gaseous fuel nozzles were tested. Combustion instabilities occurred with one set of nozzles at two conditions: one where the efficiency approached 100 percent with the heated fuel; the other where the efficiency was very poor with the unheated fuel. The second set of nozzles exhibited no combustion instability. Altitude relight tests with the second set showed that relight was improved and was achievable at essentially the same condition as blowout when the fuel temperature was 800 K (980 F).

  15. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  16. Jet fuel based high pressure solid oxide fuel cell system

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2013-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  17. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  18. Design and performance of energy efficient propellers for Mach 0.8 cruise

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Blaha, B. J.; Mitchell, G. A.; Wikete, J. E.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integrated propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.

  19. Design and performance of energy efficient propellers for Mach 0. 8 cruise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, D.C.; Blaha, B.J.; Mitchell, G.A.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integratedmore » propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.« less

  20. Aviation-fuel lubricity evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-01

    Fuel-system components have experienced problems with the slipperiness or lubricity of the fuel back to the early 1960's. As a consequence of the level of refinement necessary for the PWA 523 fuel (now designated MIL-T-38219 grade JP-7) to obtain its high-temperature stability, many of the polar compounds contributing to lubricity had been removed, resulting in abnormal hydraulic fuel-pump wear. A lubricity-enhancing compound was developed (PWA 536) to eliminate the wear problem. High-pressure piston-type fuel pumps were one of the first parts of the engine fuel system to exhibit problems related to fuel properties. One early problem manifested itself as corrosionmore » of silver-plated slipper pads and was related to carryover of residual-chlorides fuel. Fuel controls were another part of the engine fuel system susceptible to fuel properties. Lack of lubricity agents caused fuel control sliding servo valves to stick.« less

  1. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  2. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Science.gov Websites

    Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions Transportation Energy Futures Series: Effects of the Built Environment on

  3. Molybdenum dioxide-based anode for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Byeong Wan; Ellefson, Caleb; Breit, Joe; Kim, Jinsoo; Grant Norton, M.; Ha, Su

    2013-12-01

    The present paper describes the fabrication and performance of a molybdenum dioxide (MoO2)-based anode for liquid hydrocarbon/oxygenated hydrocarbon-fueled solid oxide fuel cells (SOFCs). These fuel cells first internally reform the complex liquid fuel into carbon fragments and hydrogen, which are then electrochemically oxidized to produce electrical energy without external fuel processors. The MoO2-based anode was fabricated on to an yttria-stabilized zirconia (YSZ) electrolyte via combined electrostatic spray deposition (ESD) and direct painting methods. The cell performance was measured by directly feeding liquid fuels such as n-dodecane (i.e., a model diesel/kerosene fuel) or biodiesel (i.e., a future biomass-based liquid fuel) to the MoO2-based anode at 850 °C. The maximum initial power densities obtained from our MoO2-based SOFC were 34 mW cm-2 and 45 mW cm-2 using n-dodecane and biodiesel, respectively. The initial power density of the MoO2-based SOFC was improved up to 2500 mW cm-2 by optimizing the porosity of the MoO2-based anode. To test the long-term stability of the MoO2-based anode SOFC against coking, n-dodecane was continuously fed into the cell for 24 h at the open circuit voltage (OCV). During long-term testing, voltage-current density (V-I) plots were periodically obtained and they showed no significant changes over the operation time. Microstructural examination of the tested cells indicated that the MoO2-based anode displayed negligible coke formation, which explains its stability. On the other hand, SOFCs with conventional nickel (Ni)-based anodes under the same operating conditions showed a significant amount of coke formation on the metal surface, which led to a rapid drop in cell performance. Hence, the present work demonstrates that MoO2-based anodes exhibit outstanding tolerance to coke formation. This result opens up the opportunity for more efficiently generating electrical energy from both existing transportation and next generation

  4. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  5. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses tomore » the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).« less

  6. RER SPECTRA OBTAINED WITH A MULTICRYSTAL SPECTROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W.E.; Champion, W.R.

    1959-11-01

    Relative gamma spectra were obtained twenty feet from the Hadiation Effects Reactor. The measurements were made using a multicry-stal spectrometer. This design incorporates pair and anticompton spectrometers in combination. Two reactor configurations were used; with shield tanks empty- and water filled. The spectra were obtained before the fuel elements were run at high power. Consequently very little of the fission product spectrum is tntermined. (J.R.D.)

  7. Analysis of regenerative fuel cells

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1982-01-01

    The concept of a rechargeable fuel cell (RFC) system is considered. A newer type of rechargeable battery, the nickel hydrogen (Ni-H2) battery, is also evaluated. A review was made of past studies which showed large variations in weight, cost, and efficiency. Hydrogen-bromine and hydrogen-chlorine regenerable fuel cells were studied, and were found to have a potential for higher energy storage efficiency then the hydrogen-oxygen system. A reduction of up to 15 percent in solar array size may be possible as a result. These systems are not yet developed, but further study of them is recommended.

  8. Alternative Fuel Vehicle Forecasts : Final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Federal and state fuel taxes account for the largest share of the Texas State Highway Fund at 48 percent and 29 percent, respectively, in Fiscal Year 2015. These taxes are levied on a per-gallon basis, meaning that as vehicles get more fuel efficient...

  9. Strategies to improve industrial energy efficiency

    NASA Astrophysics Data System (ADS)

    O'Rielly, Kristine M.

    A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG

  10. 40 CFR 59.622 - What are the general requirements for obtaining a certificate of conformity and producing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... obtaining a certificate of conformity and producing portable fuel containers under it? 59.622 Section 59.622... Emissions From New and In-Use Portable Fuel Containers Certifying Emission Families § 59.622 What are the general requirements for obtaining a certificate of conformity and producing portable fuel containers...

  11. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  12. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  13. ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAHAJAN,D.; WEGRZYN,J.E.

    1999-03-01

    An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstockmore » of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.« less

  14. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  15. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    PubMed Central

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-01-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m−3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments. PMID:26611142

  16. Additive Manufacturing of a Microbial Fuel Cell—A detailed study

    NASA Astrophysics Data System (ADS)

    Calignano, Flaviana; Tommasi, Tonia; Manfredi, Diego; Chiolerio, Alessandro

    2015-11-01

    In contemporary society we observe an everlasting permeation of electron devices, smartphones, portable computing tools. The tiniest living organisms on Earth could become the key to address this challenge: energy generation by bacterial processes from renewable stocks/waste through devices such as microbial fuel cells (MFCs). However, the application of this solution was limited by a moderately low efficiency. We explored the limits, if any, of additive manufacturing (AM) technology to fabricate a fully AM-based powering device, exploiting low density, open porosities able to host the microbes, systems easy to fuel continuously and to run safely. We obtained an optimal energy recovery close to 3 kWh m-3 per day that can power sensors and low-power appliances, allowing data processing and transmission from remote/harsh environments.

  17. Effect of fuel volatility on performance of tail-pipe burner

    NASA Technical Reports Server (NTRS)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  18. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    View Graph Graph Download Data Generated_thumb20140811-21276-p5mcbz Average Fuel Economy at Different Road Grades Generated_thumb20140811-21276-p5mcbz Trend of Fuel Economy and Consumption at different at Various Driving Speeds Generated_thumb20170119-11720-1o8tesk Trend of fuel efficiency at different

  19. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    PubMed

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptablemore » range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.« less

  1. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the

  2. Elimination of fuel pressure fluctuation and multi-injection fuel mass deviation of high pressure common-rail fuel injection system

    NASA Astrophysics Data System (ADS)

    Li, Pimao; Zhang, Youtong; Li, Tieshuan; Xie, Lizhe

    2015-03-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73% at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92% at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  3. Fueling the AGN

    NASA Astrophysics Data System (ADS)

    Combes, F.

    Active Galactic Nuclei are fueled from material (gas or stars) that are in general far away from the gravitational influence of the central black hole, the engine thought to be responsible for their activity. The required material has a lot of angular momentum that, a priori, is quite difficult to evacuate. The various dynamical mechanisms that may play a role in this game are reviewed, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), and tidal interactions between galaxies and mergers. In the latest stages of the merger, a binary black hole could be formed, and its influence on the dynamics and fueling is discussed. Starbursts are often associated with AGN, and the nature of their particular connection, and their role in the nuclear fueling is described. Evolution of the fueling efficiency with redshift is addressed.

  4. The study of integrated coal-gasifier molten carbonate fuel cell systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A novel integration concept for a coal-fueled coal gasifier-molten carbonate fuel cell power plant was studied. Effort focused on determining the efficiency potential of the concept, design, and development requirements of the processes in order to achieve the efficiency. The concept incorporates a methane producing catalytic gasifier of the type previously under development by Exxon Research and Development Corp., a reforming molten carbonate fuel cell power section of the type currently under development by United Technologies Corp., and a gasifier-fuel cell recycle loop. The concept utilizes the fuel cell waste heat, in the form of hydrogen and carbon monoxide, to generate additional fuel in the coal gasifier, thereby eliminating the use of both an O2 plant and a stream bottoming cycle from the power plant. The concept has the potential for achieving coal-pile-to-busbar efficiencies of 50-59%, depending on the process configuration and degree of process configuration and degree of process development requirements. This is significantly higher than any previously reported gasifier-molten carbonate fuel cell system.

  5. Fuel properties to enable lifted-flame combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Eric

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  6. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, D.M.

    1980-03-27

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

  7. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  8. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    PubMed

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  9. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. Themore » reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.« less

  10. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    NASA Astrophysics Data System (ADS)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  11. Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells.

    PubMed

    Tseronis, K; Fragkopoulos, I S; Bonis, I; Theodoropoulos, C

    2016-06-01

    Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan-Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty-Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically-active anode catalyst layer, although not always substantially, due to the counter-balancing behavior of the activation and ohmic overpotentials.

  12. Detailed Multi‐dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells

    PubMed Central

    Tseronis, K.; Fragkopoulos, I.S.; Bonis, I.

    2016-01-01

    Abstract Fuel flexibility is a significant advantage of solid oxide fuel cells (SOFCs) and can be attributed to their high operating temperature. Here we consider a direct internal reforming solid oxide fuel cell setup in which a separate fuel reformer is not required. We construct a multidimensional, detailed model of a planar solid oxide fuel cell, where mass transport in the fuel channel is modeled using the Stefan‐Maxwell model, whereas the mass transport within the porous electrodes is simulated using the Dusty‐Gas model. The resulting highly nonlinear model is built into COMSOL Multiphysics, a commercial computational fluid dynamics software, and is validated against experimental data from the literature. A number of parametric studies is performed to obtain insights on the direct internal reforming solid oxide fuel cell system behavior and efficiency, to aid the design procedure. It is shown that internal reforming results in temperature drop close to the inlet and that the direct internal reforming solid oxide fuel cell performance can be enhanced by increasing the operating temperature. It is also observed that decreases in the inlet temperature result in smoother temperature profiles and in the formation of reduced thermal gradients. Furthermore, the direct internal reforming solid oxide fuel cell performance was found to be affected by the thickness of the electrochemically‐active anode catalyst layer, although not always substantially, due to the counter‐balancing behavior of the activation and ohmic overpotentials. PMID:27570502

  13. Alternative Fuels Data Center

    Science.gov Websites

    AFV special license plate, which are available from the Arizona Department of Transportation (ADOT license plate. ADOT has reached its maximum limit of 10,000 vehicles and the issuance of Energy Efficient Alternative Fuel Vehicle (AFV) and Energy Efficient Plate Programs Dedicated AFVs qualify for an

  14. The TMI Regenerative Solid Oxide Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael

    1996-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.

  15. Multidimensional Fuel Performance Code: BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  16. Verification of the WFAS Lightning Efficiency Map

    Treesearch

    Paul Sopko; Don Latham; Isaac Grenfell

    2007-01-01

    A Lightning Ignition Efficiency map was added to the suite of daily maps offered by the Wildland Fire Assessment System (WFAS) in 1999. This map computes a lightning probability of ignition (POI) based on the estimated fuel type, fuel depth, and 100-hour fuel moisture interpolated from the Remote Automated Weather Station (RAWS) network. An attempt to verify the...

  17. Process for obtaining liquid fuel-oil and/or gaseous hydrocarbons from solid carbonaceous feed stocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, J.W.

    1978-02-28

    A process for forming a fuel-oil from coal is disclosed. The coal is treated in a low temperature carbonization retort to give coke, coal-gas and tar-oil. The coke is converted to water-gas which is then synthesized in a Fischer-Tropsch synthesizer to form fuel-oil. The tar-oil is hydrogenated in a hydro-treater by hydrogen produced from the coal-gas. Hydrogen is produced from coal-gas either in a thermal cracking chamber or by reforming the methane content to hydrogen and passing the resultant hydrogen/carbon monoxide mixture through a water-gas shift reactor and a carbon dioxide scrubber.

  18. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  19. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  20. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  1. Imidazoline fuel detergents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, B. R.; Holtz, H. D.

    1981-01-27

    A detergent additive imidazoline prepared by reacting carboxylic acid with polyamine is combined into fuel for an internal combustion engine or lubricating oil as a composition suitable for reducing deposits in an internal combustion engine. In an embodiment of the invention, the imidazoline is further combined with a sulfonic acid to obtain a fuel detergent of improved operability.

  2. National energy efficient driving system (NEEDS). Volume 1, Survey of requirements

    DOT National Transportation Integrated Search

    1981-12-15

    This report provides a state-of-the-art summary of the means by which individual drivers can achieve more fuel-efficient vehicle operation. It identifies fuel-efficient driving behaviors, the means of influencing behavior, appropriate audiences for a...

  3. Three-Dimensional Measurements of Fuel Distribution in High-Pressure, High- Temperature, Next-Generation Aviation Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.

    1998-01-01

    In our world-class, optically accessible combustion facility at the NASA Lewis Research Center, we have developed the unique capability of making three-dimensional fuel distribution measurements of aviation gas turbine fuel injectors at actual operating conditions. These measurements are made in situ at the actual operating temperatures and pressures using the JP-grade fuels of candidate next-generation advanced aircraft engines for the High Speed Research (HSR) and Advanced Subsonics Technology (AST) programs. The inlet temperature and pressure ranges used thus far are 300 to 1100 F and 80 to 250 psia. With these data, we can obtain the injector spray angles, the fuel mass distributions of liquid and vapor, the degree of fuel vaporization, and the degree to which fuel has been consumed. The data have been used to diagnose the performance of injectors designed both in-house and by major U.S. engine manufacturers and to design new fuel injectors with overall engine performance goals of increased efficiency and reduced environmental impact. Mie scattering is used to visualize the liquid fuel, and laser-induced fluorescence is used to visualize both liquid and fuel vapor.

  4. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance.

    PubMed

    Corbella, Clara; Puigagut, Jaume

    2018-08-01

    For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. 75 FR 15893 - Tire Fuel Efficiency Consumer Information Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... comparative performance information to inform consumers about the effect of their choices among replacement... Displays, 70 FR 18136 (April 8, 2005). \\4\\ Transportation Research Board Special Report 286, Tires and Passenger Vehicle Fuel Economy, National Research Council of the National Academies, 5 (2006) (hereinafter...

  6. 75 FR 2860 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee...

  7. Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo

    The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.

  8. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    NASA Astrophysics Data System (ADS)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  9. Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle - Fuel Injection Type

    NASA Astrophysics Data System (ADS)

    Suthisripok, Tongchit; Phusakol, Nachaphat; Sawetkittirut, Nuttapol

    2017-10-01

    Bi-fuel-Gasoline/LPG system has been effectively and efficiently used in gasoline vehicles with less pollutants emission. The motorcycle tested was a used Honda AirBlade i110 - fuel injection type. A 3-litre LPG storage tank, an electronic fuel control unit, a 1-mm LPG injector and a regulator were securely installed. The converted motorcycle can be started with either gasoline or LPG. The safety relief valve was set below 48 kPa and over 110 kPa. The motorcycle was tuned at the relative rich air-fuel ratio (λ) of 0.85-0.90 to attain the best power output. From dynamometer tests over the speed range of 65-100 km/h, the average power output when fuelling LPG was 5.16 hp; dropped 3.9% from the use of gasoline91. The average LPG consumption rate from the city road test at the average speed of 60 km/h was 40.1 km/l, about 17.7% more. This corresponded to lower LPG’s energy density of about 16.2%. In emission, the CO and HC concentrations were 44.4% and 26.5% lower. Once a standard gas equipment set with ECU and LPG injector were securely installed and the engine was properly tuned up to suit LPG’s characteristics, the converted bi-fuel motorcycle offers efficiently, safely and economically performance with environmental friendly emission.

  10. Microbial fuel cells: Running on gas

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong Jason

    2017-06-01

    Methane is an abundant energy source that is used for power generation in thermal power plants via combustion, but direct conversion to electricity in fuel cells remains challenging. Now, a microbial fuel cell is demonstrated to efficiently convert methane directly to current by careful selection of a consortium of microorganisms.

  11. Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5

    NASA Technical Reports Server (NTRS)

    Mak, Audie; Meier, John

    2007-01-01

    This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.

  12. Environmental issues of synthetic transportation fuels from coal

    DOT National Transportation Integrated Search

    1982-11-01

    This report, Background paper #3, contains papers written for Office of Technology Assessment to assist in preparation of the report, Increased Automobile Fuel Efficiency and Synthetic Fuels: Alternatives for Reducing Oil Imports. Environmental impac...

  13. The application of a thermal efficiency maximizing control strategy for ignition timing and equivalence ratio on a natural gas-fueled Hercules G1600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, M.L.; Kittelson, D.B.; Leuer, R.H.

    1996-10-01

    A two-dimensional optimization process, which simultaneously adjusts the spark timing and equivalence ratio of a lean-burn, natural gas, Hercules G1600 engine, has been demonstrated. First, the three-dimensional surface of thermal efficiency was mapped versus spark timing and equivalence ratio at a single speed and load combination. Then the ability of the control system to find and hold the combination of timing and equivalence ratio that gives the highest thermal efficiency was explored. NO{sub x}, CO, and HC maps were also constructed from the experimental data to determine the tradeoffs between efficiency and emissions. The optimization process adds small synchronous disturbancesmore » to the spark timing and air flow while the fuel injected per cycle is held constant for four cycles. The engine speed response to these disturbances is used to determine the corrections for spark timing and equivalence ratio. The control process, in effect, uses the engine itself as the primary sensor. The control system can adapt to changes in fuel composition, operating conditions, engine wear, or other factors that may not be easily measured. Although this strategy was previously demonstrated in a Volkswagen 1.7 liter light duty engine (Frankling et al., 1994b), until now it has not been demonstrated in a heavy-duty engine. This paper covers the application of the approach to a Hercules G1600 engine.« less

  14. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  15. Hypophosphites as eco-compatible fuel for membrane-free direct liquid fuel cells.

    PubMed

    Wang, Renhe; Wu, Mengjia; Haller, Servane; Métivier, Pascal; Wang, Yonggang; Xia, Yongyao

    2018-05-07

    Crossover of liquid fuel remains a severe problem for conventional direct liquid fuel cells even when polymer electrolyte membranes are applied. Herein, we report for the first time a membrane-free direct liquid fuel cell powered by alkaline hypophosphite solution. The proof-of-concept fuel cell yields a peak power density of 32 mW cm-2 under air flow at room temperature. The removal of the polymer electrolyte membrane is attributed to the high reactivity and selectivity of Pd and α-MnO2 towards the hypophosphite oxidation on anode and oxygen reduction on the cathode, respectively. The discharge products are analyzed by 31P-NMR and the Faradaic efficiencies have been calculated after discharging at 10 mA cm-2 for 20 hours. The non-toxicity of hypophosphite and membrane-free fuel cell structure provide huge potential for future applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. US-RERTR Advanced Fuel Development Plans : 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, M. K.

    1998-10-22

    Twelve fuel alloys were included in the very-high-density RERTR-1 and RERTR-2 microplate irradiation experiments. Experience gained during fabrication and results from the post-irradiation examination of these fuels has allowed us to narrow the focus of our fuel development efforts in preparation for the next set of irradiation experiments. Specific technical problems in both the areas of fuel fabrication and irradiation performance remain to be addressed. Examples of these are powder fabrication, fuel phase gamma stability versus density, and fuel-matrix interaction. In order to more efficiently address metal alloy fuel performance issues, work will continue on establishing a theoretical basis formore » alloy stability and metal alloy dispersion fuel irradiation performance. Plans to address these fuel development issues in the coming year will be presented.« less

  17. Fault tree analysis of fire and explosion accidents for dual fuel (diesel/natural gas) ship engine rooms

    NASA Astrophysics Data System (ADS)

    Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei

    2016-09-01

    In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.

  18. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH.

    PubMed

    Li, Xiao Min; Cheng, Ka Yu; Wong, Jonathan W C

    2013-12-01

    Microbial fuel cells are a promising technology for simultaneous treatment and energy recovery from food waste leachate. This study evaluates the effects of NaCl (0-150 mM) and pH on the treatment of food waste leachate using microbial fuel cells. The food waste leachate amended with 100mM NaCl enabled the highest maximum power density (1000 mW/m(3)) and lowest internal resistance (371Ω). Increasing the anodic pH gradually from acidic to alkaline conditions (pH 4-9) resulted in a gradual increase in maximum power density to 9956 mW/m(3) and decrease in internal cell resistance to 35.3Ω. The coulombic efficiency obtained under acidic conditions was only 17.8%, but increased significantly to 60.0% and 63.4% in the neutral and alkaline pH's MFCs, respectively. Maintaining a narrow pH window (6.3-7.6) was essential for efficient bioelectricity production and COD removal using microbial fuel cells for the treatment of food waste leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fuel temperature counter

    Treesearch

    John R. Murray; Charles W. Philpot

    1963-01-01

    Fuel temperature is and has always been difficult to measure. To understand better the problem of fire and fire weather behavior, it is important to measure this variable. We have developed for field use a new fuel temperature counter which can be used to obtain such measurements quickly and easily. This electronic recording instrument is easy to construct and operate...

  20. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  1. Fuel savings and emissions reductions from light duty fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.

    1994-04-01

    Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  2. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  3. Alternative Fuels Data Center

    Science.gov Websites

    Tables Fuel-Efficient Vehicle Acquisition Requirements The Maine State Purchasing Agent may not purchase purposes the State Purchasing Agent designates are exempt from this requirement. (Reference Maine Revised

  4. Multi-fuel driven Janus micromotors.

    PubMed

    Gao, Wei; D'Agostino, Mattia; Garcia-Gradilla, Victor; Orozco, Jahir; Wang, Joseph

    2013-02-11

    Here the first example of a chemically powered micromotor that harvests its energy from the reactions of three different fuels is presented. The new Al/Pd Janus microspheres-prepared by depositing a Pd layer on one side of Al microparticles-are propelled efficiently by the thrust of hydrogen bubbles generated from different reactions of Al in strong acidic and alkaline environments, and by an oxygen bubble thrust produced at their partial Pd coating in hydrogen peroxide media. High speeds and long lifetimes of 200 μm s(-1) and 8 min are achieved in strong alkaline media and acidic media, respectively. The ability to autonomously adapt to the presence of a new fuel (surrounding environment), without compromising the propulsion behavior is illustrated. These data also represent the first example of a chemically powered micromotor that propels autonomously and efficiently in alkaline environments (pH > 11) without additional fuels. The ability to use multiple fuel sources to power the same micromotor offers a broader scope of operation and considerable promise for diverse applications of micromotors in different chemical environments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental investigations on active cooling thermal protection structure of hydrocarbon-fueled scramjet combustor in arc heated facility

    NASA Astrophysics Data System (ADS)

    Jianqiang, Tu; Jinlong, Peng; Xianning, Yang; Lianzhong, Chen

    2016-10-01

    The active cooling thermal protection technology is the efficient method to resolve the long-duration work and reusable problems of hydrocarbon-fueled scramjet combustor, where worst thermo-mechanical loads occur. The fuel is passed through coolant channels adjacent to the heated surfaces to absorb heat from the heating exchanger panels, prior to injection into the combustor. The heating exchanger both cooled down the wall temperature of the combustor wall and heats and cracks the hydrocarbon fuel inside the panel to permit an easier combustion and satisfying combustion efficiency. The subscale active cooling metallic panels, with dimensions of 100×100 mm and different coolant channel sizes, have been tested under typical combustion thermal environment produced by arc heated Turbulent Flow Duct (TFD). The heat exchange ability of different coolant channel sizes has been obtained. The big-scale active cooling metallic panel, with dimensions of 100 × 750 mm and the coolant channel sizes of better heating exchange performance, has been made and tested in the big-scale arc heated TFD facility. The test results show that the local superheated ablation is easy to happen for the cooling fuel assigned asymmetrically in the bigscale active cooling metallic panel, and the cooling fuel rate can reduce 8%˜10% after spraying the Thermal Barrier Coating (TBC) in the heating surface.

  6. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    PubMed

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  7. Preliminary fuel use results from gin audits

    USDA-ARS?s Scientific Manuscript database

    Interest in improving sustainability in cotton production and processing has focused attention on fuel use by cotton gins for seed cotton drying. Audits are planned for multiple gin facilities over a diverse geography to establish baseline fuel usage and drying system efficiencies to reveal opportu...

  8. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    NASA Astrophysics Data System (ADS)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  9. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  10. Optimization and application of TiO₂/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously.

    PubMed

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Xu, Yunlan; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2014-10-01

    A TiO2/Ti-Pt photo fuel cell (PFC) was established to generate electricity and degrade organic pollutants simultaneously. The electricity generation was optimized through investigation the influences of photoanode calcination temperature and dissolve oxygen on the resistances existing in PFC. TiO2 light quantum yield was also improved in PFC which resulted in a higher PC degradation efficiency. Two kinds of real textile wastewaters were also employed in this PFC system, 62.4% and 50.0% Coulombic efficiency were obtained for 8 h treatment. These refractory wastewaters with high salinity may become good fuels in PFC because a) TiO2 has no selectivity and can degrade nearly any organic substance, b) no more electrolyte is needed due to the high salinity, c) the energy in wastes can be recovered to generate electricity. The electricity generated by the PFC was further applied on a TiO2/Ti rotating disk photoelectrocatalytic reactor. A bias voltage between 0.6 and 0.75 V could be applied and the PC degradation efficiency was significantly improved. This result was similar with that obtained by a 0.7 V DC power. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Metal hydride and pyrophoric fuel additives for dicyclopentadiene based hybrid propellants

    NASA Astrophysics Data System (ADS)

    Shark, Steven C.

    equivalence ratio by approximately 10 percentage points, which was not observed in the RGHP experiments. A 10 percentage point decrease in C* efficiency was observed with increasing mass flux in the system. This was most likely due to poorly mixed fuel and oxidizer in center of the combustion chamber at the higher mass flux levels. Detailed measurements of the hybrid rocket combustion zone is useful for understanding the mechanisms governing performance, but can be difficult to obtain. Traditional slab burner configurations have proven useful but are operationally limited in pressure and mass flux ranges. A new optical cylindrical combustor (OCC) design is presented that allows surface and flame zone imaging and tracking during hybrid rocket motor operation at appreciable mass flux and pressure levels, > 100 kg/s/m2 and > 0.69 MPa. The flame height and regression rate sensitivity to mass flux and chamber pressure was examined for the same fuels examined in the GOX hybrid rocket motor, with the addition of DCPD fuel loaded with Al and unpassivated mechanically activated Al-PTFE. The regression rate trends were on the same order of magnitude of traditional hybrid rocket motor results. A flame height decrease was observed for increased mass flux. The flame height increased with NabH 4 addition, which is most likely a function of increased blowing at the surface. There was no appreciable flame height sensitivity to NabH4 particle size. There was no relative change in flame height or regression rate between the Al and AL-PTFE addition. The OCC allowed visualization of the hybrid rocket fuel flame zone at mass flux and pressure levels that are not known to be report for traditional slab burner configurations in literature. The OCC proved to be a new useful tool for investigated hybrid rocket propellant combustion characteristics.

  12. 2008 Fuel Cell Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.« less

  13. Alternative Sources of Energy - An Introduction to Fuel Cells

    USGS Publications Warehouse

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  14. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  15. Pressurized diesel fuel processing using hydrogen peroxide for the fuel cell power unit in low-oxygen environments

    NASA Astrophysics Data System (ADS)

    Lee, Kwangho; Han, Gwangwoo; Cho, Sungbaek; Bae, Joongmyeon

    2018-03-01

    A novel concept for diesel fuel processing utilizing H2O2 is suggested to obtain the high-purity H2 required for air-independent propulsion using polymer electrolyte membrane fuel cells for use in submarines and unmanned underwater vehicles. The core components include 1) a diesel-H2O2 autothermal reforming (ATR) reactor to produce H2-rich gas, 2) a water-gas shift (WGS) reactor to convert CO to H2, and 3) a H2 separation membrane to separate only high-purity H2. Diesel and H2O2 can easily be pressurized as they are liquids. The application of the H2 separation membrane without a compressor in the middle of the process is thus advantageous. In this paper, the characteristics of pressurized ATR and WGS reactions are investigated according to the operating conditions. In both reactors, the methanation reaction is enhanced as the pressure increases. Then, permeation experiments with a H2 separation membrane are performed while varying the temperature, pressure difference, and inlet gas composition. In particular, approximately 90% of the H2 is recovered when the steam-separated rear gas of the WGS reactor is used in the H2 separation membrane. Finally, based on the experimental results, design points are suggested for maximizing the efficiency of the diesel-H2O2 fuel processor.

  16. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  17. Development and design of experiments optimization of a high temperature proton exchange membrane fuel cell auxiliary power unit with onboard fuel processor

    NASA Astrophysics Data System (ADS)

    Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan

    In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.

  18. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    NASA Astrophysics Data System (ADS)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  19. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  20. Alternative Fuels Data Center

    Science.gov Websites

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental . For more information, see the District of Columbia Department of Motor Vehicles website. (Reference

  1. Responding effectively to fuel spills at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, L.E.

    1991-01-01

    Fuel spills are among the most frequent causes of emergency calls faced by airport firefighters. Most fuel spills are a result of human error and careless procedures. They always constitute an emergency and require fast, efficient action to prevent disaster. A fuel spill is an accidental release of fuel, in this case, from an aircraft fuel system, refueling vehicle or refueling system. A normal release of a few drops of fuel associated with a disconnection or other regular fueling operations should not be classified as a fuel spill. However, anytime fuel must be cleaned up and removed from an area,more » a fuel spill has occurred. Volatile fuels pose significant threats to people, equipment, facilities and cargo when they are released. Anyone near a spill, including ramp workers, fueling personnel and aircraft occupants, are in danger if the fuel ignites. Buildings and equipment in a spill area, such as terminals, hangars, aircraft, fuel trucks and service equipment also are at risk. An often neglected point is that aircraft cargo also is threatened by fuel spills.« less

  2. Alternative Fuels Data Center: Alternative Fuels Help Ensure America's

    Science.gov Websites

    key players from the start. For example, a strategic partnership with Black Bear Solar Institute led is replacing its fleet vehicles with efficient and alternative fuel vehicles. For example, in recent deploying seven propane mowers, thanks to a donation from the Propane Education & Research Council (PERC

  3. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  4. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  5. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Combustion of anaerobically digested humus as a fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayhanian, M.; Jenkins, B.M.; Baxter, L.L.

    Two pilot scale combustion experiments were conducted to explore the application of an anaerobically digested humus as fuel for commercial boilers. The experiments were performed in a fluidized bed combustor (FBC) and a multifuel suspension combustor (MFC). The results obtained indicate that the humus, blended with another conventional fuel (e.g., wood), can be used as a fuel in commercial boilers. Preliminary results of ash deposit analyses from the MFC indicate that the rate of deposition was low compared to high fouling biomass fuels such as straws, and similar to deposits obtained from wood.

  7. The TMI regenerable solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.

    1995-01-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  8. The TMI regenerable solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Cable, Thomas L.

    1995-04-01

    Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC

  9. Alternative Fuels Data Center

    Science.gov Websites

    License Fee Each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must obtain an annual license from the Wyoming Department of Transportation to conduct business in the state. The fee for each type of license is $25

  10. 2009 Fuel Cell Market Report, November 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  11. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  12. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  13. Carbon Nanomaterials in Direct Liquid Fuel Cells.

    PubMed

    Du, Huayun; Zhao, Cindy Xinxin; Lin, Jing; Guo, Jiang; Wang, Bin; Hu, Zhen; Shao, Qian; Pan, Duo; Wujcik, Evan K; Guo, Zhanhu

    2018-04-19

    Fuel cells have attracted more attentions due to many advantages they can provide, including high energy efficiency and low environmental burden. To form a stable, low cost and efficient catalyst, we presented here the state of the art of electrocatalyst fabrication approaches, involving carbon nanotubes and their multifunctional nanocomposites incorporated with noble metals, such as Pt, Pd, Au, their binary and ternary systems. Both fuel oxidation reactions and oxygen reduction reactions were emphasized with comprehensive examples and future prospects. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  15. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-04-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.« less

  16. Co-Optimization of Fuels and Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    2016-03-24

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energymore » savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.« less

  17. SMALL SCALE BIOMASS FUELED GAS TURBINE ENGINE

    EPA Science Inventory

    A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The n...

  18. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance

  19. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  20. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...EPA is amending the requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine (LM) diesel fuel produced by transmix processors and pipeline facilities. These amendments will reinstate the ability of locomotive and marine diesel fuel produced from transmix by transmix processors and pipeline operators to meet a maximum 500 parts per million (ppm) sulfur standard outside of the Northeast Mid-Atlantic Area and Alaska and expand this ability to within the Northeast Mid-Atlantic Area provided that: the fuel is used in older technology locomotive and marine engines that do not require 15 ppm sulfur diesel fuel, and the fuel is kept segregated from other fuel. These amendments will provide significant regulatory relief for transmix processors and pipeline operators to allow the petroleum distribution system to function efficiently while continuing to transition the market to virtually all ultra-low sulfur diesel fuel (ULSD, i.e. 15 ppm sulfur diesel fuel) and the environmental benefits it provides.

  2. Effects of fuel-injector design on ultra-lean combustion performance

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.

  3. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  4. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  5. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  6. Effect of Rapid Evaporation on Fuel Injection Processes

    NASA Astrophysics Data System (ADS)

    Sloss, Clayton A.; McCahan, Susan

    1996-11-01

    In the pursuit of developing more efficient fuel oil burners, ways of improving combustion efficiency through increased fuel atomization are being studied. By preheating the fuel prior to injection it may be possible to induce a superheated state in the l iquid during expansion through the nozzle. This increases the evaporation rate and improves atomization of the fluid. With enough superheat, and using fuels with sufficiently large specific heats, it is theoretically possible to achieve complete evaporati on. In this experiment dodecane, fuel oil, kerosene, and diesel fuel are injected from 10 bar to 1 bar while the upstream temperature is varied from 20^oC to 330^oC. A commercial oil burner nozzle is used to simulate a realistic injection environm ent and a plain converging nozzle is used under the same conditions to isolate and study the thermodynamic effects. Photographic observations of the commercial nozzle spray found smaller droplet sizes and decreased cone angles as the degree of superheat i ncreased. A coherent evaporation wave was observed in dodecane jets at high levels of superheat in the plain converging nozzle. * This work is supported by Imperial Oil/ESTAC

  7. Near Zero Emissions at 50 Percent Thermal Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2012-12-31

    under EPA 2010 emissions regulations. Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvements in engine emissions have been obtained, but fuel economy improvements have

  8. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  9. Neural and hybrid modeling: an alternative route to efficiently predict the behavior of biotechnological processes aimed at biofuels obtainment.

    PubMed

    Curcio, Stefano; Saraceno, Alessandra; Calabrò, Vincenza; Iorio, Gabriele

    2014-01-01

    The present paper was aimed at showing that advanced modeling techniques, based either on artificial neural networks or on hybrid systems, might efficiently predict the behavior of two biotechnological processes designed for the obtainment of second-generation biofuels from waste biomasses. In particular, the enzymatic transesterification of waste-oil glycerides, the key step for the obtainment of biodiesel, and the anaerobic digestion of agroindustry wastes to produce biogas were modeled. It was proved that the proposed modeling approaches provided very accurate predictions of systems behavior. Both neural network and hybrid modeling definitely represented a valid alternative to traditional theoretical models, especially when comprehensive knowledge of the metabolic pathways, of the true kinetic mechanisms, and of the transport phenomena involved in biotechnological processes was difficult to be achieved.

  10. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    This disclosure relates to catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. This disclosure also describes process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  11. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  12. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less

  13. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    PubMed

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater.

    PubMed

    Zhai, Lin-Feng; Song, Wei; Tong, Zhong-Hua; Sun, Min

    2012-12-01

    Sulfide present in wastewaters and waste gases should be removed due to its toxicity, corrosivity, and malodorous property. Development of effective, stable, and feasible methods for sulfur recovery from sulfide attains a double objective of waste minimization and resource recovery. Here we report a novel fuel-cell-assisted iron redox (FC-IR) process for simultaneously recovering sulfur and electricity from synthetic sulfide wastewater. The FC-IR system consists of an oxidizing reactor where sulfide is oxidized to elemental sulfur by Fe(III), and a fuel cell where Fe(III) is regenerated from Fe(II) concomitantly with electricity producing. The oxidation of sulfide by Fe(III) is significantly dependent on solution pH. Increasing the pH from 0.88 to 1.96 accelerates the oxidation of sulfide, however, lowers the purity of the produced elemental sulfur. The performance of fuel cell is also a strong function of solution pH. Fe(II) is completely oxidized to Fe(III) when the fuel cell is operated at a pH above 6.0, whereas only partially oxidized below pH 6.0. At pH 6.0, the highest columbic efficiency of 75.7% is achieved and electricity production maintains for the longest time of 106 h. Coupling operation of the FC-IR system obtains sulfide removal efficiency of 99.90%, sulfur recovery efficiency of 78.6 ± 8.3%, and columbic efficiency of 58.6 ± 1.6%, respectively. These results suggest that the FC-IR process is a promising tool to recover sulfur and energy from sulfide. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  16. Factors that affect fuel consumption in logging systems

    Treesearch

    Jonathan Kenney; Thomas Gallagher; Matthew Smidt; Dana Mitchell; Timothy and McDonald

    2014-01-01

    Fuel consumption is an important aspect of the efficiency of timber harvesting. Since loggers are paid based on the weight of wood they produce, it is important to note how many gallons of fuel it takes to produce one ton of wood. An extensive literature review was conducted to evaluate different harvesting systems and the amount of fuel they consumed per unit of wood...

  17. Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells.

    PubMed

    Eris, Sinan; Daşdelen, Zeynep; Sen, Fatih

    2018-03-01

    Direct methanol fuel cells (DMFCs) are one of the most important fuel cells operating at low temperature using methanol as fuel and they need very efficient catalysts to activate the methanol. Generally, the most efficient fuel cell catalysts are platinum-based nanoparticles that can be used by different supporting materials such as different as prepared and functionalized carbon derivatives. For this purpose, herein, the carbon black has been mainly functionalized with an acidification process in order to increase the electrical conductivity and heterogeneous electron transfer rate of supporting materials. After functionalization of carbon black (f-CB), platinum salt (PtCl 4 ) was stabilized with propylamine (PA) in the presence of ethylene glycol (EG) and f-CB by microwave synthesis method. XPS, XRD, TEM and Raman Spectroscopy techniques were used to determine the morphology of the prepared catalyst. The results showed that the prepared nanocatalyst has face-centered cubic (fcc) structure and uniformly distribution on supporting material. Besides, chronoamperometry (CA) and cyclic voltammetry (CV) techniques were used to determine the electrochemical activity of functionalized carbon black supported Pt NPs (Pt/f-CB) towards methanol. From the results obtained from the CV and CA, it was found that the activity of the Pt/f-CB NPs (50 mA/cm 2 ) was almost 4-5 times higher than that of the Pt/CB NPs and commercial available Pt/C catalyst (ETEK). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Method and apparatus for measuring irradiated fuel profiles

    DOEpatents

    Lee, David M.

    1982-01-01

    A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

  19. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  20. Exergy analysis of a solid oxide fuel cell micropowerplant

    NASA Astrophysics Data System (ADS)

    Hotz, Nico; Senn, Stephan M.; Poulikakos, Dimos

    In this paper, an analytical model of a micro solid oxide fuel cell (SOFC) system fed by butane is introduced and analyzed in order to optimize its exergetic efficiency. The micro SOFC system is equipped with a partial oxidation (POX) reformer, a vaporizer, two pre-heaters, and a post-combustor. A one-dimensional (1D) polarization model of the SOFC is used to examine the effects of concentration overpotentials, activation overpotentials, and ohmic resistances on cell performance. This 1D polarization model is extended in this study to a two-dimensional (2D) fuel cell model considering convective mass and heat transport along the fuel cell channel and from the fuel cell to the environment. The influence of significant operational parameters on the exergetic efficiency of the micro SOFC system is discussed. The present study shows the importance of an exergy analysis of the fuel cell as part of an entire thermodynamic system (transportable micropowerplant) generating electric power.